1
|
Wang C, Liu H, Yang Y, Sun Q, Yin L, Yang L, Wang X, Zhao W, Wan Q, Liu G, Chen Y, Li Z, Wang L. Preliminary Study of Radionuclide-Labeled MerTK-Targeting PET Imaging Agents for the Diagnosis of Melanoma. J Med Chem 2024. [PMID: 39484831 DOI: 10.1021/acs.jmedchem.4c02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
MerTK PET imaging holds potential as a promising approach for assessing tumor aggressiveness and monitoring treatment response. In this study, we synthesized a series of 18F- and 68Ga-labeled tracers derived from MerTK inhibitors for detection of MerTK expression. Among the synthesized agents, the dimeric compounds [68Ga]10 and [68Ga]12 demonstrated good in vivo and in vitro stability, high affinities to the MerTK receptor, and good MerTK-targeting specificity. Notably, [68Ga]10 exhibited a tumor uptake of 2.6 ± 0.2%ID/g at 1 h p. i. in B16F10 tumor-bearing mice, nearly tripling the uptake of its monomeric counterpart [68Ga]3. A similar enhancement was observed with [68Ga]12 compared to its monomeric analog [68Ga]6. Additionally, [18F]14 achieved a tumor uptake of 7.6 ± 0.5%ID/g at 2 h p. i., outperforming the previously reported [18F]15. Biodistribution analysis further validated the results, highlighting their potential for clinical investigation.
Collapse
Affiliation(s)
- Changjiang Wang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hao Liu
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yunyi Yang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qinghong Sun
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Liping Yin
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Liping Yang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Weiling Zhao
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Qiang Wan
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Guangfu Liu
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Yue Chen
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Zibo Li
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Li Wang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan 646000, China
| |
Collapse
|
2
|
Frey RR, Jana N, Gorman JV, Wang J, Smith HA, Bromberg KD, Thakur A, Doktor SZ, Indulkar AS, Jakob CG, Upadhyay AK, Qiu W, Manaves V, Gambino F, Valentino SA, Montgomery D, Zhou Y, Li T, Buchanan FG, Ferguson DC, Kurnick MD, Kapecki N, Lai A, Michaelides MR, Penning TD. Discovery of Potent Azetidine-Benzoxazole MerTK Inhibitors with In Vivo Target Engagement. J Med Chem 2024; 67:17033-17052. [PMID: 39350472 DOI: 10.1021/acs.jmedchem.4c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Inhibition of the receptor tyrosine kinase MerTK by small molecules has the potential to augment the immune response to tumors. Potent, selective inhibitors with high levels of in vivo target engagement are needed to fully evaluate the potential use of MerTK inhibitors as cancer therapeutics. We report the discovery and optimization of a series of pyrazinamide-based type 1.5 MerTK inhibitors bearing an azetidine-benzoxazole substituent. Compound 31 potently engages the target in vivo and demonstrates single agent activity in the immune-driven MC-38 murine syngeneic tumor model.
Collapse
Affiliation(s)
- Robin R Frey
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Navendu Jana
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jacob V Gorman
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jin Wang
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Heath A Smith
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kenneth D Bromberg
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ashish Thakur
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Stella Z Doktor
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Anura S Indulkar
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Clarissa G Jakob
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Anup K Upadhyay
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Wei Qiu
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Vlasios Manaves
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Frank Gambino
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Stephen A Valentino
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Debra Montgomery
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yebin Zhou
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Tao Li
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Fritz G Buchanan
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Debra C Ferguson
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Matthew D Kurnick
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Nicolas Kapecki
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Albert Lai
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael R Michaelides
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Thomas D Penning
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
3
|
Yu Y, Jang M, Miyashiro J, Clark RF, Zhu GD, Gong J, Dai Y, Frey RR, Penning TD, Kim H, Lee HK, Kim JK, Ryu KM, Park SJ, Yoon T, Li T, Kurnick MD, Kapecki NJ, Li L, Gorman JV, Montgomery DA, Manaves V, Bromberg KD, Doktor SZ, Thakur A, Wang J, Smith HA, Buchanan FG, Ferguson DC, Torrent M, Jakob CG, Qiu W, Upadhyay AK, Martin RL, Lai A, Michaelides MR. Discovery of A-910, a Highly Potent and Orally Bioavailable Dual MerTK/Axl-Selective Tyrosine Kinase Inhibitor. J Med Chem 2024; 67:17000-17032. [PMID: 39283694 DOI: 10.1021/acs.jmedchem.4c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
TAM receptor tyrosine kinases have emerged as promising therapeutic targets for cancer treatment due to their roles in both tumor intrinsic survival mechanisms and suppression of antitumor immunity within the tumor microenvironment. Inhibiting MerTK and Axl selectively is believed to hinder cancer cell survival, reverse the protumor myeloid phenotype, and suppress efferocytosis, thereby eliciting an antitumor immune response. In this study, we present the discovery of A-910, a highly potent and selective dual MerTK/Axl inhibitor, achieved through a structure-based medicinal chemistry campaign. The lead compound exhibits favorable oral bioavailability, exceptional kinome selectivity, and significantly improved in vivo target engagement. These findings support the use of A-910 as an orally bioavailable in vivo tool compound for investigating the immunotherapy potential of dual MerTK/Axl inhibition.
Collapse
Affiliation(s)
- Yiyun Yu
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Miyeon Jang
- Dong-A ST, 21, Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17073, Korea
| | - Julie Miyashiro
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Richard F Clark
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Gui-Dong Zhu
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jane Gong
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yujia Dai
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Robin R Frey
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Thomas D Penning
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Hadong Kim
- Dong-A ST, 21, Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17073, Korea
| | - Hyung Ki Lee
- Dong-A ST, 21, Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17073, Korea
| | - Jin Kwan Kim
- Dong-A ST, 21, Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17073, Korea
| | - Ki Moon Ryu
- Dong-A ST, 21, Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17073, Korea
| | - Seong Jin Park
- Dong-A ST, 21, Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17073, Korea
| | - Taeyoung Yoon
- Dong-A ST, 21, Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17073, Korea
| | - Tao Li
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Matthew D Kurnick
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Nicolas J Kapecki
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Leiming Li
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jacob V Gorman
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Debra A Montgomery
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Vlasios Manaves
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kenneth D Bromberg
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Stella Z Doktor
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ashish Thakur
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jin Wang
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Heath A Smith
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Fritz G Buchanan
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Debra C Ferguson
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Maricel Torrent
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Clarissa G Jakob
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Wei Qiu
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Anup K Upadhyay
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ruth L Martin
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Albert Lai
- Abbvie, Inc, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | | |
Collapse
|
4
|
Huelse JM, Bhasin SS, Jacobsen KM, Yim J, Thomas BE, Branella GM, Bakhtiari M, Chimenti ML, Baxter TA, Raikar SS, Wang X, Frye SV, Henry CJ, Earp HS, Bhasin M, DeRyckere D, Graham DK. MERTK inhibition selectively activates a DC - T-cell axis to provide anti-leukemia immunity. Leukemia 2024:10.1038/s41375-024-02408-2. [PMID: 39322710 DOI: 10.1038/s41375-024-02408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
TAM-family tyrosine kinases (TYRO3, AXL and MERTK) are potential cancer therapeutic targets. In previous studies MERTK inhibition in the immune microenvironment was therapeutically effective in a B-cell acute leukemia (B-ALL) model. Here, we probed anti-leukemia immune mechanisms and evaluated roles for TYRO3 and AXL in the leukemia microenvironment. Host Mertk knock-out or MERTK inhibitor MRX-2843 increased CD8α+ dendritic cells (DCs) with enhanced antigen-presentation capacity in the leukemia microenvironment and inhibited leukemogenesis. High MERTK or low DC gene expression were associated with poor prognosis in pediatric ALL patients, indicating the clinical relevance of these findings. MRX-2843 increased CD8+ T-cell numbers and prevented induction of exhaustion markers, implicating a DC - T-cell axis. Indeed, combined depletion of CD8α+ DCs and CD8+ T-cells was required to abrogate anti-leukemia immunity in Mertk-/- mice. Tyro3-/- mice were also protected against B-ALL, implicating TYRO3 as an immunotherapeutic target. In contrast to Mertk-/- mice, Tyro3-/- did not increase CD8α+ DCs with enhanced antigen-presentation capacity and therapeutic activity was less dependent on DCs, indicating a different immune mechanism. Axl-/- did not impact leukemogenesis. These data demonstrate differential TAM kinase roles in the leukemia microenvironment and provide rationale for development of MERTK and/or TYRO3-targeted immunotherapies.
Collapse
Affiliation(s)
- Justus M Huelse
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Kristen M Jacobsen
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Juhye Yim
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Gianna M Branella
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Mojtaba Bakhtiari
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Madison L Chimenti
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Travon A Baxter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA
| | - Curtis J Henry
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
- Department of Immunology and Microbiology, The University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - H Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA
- Departments of Medicine and Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
- Cancer Immunology Program, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
- Wallace H Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, 30322, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
5
|
Smart SK, Yeung TY, Santos MO, McSwain LF, Wang X, Frye SV, Earp HS, DeRyckere D, Graham DK. MERTK Is a Potential Therapeutic Target in Ewing Sarcoma. Cancers (Basel) 2024; 16:2831. [PMID: 39199601 PMCID: PMC11352666 DOI: 10.3390/cancers16162831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Outcomes are poor in patients with advanced or relapsed Ewing sarcoma (EWS) and current treatments have significant short- and long-term side effects. New, less toxic and more effective treatments are urgently needed. MER proto-oncogene tyrosine kinase (MERTK) promotes tumor cell survival, metastasis, and resistance to cytotoxic and targeted therapies in a variety of cancers. MERTK was ubiquitously expressed in five EWS cell lines and five patient samples. Moreover, data from CRISPR-based library screens indicated that EWS cell lines are particularly dependent on MERTK. Treatment with MRX-2843, a first-in-class, MERTK-selective tyrosine kinase inhibitor currently in clinical trials, decreased the phosphorylation of MERTK and downstream signaling in a dose-dependent manner in A673 and TC106 cells and provided potent anti-tumor activity against all five EWS cell lines, with IC50 values ranging from 178 to 297 nM. Inhibition of MERTK correlated with anti-tumor activity, suggesting MERTK inhibition as a therapeutic mechanism of MRX-2843. Combined treatment with MRX-2843 and BCL-2 inhibitors venetoclax or navitoclax provided enhanced therapeutic activity compared to single agents. These data highlight MERTK as a promising therapeutic target in EWS and provide rationale for the development of MRX-2843 for the treatment of EWS, especially in combination with BCL-2 inhibitors.
Collapse
Affiliation(s)
- Sherri K. Smart
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (S.K.S.); (T.Y.Y.); (L.F.M.); (D.D.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tsz Y. Yeung
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (S.K.S.); (T.Y.Y.); (L.F.M.); (D.D.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Leon F. McSwain
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (S.K.S.); (T.Y.Y.); (L.F.M.); (D.D.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (X.W.); (S.V.F.)
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (X.W.); (S.V.F.)
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - H. Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Departments of Medicine and Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (S.K.S.); (T.Y.Y.); (L.F.M.); (D.D.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (S.K.S.); (T.Y.Y.); (L.F.M.); (D.D.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Su X, Chen W, Fu Y, Wu B, Mao F, Zhao Y, Yang Q, Lan D. Protective Role of MerTK in Diabetic Peripheral Neuropathy via Inhibition of the NF-κB Signaling Pathway. Exp Clin Endocrinol Diabetes 2024; 132:396-406. [PMID: 38588709 PMCID: PMC11251753 DOI: 10.1055/a-2301-3970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Diabetic peripheral neuropathy (DPN) impacts patient quality of life. In such patients, increased expression of mer tyrosine kinase (MerTK) has been demonstrated; however, its mechanism of action remains unclear. In this study, type 2 diabetes mellitus (T2DM) and DPN models were established in Sprague Dawley rats via low-dose streptozotocin and a high-fat diet and the mode of action of MerTK was examined. METHODS MerTK-specific inhibitors were administered by gavage once daily for 2 weeks. Sciatic nerve conduction velocity and nerve structure were measured. The levels of MerTK, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and relevant biochemical indexes were detected. RESULTS The study revealed upregulation of MerTK expression in T2DM and more so in DPN groups. Inhibiting MerTK led to reduced nerve conduction velocity and further deterioration of sciatic nerve structure, as evidenced by structural morphology. Concurrently, serum levels of total cholesterol, glycated hemoglobin, and triglyceride significantly increased. Moreover, levels of NF-κB increased in both serum and nerve tissue, alongside a significant rise in TNF-α and IL-1β expressions. MerTK could bind to the inhibitor of kappa B kinase beta (Ikbkb) in Schwann cells, establishing Ikbkb as a precursor to NF-κB activation. DISCUSSION Inhibition of MerTK exacerbates neuropathy, indicating its protective role in DPN by suppressing the NF-κB pathway, highlighting a potential new target for its diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaoyang Su
- Department of Critical Care Medicine, The First Affiliated Hospital of
Kunming Medical University, Kunming 650032, Yunnan, China
| | - Wenting Chen
- Department of Endocrinology, The First Affiliated Hospital of Kunming
Medical University, Kunming 650032, Yunnan, China
| | - Yidan Fu
- Department of Endocrinology, The First Affiliated Hospital of Kunming
Medical University, Kunming 650032, Yunnan, China
| | - Bian Wu
- Department of General Surgery II, The First People’s Hospital of Yunnan
Province, Yunnan Key Laboratory of Innovative Application of Traditional Chinese
Medicine, Kunming 650032, Yunnan, China
| | - Fugang Mao
- Department of Ultrasound, The First People’s Hospital of Yunnan
Province, The Affiliated Hospital of Kunming University of Science and
Technology, Kunming 650032, Yunnan, China
| | - Yan Zhao
- Department of Endocrinology, The First Affiliated Hospital of Kunming
Medical University, Kunming 650032, Yunnan, China
| | - Qiuping Yang
- Department of Endocrinology, The First Affiliated Hospital of Kunming
Medical University, Kunming 650032, Yunnan, China
| | - Danfeng Lan
- Department of Gastroenterology, The First People’s Hospital of Yunnan
Province, Yunnan Digestive Disease Clinical Medical Center, Kunming 650032,
Yunnan, China
| |
Collapse
|
7
|
Li GX, Chen L, Hsiao Y, Mannan R, Zhang Y, Luo J, Petralia F, Cho H, Hosseini N, Leprevost FDV, Calinawan A, Li Y, Anand S, Dagar A, Geffen Y, Kumar-Sinha C, Chugh S, Le A, Ponce S, Guo S, Zhang C, Schnaubelt M, Al Deen NN, Chen F, Caravan W, Houston A, Hopkins A, Newton CJ, Wang X, Polasky DA, Haynes S, Yu F, Jing X, Chen S, Robles AI, Mesri M, Thiagarajan M, An E, Getz GA, Linehan WM, Hostetter G, Jewell SD, Chan DW, Wang P, Omenn GS, Mehra R, Ricketts CJ, Ding L, Chinnaiyan AM, Cieslik MP, Dhanasekaran SM, Zhang H, Nesvizhskii AI. Comprehensive proteogenomic characterization of rare kidney tumors. Cell Rep Med 2024; 5:101547. [PMID: 38703764 PMCID: PMC11148773 DOI: 10.1016/j.xcrm.2024.101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/29/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.
Collapse
Affiliation(s)
- Ginny Xiaohe Li
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yi Hsiao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Luo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hanbyul Cho
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noshad Hosseini
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Aniket Dagar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Seema Chugh
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sean Ponce
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Shenghao Guo
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Andrew Houston
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Alex Hopkins
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xiaoming Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah Haynes
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaojun Jing
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | | | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Gad A Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saravana M Dhanasekaran
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Chen P, Li Z, Li N. Establishment of a novel efferocytosis potential index predicts prognosis and immunotherapy response in cancers. Heliyon 2024; 10:e30337. [PMID: 38707349 PMCID: PMC11068824 DOI: 10.1016/j.heliyon.2024.e30337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
The biological function and prognostic value of efferocytosis in cancer remains unclear. In this study, we systematically analysed the expression profiles and genetic variations of 50 efferocytosis-related regulator genes in 33 cancer types. Using data from The Cancer Genome Atlas, we established an efferocytosis potential index (EPI) model to represent the efferocytosis level in each cancer type. The relationship between the EPI and prognosis, immune-related molecules, specific pathways, and drug sensitivity was determined. We found that efferocytosis regulator genes were abnormally expressed in cancer tissue, perhaps owing to copy number variations, gene alterations, and DNA methylation. For the most part, the EPI was higher in tumour vs. normal tissues. In most of the 33 cancer types, it positively correlated with cell death- and immune-related pathway enrichment, the tumour microenvironment, immune infiltration, and drug sensitivity. For specific cancers, a high EPI may be a prognostic risk factor and, in patients treated receiving immune checkpoint therapy, a predictor of poor prognosis. Our study reveals the biological functions of efferocytosis-related regulator genes in distinct cancers and highlights the potential of efferocytosis intervention in cancer therapy.
Collapse
Affiliation(s)
- Peng Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| |
Collapse
|
9
|
Ghosh S, Finnemann SC, Vollrath D, Rothlin CV. In the Eyes of the Beholder-New Mertk Knockout Mouse and Re-Evaluation of Phagocytosis versus Anti-Inflammatory Functions of MERTK. Int J Mol Sci 2024; 25:5299. [PMID: 38791338 PMCID: PMC11121519 DOI: 10.3390/ijms25105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Greg Lemke's laboratory was one of the pioneers of research into the TAM family of receptor tyrosine kinases (RTKs). Not only was Tyro3 cloned in his laboratory, but his group also extensively studied mice knocked out for individual or various combinations of the TAM RTKs Tyro3, Axl, and Mertk. Here we primarily focus on one of the paralogs-MERTK. We provide a historical perspective on rodent models of loss of Mertk function and their association with retinal degeneration and blindness. We describe later studies employing mouse genetics and the generation of newer knockout models that point out incongruencies with the inference that loss of MERTK-dependent phagocytosis is sufficient for severe, early-onset photoreceptor degeneration in mice. This discussion is meant to raise awareness with regards to the limitations of the original Mertk knockout mouse model generated using 129 derived embryonic stem cells and carrying 129 derived alleles and the role of these alleles in modifying Mertk knockout phenotypes or even displaying Mertk-independent phenotypes. We also suggest molecular approaches that can further Greg Lemke's scintillating legacy of dissecting the molecular functions of MERTK-a protein that has been described to function in phagocytosis as well as in the negative regulation of inflammation.
Collapse
Affiliation(s)
- Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, New Haven, CT 06520, USA
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Silvia C. Finnemann
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA;
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Carla V. Rothlin
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
10
|
Iida M, Crossman BE, Kostecki KL, Glitchev CE, Kranjac CA, Crow MT, Adams JM, Liu P, Ong I, Yang DT, Kang I, Salgia R, Wheeler DL. MerTK Drives Proliferation and Metastatic Potential in Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:5109. [PMID: 38791148 PMCID: PMC11121248 DOI: 10.3390/ijms25105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by the absence of the estrogen receptor, progesterone receptor, and receptor tyrosine kinase HER2 expression. Due to the limited number of FDA-approved targeted therapies for TNBC, there is an ongoing need to understand the molecular underpinnings of TNBC for the development of novel combinatorial treatment strategies. This study evaluated the role of the MerTK receptor tyrosine kinase on proliferation and invasion/metastatic potential in TNBC. Immunohistochemical analysis demonstrated MerTK expression in 58% of patient-derived TNBC xenografts. The stable overexpression of MerTK in human TNBC cell lines induced an increase in proliferation rates, robust in vivo tumor growth, heightened migration/invasion potential, and enhanced lung metastases. NanoString nCounter analysis of MerTK-overexpressing SUM102 cells (SUM102-MerTK) revealed upregulation of several signaling pathways, which ultimately drive cell cycle progression, reduce apoptosis, and enhance cell survival. Proteomic profiling indicated increased endoglin (ENG) production in SUM102-MerTK clones, suggesting that MerTK creates a conducive environment for increased proliferative and metastatic activity via elevated ENG expression. To determine ENG's role in increasing proliferation and/or metastatic potential, we knocked out ENG in a SUM102-MerTK clone with CRISPR technology. Although this ENG knockout clone exhibited similar in vivo growth to the parental SUM102-MerTK clone, lung metastasis numbers were significantly decreased ~4-fold, indicating that MerTK enhances invasion and metastasis through ENG. Our data suggest that MerTK regulates a unique proliferative signature in TNBC, promoting robust tumor growth and increased metastatic potential through ENG upregulation. Targeting MerTK and ENG simultaneously may provide a novel therapeutic approach for TNBC patients.
Collapse
Affiliation(s)
- Mari Iida
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Bridget E. Crossman
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Kourtney L. Kostecki
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Christine E. Glitchev
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Carlene A. Kranjac
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Madisen T. Crow
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Jillian M. Adams
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Peng Liu
- Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA; (P.L.); (I.O.)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Irene Ong
- Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA; (P.L.); (I.O.)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David T. Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Irene Kang
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; (I.K.); (R.S.)
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; (I.K.); (R.S.)
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
11
|
Cao N, Wan Z, Chen D, Tang L. Deciphering peri-implantitis: Unraveling signature genes and immune cell associations through bioinformatics and machine learning. Medicine (Baltimore) 2024; 103:e37862. [PMID: 38640305 PMCID: PMC11030017 DOI: 10.1097/md.0000000000037862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/21/2024] Open
Abstract
Early diagnosis of peri-implantitis (PI) is crucial to understand its pathological progression and prevention. This study is committed to investigating the signature genes, relevant signaling pathways and their associations with immune cells in PI. We analyzed differentially expressed genes (DEGs) from a PI dataset in the gene expression omnibus database. Functional enrichment analysis was conducted for these DEGs. Weighted Gene Co-expression Network Analysis was used to identify specific modules. Least absolute shrinkage and selection operator and support vector machine recursive feature elimination were ultimately applied to identify the signature genes. These genes were subsequently validated in an external dataset. And the immune cells infiltration was classified using CIBERSORT. A total of 180 DEGs were screened from GSE33774. Weighted Gene Co-expression Network Analysis revealed a significant association between the MEturquoise module and PI (cor = 0.6, P < .0001). Least absolute shrinkage and selection operator and support vector machine recursive feature elimination algorithms were applied to select the signature genes, containing myeloid-epithelial-reproductive tyrosine kinase, microfibrillar-associated protein 5, membrane-spanning 4A 4A, tribbles homolog 1. In the validation on the external dataset GSE106090, all these genes achieved area under curve values exceeding 0.95. GSEA analysis showed that these genes were correlated with the NOD-like receptor signaling pathway, metabolism of xenobiotics by cytochrome P450, and arachidonic acid metabolism. CIBERSORT revealed elevated levels of macrophage M2 and activated mast cells in PI. This study provides novel insights into understanding the molecular mechanisms of PI and contributes to advancements in its early diagnosis and prevention.
Collapse
Affiliation(s)
- Ning Cao
- Department of Implant Dentistry, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Ziwei Wan
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Donghui Chen
- Department of Implant Dentistry, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Li Tang
- Department of Implant Dentistry, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China
- Key Laboratory of Research and Application of Stomatological Equipment (College of Stomatology, Hospital of Stomatology, Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| |
Collapse
|
12
|
Lahey KC, Varsanyi C, Wang Z, Aquib A, Gadiyar V, Rodrigues AA, Pulica R, Desind S, Davra V, Calianese DC, Liu D, Cho JH, Kotenko SV, De Lorenzo MS, Birge RB. Regulation of Mertk Surface Expression via ADAM17 and γ-Secretase Proteolytic Processing. Int J Mol Sci 2024; 25:4404. [PMID: 38673989 PMCID: PMC11050108 DOI: 10.3390/ijms25084404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Mertk, a type I receptor tyrosine kinase and member of the TAM family of receptors, has important functions in promoting efferocytosis and resolving inflammation under physiological conditions. In recent years, Mertk has also been linked to pathophysiological roles in cancer, whereby, in several cancer types, including solid cancers and leukemia/lymphomas. Mertk contributes to oncogenic features of proliferation and cell survival as an oncogenic tyrosine kinase. In addition, Mertk expressed on macrophages, including tumor-associated macrophages, promotes immune evasion in cancer and is suggested to act akin to a myeloid checkpoint inhibitor that skews macrophages towards inhibitory phenotypes that suppress host T-cell anti-tumor immunity. In the present study, to better understand the post-translational regulation mechanisms controlling Mertk expression in monocytes/macrophages, we used a PMA-differentiated THP-1 cell model to interrogate the regulation of Mertk expression and developed a novel Mertk reporter cell line to study the intracellular trafficking of Mertk. We show that PMA treatment potently up-regulates Mertk as well as components of the ectodomain proteolytic processing platform ADAM17, whereas PMA differentially regulates the canonical Mertk ligands Gas6 and Pros1 (Gas6 is down-regulated and Pros1 is up-regulated). Under non-stimulated homeostatic conditions, Mertk in PMA-differentiated THP1 cells shows active constitutive proteolytic cleavage by the sequential activities of ADAM17 and the Presenilin/γ-secretase complex, indicating that Mertk is cleaved homeostatically by the combined sequential action of ADAM17 and γ-secretase, after which the cleaved intracellular fragment of Mertk is degraded in a proteasome-dependent mechanism. Using chimeric Flag-Mertk-EGFP-Myc reporter receptors, we confirm that inhibitors of γ-secretase and MG132, which inhibits the 26S proteasome, stabilize the intracellular fragment of Mertk without evidence of nuclear translocation. Finally, the treatment of cells with active γ-carboxylated Gas6, but not inactive Warfarin-treated non-γ-carboxylated Gas6, regulates a distinct proteolytic itinerary-involved receptor clearance and lysosomal proteolysis. Together, these results indicate that pleotropic and complex proteolytic activities regulate Mertk ectodomain cleavage as a homeostatic negative regulatory event to safeguard against the overactivation of Mertk.
Collapse
Affiliation(s)
- Kevin C. Lahey
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Christopher Varsanyi
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Ziren Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Ahmed Aquib
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Alcina A. Rodrigues
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Rachael Pulica
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Samuel Desind
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - David C. Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101, USA; (D.L.); (J.-H.C.)
| | - Jong-Hyun Cho
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101, USA; (D.L.); (J.-H.C.)
| | - Sergei V. Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Mariana S. De Lorenzo
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, 185 South Orange Ave, Newark, NJ 07103, USA;
| | - Raymond B. Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| |
Collapse
|
13
|
Liu S, Wu J, Yang D, Xu J, Shi H, Xue B, Ding Z. Big data analytics for MerTK genomics reveals its double-edged sword functions in human diseases. Redox Biol 2024; 70:103061. [PMID: 38341954 PMCID: PMC10869259 DOI: 10.1016/j.redox.2024.103061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/13/2024] Open
Abstract
RATIONALE MER proto-oncogene tyrosine kinase (MerTK) is a key receptor for the clearance of apoptotic cells (efferocytosis) and plays important roles in redox-related human diseases. We will explore MerTK biology in human cells, tissues, and diseases based on big data analytics. METHODS The human RNA-seq and scRNA-seq data about 42,700 samples were from NCBI Gene Expression Omnibus and analyzed by QIAGEN Ingenuity Pathway Analysis (IPA) with about 170,000 crossover analysis. MerTK expression was quantified as Log2 (FPKM + 0.1). RESULTS We found that, in human cells, MerTK is highly expressed in macrophages, monocytes, progenitor cells, alpha-beta T cells, plasma B cells, myeloid cells, and endothelial cells (ECs). In human tissues, MerTK has higher expression in plaque, blood vessels, heart, liver, sensory system, artificial tissue, bone, adrenal gland, central nervous system (CNS), and connective tissue. Compared to normal conditions, MerTK expression in related tissues is altered in many human diseases, including cardiovascular diseases, cancer, and brain disorders. Interestingly, MerTK expression also shows sex differences in many tissues, indicating that MerTK may have different impact on male and female. Finally, based on our proteomics from primary human aortic ECs, we validated the functions of MerTK in several human diseases, such as cancer, aging, kidney failure and heart failure. CONCLUSIONS Our big data analytics suggest that MerTK may be a promising therapeutic target, but how it should be modulated depends on the disease types and sex differences. For example, MerTK inhibition emerges as a new strategy for cancer therapy due to it counteracts effect on anti-tumor immunity, while MerTK restoration represents a promising treatment for atherosclerosis and myocardial infarction as MerTK is cleaved in these disease conditions.
Collapse
Affiliation(s)
- Shijie Liu
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Jinzi Wu
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Daixuan Yang
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Jianliang Xu
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Zufeng Ding
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
14
|
Hu Y, Revenko A, Barsoumian H, Bertolet G, Fowlkes NW, Maazi H, Green MM, He K, Sezen D, Voss TA, Leyton CSK, Masrorpour F, Rafiq Z, Puebla-Osorio N, Leuschner C, MacLeod R, Cortez MA, Welsh JW. Inhibition of MER proto-oncogene tyrosine kinase by an antisense oligonucleotide enhances treatment efficacy of immunoradiotherapy. J Exp Clin Cancer Res 2024; 43:70. [PMID: 38443968 PMCID: PMC10916163 DOI: 10.1186/s13046-024-02992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The combination of radiotherapy and immunotherapy (immunoradiotherapy) has been increasingly used for treating a wide range of cancers. However, some tumors are resistant to immunoradiotherapy. We have previously shown that MER proto-oncogene tyrosine kinase (MerTK) expressed on macrophages mediates resistance to immunoradiotherapy. We therefore sought to develop therapeutics that can mitigate the negative impact of MerTK. We designed and developed a MerTK specific antisense oligonucleotide (ASO) and characterized its effects on eliciting an anti-tumor immune response in mice. METHODS 344SQR cells were injected into the right legs on day 0 and the left legs on day 4 of 8-12 weeks old female 129sv/ev mice to establish primary and secondary tumors, respectively. Radiation at a dose of 12 Gy was given to the primary tumors on days 8, 9, and 10. Mice received either anti-PD-1, anti-CTLA-4 or/and MerTK ASO starting from day 1 post tumor implantation. The composition of the tumor microenvironment and the level of MerTK on macrophages in the tumor were evaluted by flow cytometry. The expression of immune-related genes was investigated with NanoString. Lastly, the impact of MerTK ASO on the structure of the eye was histologically evaluated. RESULTS Remarkably, the addition of MerTK ASO to XRT+anti-PD1 and XRT+anti-CTLA4 profoundly slowed the growth of both primary and secondary tumors and significantly extended survival. The ASO significantly reduced the expression of MerTK in tumor-associated macrophages (TAMs), reprograming their phenotype from M2 to M1. In addition, MerTK ASO increased the percentage of Granzyme B+ CD8+ T cells in the secondary tumors when combined with XRT+anti-CTLA4. NanoString results demonstrated that the MerTK ASO favorably modulated immune-related genes for promoting antitumor immune response in secondary tumors. Importantly, histological analysis of eye tissues demonstrated that unlike small molecules, the MerTK ASO did not produce any detectable pathology in the eyes. CONCLUSIONS The MerTK ASO can significantly downregulate the expression of MerTK on TAMs, thereby promoting antitumor immune response. The combination of MerTK ASO with immunoradiotherapy can safely and significantly slow tumor growth and improve survival.
Collapse
Affiliation(s)
- Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Hampartsoum Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Genevieve Bertolet
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Natalie Wall Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hadi Maazi
- Ionis Pharmaceuticals, Carlsbad, CA, 92008, USA
| | - Morgan Maureen Green
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kewen He
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Duygu Sezen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Radiation Oncology, Koc University School of Medicine, Istanbul, Turkey
| | - Tiffany A Voss
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Claudia S Kettlun Leyton
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zahid Rafiq
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carola Leuschner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
15
|
Wang S, Zhu L, Li T, Lin X, Zheng Y, Xu D, Guo Y, Zhang Z, Fu Y, Wang H, Wang X, Zou T, Shen X, Zhang L, Lai N, Lu L, Qin L, Dong Q. Disruption of MerTK increases the efficacy of checkpoint inhibitor by enhancing ferroptosis and immune response in hepatocellular carcinoma. Cell Rep Med 2024; 5:101415. [PMID: 38382467 PMCID: PMC10897610 DOI: 10.1016/j.xcrm.2024.101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/23/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Immune checkpoint inhibitors, particularly PD-1/PD-L1 blockades, have been approved for unresectable hepatocellular carcinoma (HCC). However, high resistance rates still limit their efficacy, highlighting the urgent need to understand the underlying mechanisms and develop strategies for overcoming the resistance. In this study, we demonstrate that HCC with high MER proto-oncogene tyrosine kinase (MerTK) expression exhibits anti-PD-1/PD-L1 resistance in two syngeneic mouse models and in patients who received anti-PD-1/PD-L1 therapy. Mechanistically, MerTK renders HCC resistant to anti-PD-1/PD-L1 by limiting ferroptosis with the upregulation of SLC7A11 via the ERK/SP1 pathway and facilitating the development of an immunosuppressive tumor microenvironment (TME) with the recruitment of myeloid-derived suppressor cells (MDSCs). Sitravatinib, an inhibitor of MerTK, sensitizes resistant HCC to anti-PD-L1 therapy by promoting tumor ferroptosis and decreasing MDSC infiltration into the TME. In conclusion, we find that MerTK could serve as a predictive biomarker for patient stratification and as a promising target to overcome anti-PD-1/PD-L1 resistance in HCC.
Collapse
Affiliation(s)
- Shun Wang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai, China; Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Le Zhu
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai, China; Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Tianen Li
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xinxin Lin
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Da Xu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yu Guo
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai, China; Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Ze Zhang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Fu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Hao Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xufeng Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Tiantian Zou
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiaotian Shen
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lumin Zhang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai, China
| | - Nannan Lai
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai, China; Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Zhou X, Li D, Xia S, Ma X, Li R, Mu Y, Liu Z, Zhang L, Zhou Q, Zhuo W, Ding K, Lin A, Liu W, Liu X, Zhou T. RNA-based modulation of macrophage-mediated efferocytosis potentiates antitumor immunity in colorectal cancer. J Control Release 2024; 366:128-141. [PMID: 38104775 DOI: 10.1016/j.jconrel.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Tumor-associated macrophages play pivotal roles in tumor progression and metastasis. Macrophage-mediated clearance of apoptotic cells (efferocytosis) supports inflammation resolution, contributing to immune evasion in colorectal cancers. To reverse this immunosuppressive process, we propose a readily translatable RNA therapy to selectively inhibit macrophage-mediated efferocytosis in tumor microenvironment. A clinically approved lipid nanoparticle platform (LNP) is employed to encapsulate siRNA for the phagocytic receptor MerTK (siMerTK), enabling selective MerTK inhibition in the diseased organ. Decreased MerTK expression in tumor-associated macrophages results in apoptotic cell accumulation and immune activation in tumor microenvironment, leading to suppressed tumor growth and better survival in both liver and peritoneal metastasis models of colorectal cancers. siMerTK delivery combined with PD-1 blockade further produces enhanced antimetastatic efficacy with reactivated intratumoral immune milieu. Collectively, LNP-based siMerTK delivery combined with immune checkpoint therapy may present a feasible modality for metastatic colorectal cancer therapy.
Collapse
Affiliation(s)
- Xuefei Zhou
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China.
| | - Dezhi Li
- Department of Oncology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Shenglong Xia
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xixi Ma
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang 310020, China
| | - Rong Li
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongli Mu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zimo Liu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lu Zhang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Quan Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Zhuo
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kefeng Ding
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang 310020, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Liu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiangrui Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| | - Tianhua Zhou
- Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang 310020, China.
| |
Collapse
|
17
|
Ryu KY, Pokhrel NK, Jung HJ, Kim HJ, Seok J, Kim TY, Kim HJ, Lee JH, Kim JY, Kim YG, Lee Y. Mer tyrosine kinase regulates bone metabolism, and its deficiency partially ameliorates periodontitis- and ovariectomy-induced bone loss in mice. JBMR Plus 2024; 8:ziad014. [PMID: 38505527 PMCID: PMC10945713 DOI: 10.1093/jbmrpl/ziad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 03/21/2024] Open
Abstract
Bone homeostasis is maintained by tightly coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts. In the present report, the role of Mer tyrosine kinase (MerTK) in bone metabolism was investigated. The expression of MerTK decreased upon BMP2 stimulation of osteoblast precursors. The femurs of Mertk-deficient mice showed significantly increased bone volume with concomitant increase of bone formation and reduction in bone resorption. These bone phenotypes were attributed to the increased osteoblast differentiation and mineralization accounted by the enhanced β-catenin and Smad signaling in the absence of MerTK in osteoblast precursors. Although the Mertk-deficient bone marrow macrophages were predisposed to enhanced osteoclast differentiation via augmented Ca2+-NFATc1 signaling, the dramatic increase of Tnfsf11b/Tnfsf11 (Opg/Rankl) ratio in Mertk knockout bones and osteoblast precursors corroborated the reduction of osteoclastogenesis in Mertk deficiency. In ligature-induced periodontitis and ovariectomy models, the bone resorption was significantly attenuated in Mertk-deficient mice compared with wild-type control. Taken together, these data indicate novel role of MerTK in bone metabolism and suggest a potential strategy targeting MerTK in treating bone-lytic diseases including periodontitis and osteoporosis.
Collapse
Affiliation(s)
- Ka-Young Ryu
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Nitin Kumar Pokhrel
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Hye-Jin Jung
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Hyo Jeong Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Jiwon Seok
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Ji Hye Lee
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| |
Collapse
|
18
|
Basak U, Sarkar T, Mukherjee S, Chakraborty S, Dutta A, Dutta S, Nayak D, Kaushik S, Das T, Sa G. Tumor-associated macrophages: an effective player of the tumor microenvironment. Front Immunol 2023; 14:1295257. [PMID: 38035101 PMCID: PMC10687432 DOI: 10.3389/fimmu.2023.1295257] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer progression is primarily caused by interactions between transformed cells and the components of the tumor microenvironment (TME). TAMs (tumor-associated macrophages) make up the majority of the invading immune components, which are further categorized as anti-tumor M1 and pro-tumor M2 subtypes. While M1 is known to have anti-cancer properties, M2 is recognized to extend a protective role to the tumor. As a result, the tumor manipulates the TME in such a way that it induces macrophage infiltration and M1 to M2 switching bias to secure its survival. This M2-TAM bias in the TME promotes cancer cell proliferation, neoangiogenesis, lymphangiogenesis, epithelial-to-mesenchymal transition, matrix remodeling for metastatic support, and TME manipulation to an immunosuppressive state. TAMs additionally promote the emergence of cancer stem cells (CSCs), which are known for their ability to originate, metastasize, and relapse into tumors. CSCs also help M2-TAM by revealing immune escape and survival strategies during the initiation and relapse phases. This review describes the reasons for immunotherapy failure and, thereby, devises better strategies to impair the tumor-TAM crosstalk. This study will shed light on the understudied TAM-mediated tumor progression and address the much-needed holistic approach to anti-cancer therapy, which encompasses targeting cancer cells, CSCs, and TAMs all at the same time.
Collapse
Affiliation(s)
- Udit Basak
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Tania Sarkar
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Saikat Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Debadatta Nayak
- Central Council for Research in Homeopathy (CCRH), New Delhi, India
| | - Subhash Kaushik
- Central Council for Research in Homeopathy (CCRH), New Delhi, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
19
|
Kelvin JM, Jain J, Thapa A, Qui M, Birnbaum LA, Moore SG, Zecca H, Summers RJ, Switchenko JM, Costanza E, Uricoli B, Wang X, Jui NT, Fu H, Du Y, DeRyckere D, Graham DK, Dreaden EC. Constitutively Synergistic Multiagent Drug Formulations Targeting MERTK, FLT3, and BCL-2 for Treatment of AML. Pharm Res 2023; 40:2133-2146. [PMID: 37704893 DOI: 10.1007/s11095-023-03596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE Although high-dose, multiagent chemotherapy has improved leukemia survival rates, treatment outcomes remain poor in high-risk subsets, including acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) in infants. The development of new, more effective therapies for these patients is therefore an urgent, unmet clinical need. METHODS The dual MERTK/FLT3 inhibitor MRX-2843 and BCL-2 family protein inhibitors were screened in high-throughput against a panel of AML and MLL-rearranged precursor B-cell ALL (infant ALL) cell lines. A neural network model was built to correlate ratiometric drug synergy and target gene expression. Drugs were loaded into liposomal nanocarriers to assess primary AML cell responses. RESULTS MRX-2843 synergized with venetoclax to reduce AML cell density in vitro. A neural network classifier based on drug exposure and target gene expression predicted drug synergy and growth inhibition in AML with high accuracy. Combination monovalent liposomal drug formulations delivered defined drug ratios intracellularly and recapitulated synergistic drug activity. The magnitude and frequency of synergistic responses were both maintained and improved following drug formulation in a genotypically diverse set of primary AML bone marrow specimens. CONCLUSIONS We developed a nanoscale combination drug formulation that exploits ectopic expression of MERTK tyrosine kinase and dependency on BCL-2 family proteins for leukemia cell survival in pediatric AML and infant ALL cells. We demonstrate ratiometric drug delivery and synergistic cell killing in AML, a result achieved by a systematic, generalizable approach of combination drug screening and nanoscale formulation that may be extended to other drug pairs or diseases in the future.
Collapse
Affiliation(s)
- James M Kelvin
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Juhi Jain
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
- Department of Pediatrics, University of Arizona College of Medicine, and Banner University Medical Center Tucson, Tucson, AZ, 85724, USA
| | - Aashis Thapa
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Min Qui
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lacey A Birnbaum
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Samuel G Moore
- Systems Mass Spectrometry Core Facility, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Henry Zecca
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Ryan J Summers
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Emma Costanza
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Biaggio Uricoli
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nathan T Jui
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Deborah DeRyckere
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Douglas K Graham
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| | - Erik C Dreaden
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
20
|
Kelvin JM, Chimenti ML, Zhang DY, Williams EK, Moore SG, Humber GM, Baxter TA, Birnbaum LA, Qui M, Zecca H, Thapa A, Jain J, Jui NT, Wang X, Fu H, Du Y, Kemp ML, Lam WA, Graham DK, DeRyckere D, Dreaden EC. Development of constitutively synergistic nanoformulations to enhance chemosensitivity in T-cell leukemia. J Control Release 2023; 361:470-482. [PMID: 37543290 PMCID: PMC10544718 DOI: 10.1016/j.jconrel.2023.07.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/27/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Advances in multiagent chemotherapy have led to recent improvements in survival for patients with acute lymphoblastic leukemia (ALL); however, a significant fraction do not respond to frontline chemotherapy or later relapse with recurrent disease, after which long-term survival rates remain low. To develop new, effective treatment options for these patients, we conducted a series of high-throughput combination drug screens to identify chemotherapies that synergize in a lineage-specific manner with MRX-2843, a small molecule dual MERTK and FLT3 kinase inhibitor currently in clinical testing for treatment of relapsed/refractory leukemias and solid tumors. Using experimental and computational approaches, we found that MRX-2843 synergized strongly-and in a ratio-dependent manner-with vincristine to inhibit both B-ALL and T-ALL cell line expansion. Based on these findings, we developed multiagent lipid nanoparticle formulations of these drugs that not only delivered defined drug ratios intracellularly in T-ALL, but also improved anti-leukemia activity following drug encapsulation. Synergistic and additive interactions were recapitulated in primary T-ALL patient samples treated with MRX-2843 and vincristine nanoparticle formulations, suggesting their clinical relevance. Moreover, the nanoparticle formulations reduced disease burden and prolonged survival in an orthotopic murine xenograft model of early thymic precursor T-ALL (ETP-ALL), with both agents contributing to therapeutic activity in a dose-dependent manner. In contrast, nanoparticles containing MRX-2843 alone were ineffective in this model. Thus, MRX-2843 increased the sensitivity of ETP-ALL cells to vincristine in vivo. In this context, the additive particles, containing a higher dose of MRX-2843, provided more effective disease control than the synergistic particles. In contrast, particles containing an even higher, antagonistic ratio of MRX-2843 and vincristine were less effective. Thus, both the drug dose and the ratio-dependent interaction between MRX-2843 and vincristine significantly impacted therapeutic activity in vivo. Together, these findings present a systematic approach to high-throughput combination drug screening and multiagent drug delivery that maximizes the therapeutic potential of combined MRX-2843 and vincristine in T-ALL and describe a novel translational agent that could be used to enhance therapeutic responses to vincristine in patients with T-ALL. This broadly generalizable approach could also be applied to develop other constitutively synergistic combination products for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- James M Kelvin
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Madison L Chimenti
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Dan Y Zhang
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Evelyn K Williams
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Samuel G Moore
- Systems Mass Spectrometry Core Facility, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gabrielle M Humber
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Travon A Baxter
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Lacey A Birnbaum
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Min Qui
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Henry Zecca
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Aashis Thapa
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Juhi Jain
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Nathan T Jui
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Melissa L Kemp
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Wilbur A Lam
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA; Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Douglas K Graham
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Deborah DeRyckere
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| | - Erik C Dreaden
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA; Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
21
|
Zizzo G, Cohen PL. Editorial: The key role of Mer receptor tyrosine kinase: where inflammation ends and fibrosis begins. Front Immunol 2023; 14:1251577. [PMID: 37529052 PMCID: PMC10390068 DOI: 10.3389/fimmu.2023.1251577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Affiliation(s)
- Gaetano Zizzo
- Temple Autoimmunity Center, Temple University, Philadelphia, PA, United States
- Unit of Rheumatology, Department of Internal Medicine, Azienda Socio-Sanitaria Territoriale (ASST) Ovest Milanese, Milan, Italy
| | - Philip L. Cohen
- Temple Autoimmunity Center, Temple University, Philadelphia, PA, United States
- Section of Rheumatology, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
22
|
Li Q, Liu X, Du Y, Zhang X, Xiang P, Chen G, Ling W, Wang D. Protocatechuic acid boosts continual efferocytosis in macrophages by derepressing KLF4 to transcriptionally activate MerTK. Sci Signal 2023; 16:eabn1372. [PMID: 37220181 DOI: 10.1126/scisignal.abn1372] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Macrophages clear apoptotic cells through a process called continual efferocytosis. We found that protocatechuic acid (PCA), a polyphenolic compound abundant in fruits and vegetables, increased the continual efferocytic capacity of macrophages and inhibited the progression of advanced atherosclerosis. PCA reduced the intracellular amounts of microRNA-10b (miR-10b) by promoting its secretion in extracellular vesicles, which led to an increase in the abundance of the miR-10b target Krüppel-like factor 4 (KLF4). In turn, KLF4 transcriptionally induced the gene encoding Mer proto-oncogene tyrosine kinase (MerTK), an efferocytic receptor for the recognition of apoptotic cells, resulting in increased continual efferocytic capacity. However, in naive macrophages, the PCA-induced secretion of miR-10b did not affect KLF4 and MerTK protein abundance or efferocytic capacity. In mice, oral administration of PCA increased continual efferocytosis in macrophages residing in the peritoneal cavities, thymi, and advanced atherosclerotic plaques through the miR-10b-KLF4-MerTK pathway. In addition, pharmacological inhibition of miR-10b with antagomiR-10b also increased the efferocytic capacity of efferocytic but not naive macrophages in vitro and in vivo. Together, these data describe a pathway that promotes continual efferocytosis in macrophages through miR-10b secretion and a KLF4-dependent increase in MerTK abundance, which can be activated by dietary PCA and which has implications for understanding the regulation of continual efferocytosis in macrophages.
Collapse
Affiliation(s)
- Qing Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Xiuping Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Yushi Du
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Xu Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Panyin Xiang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Guanyu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Dongliang Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| |
Collapse
|
23
|
Zhuang WR, Wang Y, Nie W, Lei Y, Liang C, He J, Zuo L, Huang LL, Xie HY. Bacterial outer membrane vesicle based versatile nanosystem boosts the efferocytosis blockade triggered tumor-specific immunity. Nat Commun 2023; 14:1675. [PMID: 36966130 PMCID: PMC10039929 DOI: 10.1038/s41467-023-37369-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
Efferocytosis inhibition is emerging as an attractive strategy for antitumor immune therapy because of the subsequent leak of abundant immunogenic contents. However, the practical efficacy is seriously impeded by the immunosuppressive tumor microenvironments. Here, we construct a versatile nanosystem that can not only inhibit the efferocytosis but also boost the following antitumor immunity. MerTK inhibitor UNC2025 is loaded into the bacterial outer membrane vesicles (OMVs), which are then modified with maleimide (mU@OMVs). The prepared mU@OMVs effectively inhibits the efferocytosis by promoting the uptake while preventing the MerTK phosphorylation of tumor associated macrophages, and then captures the released antigens through forming universal thioether bonds. The obtained in situ vaccine effectively transfers to lymph nodes by virtue of the intrinsic features of OMVs, and then provokes intense immune responses that can efficiently prevent the growth, metastasis and recurrence of tumors in mice, providing a generalizable strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Wan-Ru Zhuang
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Yunfeng Wang
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Yao Lei
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Liping Zuo
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Li-Li Huang
- School of Medical Technology, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China.
| |
Collapse
|
24
|
Kelvin JM, Jain J, Thapa A, Qui M, Birnbaum LA, Moore SG, Zecca H, Summers RJ, Costanza E, Uricoli B, Wang X, Jui NT, Fu H, Du Y, DeRyckere D, Graham DK, Dreaden EC. Constitutively synergistic multiagent drug formulations targeting MERTK, FLT3, and BCL-2 for treatment of AML. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.531236. [PMID: 36993676 PMCID: PMC10054973 DOI: 10.1101/2023.03.13.531236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Although high-dose, multi-agent chemotherapy has improved leukemia survival rates in recent years, treatment outcomes remain poor in high-risk subsets, including acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) in infants. Development of new, more effective therapies for these patients is therefore an urgent, unmet clinical need. To address this challenge, we developed a nanoscale combination drug formulation that exploits ectopic expression of MERTK tyrosine kinase and dependency on BCL-2 family proteins for leukemia cell survival in pediatric AML and MLL- rearranged precursor B-cell ALL (infant ALL). In a novel, high-throughput combination drug screen, the MERTK/FLT3 inhibitor MRX-2843 synergized with venetoclax and other BCL-2 family protein inhibitors to reduce AML cell density in vitro . Neural network models based on drug exposure and target gene expression were used to identify a classifier predictive of drug synergy in AML. To maximize the therapeutic potential of these findings, we developed a combination monovalent liposomal drug formulation that maintains ratiometric drug synergy in cell-free assays and following intracellular delivery. The translational potential of these nanoscale drug formulations was confirmed in a genotypically diverse set of primary AML patient samples and both the magnitude and frequency of synergistic responses were not only maintained but were improved following drug formulation. Together, these findings demonstrate a systematic, generalizable approach to combination drug screening, formulation, and development that maximizes therapeutic potential, was effectively applied to develop a novel nanoscale combination therapy for treatment of AML, and could be extended to other drug combinations or diseases in the future.
Collapse
|
25
|
Park M, Kuen DS, Park J, Choi M, Kim Y, Roh EC, Choi YJ, Kim YG, Chung Y, Cho SY, Kang KW. TYRO3 blockade enhances anti-PD-1 therapy response by modulating expression of CCN1 in tumor microenvironment. J Immunother Cancer 2023; 11:jitc-2022-006084. [PMID: 36693679 PMCID: PMC9884874 DOI: 10.1136/jitc-2022-006084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Immunological contexture differs across malignancies, and understanding it in the tumor microenvironment (TME) is essential for development of new anticancer agents in order to achieve synergistic effects with anti-programmed cell death protein-1 (PD-1) therapy. TYRO3, AXL, and MERTK receptors are bi-expressed in both cancer and immune cells, and thus emerge as promising targets for therapeutic intervention. Whereas AXL and MERTK have been extensively studied, the role of TYRO3, in the TME, is still undetermined. METHODS Here, we screened the TYRO3-focused chemical library consisting of 208 compounds and presented a potent and highly selective TYRO3 inhibitor, KRCT87. We explored the role of TYRO3 using mouse engrafting MC38 or 4T1 tumors. We validated the results using flow cytometry, RNA sequencing analysis, gene knockdown or overexpression, ex vivo immune cells isolation from mouse models, immunoblotting and quantitative PCR. Flow cytometry was used for the quantification of cell populations and immunophenotyping of macrophages and T cells. Co-cultures of macrophages and T cells were performed to verify the role of CCN1 in the tumors. RESULTS TYRO3 blockade boosts antitumor immune responses in both the tumor-draining lymph nodes and tumors in MC38-syngeneic mice models. Moreover, the combination of KRCT87 and anti-PD-1 therapy exerts significant synergistic antitumor effects in anti-PD-1-non-responsive 4T1-syngeneic model. Mechanistically, we demonstrated that inhibition of TYRO3-driven CCN1 secretion fosters macrophages into M1-skewing phenotypes, thereby triggering antitumor T-cell responses. CCN1 overexpression in MC38 tumors diminishes responsiveness to anti-PD-1 therapy. CONCLUSIONS The activated TYRO3-CCN1 axis in cancer could dampen anti-PD-1 therapy responses. These findings highlight the potential of TYRO3 blockade to improve the clinical outcomes of anti-PD-1 therapy.
Collapse
Affiliation(s)
- Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Da-Sol Kuen
- Laboratory of Immune Regulation, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Jaewoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Munkyung Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Yeonji Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, South Korea
| | - Eun Chae Roh
- College of Pharmacy, Dankook University, Cheonan, Chungnam, South Korea
| | - Yong June Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Yoon Gyoon Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, South Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sung Yun Cho
- Department of Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
26
|
Fritz D, Inamo J, Zhang F. Single-cell computational machine learning approaches to immune-mediated inflammatory disease: New tools uncover novel fibroblast and macrophage interactions driving pathogenesis. Front Immunol 2023; 13:1076700. [PMID: 36685542 PMCID: PMC9846263 DOI: 10.3389/fimmu.2022.1076700] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Recent advances in single-cell sequencing technologies call for greater computational scalability and sensitivity to analytically decompose diseased tissues and expose meaningful biological relevance in individual cells with high resolution. And while fibroblasts, one of the most abundant cell types in tissues, were long thought to display relative homogeneity, recent analytical and technical advances in single-cell sequencing have exposed wide variation and sub-phenotypes of fibroblasts of potential and apparent clinical significance to inflammatory diseases. Alongside anticipated improvements in single cell spatial sequencing resolution, new computational biology techniques have formed the technical backbone when exploring fibroblast heterogeneity. More robust models are required, however. This review will summarize the key advancements in computational techniques that are being deployed to categorize fibroblast heterogeneity and their interaction with the myeloid compartments in specific biological and clinical contexts. First, typical machine-learning-aided methods such as dimensionality reduction, clustering, and trajectory inference, have exposed the role of fibroblast subpopulations in inflammatory disease pathologies. Second, these techniques, coupled with single-cell predicted computational methods have raised novel interactomes between fibroblasts and macrophages of potential clinical significance to many immune-mediated inflammatory diseases such as rheumatoid arthritis, ulcerative colitis, lupus, systemic sclerosis, and others. Third, recently developed scalable integrative methods have the potential to map cross-cell-type spatial interactions at the single-cell level while cross-tissue analysis with these models reveals shared biological mechanisms between disease contexts. Finally, these advanced computational omics approaches have the potential to be leveraged toward therapeutic strategies that target fibroblast-macrophage interactions in a wide variety of inflammatory diseases.
Collapse
Affiliation(s)
- Douglas Fritz
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, United States,Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States,Center for Health Artificial Intelligence, Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jun Inamo
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States,Center for Health Artificial Intelligence, Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Fan Zhang
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States,Center for Health Artificial Intelligence, Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States,*Correspondence: Fan Zhang,
| |
Collapse
|
27
|
Zhao T, Shao J, Liu J, Wang Y, Chen J, He S, Wang G. Glycolytic Genes Predict Immune Status and Prognosis Non-Small-Cell Lung Cancer Patients with Radiotherapy and Chemotherapy. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4019091. [PMID: 37101691 PMCID: PMC10125743 DOI: 10.1155/2023/4019091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 04/28/2023]
Abstract
Background Non-small-cell lung cancer (NSCLC) is a major health problem that endangers human health. The prognosis of radiotherapy or chemotherapy is still unsatisfactory. This study is aimed at investigating the predictive value of glycolysis-related genes (GRGs) on the prognosis of NSCLC patients with radiotherapy or chemotherapy. Methods Download the clinical information and RNA data of NSCLC patients receiving radiotherapy or chemotherapy from TCGA and geo databases and obtain GRGs from MsigDB. The two clusters were identified by consistent cluster analysis, the potential mechanism was explored by KEGG and GO enrichment analyses, and the immune status was evaluated by estimate, TIMER, and quanTIseq algorithms. Lasso algorithm is used to build the corresponding prognostic risk model. Results Two clusters with different GRG expression were identified. The high-expression subgroup had poor overall survival. The results of KEGG and GO enrichment analyses suggest that the differential genes of the two clusters are mainly reflected in metabolic and immune-related pathways. The risk model constructed with GRGs can effectively predict the prognosis. The nomogram combined with the model and clinical characteristics has good clinical application potential. Conclusion In this study, we found that GRGs are associated with tumor immune status and can assess the prognosis of NSCLC patients receiving radiotherapy or chemotherapy.
Collapse
Affiliation(s)
- Tianye Zhao
- Nantong University Medical College, 226006, China
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, 226006, China
| | - Jingjing Shao
- Nantong University Medical College, 226006, China
- Cancer Research Center Nantong, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, 226006, China
| | - Jia Liu
- Nantong University Medical College, 226006, China
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, 226006, China
| | - Yidan Wang
- Nantong University Medical College, 226006, China
- Department of Radiology, Affiliated Hospital of Nantong University, 226006, China
| | - Jia Chen
- Department of Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, 226006, China
| | - Song He
- Nantong University Medical College, 226006, China
- Cancer Research Center Nantong, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, 226006, China
| | - Gaoren Wang
- Nantong University Medical College, 226006, China
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, 226006, China
| |
Collapse
|
28
|
Glinkina K, Nemati F, Teunisse AFAS, Gelmi MC, Etienne V, Kuipers MJ, Alsafadi S, Jager MJ, Decaudin D, Jochemsen AG. Preclinical Evaluation of Trabectedin in Combination With Targeted Inhibitors for Treatment of Metastatic Uveal Melanoma. Invest Ophthalmol Vis Sci 2022; 63:14. [PMID: 36515935 PMCID: PMC9756579 DOI: 10.1167/iovs.63.13.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Uveal melanoma (UM) is considered a rare disease; yet, it is the most common intraocular malignancy in adults. Although the primary tumor may be efficiently managed, more than 50% of patients with UM develop distant metastases. The mortality at the first year after diagnosis of metastatic UM has been estimated at 81%, and the poor prognosis has not improved in the past years due to the lack of effective therapies. Methods In order to search for novel therapeutic possibilities for metastatic UM, we performed a small-scale screen of targeted drug combinations. We verified the targets of the tested compounds by western blotting and PCR and clarified the mechanism of action of the selected combinations by caspase 3 and 7 activity assay and flow cytometry. The best two combinations were tested in a mouse patient-derived xenograft (PDX) UM model as putative therapeutics for metastatic UM. Results Combinations of the multitarget drug trabectedin with either the CK2/CLK double-inhibitor CX-4945 (silmitasertib) or the c-MET/TAM (TYRO3, Axl, MERTK) receptor inhibitors foretinib and cabozantinib demonstrated synergistic effects and induced apoptosis (relative caspase 3 and 7 activity increased up to 20.5-fold in UM cell lines). In the case of the combination of foretinib and cabozantinib, inhibition of the TAM receptors, but not c-Met, was essential to inhibit the growth of UM cells. Monotreatment with trabectedin inhibited tumor growth by 42%, 49%, and 35% in the MM26, MM309, and MM339 PDX mouse models, respectively. Conclusions Trabectedin alone or in combination with cabozantinib inhibited tumor growth in PDX UM mouse models. Blocking of MERTK, rather than TYRO3, activity inhibited UM cell growth and synergized with trabectedin.
Collapse
Affiliation(s)
- Kseniya Glinkina
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fariba Nemati
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Amina F. A. S. Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vesnie Etienne
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Muriel J. Kuipers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Samar Alsafadi
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France,Department of Medical Oncology, Institut Curie, PSL University, Paris, France
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
29
|
Targeted Phagocytosis Induction for Cancer Immunotherapy via Bispecific MerTK-Engaging Antibodies. Int J Mol Sci 2022; 23:ijms232415673. [PMID: 36555321 PMCID: PMC9779728 DOI: 10.3390/ijms232415673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The Tyro, Axl, and MerTK receptors (TAMRs) play a significant role in the clearance of apoptotic cells. In this work, the spotlight was set on MerTK, as it is one of the prominent TAMRs expressed on the surface of macrophages and dendritic cells. MerTK-specific antibodies were previously isolated from a transgenic rat-derived immune library with suitable biophysical properties. Further characterisation resulted in an agonistic MerTK antibody that led to phospho AKT activation in a dose-dependent manner. In this proof-of-concept study, a MerTK-specific antibody, MerK28, was combined with tandem, biparatopic EGFR-binding VHH camelid antibody domains (7D9G) in different architectures to generate bispecific antibodies with the capacity to bind EGFR and MerTK simultaneously. The bispecific molecules exhibited appropriate binding properties with regard to both targets in their soluble forms as well as to cells, which resulted in the engagement of macrophage-like THP-1 cells with epidermoid carcinoma A431 cells. Furthermore, targeted phagocytosis in co-culture experiments was observed only with the bispecific variants and not the parental MerTK-binding antibody. This work paves the way for the generation of bispecific macrophage-engaging antibodies for targeted phagocytosis harnessing the immune-modulating roles of MerTK in immunotherapy.
Collapse
|
30
|
Huang H, Jiang J, Chen R, Lin Y, Chen H, Ling Q. The role of macrophage TAM receptor family in the acute-to-chronic progression of liver disease: From friend to foe? Liver Int 2022; 42:2620-2631. [PMID: 35900248 DOI: 10.1111/liv.15380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
Hepatic macrophages, the key cellular components of the liver, emerge as essential players in liver inflammation, tissue repair and subsequent fibrosis, as well as tumorigenesis. Recently, the TAM receptor tyrosine kinase family, consisting of Tyro3, Axl and MerTK, was found to be a pivotal modulator of macrophages. Activation of macrophage TAM receptor signalling promotes the efferocytosis of apoptotic cells and skews the polarization of macrophages. After briefly reviewing the mechanisms of TAM receptor signalling in macrophage polarization, we focus on their role in liver diseases from acute injury to chronic inflammation, fibrosis and then to tumorigenesis. Notably, macrophage TAM receptor signalling seems to be a two-edged sword for liver diseases. On one hand, the activation of TAM receptor signalling inhibits inflammation and facilitates tissue repair during acute liver injury. On the other hand, continuous activation of the signalling contributes to the process of chronic inflammation into fibrosis and tumorigenesis by evoking hepatic stellate cells and inhibiting anti-tumour immunity. Therefore, targeting macrophage TAM receptors and clarifying its downstream pathways will be exciting prospects for the precaution and treatment of liver diseases, particularly at different stages or statuses.
Collapse
Affiliation(s)
- Haitao Huang
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Jingyu Jiang
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Ruihan Chen
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Yimou Lin
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Hui Chen
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Qi Ling
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| |
Collapse
|
31
|
Design, Synthesis, and In Vitro Antiproliferative Screening of New Hydrazone Derivatives Containing cis-(4-Chlorostyryl) Amide Moiety. Symmetry (Basel) 2022. [DOI: 10.3390/sym14112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hydrazones are regarded as a distinctive category of organic compounds because of their tremendous characteristics and potential uses in analytical, chemical, and medicinal chemistry. In the present study, a new series of Hydrazone Derivatives bearing cis-(4-chlorostyryl) amide moiety were designed and synthesized. In vitro cytotoxicity screening showed that compounds 3i, 3l, 3m, and 3n revealed potent anticancer activity against MCF-7 cancer cell line with IC50 values between 2.19–4.37 μM compared with Staurosporin as a reference compound. The antiproliferative activity of these compounds appears to be correlated well with their ability to inhibit the VEGFR-2 kinase enzyme. Activation of the damage response pathway leads to cellular cycle arrest at the G1 phase. Fluorochrome Annexin V/PI staining indicated that cell death proceeds through the apoptotic pathway mechanism. The mechanistic pathway was confirmed by a significant increase in the level of active caspase 9 compared with control untreated MCF-7 cells.
Collapse
|
32
|
Vollmar BS, Fei M, Liang WC, Bravo DD, Wang J, Yu L, Corr N, Zhang G, McNamara E, Masih S, Chee E, Shin G, Ohri R, Leipold DD, Wu C, Dere E, Wang J, Huang H, Wu Y, Yan M. PEGylation of anti-MerTK Antibody Modulates Ocular Biodistribution. Bioconjug Chem 2022; 33:1837-1851. [DOI: 10.1021/acs.bioconjchem.2c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Breanna S. Vollmar
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Mingjian Fei
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wei-Ching Liang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel D. Bravo
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joy Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lanlan Yu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nick Corr
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Gu Zhang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Erin McNamara
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shabkhaiz Masih
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Elin Chee
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Gawon Shin
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rachana Ohri
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Douglas D. Leipold
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Cong Wu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Edward Dere
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jianyong Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Haochu Huang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yan Wu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Minhong Yan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
33
|
Akalu YT, Mercau ME, Ansems M, Hughes LD, Nevin J, Alberto EJ, Liu XN, He LZ, Alvarado D, Keler T, Kong Y, Philbrick WM, Bosenberg M, Finnemann SC, Iavarone A, Lasorella A, Rothlin CV, Ghosh S. Tissue-specific modifier alleles determine Mertk loss-of-function traits. eLife 2022; 11:80530. [PMID: 35969037 PMCID: PMC9433089 DOI: 10.7554/elife.80530] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/13/2022] [Indexed: 11/19/2022] Open
Abstract
Knockout (KO) mouse models play critical roles in elucidating biological processes behind disease-associated or disease-resistant traits. As a presumed consequence of gene KO, mice display certain phenotypes. Based on insight into the molecular role of said gene in a biological process, it is inferred that the particular biological process causally underlies the trait. This approach has been crucial towards understanding the basis of pathological and/or advantageous traits associated with Mertk KO mice. Mertk KO mice suffer from severe, early-onset retinal degeneration. MERTK, expressed in retinal pigment epithelia, is a receptor tyrosine kinase with a critical role in phagocytosis of apoptotic cells or cellular debris. Therefore, early-onset, severe retinal degeneration was described to be a direct consequence of failed MERTK-mediated phagocytosis of photoreceptor outer segments by retinal pigment epithelia. Here, we report that the loss of Mertk alone is not sufficient for retinal degeneration. The widely used Mertk KO mouse carries multiple coincidental changes in its genome that affect the expression of a number of genes, including the Mertk paralog Tyro3. Retinal degeneration manifests only when the function of Tyro3 is concomitantly lost. Furthermore, Mertk KO mice display improved anti-tumor immunity. MERTK is expressed in macrophages. Therefore, enhanced anti-tumor immunity was inferred to result from the failure of macrophages to dispose of cancer cell corpses, resulting in a pro-inflammatory tumor microenvironment. The resistance against two syngeneic mouse tumor models observed in Mertk KO mice is not, however, phenocopied by the loss of Mertk alone. Neither Tyro3 nor macrophage phagocytosis by alternate genetic redundancy accounts for the absence of anti-tumor immunity. Collectively, our results indicate that context-dependent epistasis of independent modifier alleles determines Mertk KO traits.
Collapse
Affiliation(s)
- Yemsratch T Akalu
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Maria E Mercau
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Marleen Ansems
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Lindsey D Hughes
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - James Nevin
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Emily J Alberto
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Xinran N Liu
- Department of Cell Biology, Center for Cellular and Molecular Imaging, Yale School of MedicineNew HavenUnited States
| | - Li-Zhen He
- Celldex TherapeuticsNew HavenUnited States
| | | | | | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W. M. Keck Foundation Biotechnology Resource Laboratory, School of Medicine, Yale UniversityNew HavenUnited States
| | - William M Philbrick
- Center on Endocrinology and Metabolism, Yale Genome Editing Center, School of Medicine, Yale UniversityNew HavenUnited States
| | - Marcus Bosenberg
- Departments of Dermatology, Pathology and Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Silvia C Finnemann
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham UniversityBronxUnited States
| | - Antonio Iavarone
- Departments of Neurology and Pathology and Cell Biology, Institute for Cancer Genetics, Columbia Medical CenterNew YorkUnited States
| | - Anna Lasorella
- Departments of Pediatrics and Pathology and Cell Biology, Institute for Cancer Genetics, Columbia UniversityNew YorkUnited States
| | - Carla V Rothlin
- Departments of Immunobiology and Pharmacology, Yale School of MedicineNew HavenUnited States
| | - Sourav Ghosh
- Departments of Neurology and Pharmacology, Yale School of MedicineNew HavenUnited States
| |
Collapse
|
34
|
Abstract
The daily removal of billions of apoptotic cells in the human body via the process of efferocytosis is essential for homeostasis. To allow for this continuous efferocytosis, rapid phenotypic changes occur in the phagocytes enabling them to engulf and digest the apoptotic cargo. In addition, efferocytosis is actively anti-inflammatory and promotes resolution. Owing to its ubiquitous nature and the sheer volume of cell turnover, efferocytosis is a point of vulnerability. Aberrations in efferocytosis are associated with numerous inflammatory pathologies, including atherosclerosis, cancer and infections. The recent exciting discoveries defining the molecular machinery involved in efferocytosis have opened many avenues for therapeutic intervention, with several agents now in clinical trials.
Collapse
Affiliation(s)
- Parul Mehrotra
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium
| | - Kodi S Ravichandran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
35
|
Chen RP, Shinoda K, Rampuria P, Jin F, Bartholomew T, Zhao C, Yang F, Chaparro-Riggers J. Bispecific antibodies for immune cell retargeting against cancer. Expert Opin Biol Ther 2022; 22:965-982. [PMID: 35485219 DOI: 10.1080/14712598.2022.2072209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Following the approval of the T-cell engaging bispecific antibody blinatumomab, immune cell retargeting with bispecific or multispecific antibodies has emerged as a promising cancer immunotherapy strategy, offering alternative mechanisms compared to immune checkpoint blockade. As we gain more understanding of the complex tumor microenvironment, rules and design principles have started to take shape on how to best harness the immune system to achieve optimal anti-tumor activities. AREAS COVERED In the present review, we aim to summarize the most recent advances and challenges in using bispecific antibodies for immune cell retargeting and to provide insights into various aspects of antibody engineering. Discussed herein are studies that highlight the importance of considering antibody engineering parameters, such as binding epitope, affinity, valency, and geometry to maximize the potency and mitigate the toxicity of T cell engagers. Beyond T cell engaging bispecifics, other bispecifics designed to recruit the innate immune system are also covered. EXPERT OPINION Diverse and innovative molecular designs of bispecific/multispecific antibodies have the potential to enhance the efficacy and safety of immune cell retargeting for the treatment of cancer. Whether or not clinical data support these different hypotheses, especially in solid tumor settings, remains to be seen.
Collapse
Affiliation(s)
- Rebecca P Chen
- Pfizer BioMedicine Design, Pfizer Inc, San Diego, CA, USA
| | - Kenta Shinoda
- Pfizer BioMedicine Design, Pfizer Inc, Cambridge, MA, USA
| | | | - Fang Jin
- Pfizer BioMedicine Design, Pfizer Inc, Cambridge, MA, USA
| | | | - Chunxia Zhao
- Pfizer BioMedicine Design, Pfizer Inc, Cambridge, MA, USA
| | - Fan Yang
- Pfizer BioMedicine Design, Pfizer Inc, San Diego, CA, USA
| | | |
Collapse
|
36
|
Wang L, Zhou Y, Wu X, Ma X, Li B, Ding R, Stashko MA, Wu Z, Wang X, Li Z. The Synthesis and Initial Evaluation of MerTK Targeted PET Agents. Molecules 2022; 27:1460. [PMID: 35268561 PMCID: PMC8911752 DOI: 10.3390/molecules27051460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
MerTK (Mer tyrosine kinase), a receptor tyrosine kinase, is ectopically or aberrantly expressed in numerous human hematologic and solid malignancies. Although a variety of MerTK targeting therapies are being developed to enhance outcomes for patients with various cancers, the sensitivity of tumors to MerTK suppression may not be uniform due to the heterogeneity of solid tumors and different tumor stages. In this report, we develop a series of radiolabeled agents as potential MerTK PET (positron emission tomography) agents. In our initial in vivo evaluation, [18F]-MerTK-6 showed prominent uptake rate (4.79 ± 0.24%ID/g) in B16F10 tumor-bearing mice. The tumor to muscle ratio reached 1.86 and 3.09 at 0.5 and 2 h post-injection, respectively. In summary, [18F]-MerTK-6 is a promising PET agent for MerTK imaging and is worth further evaluation in future studies.
Collapse
Affiliation(s)
- Li Wang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (L.W.); (X.W.); (X.M.); (Z.L.)
| | - Yubai Zhou
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (B.L.); (R.D.); (M.A.S.)
| | - Xuedan Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (L.W.); (X.W.); (X.M.); (Z.L.)
| | - Xinrui Ma
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (L.W.); (X.W.); (X.M.); (Z.L.)
| | - Bing Li
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (B.L.); (R.D.); (M.A.S.)
| | - Ransheng Ding
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (B.L.); (R.D.); (M.A.S.)
| | - Michael A. Stashko
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (B.L.); (R.D.); (M.A.S.)
| | - Zhanhong Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (L.W.); (X.W.); (X.M.); (Z.L.)
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (B.L.); (R.D.); (M.A.S.)
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (L.W.); (X.W.); (X.M.); (Z.L.)
| |
Collapse
|
37
|
Lin J, Xu A, Jin J, Zhang M, Lou J, Qian C, Zhu J, Wang Y, Yang Z, Li X, Yu W, Liu B, Tao H. MerTK-mediated efferocytosis promotes immune tolerance and tumor progression in osteosarcoma through enhancing M2 polarization and PD-L1 expression. Oncoimmunology 2022; 11:2024941. [PMID: 35036076 PMCID: PMC8757471 DOI: 10.1080/2162402x.2021.2024941] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The poor progress of immunotherapy on osteosarcoma patients requires deeper delineation of immune tolerance mechanisms in the osteosarcoma microenvironment and a new therapeutic strategy. Clearance of apoptotic cells by phagocytes, a process termed “efferocytosis,” is ubiquitous in tumors and mediates the suppression of innate immune inflammatory response. Considering the massive infiltrated macrophages in osteosarcoma, efferocytosis probably serves as a potential target, but is rarely studied in osteosarcoma. Here, we verified M2 polarization and PD-L1 expression of macrophages following efferocytosis. Pharmacological inhibition and genetic knockdown were used to explore the underlying pathway. Moreover, tumor progression and immune landscape were evaluated following inhibition of efferocytosis in osteosarcoma model. Our study indicated that efferocytosis promoted PD-L1 expression and M2 polarization of macrophages. Ëfferocytosis was mediated by MerTK receptor in osteosarcoma and regulated the phenotypes of macrophages through the p38/STAT3 pathway. By establishing the murine osteosarcoma model, we emphasized that inhibition of MerTK suppressed tumor growth and enhanced the T cell cytotoxic function by increasing the infiltration of CD8+ T cells and decreasing their exhaustion. Our findings demonstrate that MerTK-mediated efferocytosis promotes osteosarcoma progression by enhancing M2 polarization of macrophages and PD-L1-induced immune tolerance, which were regulated through the p38/STAT3 pathway.
Collapse
Affiliation(s)
- Jinti Lin
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Ankai Xu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Jiakang Jin
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Man Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Jianan Lou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Chao Qian
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Jian Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Yitian Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Zhengming Yang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Xiumao Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Wei Yu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Bing Liu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Huimin Tao
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
38
|
Lahey KC, Gadiyar V, Hill A, Desind S, Wang Z, Davra V, Patel R, Zaman A, Calianese D, Birge RB. Mertk: An emerging target in cancer biology and immuno-oncology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:35-59. [PMID: 35636929 PMCID: PMC9994207 DOI: 10.1016/bs.ircmb.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mertk, a type I Receptor Tyrosine Kinase (RTK) and member of the TAM (Tyro3, Axl, and Mertk) family of homologous tyrosine kinases, has important roles in signal transduction both homeostatically on normal cells as well as patho-physiologically on both tumor-associated macrophages and malignant cells by its overexpression in a wide array of cancers. The main ligands of Mertk are Vitamin K-modified endogenous proteins Gas6 and Protein S (ProS1), heterobifunctional modular proteins that bind Mertk via two carboxyl-terminal laminin-like globular (LG) domains, and an N-terminal Gla domain that binds anionic phospholipids, whereby externalized phosphatidylserine (PS) on stressed viable and caspase-activated apoptotic cells is most emblematic. Recent studies indicate that Vitamin K-dependent γ-carboxylation on the N-terminal Gla domain of Gas6 and Protein S is necessary for PS binding and Mertk activation, implying that Mertk is preferentially active in tissues where there is high externalized PS, such as the tumor microenvironment (TME) and acute virally infected tissues. Once stimulated, activated Mertk can provide a survival advantage for cancer cells as well as drive compensatory proliferation. On monocytes and tumor-associated macrophages, Mertk promotes efferocytosis and acts as an inhibitory receptor that impairs host anti-tumor immunity, functioning akin to a myeloid checkpoint inhibitor. In recent years, inhibition of Mertk has been implicated in a dual role to enhance the sensitivity of cancer cells to cytotoxic agents along with improving host anti-tumor immunity with anti-PD-1/PD-L1 immunotherapy. Here, we examine the rationale of Mertk-targeted immunotherapies, the current and potential therapeutic strategies, the clinical status of Mertk-specific therapies, and potential challenges and obstacles for Mertk-focused therapies.
Collapse
Affiliation(s)
- Kevin C Lahey
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States.
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Amanda Hill
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Samuel Desind
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Ziren Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Radhey Patel
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Ahnaf Zaman
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - David Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States.
| |
Collapse
|
39
|
Kinase Inhibitors' Effects on Innate Immunity in Solid Cancers. Cancers (Basel) 2021; 13:cancers13225695. [PMID: 34830850 PMCID: PMC8616517 DOI: 10.3390/cancers13225695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary In this review, we evaluate the updated data of the immunological effects of kinase inhibitors on the innate immune system and provide an in-depth analysis of the underlying mechanisms. We also discuss how this immunological effect can be harnessed to improve cancer treatment and highlight recent successes, such as the combination with anti-tumor immunotherapy. Last, we explore novel kinase targets and the incorporation of them with targeted drug delivery techniques as promising research areas. Abstract Innate immune cells constitute a plastic and heterogeneous cell population of the tumor microenvironment. Because of their high tumor infiltration and close interaction with resident tumor cells, they are compelling targets for anti-cancer therapy through either ablation or functionally reprogramming. Kinase inhibitors (KIs) that target aberrant signaling pathways in tumor proliferation and angiogenesis have been shown to have additional immunological effects on myeloid cells that may contribute to a protective antitumor immune response. However, in patients with malignancies, these effects are poorly described, warranting meticulous research to identify KIs’ optimal immunomodulatory effect to support developing targeted and more effective immunotherapy. As many of these KIs are currently in clinical trials awaiting approval for the treatment of several types of solid cancer, we evaluate here the information on this drug class’s immunological effects and how such mechanisms can be harnessed to improve combined treatment regimens in cancer.
Collapse
|
40
|
Lee YH, Lee MM, De Silva DM, Roy A, Wright CE, Wong TK, Costello R, Olaku O, Grubb RL, Agarwal PK, Apolo AB, Bottaro DP. Autocrine signaling by receptor tyrosine kinases in urothelial carcinoma of the bladder. PLoS One 2021; 16:e0241766. [PMID: 34292953 PMCID: PMC8297783 DOI: 10.1371/journal.pone.0241766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Comprehensive characterizations of bladder cancer (BCa) have established molecular phenotype classes with distinct alterations and survival trends. Extending these studies within the tyrosine kinase (TK) family to identify disease drivers could improve our use of TK inhibitors to treat specific patient groups or individuals. We examined the expression distribution of TKs as a class (n = 89) in The Cancer Genome Atlas (TCGA) muscle invasive BCa data set (n >400). Patient profiles of potentially oncogenic alterations (overexpression and/or amplification) clustered TKs into 3 groups; alterations of group 1 and 3 TKs were associated with significantly worse patient survival relative to those without alterations. Many TK pathways induce epithelial-to-mesenchymal transition (EMT), which promotes tumor invasiveness and metastasis. Overexpression and/or amplification among 9 EMT transcriptional activators occurred in 43% of TCGA cases. Co-occurring alterations of TKs and EMT transcriptional activators involved most group 1 TKs; 24% of these events were associated with significantly worse patient survival. Co-occurring alterations of receptor TKs and their cognate ligands occurred in 16% of TCGA cases and several BCa-derived cell lines. Suppression of GAS6, MST1 or CSF1, or their respective receptors (AXL, MST1R and CSF1R), in BCa cell lines was associated with decreased receptor activation, cell migration, cell proliferation and anchorage independent cell growth. These studies reveal the patterns and prevalence of potentially oncogenic TK pathway-related alterations in BCa and identify specific alterations associated with reduced BCa patient survival. Detection of these features in BCa patients could better inform TK inhibitor use and improve clinical outcomes.
Collapse
Affiliation(s)
- Young H. Lee
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Molly M. Lee
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dinuka M. De Silva
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Arpita Roy
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cara E. Wright
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tiffany K. Wong
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rene Costello
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Oluwole Olaku
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert L. Grubb
- Department of Urology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Piyush K. Agarwal
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrea B. Apolo
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (DPB); (ABP)
| | - Donald P. Bottaro
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (DPB); (ABP)
| |
Collapse
|
41
|
Quagliariello V, Berretta M, Buccolo S, Iovine M, Paccone A, Cavalcanti E, Taibi R, Montopoli M, Botti G, Maurea N. Polydatin Reduces Cardiotoxicity and Enhances the Anticancer Effects of Sunitinib by Decreasing Pro-Oxidative Stress, Pro-Inflammatory Cytokines, and NLRP3 Inflammasome Expression. Front Oncol 2021; 11:680758. [PMID: 34178667 PMCID: PMC8226180 DOI: 10.3389/fonc.2021.680758] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023] Open
Abstract
Renal cell carcinoma (RCC) represents the main renal tumors and are highly metastatic. Sunitinib, a recently-approved, multi-targeted Tyrosine Kinases Inhibitor (TKi), prolongs survival in patients with metastatic renal cell carcinoma and gastrointestinal stromal tumors, however a dose related cardiotoxicity was well described. Polydatin (3,4',5-trihydroxystilbene-3-β-d-glucoside) is a monocrystalline compound isolated from Polygonum cuspidatum with consolidated anti-oxidant and anti-inflammatory properties, however no studies investigated on its putative cardioprotective and chemosensitizing properties during incubation with sunitinib. We investigated on the effects of polydatin on the oxidative stress, NLRP3 inflammasome and Myd88 expression, highlighting on the production of cytokines and chemokines (IL-1β, IL-6, IL-8, CXCL-12 and TGF-β) during treatment with sunitinib. Exposure of cardiomyocytes and cardiomyoblasts (AC-16 and H9C2 cell lines) and human renal adenocarcinoma cells (769-P and A498) to polydatin combined to plasma-relevant concentrations of sunitinib reduces significantly iROS, MDA and LTB4 compared to only sunitinib-treated cells (P<0.001). In renal cancer cells and cardiomyocytes polydatin reduces expression of pro-inflammatory cytokines and chemokines involved in myocardial damages and chemoresistance and down-regulates the signaling pathway of NLRP3 inflammasome, MyD88 and NF-κB. Data of the present study, although in vitro, indicate that polydatin, besides reducing oxidative stress, reduces key chemokines involved in cancer cell survival, chemoresistance and cardiac damages of sunitinib through downregulation of NLRP3-MyD88 pathway, applying as a potential nutraceutical agent in preclinical studies of preventive cardio-oncology.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Simona Buccolo
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Martina Iovine
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Andrea Paccone
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Rosaria Taibi
- Department of Pharmacological Sciences, Gruppo Oncologico Ricercatori Italiani, GORI, Pordenone, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Padova, Italy
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
42
|
Zhou L, Matsushima GK. Tyro3, Axl, Mertk receptor-mediated efferocytosis and immune regulation in the tumor environment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:165-210. [PMID: 34074493 DOI: 10.1016/bs.ircmb.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three structurally related tyrosine receptor cell surface kinases, Tyro3, Axl, and Mertk (TAM) have been recognized to modulate immune function, tissue homeostasis, cardiovasculature, and cancer. The TAM receptor family appears to operate in adult mammals across multiple cell types, suggesting both widespread and specific regulation of cell functions and immune niches. TAM family members regulate tissue homeostasis by monitoring the presence of phosphatidylserine expressed on stressed or apoptotic cells. The detection of phosphatidylserine on apoptotic cells requires intermediary molecules that opsonize the dying cells and tether them to TAM receptors on phagocytes. This complex promotes the engulfment of apoptotic cells, also known as efferocytosis, that leads to the resolution of inflammation and tissue healing. The immune mechanisms dictating these processes appear to fall upon specific family members or may involve a complex of different receptors acting cooperatively to resolve and repair damaged tissues. Here, we focus on the role of TAM receptors in triggering efferocytosis and its consequences in the regulation of immune responses in the context of inflammation and cancer.
Collapse
Affiliation(s)
- Liwen Zhou
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC, United States
| | - Glenn K Matsushima
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC, United States; UNC Department of Microbiology & Immunology, University of North Carolina-CH, Chapel Hill, NC, United States; UNC Integrative Program for Biological & Genome Sciences, University of North Carolina-CH, Chapel Hill, NC, United States.
| |
Collapse
|
43
|
Aehnlich P, Powell RM, Peeters MJW, Rahbech A, thor Straten P. TAM Receptor Inhibition-Implications for Cancer and the Immune System. Cancers (Basel) 2021; 13:cancers13061195. [PMID: 33801886 PMCID: PMC7998716 DOI: 10.3390/cancers13061195] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary TAM receptors are a family of receptor tyrosine kinases, comprising Tyro3, Axl and MerTK. Their primary role is in digestion of dying cells by macrophages without alarming the immune system. TAM receptors are also expressed by cancer cells in which signaling is oncogenic, and for this reason there is growing interest and research into TAM inhibition. This approach to cancer treatment may, however, come into conflict with beneficial and costimulatory TAM receptor signaling in T cells and natural killer (NK) cells. The aim of this review is to explore in detail the effects of TAM receptor inhibition on cancer cells and immune cells, and how the ramifications of this inhibition may affect cancer treatment in humans. Abstract Tyro3, Axl and MerTK (TAM) receptors are receptor tyrosine kinases which play important roles in efferocytosis and in the balancing of immune responses and inflammation. TAM receptor activation is induced upon binding of the ligands protein S (Pros1) or growth arrest-specific protein 6 (Gas6) which act as bridging molecules for binding of phosphatidyl serine (PtdSer) exposed on apoptotic cell membranes. Upon clearance of apoptotic cell material, TAM receptor activation on innate cells suppresses proinflammatory functions, thereby ensuring the immunologically silent removal of apoptotic material in the absence of deleterious immune responses. However, in T cells, MerTK signaling is costimulatory and promotes activation and functional output of the cell. MerTK and Axl are also aberrantly expressed in a range of both hematological and solid tumor malignancies, including breast, lung, melanoma and acute myeloid leukemia, where they have a role in oncogenic signaling. Consequently, TAM receptors are being investigated as therapeutic targets using small molecule inhibitors and have already demonstrated efficacy in mouse tumor models. Thus, inhibition of TAM signaling in cancer cells could have therapeutic value but given the opposing roles of TAM signaling in innate cells and T cells, TAM inhibition could also jeopardize anticancer immune responses. This conflict is discussed in this review, describing the effects of TAM inhibition on cancer cells as well as immune cells, while also examining the intricate interplay of cancer and immune cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Pia Aehnlich
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark; (M.J.W.P.); (A.R.)
- Correspondence: (P.A.); (R.M.P.); (P.t.S.)
| | - Richard Morgan Powell
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark; (M.J.W.P.); (A.R.)
- Correspondence: (P.A.); (R.M.P.); (P.t.S.)
| | - Marlies J. W. Peeters
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark; (M.J.W.P.); (A.R.)
| | - Anne Rahbech
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark; (M.J.W.P.); (A.R.)
| | - Per thor Straten
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark; (M.J.W.P.); (A.R.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: (P.A.); (R.M.P.); (P.t.S.)
| |
Collapse
|
44
|
A-loop interactions in Mer tyrosine kinase give rise to inhibitors with two-step mechanism and long residence time of binding. Biochem J 2021; 477:4443-4452. [PMID: 33119085 PMCID: PMC7702301 DOI: 10.1042/bcj20200735] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/02/2022]
Abstract
The activation loop (A-loop) plays a key role in regulating the catalytic activity of protein kinases. Phosphorylation in this region enhances the phosphoryl transfer rate of the kinase domain and increases its affinity for ATP. Furthermore, the A-loop possesses autoinhibitory functions in some kinases, where it collapses onto the protein surface and blocks substrate binding when unphosphorylated. Due to its flexible nature, the A-loop is usually disordered and untraceable in kinase domain crystal structures. The resulting lack of structural information is regrettable as it impedes the design of drug A-loop contacts, which have proven favourable in multiple cases. Here, we characterize the binding with A-loop engagement between type 1.5 kinase inhibitor ‘example 172’ (EX172) and Mer tyrosine kinase (MerTK). With the help of crystal structures and binding kinetics, we portray how the recruitment of the A-loop elicits a two-step binding mechanism which results in a drug-target complex characterized by high affinity and long residence time. In addition, the type 1.5 compound possesses excellent kinome selectivity and a remarkable preference for the phosphorylated over the dephosphorylated form of MerTK. We discuss these unique characteristics in the context of known type 1 and type 2 inhibitors and highlight opportunities for future kinase inhibitor design.
Collapse
|
45
|
Weiss SA, Sznol M. Resistance mechanisms to checkpoint inhibitors. Curr Opin Immunol 2021; 69:47-55. [PMID: 33676271 DOI: 10.1016/j.coi.2021.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/17/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023]
Abstract
Although multiple immune checkpoint inhibitors (ICI) have been identified and tested in the clinic, antibodies blocking the PD-1/PD-L1 axis have produced the greatest impact on cancer treatment. Many potential mechanisms of treatment failure have been proposed from pre-clinical animal and human translational studies. Pre-clinical studies and clinical trials are underway to better understand how resistance arises and to develop strategies that can circumvent these resistance mechanisms and sensitize patients to anti-PD1/PD-L1 to improve clinical outcomes.
Collapse
Affiliation(s)
- Sarah A Weiss
- Yale University School of Medicine, Department of Medicine (Section of Medical Oncology), 333 Cedar St., P.O. Box 208032, New Haven, CT 06520, United States.
| | - Mario Sznol
- Yale University School of Medicine, Department of Medicine (Section of Medical Oncology), 333 Cedar St., P.O. Box 208032, New Haven, CT 06520, United States
| |
Collapse
|
46
|
Caronni N, Montaldo E, Mezzanzanica L, Cilenti F, Genua M, Ostuni R. Determinants, mechanisms, and functional outcomes of myeloid cell diversity in cancer. Immunol Rev 2021; 300:220-236. [PMID: 33565148 DOI: 10.1111/imr.12944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Most, if not all, aspects of carcinogenesis are influenced by the tumor microenvironment (TME), a complex architecture of cells, matrix components, soluble signals, and their dynamic interactions in the context of physical traits of the tissue. Expanding application of technologies for high-dimensional analyses with single-cell resolution has begun to decipher the contributions of the immune system to cancer progression and its implications for therapy. In this review, we will discuss the multifaceted roles of tumor-associated macrophages and neutrophils, focusing on factors that subvert tissue immune homeostasis and offer therapeutic opportunities for TME reprogramming. By performing a critical analysis of available datasets, we elaborate on diversification mechanisms and unifying principles of myeloid cell heterogeneity in human tumors.
Collapse
Affiliation(s)
- Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Montaldo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Mezzanzanica
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Cilenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
47
|
Hoque M, Wai Wong S, Recasens A, Abbassi R, Nguyen N, Zhang D, Stashko MA, Wang X, Frye S, Day BW, Baell J, Munoz L. MerTK activity is not necessary for the proliferation of glioblastoma stem cells. Biochem Pharmacol 2021; 186:114437. [PMID: 33571503 DOI: 10.1016/j.bcp.2021.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022]
Abstract
MerTK has been identified as a promising target for therapeutic intervention in glioblastoma. Genetic studies documented a range of oncogenic processes that MerTK targeting could influence, however robust pharmacological validation has been missing. The aim of this study was to assess therapeutic potential of MerTK inhibitors in glioblastoma therapy. Unlike previous studies, our work provides several lines of evidence that MerTK activity is dispensable for glioblastoma growth. We observed heterogeneous responses to MerTK inhibitors that could not be correlated to MerTK inhibition or MerTK expression in cells. The more selective MerTK inhibitors UNC2250 and UNC2580A lack the anti-proliferative potency of less-selective inhibitors exemplified by UNC2025. Functional assays in MerTK-high and MerTK-deficient cells further demonstrate that the anti-cancer efficacy of UNC2025 is MerTK-independent. However, despite its efficacy in vitro, UNC2025 failed to attenuate glioblastoma growth in vivo. Gene expression analysis from cohorts of glioblastoma patients identified that MerTK expression correlates negatively with proliferation and positively with quiescence genes, suggesting that MerTK regulates dormancy rather than proliferation in glioblastoma. In summary, this study demonstrates the importance of orthogonal inhibitors and disease-relevant models in target validation studies and raises a possibility that MerTK inhibitors could be used to target dormant glioblastoma cells.
Collapse
Affiliation(s)
- Monira Hoque
- School of Medical Sciences, Faculty of Medicine and Health and Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Siu Wai Wong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ariadna Recasens
- School of Medical Sciences, Faculty of Medicine and Health and Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Ramzi Abbassi
- School of Medical Sciences, Faculty of Medicine and Health and Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Nghi Nguyen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Dehui Zhang
- University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Michael A Stashko
- University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Xiaodong Wang
- University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Stephen Frye
- University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Jonathan Baell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Lenka Munoz
- School of Medical Sciences, Faculty of Medicine and Health and Charles Perkins Centre, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
48
|
Zhou X, Liu X, Huang L. Macrophage-Mediated Tumor Cell Phagocytosis: Opportunity for Nanomedicine Intervention. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2006220. [PMID: 33692665 PMCID: PMC7939128 DOI: 10.1002/adfm.202006220] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 05/05/2023]
Abstract
Macrophages are one of the most abundant non-malignant cells in the tumor microenvironment, playing critical roles in mediating tumor immunity. As important innate immune cells, macrophages possess the potential to engulf tumor cells and present tumor-specific antigens for adaptive antitumor immunity induction, leading to growing interest in targeting macrophage phagocytosis for cancer immunotherapy. Nevertheless, live tumor cells have evolved to evade phagocytosis by macrophages via the extensive expression of anti-phagocytic molecules, such as CD47. In addition, macrophages also rapidly recognize and engulf apoptotic cells (efferocytosis) in the tumor microenvironment, which inhibits inflammatory responses and facilitates immune escape of tumor cells. Thus, intervention of macrophage phagocytosis by blocking anti-phagocytic signals on live tumor cells or inhibiting tumor efferocytosis presents a promising strategy for the development of cancer immunotherapies. Here, the regulation of macrophage-mediated tumor cell phagocytosis is first summarized, followed by an overview of strategies targeting macrophage phagocytosis for the development of antitumor therapies. Given the potential off-target effects associated with the administration of traditional therapeutics (for example, monoclonal antibodies, small molecule inhibitors), we highlight the opportunity for nanomedicine in macrophage phagocytosis intervention.
Collapse
Affiliation(s)
- Xuefei Zhou
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
49
|
Crystal Structure of the Kinase Domain of MerTK in Complex with AZD7762 Provides Clues for Structure-Based Drug Development. Int J Mol Sci 2020; 21:ijms21217878. [PMID: 33114206 PMCID: PMC7660649 DOI: 10.3390/ijms21217878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Aberrant tyrosine-protein kinase Mer (MerTK) expression triggers prosurvival signaling and contributes to cell survival, invasive motility, and chemoresistance in many kinds of cancers. In addition, recent reports suggested that MerTK could be a primary target for abnormal platelet aggregation. Consequently, MerTK inhibitors may promote cancer cell death, sensitize cells to chemotherapy, and act as new antiplatelet agents. We screened an inhouse chemical library to discover novel small-molecule MerTK inhibitors, and identified AZD7762, which is known as a checkpoint-kinase (Chk) inhibitor. The inhibition of MerTK by AZD7762 was validated using an in vitro homogeneous time-resolved fluorescence (HTRF) assay and through monitoring the decrease in phosphorylated MerTK in two lung cancer cell lines. We also determined the crystal structure of the MerTK:AZD7762 complex and revealed the binding mode of AZD7762 to MerTK. Structural information from the MerTK:AZD7762 complex and its comparison with other MerTK:inhibitor structures gave us new insights for optimizing the development of inhibitors targeting MerTK.
Collapse
|