1
|
Narra F, Piragine E, Benedetti G, Ceccanti C, Florio M, Spezzini J, Troisi F, Giovannoni R, Martelli A, Guidi L. Impact of thermal processing on polyphenols, carotenoids, glucosinolates, and ascorbic acid in fruit and vegetables and their cardiovascular benefits. Compr Rev Food Sci Food Saf 2024:e13426. [PMID: 39169551 DOI: 10.1111/1541-4337.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Bioactive compounds in fruit and vegetables have a positive impact on human health by reducing oxidative stress, inflammation, and the risk of chronic diseases such as cancer, cardiovascular (CV) diseases, and metabolic disorders. However, some fruit and vegetables must be heated before consumption and thermal processes can modify the amount of nutraceuticals, that is, polyphenols, carotenoids, glucosinolates, and ascorbic acid, that can increase or decrease in relation to different factors such as type of processing, temperature, and time but also the plant part (e.g., flower, leaf, tuber, and root) utilized as food. Another important aspect is related to the bioaccessibility and bioavailability of nutraceuticals. Indeed, the key stage of nutraceutical bioefficiency is oral bioavailability, which involves the release of nutraceuticals from fruit and vegetables in gastrointestinal fluids, the solubilization of nutraceuticals and their interaction with other components of gastrointestinal fluids, the absorption of nutraceuticals by the epithelial layer, and the chemical and biochemical transformations into epithelial cells. Several studies have shown that thermal processing can enhance the absorption of nutraceuticals from fruit and vegetable. Once absorbed, they reach the blood vessels and promote multiple biological effects (e.g., antioxidant, anti-inflammatory, antihypertensive, vasoprotective, and cardioprotective). In this review, we described the impact of different thermal processes (such as boiling, steaming and superheated steaming, blanching, and microwaving) on the retention/degradation of bioactive compounds and their health-promoting effects after the intake. We then summarized the impact of heating on the absorption of nutraceuticals and the biological effects promoted by natural compounds in the CV system to provide a comprehensive overview of the potential impact of thermal processing on the CV benefits of fruit and vegetables.
Collapse
Affiliation(s)
- Federica Narra
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Eugenia Piragine
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Costanza Ceccanti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Marta Florio
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | | | - Roberto Giovannoni
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Alma Martelli
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Lu G, Tang Y, Chen O, Guo Y, Xiao M, Wang J, Liu Q, Li J, Gao T, Zhang X, Zhang J, Cheng Q, Kuang R, Gu J. Aberrant activation of p53-TRIB3 axis contributes to diabetic myocardial insulin resistance and sulforaphane protection. J Adv Res 2024:S2090-1232(24)00307-2. [PMID: 39069209 DOI: 10.1016/j.jare.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION Insulin resistance (IR) is associated with multiple pathological features. Although p53- or TRIB3-orchestrated IR is extensively studied in adipose tissue and liver, the role of p53-TRIB3 axis in myocardial IR remains unknown, and more importantly target-directed therapies of myocardial IR are missing. OBJECTIVES Considering the beneficial effects of sulforaphane (SFN) on cardiovascular health, it is of particular interest to explore whether SFN protects against myocardial IR with a focus on the regulatory role of p53-TRIB3 axis. METHODS Mouse models including cardiac specific p53-overexpressing transgenic (p53-cTg) mice and Trib3 knockout (Trib3-KO) mice, combined with primary cardiomyocytes treated with p53 activator (nutlin-3a) and inhibitor (pifithrin-α, PFT-α), or transfected with p53-shRNA and Trib3-shRNA, followed by multiple molecular biological methodologies, were used to investigate the role of p53-TRIB3 axis in SFN actions on myocardial IR. RESULTS Here, we report that knockdown of p53 rescued cardiac insulin-stimulated AKT phosphorylation, while up-regulation of p53 by nutlin-3a or p53-cTg mice blunted insulin sensitivity in cardiomyocytes under diabetic conditions. Diabetic attenuation of AKT-mediated cardiac insulin signaling was markedly reversed by SFN in p53-Tgfl/fl mice, but not in p53-cTg mice. Importantly, we identified TRIB3 was elevated in p53-cTg diabetic mice, and confirmed the physical interaction between p53 and TRIB3. Trib3-KO diabetic mice displayed improved insulin sensitivity in the heart. More specifically, the AMPKα-triggered CHOP phosphorylation and degradation were essential for p53 on the transcriptional regulation of Trib3. CONCLUSION Overall, these results indicate that inhibiting the p53-TRIB3 pathway by SFN plays an unsuspected key role in the improvement of myocardial IR, which may be a promising strategy for attenuating diabetic cardiomyopathy (DCM) in diabetic patients.
Collapse
Affiliation(s)
- Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, and Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, China
| | - Quanli Cheng
- Department of Cardiovascular Disease, First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Rong Kuang
- NMPA Key Laboratory for Animal Alternative Testing Technology of Cosmetics, Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310004, China.
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Yang F, Smith MJ. Metal profiling in coronary ischemia-reperfusion injury: Implications for KEAP1/NRF2 regulated redox signaling. Free Radic Biol Med 2024; 210:158-171. [PMID: 37989446 DOI: 10.1016/j.freeradbiomed.2023.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/18/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Coronary ischemia-reperfusion (IR) injury results from a blockage of blood supply to the heart followed by restoration of perfusion, leading to oxidative stress induced pathological processes. Nuclear factor erythroid 2-related factor 2 (NRF2), a master antioxidant transcription factor, plays a key role in regulating redox signaling. Over the past decades, the field of metallomics has provided novel insights into the mechanism of pro-oxidant and antioxidant pathological processes. Both redox-active (e.g. Fe and Cu) and redox-inert (e.g. Zn and Mg) metals play unique roles in establishing redox balance under IR injury. Notably, Zn protects against oxidative stress in coronary IR injury by serving as a cofactor of antioxidant enzymes such as superoxide dismutase [Cu-Zn] (SOD1) and proteins such as metallothionein (MT) and KEAP1/NRF2 mediated antioxidant defenses. An increase in labile Zn2+ inhibits proteasomal degradation and ubiquitination of NRF2 by modifying KEAP1 and glycogen synthase kinase 3β (GSK3β) conformations. Fe and Cu catalyse the formation of reactive oxygen species via the Fenton reaction and also serve as cofactors of antioxidant enzymes and can activate NRF2 antioxidant signaling. We review the evidence that Zn and redox-active metals Fe and Cu affect redox signaling in coronary cells during IR and the mechanisms by which oxidative stress influences cellular metal content. In view of the unique double-edged characteristics of metals, we aim to bridge the role of metals and NRF2 regulated redox signaling to antioxidant defenses in IR injury, with a long-term aim of informing the design and application of novel therapeutics.
Collapse
Affiliation(s)
- Fan Yang
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom.
| | - Matthew J Smith
- MSD R&D Innovation Centre, 120 Moorgate, London EC2M 6UR, United Kingdom.
| |
Collapse
|
4
|
Thangapandiyan S, Hema T, Miltonprabu S, Paulpandi M, Dutta U. Sulforaphane ameliorate Arsenic induced cardiotoxicity in rats: Role of PI3k/Akt mediated Nrf2 signaling pathway. J Biochem Mol Toxicol 2024; 38:e23576. [PMID: 37906532 DOI: 10.1002/jbt.23576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/13/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
Arsenic (As) toxicity can generate reactive free radicals, which play an important role in the evolution of cardiomyopathy. The aim of this research is to see if sulforaphane (SFN) protects against As-induced heart damage, oxidative stress, and mitochondrial complex dysfunction via the PI3K/Akt/Nrf2 signaling pathway. The rats were placed into four groups, each with eight rats. Group 1: Normal rats (control group); Group 2: Treatment group (5 mg/kg body weight); Group 3: SFN+As-treatment group (80 mg/kg body weight + 5 mg/kg body weight); Group 4: SFN group only (80 mg/kg body weight). The swot will last 4 weeks. At the end of the intermission (28 days), all of the rats starved overnight and killed with cervical decapitation. As administration considerably (p < 0.05) inflated the extent of free radicals (O2-, OH-), lipoid peroxidation (malondialdehyde, 4-hydroxynonenal), lipoid profile (low-density lipoprotein-cholesterol, very low-density lipoprotein-cholesterol (VLDL-C), total cholesterol, triglyceride, and phospholipids), cardiac Troponin (cTnT&I), and Mitochondrial complex III. A noteworthy (p < 0.05) diminish the level of HDL-C, Mitochondrial complex I and II, enzymatic (superoxide dismutase, catalase, and glutathione peroxidase), and nonenzymatic antioxidant (glutathione and total sulfhydryl groups) and PI3k, Akt, and Nrf2 sequence in As treated rats. The western blot, real-time polymerase chain reaction, flowcytometric, and histology studies all corroborated the biochemical findings which revealed significant heart damage in rats. Pretreatment with SFN significantly (p < 0.05) reduced the invitro free radicals, lipid oxidative indicators, mitochondrial complex, lipid profiles, and increased phase II antioxidants in the heart. This result shows that dietary supplementation of SFN protects against As-induced cardiotoxicity via PI3k/Akt/Nrf2 pathway in rats.
Collapse
Affiliation(s)
| | - Tamilselvan Hema
- Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Selvaraj Miltonprabu
- Department of Zoology, University of Madras, Guindy Campus, Chennai, Tamilnadu, India
| | - Manickam Paulpandi
- Molecular Proteomics Lab, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Uma Dutta
- Department of Zoology, Cotton University, Guwahati, Assam, India
| |
Collapse
|
5
|
Chen SY, Kannan M. Neural crest cells and fetal alcohol spectrum disorders: Mechanisms and potential targets for prevention. Pharmacol Res 2023; 194:106855. [PMID: 37460002 PMCID: PMC10528842 DOI: 10.1016/j.phrs.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are a group of preventable and nongenetic birth defects caused by prenatal alcohol exposure that can result in a range of cognitive, behavioral, emotional, and functioning deficits, as well as craniofacial dysmorphology and other congenital defects. During embryonic development, neural crest cells (NCCs) play a critical role in giving rise to many cell types in the developing embryos, including those in the peripheral nervous system and craniofacial structures. Ethanol exposure during this critical period can have detrimental effects on NCC induction, migration, differentiation, and survival, leading to a broad range of structural and functional abnormalities observed in individuals with FASD. This review article provides an overview of the current knowledge on the detrimental effects of ethanol on NCC induction, migration, differentiation, and survival. The article also examines the molecular mechanisms involved in ethanol-induced NCC dysfunction, such as oxidative stress, altered gene expression, apoptosis, epigenetic modifications, and other signaling pathways. Furthermore, the review highlights potential therapeutic strategies for preventing or mitigating the detrimental effects of ethanol on NCCs and reducing the risk of FASD. Overall, this article offers a comprehensive overview of the current understanding of the impact of ethanol on NCCs and its role in FASD, shedding light on potential avenues for future research and intervention.
Collapse
Affiliation(s)
- Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| | - Maharajan Kannan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| |
Collapse
|
6
|
Effects of Lycopene Attenuating Injuries in Ischemia and Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9309327. [PMID: 36246396 PMCID: PMC9568330 DOI: 10.1155/2022/9309327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Tissue and organ ischemia can lead to cell trauma, tissue necrosis, irreversible damage, and death. While intended to reverse ischemia, reperfusion can further aggravate an ischemic injury (ischemia-reperfusion injury, I/R injury) through a range of pathologic processes. An I/R injury to one organ can also harm other organs, leading to systemic multiorgan failure. A type of carotenoid, lycopene, has been shown to treat and prevent many diseases (e.g., rheumatoid arthritis, cancer, diabetes, osteoporosis, male infertility, neurodegenerative diseases, and cardiovascular disease), making it a hot research topic in health care. Some recent researches have suggested that lycopene can evidently ameliorate ischemic and I/R injuries to many organs, but few clinical studies are available. Therefore, it is essential to review the effects of lycopene on ischemic and I/R injuries to different organs, which may help further research into its potential clinical applications.
Collapse
|
7
|
Sulforaphane inhibits angiotensin II-induced cardiomyocyte apoptosis by acetylation modification of Nrf2. Aging (Albany NY) 2022; 14:6740-6755. [PMID: 36006435 PMCID: PMC9467410 DOI: 10.18632/aging.204247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022]
Abstract
Oxidative stress is the central cause of angiotensin II (Ang II)-induced myocardial injury, and nuclear factor erythroid 2-related factor (Nrf2) is the core molecule of the anti-oxidant defense system. We have previously demonstrated that sulforaphane (SFN) can prevent Ang II-induced myocardial injury by activating Nrf2; however, the underlying molecular mechanism is still unclear. This study aimed to evaluate whether SFN prevents Ang II-induced cardiomyocyte apoptosis through acetylation modification of <i>Nrf2</i>. Wild-type and <i>Nrf2</i> knockdown embryonic rat cardiomyocytes (H9C2) were exposed to Ang II to induce apoptosis, oxidative stress, and inflammatory responses. SFN treatment significantly reduced Ang II-induced cardiomyocyte apoptosis, inflammation and oxidative stress. Activation of Nrf2 played a critical role in preventing cardiomyocyte apoptosis. After Nrf2 was knockdown, the anti-inflammatory, antioxidant stress of SFN were eliminated. Furthermore, Nrf2 activation by SFN was closely related to the decreased activity of histone deacetylases (HDACs) and increased histone-3 (H3) acetylation levels in <i>Nrf2</i> promoter region. These findings confirm that Nrf2 plays a key role in SFN preventing Ang II-induced cardiomyocyte apoptosis. SFN activates Nrf2 by inhibiting HDACs expression and activation.
Collapse
|
8
|
Zhang TT, Ma P, Yin XY, Yang DY, Li DP, Tang R. Acute Nitrite Exposure Induces Dysfunction and Oxidative Damage in Grass Carp Isolated Hemocytes. JOURNAL OF AQUATIC ANIMAL HEALTH 2022; 34:58-68. [PMID: 35199889 DOI: 10.1002/aah.10149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
To evaluate the effects of nitrite on the oxidative damage of blood cells of Grass Carp Ctenopharyngodon idella, the isolated hemocytes were exposed to nitrite (0, 1, 10, or 100 mg/L) for up to 24 h. Hemoglobin (Hb) and methemoglobin (MetHb) concentrations, reactive oxygen species (ROS) and malondialdehyde (MDA) levels, mitochondrial membrane potential (∆Ψm), and antioxidant enzyme activity were assayed to assess hematological parameters and the antioxidant defense mechanism. Results showed a remarkable decrease in Hb concentration with increasing nitrite concentration after a 24-h exposure, while the MetHb concentration increased significantly in nitrite exposure groups. The levels of ROS, ∆Ψm, and MDA increased to varying degrees with increases in nitrite exposure concentration and time. The total antioxidant capacity, catalase (CAT) activity, glutathione peroxidase (GPx) activity, and glutathione content showed a trend of rising initially and then decreasing with prolonged exposure time. Superoxide dismutase (SOD) activity was higher in the 1-mg/L nitrite exposure group and lower in the 100-mg/L group than in the control. The relative messenger RNA expression ratios of cat, sod1, and gpx were up-regulated significantly in the 1- and 10-mg/L groups and then declined in the 100-mg/L group. Therefore, it can be concluded that nitrite exposure activates the antioxidant defense mechanism of Grass Carp hemocytes and that the balance of oxidant-antioxidant homeostasis will be undermined by higher nitrite doses or longer exposure periods.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Pin Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiao-Yan Yin
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Dong-Ye Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Da-Peng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, Hubei, 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, Hubei, 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, Hubei, 430070, China
| |
Collapse
|
9
|
Zhang J, Dong Y, Zhou M, Wo X, Niu S, Shao E, Liu X, Jin H, Zhao W. Sulforaphane protects myocardium from ischemia-reperfusion injury by regulating CaMKIIN2 and CaMKIIδ. Biochem Biophys Res Commun 2022; 605:119-126. [DOI: 10.1016/j.bbrc.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/02/2022]
|
10
|
Wang S, Wu H, Zhu Y, Cui H, Yang J, Lu M, Cheng H, Gu L, Xu T, Xu L. Effect of Lycopene on the Growth Performance, Antioxidant Enzyme Activity, and Expression of Gene in the Keap1-Nrf2 Signaling Pathway of Arbor Acres Broilers. Front Vet Sci 2022; 9:833346. [PMID: 35359683 PMCID: PMC8964064 DOI: 10.3389/fvets.2022.833346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to determine the effect of dietary lycopene supplementation on the growth performance, antioxidant enzyme activity of serum and liver, and gene expressions associated with Kelch-like ech-associated protein-1 (Keap1)/Nuclear Factor E2-related factor 2 (Nrf2) pathway in liver of Arbor Acres broilers. A total of 288 1-day-old male broilers were randomly divided into 4 treatments with 6 replicates and 12 chickens for each replicate. The control group was fed with the basal diet, while the treated groups were fed with the basal diet with 10, 20, and 30 mg/kg lycopene in powder. Feed and water were provided ad libitum for 42 days. Compared with the control group, (a) the average daily gain increased (p = 0.002 vs. p = 0.001) and the feed conversion ratio decreased (p = 0.017 vs. p = 0.023) in groups treated with lycopene in the grower and whole phases, and the average daily feed intake was quadratically affected (p = 0.043) by lycopene in the grower phase; (b) the serum superoxide dismutase content was linearly affected (p = 0.035) by lycopene at 21 days; (c) the serum glutathione peroxidase content, superoxide dismutase content, and total antioxidant capability were higher (p = 0.014, p = 0.003, and p = 0.016, respectively) in the 30 mg/kg lycopene group at 42 days; (d) the liver glutathione peroxidase and superoxide dismutase contents in groups treated with lycopene were higher (p ≤ 0.001 vs. p ≤ 0.001) at 21 days; (e) the liver glutathione peroxidase content was higher (p ≤ 0.001) in the 20 and 30 mg/kg lycopene groups, at 42 days; (f) the mRNA expression levels of Nrf2, superoxide dismutase 2, NAD(P)H quinone dehydrogenase 1, and heme oxygenase 1 genes were higher (21 days: p = 0.042, p = 0.021, p = 0.035, and p = 0.043, respectively; 42 days: p = 0.038, p = 0.025, p = 0.034, and p = 0.043, respectively) in the 20 and 30 mg/kg lycopene groups at 21 and 42 days. The 30 mg/kg lycopene concentration improved the growth performance, antioxidant enzyme activity in serum and liver, and gene expression in the Keap1-Nrf2 signaling pathway of Arbor Acres broilers.
Collapse
Affiliation(s)
- Sibo Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yunhui Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hongxia Cui
- Inner Mongolia Ordos City Agricultural and Forestry Technology Extension Center, Ordos, China
| | - Ji Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Mingyuan Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Huangzuo Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lihong Gu
- Institute of Animal Science & Veterinary, Hainan Academy of Agricultural Science, Haikou, China
| | - Tieshan Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Li Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- *Correspondence: Li Xu
| |
Collapse
|
11
|
Han Y, Li CF, Zhang PZ, Yang XQ, Min JX, Wu QH, Xie YY, Jin DZ, Wang ZT, Shao F, Quan HX. Protective effects of 5(S)-5-carboxystrictosidine on myocardial ischemia-reperfusion injury through activation of mitochondrial KATP channels. Eur J Pharmacol 2022; 920:174811. [PMID: 35182546 DOI: 10.1016/j.ejphar.2022.174811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/15/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
5(S)-5-carboxystrictosidine (5-CS) is a compound found in Mappianthus iodoides Hand.-Mazz., root, a traditional Chinese medicine used for the treatment of coronary artery disease. In this study, we investigated whether 5-CS protects heart against I/R injury. Sprague-Dawley rats were treated with 5-CS intraperitoneally for 7 days before the experiment. Hearts were perfused for 20 min global ischemia and 180 min reperfusion. 5-CS significantly inhibited an increase in the post-ischemic left ventricular end-diastolic pressure (LVEDP) and improved the post-ischemic left ventricular developed pressure (LVDP), dP/dt maximum and dP/dt minimum rates of pressure change, and coronary flow as compared with sham group. Pretreatment with 5-hydroxydecanoic acid (5-HD), an inhibitor of mitochondrial KATP channel, for 10 min before ischemia attenuated the improvement of LVEDP, LVDP, dP/dt maximum and dP/dt minimum rates of pressure change, and coronary flow induced by 5-CS. 5-CS markedly decreased the infarct size and attenuated the increased lactate dehydrogenase (LDH) level in effluent during reperfusion. Pretreatment with 5-HD also blocked these protective effects of 5-CS. 5-CS increased Mn-SOD, catalase, and HO-1 levels decreased by I/R injury and pretreatment of 5-HD blocked the 5-CS effects. Increases in Bax, cleaved caspase-3 and cytochrome c levels, caspase-3 and caspase-9 activity, and decrease in Bcl-2 level by I/R injury were attenuated by 5-CS treatment and pretreatment of 5-HD blocked its effects. These results suggest that the protective effects of 5-CS against myocardial I/R injury may be partly related to activating antioxidant enzymes and suppressing apoptosis through opening mitochondrial KATP channels.
Collapse
Affiliation(s)
- Ying Han
- Key Laboratory of Psychology of TCM and Brain Science, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province, China
| | - Chuan Feng Li
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province, China
| | - Pu Zhao Zhang
- Key Laboratory of Innovation Drug and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province, China
| | - Xiao Qi Yang
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province, China
| | - Jian Xin Min
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province, China
| | - Qing Hua Wu
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province, China
| | - Yong Yan Xie
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province, China
| | - De Zhong Jin
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province, China
| | - Zeng Tao Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province, China
| | - Feng Shao
- Key Laboratory of Innovation Drug and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province, China
| | - He Xiu Quan
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province, China.
| |
Collapse
|
12
|
Chen QM. Nrf2 for protection against oxidant generation and mitochondrial damage in cardiac injury. Free Radic Biol Med 2022; 179:133-143. [PMID: 34921930 DOI: 10.1016/j.freeradbiomed.2021.12.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023]
Abstract
Myocardial infarction is the most common form of acute coronary syndrome. Blockage of a coronary artery due to blood clotting leads to ischemia and subsequent cell death in the form of necrosis, apoptosis, necroptosis and ferroptosis. Revascularization by coronary artery bypass graft surgery or non-surgical percutaneous coronary intervention combined with pharmacotherapy is effective in relieving symptoms and decreasing mortality. However, reactive oxygen species (ROS) are generated from damaged mitochondria, NADPH oxidases, xanthine oxidase, and inflammation. Impairment of mitochondria is shown as decreased metabolic activity, increased ROS production, membrane permeability transition, and release of mitochondrial proteins into the cytoplasm. Oxidative stress activates Nrf2 transcription factor, which in turn mediates the expression of mitofusin 2 (Mfn 2) and proteasomal genes. Increased expression of Mfn2 and inhibition of mitochondrial fission due to decreased Drp1 protein by proteasomal degradation contribute to mitochondrial hyperfusion. Damaged mitochondria can be removed by mitophagy via Parkin or p62 mediated ubiquitination. Mitochondrial biogenesis compensates for the loss of mitochondria, but requires mitochondrial DNA replication and initiation of transcription or translation of mitochondrial genes. Experimental evidence supports a role of Nrf2 in mitophagy, via up-regulation of PINK1 or p62 gene expression; and in mitochondrial biogenesis, by influencing the expression of PGC-1α, NResF1, NResF2, TFAM and mitochondrial genes. Oxidative stress causes Nrf2 activation via Keap1 dissociation, de novo protein translation, and nuclear translocation related to inactivation of GSK3β. The mechanism of Keap 1 mediated Nrf2 activation has been hijacked for Nrf2 activation by small molecules derived from natural products, some of which have been shown capable of mitochondrial protection. Multiple lines of evidence support the importance of Nrf2 in protecting mitochondria and preserving or renewing energy metabolism following tissue injury.
Collapse
Affiliation(s)
- Qin M Chen
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, 1295 N. Martin Avenue, Tucson, AZ, 85721, United States.
| |
Collapse
|
13
|
LONG L, MENG X, SUN J, JING L, CHEN D, YU R. Ameliorated effect of Lactobacillus plantarum SCS2 on the oxidative stress in HepG2 cells induced by AFB1. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.16522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Lan LONG
- Chengdu University of Traditional Chinese Medicine, China
| | - Xiao MENG
- Chengdu University of Traditional Chinese Medicine, China
| | - Jiayi SUN
- Chengdu University of Traditional Chinese Medicine, China
| | - Lin JING
- Chengdu University of Traditional Chinese Medicine, China
| | - Dayi CHEN
- Chengdu University of Traditional Chinese Medicine, China
| | - Rong YU
- Chengdu University of Traditional Chinese Medicine, China
| |
Collapse
|
14
|
SULFORAPHANE EFFECTS ON CARDIAC FUNCTION AND CALCIUM-HANDLING RELATED PROTEINS IN TWO EXPERIMENTAL MODELS OF HEART DISEASE. J Cardiovasc Pharmacol 2021; 79:325-334. [DOI: 10.1097/fjc.0000000000001191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/20/2021] [Indexed: 11/26/2022]
|
15
|
Mata A, Cadenas S. The Antioxidant Transcription Factor Nrf2 in Cardiac Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:11939. [PMID: 34769371 PMCID: PMC8585042 DOI: 10.3390/ijms222111939] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 12/25/2022] Open
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that controls cellular defense responses against toxic and oxidative stress by modulating the expression of genes involved in antioxidant response and drug detoxification. In addition to maintaining redox homeostasis, Nrf2 is also involved in various cellular processes including metabolism and inflammation. Nrf2 activity is tightly regulated at the transcriptional, post-transcriptional and post-translational levels, which allows cells to quickly respond to pathological stress. In the present review, we describe the molecular mechanisms underlying the transcriptional regulation of Nrf2. We also focus on the impact of Nrf2 in cardiac ischemia-reperfusion injury, a condition that stimulates the overproduction of reactive oxygen species. Finally, we analyze the protective effect of several natural and synthetic compounds that induce Nrf2 activation and protect against ischemia-reperfusion injury in the heart and other organs, and their potential clinical application.
Collapse
Affiliation(s)
- Ana Mata
- Centro de Biología Molecular “Severo Ochoa” (CSIC/UAM), 28049 Madrid, Spain;
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Susana Cadenas
- Centro de Biología Molecular “Severo Ochoa” (CSIC/UAM), 28049 Madrid, Spain;
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| |
Collapse
|
16
|
Mangla B, Javed S, Sultan MH, Kumar P, Kohli K, Najmi A, Alhazmi HA, Al Bratty M, Ahsan W. Sulforaphane: A review of its therapeutic potentials, advances in its nanodelivery, recent patents, and clinical trials. Phytother Res 2021; 35:5440-5458. [PMID: 34184327 DOI: 10.1002/ptr.7176] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/27/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Traditionally, herbal supplements have shown an exceptional potential of desirability for the prevention of diseases and their treatment. Sulforaphane (SFN), an organosulfur compound belongs to the isothiocyanate (ITC) group and is mainly found naturally in cruciferous vegetables. Several studies have now revealed that SFN possesses broad spectrum of activities and has shown extraordinary potential as antioxidant, antitumor, anti-angiogenic, and anti-inflammatory agent. In addition, SFN is proven to be less toxic, non-oxidizable, and its administration to individuals is well tolerated, making it an effective natural dietary supplement for clinical trials. SFN has shown its ability to be a promising future drug molecule for the management of various diseases mainly due to its potent antioxidant properties. In recent times, several newer drug delivery systems were designed and developed for this potential molecule in order to enhance its bioavailability, stability, and to reduce its side effects. This review focuses to cover numerous data supporting the wide range of pharmacological activities of SFN, its drug-related issues, and approaches to improve its physicochemical and biological properties, including solubility, stability, and bioavailability. Recent patents and the ongoing clinical trials on SFN are also summarized.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Hadi Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Pankaj Kumar
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.,Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
17
|
Park BM, Li W, Kim SH. Cardio-protective effects of angiotensin-(1-5) via mas receptor in rats against ischemic-perfusion injury. Peptides 2021; 139:170516. [PMID: 33582209 DOI: 10.1016/j.peptides.2021.170516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 11/28/2022]
Abstract
Angiotensin-(1-5) [Ang-(1-5)], which is a metabolite of Ang-(1-7) catalyzed by angiotensin-converting enzyme, is a novel pentapeptide of the renin-angiotensin system. Ang-(1-7), Ang III and Ang IV have a cardio-protective effect via Mas receptor, Ang II type 2 receptor (AT2R) and AT4R, respectively. However, it is not clear whether Ang-(1-5) has cardio-protective effects. The aim of this study is to investigate whether Ang-(1-5) protects the heart against ischemia-reperfusion (I/R) injury. After sacrificing Sprague-Dawley rats, the hearts were perfused with Krebs-Henseleit buffer for a 20 min pre-ischemic period with and without Ang-(1-5) followed by 20 min global ischemia and 50 min reperfusion. Ang-(1-5) (1 μM) improved changes in post-ischemic left ventricular developed pressure (LVDP), ±dP/dt, and post-ischemic left ventricular end-diastolic pressure (LVEDP) induced by reperfusion compared to control hearts. Ang-(1-5) decreased myocardial infarct size and LDH activity, and increased coronary flow and the amount of atrial natriuretic peptide (ANP) in coronary effluent during reperfusion compared to control hearts. Pretreatment with Mas receptor antagonist but not with AT1R or AT2R antagonist attenuated the improvement of changes in I/R-induced ventricular hemodynamics by Ang-(1-5). Ang-(1-5) treatment decreased Bax, caspase-3 and caspase-9 protein levels, and increased Bcl-2 protein level, which were attenuated by A779 pretreatment. Ang-(1-5) treatment increased Mn-superoxide dismutase, catalase, and heme oxygenase-1 protein levels, which was attenuated by A779 pretreatment. These results suggest that the cardio-protective effects of Ang-(1-5) against I/R injury may be partly related to activating anti-oxidant and anti-apoptotic enzymes via Mas receptor.
Collapse
Affiliation(s)
- Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Weijian Li
- Department of Physiology, Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeollabuk-do 54907, Republic of Korea.
| |
Collapse
|
18
|
Tian H, Xiong Y, Zhang Y, Leng Y, Tao J, Li L, Qiu Z, Xia Z. Activation of NRF2/FPN1 pathway attenuates myocardial ischemia-reperfusion injury in diabetic rats by regulating iron homeostasis and ferroptosis. Cell Stress Chaperones 2021; 27:149-164. [PMID: 35124772 PMCID: PMC8943074 DOI: 10.1007/s12192-022-01257-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
In patients with ischemic heart disease, myocardial ischemia-reperfusion injury (IRI) can aggravate their condition even worse, and diabetes increases their risk of myocardial IRI. Pathological pathways of common diseases and surgical operations like diabetes, obesity, coronary artery angioplasty, and heart transplantation entail disorders of iron metabolism. Ferroportin1 (FPN1) is the only mammalian protein associated with iron release and thus plays a vital role in iron homeostasis, while nuclear factor E2-related factor 2 (NRF2) controls the transcription of FPN1. Since the NRF2/FPN1 pathway may play a favorable role in the therapy of diabetic myocardial IRI, this work investigated the possible mechanism. In this study, we investigated the effects of ferroptosis in STZ-induced diabetic rats following myocardial IRI in vivo, and its alteration in glucose and hypoxia/reoxygenation-induced cardiomyocytes injury in vitro. Rats and H9c2 cardiomyocytes were randomly divided into 6 groups and treated with sulforaphane and erastin besides the establishment of diabetic myocardial IRI and hyperglycemic hypoxia-reoxygenation models. Cardiac functional and structural damage were detected by Evans blue/TTC double staining, echocardiography, HE staining, and serological indices. CCK-8 assay and ROS production were used to measure cardiomyocyte viability and oxidative stress level. Additionally, the changes in cell supernatant levels of Fe2+, SOD, MDA, and mRNA and protein expression of ferroptosis marker proteins confirmed the beneficial effects of the NRF2/FPN1 pathway on diabetic myocardial IRI related to iron metabolism and ferroptosis. Overall, these findings suggest that iron homeostasis-related ferroptosis plays an important role in aggravating myocardial IRI in diabetic rats, and NRF2/FPN1 pathway-mediated iron homeostasis and ferroptosis might be a promising therapeutic target against myocardial IRI in diabetes.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Yi Zhang
- Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Jie Tao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Lu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China.
| |
Collapse
|
19
|
Hedrich WD, Wang H. Friend or Foe: Xenobiotic Activation of Nrf2 in Disease Control and Cardioprotection. Pharm Res 2021; 38:213-241. [PMID: 33619640 DOI: 10.1007/s11095-021-02997-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that governs a highly conserved pathway central to the protection of cells against various oxidative stresses. However, the biological impact of xenobiotic intervention of Nrf2 in physiological and pathophysiological conditions remains debatable. Activation of Nrf2 in cancer cells has been shown to elevate drug resistance and increase cell survival and proliferation, while inhibition of Nrf2 sensitizes cancer cells to drug treatment. On the other hand, activation of Nrf2 in normal healthy cells has been explored as a rather successful strategy for cancer chemoprevention. Selective activation of Nrf2 in off-target cells has recently been investigated as an approach for protecting off-target tissues from untoward drug toxicity. Specifically, induction of antioxidant response element genes via Nrf2 activation in cardiac cells is being explored as a means to limit the well-documented cardiotoxicity accompanied by cancer treatment with commonly prescribed anthracycline drugs. In addition to cancers, Nrf2 has been implicated in many other diseases including Alzheimer's and Parkinson's Diseases, diabetes, and cardiovascular disease. In this review, we discuss the roles of Nrf2 and its downstream target genes in the treatment of various diseases, and its recently explored potential for increasing the benefit: risk ratio of commonly utilized cancer treatments.
Collapse
Affiliation(s)
- William D Hedrich
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA.,Bristol-Myers Squibb Company, Pharmaceutical Candidate Optimization, Metabolism and Pharmacokinetics, Rt. 206 and Province Line Road, Princeton, New Jersey, 08543, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
20
|
Ke YY, Shyu YT, Wu SJ. Evaluating the Anti-Inflammatory and Antioxidant Effects of Broccoli Treated with High Hydrostatic Pressure in Cell Models. Foods 2021; 10:167. [PMID: 33467537 PMCID: PMC7830254 DOI: 10.3390/foods10010167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/25/2022] Open
Abstract
Isothiocyanates (ITCs) are important functional components of cruciferous vegetables. The principal isothiocyanate molecule in broccoli is sulforaphane (SFN), followed by erucin (ERN). They are sensitive to changes in temperature, especially high temperature environments where they are prone to degradation. The present study investigates the effects of high hydrostatic pressure on isothiocyanate content, myrosinase activity, and other functional components of broccoli, and evaluates its anti-inflammatory and antioxidant effects. Broccoli samples were treated with different pressures and for varying treatment times; 15 min at 400 MPa generated the highest amounts of isothiocyanates. The content of flavonoids and vitamin C were not affected by the high-pressure processing strategy, whereas total phenolic content (TPC) exhibited an increasing tendency with increasing pressure, indicating that high-pressure processing effectively prevents the loss of the heat-sensitive components and enhances the nutritional content. The activity of myrosinase (MYR) increased after high-pressure processing, indicating that the increase in isothiocyanate content is related to the stimulation of myrosinase activity by high-pressure processing. In other key enzymes, the ascorbate peroxidase (APX) activity was unaffected by high pressure, whereas peroxidase (POD) and polyphenol oxidase (PPO) activity exhibited a 1.54-fold increase after high-pressure processing, indicating that high pressures can effectively destroy oxidases and maintain food quality. With regards to efficacy evaluation, NO production was inhibited and the expression levels of inducible nitric oxide synthase (iNOS) and Cyclooxygenase-2 (COX-2) were decreased in broccoli treated with high pressures, whereas the cell viability remained unaffected. The efficacy was more significant when the concentration of SFN was 60 mg·mL-1. In addition, at 10 mg·mL-1 SFN, the reduced/oxidized glutathione (GSH/GSSG) ratio in inflammatory macrophages increased from 5.99 to 9.41. In conclusion, high-pressure processing can increase the isothiocyanate content in broccoli, and has anti-inflammatory and anti-oxidant effects in cell-based evaluation strategies, providing a potential treatment strategy for raw materials or additives used in healthy foods.
Collapse
Affiliation(s)
| | | | - Sz-Jie Wu
- Department of Horticulture and Landscape Architecture, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan; (Y.-Y.K.); (Y.-T.S.)
| |
Collapse
|
21
|
Bose C, Alves I, Singh P, Palade PT, Carvalho E, Børsheim E, Jun S, Cheema A, Boerma M, Awasthi S, Singh SP. Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell 2020; 19:e13261. [PMID: 33067900 PMCID: PMC7681049 DOI: 10.1111/acel.13261] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/17/2020] [Accepted: 08/30/2020] [Indexed: 01/06/2023] Open
Abstract
Age-associated mitochondrial dysfunction and oxidative damage are primary causes for multiple health problems including sarcopenia and cardiovascular disease (CVD). Though the role of Nrf2, a transcription factor that regulates cytoprotective gene expression, in myopathy remains poorly defined, it has shown beneficial properties in both sarcopenia and CVD. Sulforaphane (SFN), a natural compound Nrf2-related activator of cytoprotective genes, provides protection in several disease states including CVD and is in various stages of clinical trials, from cancer prevention to reducing insulin resistance. This study aimed to determine whether SFN may prevent age-related loss of function in the heart and skeletal muscle. Cohorts of 2-month-old and 21- to 22-month-old mice were administered regular rodent diet or diet supplemented with SFN for 12 weeks. At the completion of the study, skeletal muscle and heart function, mitochondrial function, and Nrf2 activity were measured. Our studies revealed a significant drop in Nrf2 activity and mitochondrial functions, together with a loss of skeletal muscle and cardiac function in the old control mice compared to the younger age group. In the old mice, SFN restored Nrf2 activity, mitochondrial function, cardiac function, exercise capacity, glucose tolerance, and activation/differentiation of skeletal muscle satellite cells. Our results suggest that the age-associated decline in Nrf2 signaling activity and the associated mitochondrial dysfunction might be implicated in the development of age-related disease processes. Therefore, the restoration of Nrf2 activity and endogenous cytoprotective mechanisms by SFN may be a safe and effective strategy to protect against muscle and heart dysfunction due to aging.
Collapse
Affiliation(s)
- Chhanda Bose
- Division of Hematology & Oncology Department of Internal Medicine Texas Tech University Medical Sciences Center Lubbock TX USA
| | - Ines Alves
- Arkansas Children's Research Institute Little Rock AR USA
- Center for Neuroscience and Cell Biology University of Coimbra Coimbra Portugal
| | - Preeti Singh
- Department of Pharmacology and Toxicology University of Arkansas for Medical Sciences Little Rock AR USA
| | - Philip T. Palade
- Department of Pharmacology and Toxicology University of Arkansas for Medical Sciences Little Rock AR USA
| | - Eugenia Carvalho
- Arkansas Children's Research Institute Little Rock AR USA
- Center for Neuroscience and Cell Biology University of Coimbra Coimbra Portugal
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Elisabet Børsheim
- Arkansas Children's Research Institute Little Rock AR USA
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR USA
- Arkansas Children’s Nutrition Center Department of Pediatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Se‐Ran Jun
- Department of Biomedical Informatics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Amrita Cheema
- Departments of Oncology and Biochemistry, Molecular and Cellular Biology Georgetown University Medical Center Washington DC USA
| | - Marjan Boerma
- Division of Radiation Health Department of Pharmaceutical Sciences University of Arkansas for Medical Sciences Little Rock AR USA
| | - Sanjay Awasthi
- Division of Hematology & Oncology Department of Internal Medicine Texas Tech University Medical Sciences Center Lubbock TX USA
| | - Sharda P. Singh
- Division of Hematology & Oncology Department of Internal Medicine Texas Tech University Medical Sciences Center Lubbock TX USA
| |
Collapse
|
22
|
Ruhee RT, Roberts LA, Ma S, Suzuki K. Organosulfur Compounds: A Review of Their Anti-inflammatory Effects in Human Health. Front Nutr 2020; 7:64. [PMID: 32582751 PMCID: PMC7280442 DOI: 10.3389/fnut.2020.00064] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Phytonutrients are widely recognized for providing protective human health benefits. Among the phytonutrients, epidemiological and experimental studies show that dietary organosulfur compounds (OSC) play a significant role in preventing various human pathological progressions, including chronic inflammation, by decreasing inflammatory mediators such as nitric oxide (NO), prostaglandin (PG)E2, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and IL-17, which are all typical hallmarks of inflammation. Evidence supports OSC in reducing the expression of these markers, thereby attenuating chronic inflammatory processes. Nuclear factor-kappa B (NF-κB) is a key regulating factor during inflammation, and novel evidence shows that OSC downregulates this transcriptional factor, thus contributing to the anti-inflammatory response. In vitro and in vivo studies show that inflammation is mechanistically linked with acute and chronic pathological conditions including cancer, diabetes, obesity, neural dysfunction, etc. Furthermore, a considerable number of experiments have demonstrated that the anti-inflammatory properties of OSC occur in a dose-dependent manner. These experiments also highlight indirect mechanisms as well as potent co-functions for protective roles as antioxidants, and in providing chemoprotection and neuroprotection. In this brief review, we provided an overview of the anti-inflammatory effects of OSC and elucidated probable mechanisms that are associated with inflammation and chronic disorders.
Collapse
Affiliation(s)
| | - Llion Arwyn Roberts
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Sihui Ma
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | | |
Collapse
|
23
|
Wang D, Yang Y, Zou X, Zheng Z, Zhang J. Curcumin ameliorates CKD-induced mitochondrial dysfunction and oxidative stress through inhibiting GSK-3β activity. J Nutr Biochem 2020; 83:108404. [PMID: 32531667 DOI: 10.1016/j.jnutbio.2020.108404] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Curcumin has been reported to attenuate muscle atrophy. However, the underling mechanism remains unclear. The aim of this study was to investigate whether curcumin could improve chronic kidney disease (CKD)-induced muscle atrophy and mitochondrial dysfunction by inhibiting glycogen synthase kinase-3β (GSK-3β) activity. The sham and CKD mice were fed either a control diet or an identical diet containing 0.04% curcumin for 12 weeks. The C2C12 myotubes were treated with H2O2 in the presence or absence of curcumin. In addition, wild-type and muscle-specific GSK-3β knockout (KO) CKD model mice were made by 5/6 nephrectomy, and the sham was regarded as control. Curcumin could exert beneficial effects, including weight maintenance and improved muscle function, increased mitochondrial biogenesis, alleviated mitochondrial dysfunction by increasing adenosine triphosphate levels, activities of mitochondrial electron transport chain complexes and basal mitochondrial respiration and suppressing mitochondrial membrane potential. In addition, curcumin modulated redox homeostasis by increasing antioxidant activity and suppressed mitochondrial oxidative stress. Moreover, the protective effects of curcumin had been found to be mediated via inhibiting GSK-3β activity in vitro and in vivo. Importantly, GSK-3β KO contributed to improved mitochondrial function, attenuated mitochondrial oxidative damage and augmented mitochondrial biogenesis in muscle of CKD. Overall, this study suggested that curcumin alleviated CKD-induced mitochondrial oxidative damage and mitochondrial dysfunction via inhibiting GSK-3β activity in skeletal muscle.
Collapse
Affiliation(s)
- Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 5181000, Guangdong, China; School of Chinese Medicine, Southern Medical University, Shenzhen 510515, Guangdong, China; Department of the Ministry of Science and Technology, Guangxi International Zhuang Medicine Hospital, Nanning 530201, Guangxi , China; Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen 518033, Guangdong, China.
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for R&D of Natural Drug, Guangdong Medical University, Zhanjiang 524023, Guangdong , China
| | - Xiaohu Zou
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 5181000, Guangdong, China
| | - Zena Zheng
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 5181000, Guangdong, China
| | - Jing Zhang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 5181000, Guangdong, China
| |
Collapse
|
24
|
Wang S, Yang X. Eleutheroside E decreases oxidative stress and NF-κB activation and reprograms the metabolic response against hypoxia-reoxygenation injury in H9c2 cells. Int Immunopharmacol 2020; 84:106513. [PMID: 32330867 DOI: 10.1016/j.intimp.2020.106513] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/21/2020] [Accepted: 04/13/2020] [Indexed: 01/23/2023]
Abstract
Ischemia-reperfusion (I/R) injury causes cardiac dysfunction through several mechanisms including oxidative stress and pro-inflammation. Eleutheroside E (EE) has protective effects in ischemia tissue and anti-inflammatory action. However, the effect of EE on I/R-injured cardiomyocytes is unknown. In this study, we used in vitro H9c2 cell model to investigate the favorable role of EE on myocardial I/R injury. We found that EE administration attenuated the cardiomyocyte apoptosis induced by hypoxia-reoxygenation (H/R) injury. Further, pre-treatment with EE dramatically inhibited mitochondrial oxidative stress, IκBα phosphorylation and nuclear factor kappa B (NF-κB) subunit p65 translocation into nuclei. EE might suppress the MAPK signaling pathway to inhibit the H/R-induced NF-κB activation. Moreover, we had analyzed the metabolomic profile of H/R-injured and H/R + 100 EE-treated H9c2 cells and found that the abundance of most metabolites changed by H/R could be re-modulated by EE treatment. Pathway analysis highlighted the inhibition of fatty acid biosynthesis and alternation of arginine and proline metabolism as two potential links to the favorable effect of EE on H/R-injured cardiomyocytes. The further demonstration showed that nitric oxide (NO), a product that is solely catabolized by l-arginine and has profound anti-oxidative stress activity during H/R in cardiomyocytes, was augmented by EE. Altogether, our results provide evidence that EE may be a potential drug for myocardial I/R injury by reducing oxidative stress, NF-κB activation, and metabolic reprogramming.
Collapse
Affiliation(s)
- Shanyue Wang
- Department Cardiovascular Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Xuming Yang
- Department Cardiovascular Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
25
|
Martelli A, Citi V, Testai L, Brogi S, Calderone V. Organic Isothiocyanates as Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:110-144. [PMID: 31588780 DOI: 10.1089/ars.2019.7888] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Hydrogen sulfide (H2S), the "new entry" in the series of endogenous gasotransmitters, plays a fundamental role in regulating the biological functions of various organs and systems. Consequently, the lack of adequate levels of H2S may represent the etiopathogenetic factor of multiple pathological alterations. In these diseases, the use of H2S donors represents a precious and innovative opportunity. Recent Advances: Natural isothiocyanates (ITCs), sulfur compounds typical of some botanical species, have long been investigated because of their intriguing pharmacological profile. Recently, the ITC moiety has been proposed as a new H2S-donor chemotype (with a l-cysteine-mediated reaction). Based on this recent discovery, we can clearly observe that almost all the effects of natural ITCs can be explained by the H2S release. Consistently, the ITC function was also used as an original H2S-releasing moiety for the design of synthetic H2S donors and original "pharmacological hybrids." Very recently, the chemical mechanism of H2S release, resulting from the reaction between l-cysteine and some ITCs, has been elucidated. Critical Issues: Available literature gives convincing demonstration that H2S is the real player in ITC pharmacology. Further, countless studies have been carried out on natural ITCs, but this versatile moiety has been used only rarely for the design of synthetic H2S donors with optimal drug-like properties. Future Directions: The development of more ITC-based synthetic H2S donors with optimal drug-like properties and selectivity toward specific tissues/pathologies seem to represent a stimulating and indispensable prospect of future experimental activities.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| |
Collapse
|
26
|
Silva-Palacios A, Ostolga-Chavarría M, Sánchez-Garibay C, Rojas-Morales P, Galván-Arzate S, Buelna-Chontal M, Pavón N, Pedraza-Chaverrí J, Königsberg M, Zazueta C. Sulforaphane protects from myocardial ischemia-reperfusion damage through the balanced activation of Nrf2/AhR. Free Radic Biol Med 2019; 143:331-340. [PMID: 31422078 DOI: 10.1016/j.freeradbiomed.2019.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/16/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
The activation of the transcription factor Nrf2 and the consequent increment in the antioxidant response might be a powerful strategy to contend against reperfusion damage. In this study we compared the effectiveness between sulforaphane (SFN), a well known activator of Nrf2 and the mechanical maneuver of post-conditioning (PostC) to confer cardioprotection in an in vivo cardiac ischemia-reperfusion model. We also evaluated if additional mechanisms, besides Nrf2 activation contribute to cardioprotection. Our results showed that SFN exerts an enhanced protective response as compared to PostC. Bot, strategies preserved cardiac function, decreased infarct size, oxidative stress and inflammation, through common protective pathways; however, the aryl hydrocarbon receptor (AhR) also participated in the protection conferred by SFN. Our data suggest that SFN-mediated cardioprotection involves transient Nrf2 activation, followed by phase I enzymes upregulation at the end of reperfusion, as a long-term protection mechanism.
Collapse
Affiliation(s)
- A Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico; Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | - M Ostolga-Chavarría
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico
| | - C Sánchez-Garibay
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico
| | - P Rojas-Morales
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - S Galván-Arzate
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suarez, Mexico
| | - M Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico
| | - N Pavón
- Departamento de Farmacología, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico
| | - J Pedraza-Chaverrí
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - M Königsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | - C Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico.
| |
Collapse
|
27
|
Wafi AM, Yu L, Gao L, Zucker IH. Exercise training upregulates Nrf2 protein in the rostral ventrolateral medulla of mice with heart failure. J Appl Physiol (1985) 2019; 127:1349-1359. [PMID: 31556830 DOI: 10.1152/japplphysiol.00469.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic heart failure (CHF) is associated with global oxidative stress, which contributes to sympathoexcitation. Increased reactive oxygen species in the brain accumulate within neurons and lead to enhanced neuronal excitability. Exercise training (ExT) is associated with a reduction of oxidative stress by upregulation of antioxidant enzymes. The link between ExT and antioxidant enzyme expression in the brain of animals with CHF is not clear. We hypothesized that ExT enhances transcription and translation of the nuclear factor erythroid 2-related factor 2 (Nrf2) gene, a master transcription factor that modulates antioxidant enzyme gene expression, in the rostral ventrolateral medulla (RVLM) of mice with CHF. Mice were divided into the following groups: Sham sedentary (Sham-Sed), Sham-ExT, CHF-Sed, and CHF-ExT. After 8 wk of ExT, we measured Nrf2 and NAD(P)H dehydrogenase [quinone] 1 (NQO-1) message and protein expression along with maximal exercise tolerance and urinary norepinephrine (NE) excretion. We found that Nrf2 and NQO-1 mRNA and protein expression in the RVLM were lower in CHF-Sed mice compared with Sham-Sed. ExT attenuated the CHF-induced reduction of Nrf2 and NQO-1 mRNA and protein expression in the RVLM. NE excretion was higher in CHF-Sed mice compared with Sham-Sed (666.8 ± 79.3 ng/24 h, n = 6 vs. 397.8 ± 43.7 ng/24 h, P = 0.04). CHF-ExT mice exhibited reduced urinary NE excretion compared with CHF-Sed (360.7 ± 41.7 ng, n = 4 vs. 666.8 ± 79.3 ng, n = 6; P = 0.03). We conclude that ExT-induced upregulation of Nrf2 in the RVLM contributes to the beneficial effects of ExT on sympathetic function in the heart failure state.NEW & NOTEWORTHY This study provide evidence for an important role for exercise training in the modulation of antioxidant enzyme production in the rostral ventrolateral medulla (RVLM) in the heart failure state. We show here a correlation between exercise training and the expression of the antioxidant transcription factor Nrf2 in the RVLM. Exercise training reduced sympathetic function (norepinephrine excretion) and upregulated both Nrf2 and the antioxidant enzyme NQO-1. We conclude that Nrf2 in the RVLM may be an important target for controlling sympathetic outflow in heart failure.
Collapse
Affiliation(s)
- Ahmed M Wafi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Li Yu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
28
|
Involvement of Nrf2 in myocardial ischemia and reperfusion injury. Int J Biol Macromol 2019; 125:496-502. [DOI: 10.1016/j.ijbiomac.2018.11.190] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022]
|
29
|
Lei P, Tian S, Teng C, Huang L, Liu X, Wang J, Zhang Y, Li B, Shan Y. Sulforaphane Improves Lipid Metabolism by Enhancing Mitochondrial Function and Biogenesis In Vivo and In Vitro. Mol Nutr Food Res 2019; 63:e1800795. [PMID: 30578708 DOI: 10.1002/mnfr.201800795] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/16/2018] [Indexed: 12/11/2022]
Abstract
SCOPE Sulforaphane (SFN) is reported to reduce the accumulation of lipids. However, the underling mechanism remains unclear. In this study, the potential of SFN to improve lipid metabolism is investigated through altering mitochondrial function and biogenesis-related mechanisms. METHODS AND RESULTS The abnormal lipid metabolism model was established both in HHL-5 cells and in rats by feeding a high-fat diet (HFD) for 10 weeks. The current findings suggest that SFN alleviates the swelling of mitochondria and stimulates mitochondrial biogenesis. The reduced expression of NRF1 and TFAM, were reversed by SFN. SFN increases the levels of antioxidant compounds via nuclear factor erythroid-2-related factor (Nrf2) activation. Furthermore, SFN improves multiple mitochondrial bioactivities, such as mitochondrial membrane potential, ATP, and the electron transfer chain based on PGC-1α pathway. SFN also activates lipolysis by transcriptionally upregulating adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). CONCLUSIONS SFN enhances utilization of lipids via both the PGC- 1α-dependent promotion of mitochondrial biogenesis and Nrf2 dependent improvement of mitochondrial function.
Collapse
Affiliation(s)
- Peng Lei
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang, 150001, P. R. China
| | - Sicong Tian
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang, 150001, P. R. China
| | - Chunying Teng
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang, 150001, P. R. China
| | - Lei Huang
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang, 150001, P. R. China
| | - Xiaodong Liu
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang, 150001, P. R. China
| | - Jiaojiao Wang
- Center for Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang, 150040, P. R. China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang, 150001, P. R. China
| | - Baolong Li
- Center for Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang, 150040, P. R. China
| | - Yujuan Shan
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang, 150001, P. R. China
| |
Collapse
|
30
|
Evans LW, Ferguson BS. Food Bioactive HDAC Inhibitors in the Epigenetic Regulation of Heart Failure. Nutrients 2018; 10:E1120. [PMID: 30126190 PMCID: PMC6115944 DOI: 10.3390/nu10081120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
- Environmental Science & Health, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
31
|
Liu R, Yan X. Sulforaphane protects rabbit corneas against oxidative stress injury in keratoconus through activation of the Nrf-2/HO-1 antioxidant pathway. Int J Mol Med 2018; 42:2315-2328. [PMID: 30106111 PMCID: PMC6192721 DOI: 10.3892/ijmm.2018.3820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to examine whether activation of the nuclear factor E2-related factor 2 (Nrf-2)/heme oxygenase-1 (HO-1) antioxidant pathway in the cornea was involved in the protective effect of sulforaphane (SF) following keratoconus (KC) injury. Following epithelial debridement, collagenase type II was applied in KC groups at room temperature for 30 min. Following this, rabbits were administered with a subconjunctival (s.c.) injection of SF or placebo (maize oil) daily for a total of 2 weeks. To investigate whether HO-1 was involved in the Nrf-2-related antioxidant pathway, rabbits were injected with zinc (II) protoporphyrin IX (ZnPP IX, s.c.) treatment in combination with SF 24 h following the application of collagenase type II. The protective effects of SF were evaluated by examining the mean keratometry (Km) and central cornea thickness (CCT), measuring reactive oxygen species (ROS) production using immunofluorescent staining, and analyzing the protein expression of NADPH oxidase (Nox) family members Nox-2 and Nox-4, and Nrf-2 and HO-1 using immunohistochemistry and western blot analysis. The mRNA levels of Nox-2, Nox-4, Nrf-2 and HO-1 were quantitatively detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. No significant difference in Km or CCT was observed among groups prior to surgery (P=0.700 and P=0.982, respectively). KC induced an apparent increase of ROS generation, and caused a significant increase in Km and a significant decrease in CCT. These changes were neutralized or reversed by SF treatment. Simultaneously, SF treatment decreased the expression of Nox-2 and Nox-4, and enhanced the expression of Nrf-2 and HO-1 in the KC corneas. The RT-qPCR results indicated that SF induced downregulation of the mRNA expression of Nox-2 and Nox-4, and upregulation of the mRNA expression of Nrf-2 and HO-1 following KC injury. The HO-1 inhibitor, ZnPP IX, counteracted the protective effects of SF on KC corneas. Therefore, the present study provided evidence that activation of the Nrf-2/HO-1 signal transduction pathway may partially promote the protective effect of the antioxidant SF in the KC cornea.
Collapse
Affiliation(s)
- Ruixing Liu
- Department of Ophthalmology, The First Hospital of Peking University, Beijing 100034, P.R. China
| | - Xiaoming Yan
- Department of Ophthalmology, The First Hospital of Peking University, Beijing 100034, P.R. China
| |
Collapse
|
32
|
Nrf2 expression and function, but not MT expression, is indispensable for sulforaphane-mediated protection against intermittent hypoxia-induced cardiomyopathy in mice. Redox Biol 2018; 19:11-21. [PMID: 30096613 PMCID: PMC6086220 DOI: 10.1016/j.redox.2018.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/08/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022] Open
Abstract
We reported previously that nuclear factor erythroid 2-related factor 2 (Nrf2) and metallothionein (MT) play critical roles in preventing intermittent hypoxia (IH)-induced cardiomyopathy. In addition, positive feedback regulation between Nrf2 and MT is required for the efficient compensative responses of the heart to IH. As an activator of Nrf2, sulforaphane (SFN) has attracted attention as a potential protective agent against cardiovascular disease. Here, we investigated whether SFN can up-regulate cardiac Nrf2 expression and function, as well as MT expression, to prevent IH-induced cardiomyopathy, and if so, whether Nrf2 and MT are indispensable for this preventive effect. Nrf2-knock-out (Nrf2-KO) or MT-KO mice and their wild-type (WT) equivalents were exposed to IH for 4 weeks with or without SFN treatment. SFN almost completely prevented IH-induced cardiomyopathy in WT mice, and this preventive effect was abolished in Nrf2-KO mice but retained in MT-KO mice. In IH-exposed WT mice, SFN induced significant increases in the expression levels of Nrf2 and its downstream antioxidant target genes, as well as those of MT, but these effects were not seen in IH-exposed Nrf2-KO mice. By contrast, KO of MT did not affect the ability of SFN to up-regulate the expression of Nrf2 and its downstream antioxidant targets. These results suggest that SFN-induced MT expression is Nrf2-dependent, and SFN prevents IH-induced cardiomyopathy in a Nrf2-dependent manner, for which MT is dispensable. This study provides important information that is relevant to the potential use of SFN to prevent IH-induced cardiomyopathy. Sulforaphane (SFN) protects from intermittent-hypoxia (IH)-induced cardiomyopathy; SFN can increase both Nrf2 and metallothionein (MT) but the latter is Nrf2 dependent. SFN protects the heart from IH in wild-type and MT-KO mice, but not in Nrf2 mice. Nrf2 is indispensable, but not MT, for SFN to protect from IH-induced cardiomyopathy.
Collapse
|
33
|
Park BM, Phuong HTA, Yu L, Kim SH. Alamandine Protects the Heart Against Reperfusion Injury via the MrgD Receptor. Circ J 2018; 82:2584-2593. [PMID: 29998915 DOI: 10.1253/circj.cj-17-1381] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Alamandine differs from angiotensin-(1-7) in a single N-terminal alanine residue. The aim of this study was to investigate whether alamandine protects the heart against reperfusion injury. Methods and Results: After euthanizing Sprague-Dawley rats, hearts were perfused with Krebs-Henseleit buffer for a 20-min pre-ischemic period with or without alamandine, followed by 20 min global ischemia and 50 min reperfusion. Alamandine (0.1 mg/kg) improved the postischemic left ventricular developed pressure and ±dP/dt, decreased the infarct size, and decreased the lactate dehydrogenase levels in the effluent. Alamandine increased the coronary flow and the amount of atrial natriuretic peptide (ANP) in the coronary effluent, and it decreased the expression of apoptotic proteins and increased the expression of antioxidative proteins. Pretreatment with the MrgD receptor antagonist or PD123319, but not the angiotensin type 1 receptor antagonist, attenuated the cardioprotective effects of alamandine. A similar cardioprotective effect with alamandine was also observed with high plasma ANP levels in an in vivo study. Alamandine directly stimulated ANP secretion from isolated atria, which was completely blocked by pretreatment with the MrgD receptor antagonist and was partially blocked by PD123319. CONCLUSIONS These results suggest that the cardioprotective effects of alamandine against I/R injury are, in part, related to the activation of antioxidant and antiapoptotic enzymes via the MrgD receptor.
Collapse
Affiliation(s)
- Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School
| | - Hoang Thi Ai Phuong
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School
| | - Lamei Yu
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School
| |
Collapse
|
34
|
Liu XF, Zhou DD, Xie T, Hao JL, Malik TH, Lu CB, Qi J, Pant OP, Lu CW. The Nrf2 Signaling in Retinal Ganglion Cells under Oxidative Stress in Ocular Neurodegenerative Diseases. Int J Biol Sci 2018; 14:1090-1098. [PMID: 29989056 PMCID: PMC6036726 DOI: 10.7150/ijbs.25996] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/22/2018] [Indexed: 12/28/2022] Open
Abstract
Retinal ganglion cells (RGCs) are one of the important cell types affected in many ocular neurodegenerative diseases. Oxidative stress is considered to be involved in retinal RGCs death in ocular neurodegenerative diseases. More and more attention has been focused on studying the agents that may have neuroprotective effects. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key nuclear transcription factor for the systemic antioxidant defense system. This review elucidates the underlying mechanism of the Nrf2-mediated neuroprotective effects on RGCs in ocular neurodegenerative diseases, such as diabetic retinopathy and retinal ischemia-reperfusion injury. Several Nrf2 inducers that shield RGCs from oxidative stress-induced neurodegeneration via regulating Nrf2 signaling are discussed.
Collapse
Affiliation(s)
- Xiu-Fen Liu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Dan-Dan Zhou
- Department of Radiology, The First Hospital of Jilin University, Jilin, China
| | - Tian Xie
- Department of . Neurosurgery, The People's Hospital of Jilin Province, Jilin, China
| | - Ji-Long Hao
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Tayyab Hamid Malik
- Department of Gastroenterology, The First Hospital of Jilin University, Jilin, China
| | - Cheng-Bo Lu
- Department of Cardiology, The First Hospital of Jiamusi University, Heilongjiang, China
| | - Jing Qi
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Om Prakash Pant
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Cheng-Wei Lu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
35
|
Ma T, Zhu D, Chen D, Zhang Q, Dong H, Wu W, Lu H, Wu G. Sulforaphane, a Natural Isothiocyanate Compound, Improves Cardiac Function and Remodeling by Inhibiting Oxidative Stress and Inflammation in a Rabbit Model of Chronic Heart Failure. Med Sci Monit 2018. [PMID: 29527002 PMCID: PMC5859672 DOI: 10.12659/msm.906123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background The aim of this study was to investigate the effects of sulforaphane (SFN), a natural isothiocyanate compound, in a rabbit ascending aortic cerclage model of chronic heart failure (CHF). Material/Methods Thirty New Zealand White rabbits were divided into the sham operation group (n=10), the CHF group (n=10), and the CHF + SFN group (n=10) treated with subcutaneous SFN (0.5 mg/kg) for five days per week for 12 weeks. After 12 weeks, echocardiography and biometric analysis were performed, followed by the examination of the rabbit hearts. Enzyme-linked immunosorbent assay (ELISA) and Western blot were used to detect levels of inflammatory cytokines, superoxide dismutase (SOD), and malondialdehyde (MDA). Results In the CHF group, compared with the sham operation group, there was an increase in the heart weight to body weight ratio (HW/BW), the left ventricular weight to body weight ratio (LVW/BW), the left ventricular end diastolic diameter (LVEDD), the left ventricular end systolic diameter (LVESD), plasma brain natriuretic peptide (BNP) and atrial natriuretic peptide (ANP) levels, the cardiac collagen volume fraction (CVF), apoptotic index, expression levels of collagen I, collagen III, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and malondialdehyde (MDA) in the myocardial tissue, and a decrease in the left ventricular shortening fraction (LVFS) and left ventricular ejection fraction (LVEF), and cardiac superoxide dismutase (SOD) activity. These changes were corrected in the SFN-treated group. Conclusions In a rabbit model of CHF, treatment with SFN improved cardiac function and remodeling by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Tongliang Ma
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Decai Zhu
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Duoxue Chen
- Department of Cardiology, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Qiaoyun Zhang
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Huifang Dong
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Wenwu Wu
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Huihe Lu
- Department of Cardiology, Nantong First People's Hospital, Nantong, Jiangsu, China (mainland)
| | - Guangfu Wu
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| |
Collapse
|
36
|
Abstract
The NFE2L2 gene encodes the transcription factor Nrf2 best known for regulating the expression of antioxidant and detoxification genes. Gene knockout approaches have demonstrated its universal cytoprotective features. While Nrf2 has been the topic of intensive research in cancer biology since its discovery in 1994, understanding the role of Nrf2 in cardiovascular disease has just begun. The literature concerning Nrf2 in experimental models of atherosclerosis, ischemia, reperfusion, cardiac hypertrophy, heart failure, and diabetes supports its cardiac protective character. In addition to antioxidant and detoxification genes, Nrf2 has been found to regulate genes participating in cell signaling, transcription, anabolic metabolism, autophagy, cell proliferation, extracellular matrix remodeling, and organ development, suggesting that Nrf2 governs damage resistance as well as wound repair and tissue remodeling. A long list of small molecules, most derived from natural products, have been characterized as Nrf2 inducers. These compounds disrupt Keap1-mediated Nrf2 ubquitination, thereby prohibiting proteasomal degradation and allowing Nrf2 protein to accumulate and translocate to the nucleus, where Nrf2 interacts with sMaf to bind to ARE in the promoter of genes. Recently alternative mechanisms driving Nrf2 protein increase have been revealed, including removal of Keap1 by autophagy due to p62/SQSTM1 binding, inhibition of βTrCP or Synoviolin/Hrd1-mediated ubiquitination of Nrf2, and de novo Nrf2 protein translation. We review here a large volume of literature reporting historical and recent discoveries about the function and regulation of Nrf2 gene. Multiple lines of evidence presented here support the potential of dialing up the Nrf2 pathway for cardiac protection in the clinic.
Collapse
Affiliation(s)
- Qin M Chen
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Anthony J Maltagliati
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
37
|
Chang Y, Wei W, Tong L, Liu Y, Zhou A, Chen J, Wei R, Zhang P, Su X. Weikangning therapy in functional dyspepsia and the protective role of Nrf2. Exp Ther Med 2017; 14:2885-2894. [PMID: 28928800 PMCID: PMC5590041 DOI: 10.3892/etm.2017.4892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Functional dyspepsia (FD) is a non-organic gastrointestinal disorder that has a marked negative impact on quality of life. Compared with conventional pharmacological therapies, the traditional Chinese medicine weikangning (WKN) is a safe and effective treatment for FD. The present study aimed to determine the molecular mechanisms underlying the efficacy of WKN. The effect of different concentrations of WKN on the proliferation of the human gastric mucosal epithelial cell line GES-1 was assessed. The optimal WKN concentration to promote cell proliferation was determined, and this concentration was used to examine the effect of WKN compared with a domperidone-treated positive control group on the antioxidant capacity of GES-1 cells. The effect of WKN treatment on the growth and antioxidant activity of GES-1 cells was also assessed following nuclear factor erythroid 2 like 2 (Nrf2) knockdown. The optimal WKN dose for promoting cell growth was determined to be 0.025 mg/ml; at this concentration the expression of the antioxidant proteins glutathione S-transferase P and superoxide dismutase 2 (SOD2) were significantly elevated (P<0.0001). Furthermore, the amount of reduced glutathione and activity of SOD2 were significantly increased (P<0.0001 and P<0.01, respectively), and malondialdehyde content was significantly decreased, compared with the controls (P<0.001). With WKN treatment, the transcription of Nrf2 and its downstream genes were significantly upregulated (P<0.01), and the level and nuclear distribution of Nrf2 protein was also markedly increased. Following Nrf2 silencing, the protective antioxidant effects of WKN treatment were impaired and GES-1 cell proliferation decreased. The results of the present study suggest that the efficacy of WKN in protecting gastric mucosal epithelial cells in FD is antioxidant-dependent and mediated by Nrf2 activation.
Collapse
Affiliation(s)
- Yujuan Chang
- Department of Postgraduate Studies, Oriental Hospital of Beijing University of Chinese Medicine, Beijing 100029, P.R. China.,Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Wei Wei
- Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Li Tong
- Institute of Cellular Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, P.R. China
| | - Yanjun Liu
- Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Aimin Zhou
- Department of Chemistry, Cleveland State University, Cleveland, OH 44114, USA
| | - Jiande Chen
- Department of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 44115, USA
| | - Ruhan Wei
- Department of Chemistry, Cleveland State University, Cleveland, OH 44114, USA
| | - Ping Zhang
- Department of Pathology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Xiaolan Su
- Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| |
Collapse
|
38
|
Strom J, Chen QM. Loss of Nrf2 promotes rapid progression to heart failure following myocardial infarction. Toxicol Appl Pharmacol 2017; 327:52-58. [DOI: 10.1016/j.taap.2017.03.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/03/2017] [Accepted: 03/30/2017] [Indexed: 12/24/2022]
|
39
|
Bi M, Li Q, Guo D, Ding X, Bi W, Zhang Y, Zou Y. Sulphoraphane Improves Neuronal Mitochondrial Function in Brain Tissue in Acute Carbon Monoxide Poisoning Rats. Basic Clin Pharmacol Toxicol 2017; 120:541-549. [PMID: 27983767 DOI: 10.1111/bcpt.12728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
Carbon monoxide (CO) poisoning is one of the leading causes of toxicity-related mortality and morbidity worldwide, primarily manifested by acute and delayed central nervous system (CNS) injuries and other organ damages. However, its definite pathogenesis is poorly understood. The aim of this study was to explore the pathogenesis of the ultrastructural and functional impairment of mitochondria and the protection of sulphoraphane (SFP) at different dosages on hippocampus neurons in rats after exposure to CO. We found that CO poisoning could induce advanced cognitive dysfunction, while the mitochondrial ultrastructure of neurons in rats of the CO poisoning group was seriously damaged and mitochondrial membrane potential (ΔΨm) was accordingly reduced by transmission electron microscopy (TEM) and JC-1 fluorescent probe assay. CO poisoning could also increase the expressions of both nuclear factor erythroid 2-related factor 2 (Nrf-2) and thioredoxin-1 (Trx-1) proteins and their mRNA in brain tissue with immunohistochemistry and quantitative PCR (qPCR) techniques. Early administration of either middle-dose or high-dose SFP could efficiently improve mitochondrial structure and function and enhance the antioxidative stress ability, thus exerting a positive effect against brain damage induced by acute CO poisoning.
Collapse
Affiliation(s)
- Mingjun Bi
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Emergency Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Qin Li
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Dadong Guo
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyu Ding
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Department of Clinical Medicine, Qingdao University Medical College, Qingdao, China
| | - Weikang Bi
- Department of Clinical Medicine, Qingdao University Medical College, Qingdao, China
| | - Yueheng Zhang
- Department of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Yong Zou
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
40
|
Resveratrol-Mediated Expression of KLF15 in the Ischemic Myocardium is Associated with an Improved Cardiac Phenotype. Cardiovasc Drugs Ther 2017; 31:29-38. [PMID: 28064408 DOI: 10.1007/s10557-016-6707-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Myocardial infarction results in physiological derangements that lead to structural and functional alterations to the myocardium. In addition, oxidative stress potentiates cardiac remodeling and drives disease progression. Unfortunately, treatment with antioxidants in clinical trials have failed to show any therapeutic benefits despite the positive results reported in animal studies, which warrants further investigation into their mechanism(s) of action. Accordingly, the aim of this study was to elucidate a previously unknown mechanism of action for the antioxidant, resveratrol, in the treatment of the ischemic heart. METHODS Male Sprague-Dawley rats underwent four weeks of chronic myocardial ischemia with or without daily resveratrol treatment (10 mg/kg/day). The expression and signaling of Krüppel-like factor 15 (KLF15) were determined by immunoblot and qPCR analyses, respectively. RESULTS Chronic myocardial ischemia reduced the protein expression of KLF15. In parallel, mRNA transcripts of KLF15 gene targets actively involved in cardiac remodeling were robustly increased in untreated hearts. Importantly, daily treatment with resveratrol stimulated KLF15 expression, which was associated with attenuated gene expression and an improved cardiac phenotype. Additionally, we describe a novel role for KLF15 in the regulation of redox homeostasis. CONCLUSION Based on our current findings, it appears that resveratrol treatment induces KLF15 expression, which may, in part, explain its therapeutic efficacy to improve the cardiac phenotype following ischemic injury.
Collapse
|
41
|
Aggarwal S, Randhawa PK, Singh N, Jaggi AS. Role of ATP-Sensitive Potassium Channels in Remote Ischemic Preconditioning Induced Tissue Protection. J Cardiovasc Pharmacol Ther 2017; 22:467-475. [DOI: 10.1177/1074248416687873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Remote ischemic preconditioning (RIPC) is an innovative treatment strategy that alleviates ischemia-reperfusion injury, whereby short episodes of regional ischemia and reperfusion delivered to remote organs including hind limb, kidney and intestine, and so on provide protection to the heart. The RIPC is known to reduce infarct size, serum levels of cardiac enzymes, and myocardial dysfunction in various animal species as well as in patients. There have been a large number of studies suggesting that the ATP-sensitive potassium channels (KATP channel) play a significant role as a mediator or end effector in RIPC. The present review discusses the role of KATP channels and possible mechanisms in RIPC-induced cardioprotection.
Collapse
Affiliation(s)
- Sapna Aggarwal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| | - Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| |
Collapse
|
42
|
Zhang R, Xu M, Wang Y, Xie F, Zhang G, Qin X. Nrf2—a Promising Therapeutic Target for Defensing Against Oxidative Stress in Stroke. Mol Neurobiol 2016; 54:6006-6017. [DOI: 10.1007/s12035-016-0111-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/06/2016] [Indexed: 12/30/2022]
|
43
|
Sulforaphane effects on postinfarction cardiac remodeling in rats: modulation of redox-sensitive prosurvival and proapoptotic proteins. J Nutr Biochem 2016; 34:106-17. [DOI: 10.1016/j.jnutbio.2016.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 12/24/2022]
|
44
|
Sulforaphane Ameliorates Bladder Dysfunction through Activation of the Nrf2-ARE Pathway in a Rat Model of Partial Bladder Outlet Obstruction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7598294. [PMID: 27433291 PMCID: PMC4940551 DOI: 10.1155/2016/7598294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/10/2016] [Accepted: 04/14/2016] [Indexed: 11/17/2022]
Abstract
Purpose. We evaluated the effect of sulforaphane (SFN) treatment on the function and changes of expression of Nrf2-ARE pathway in the bladder of rats with bladder outlet obstruction (BOO). Materials and Methods. A total of 18 male Sprague-Dawley rats at age of 8 weeks were divided into 3 groups (6 of each): the sham operated group, the BOO group, and the BOO+SFN group. We examined histological alterations and the changes of oxidative stress markers and the protein expression of the Nrf2-ARE pathway. Results. We found that SFN treatment could prolong micturition interval and increase bladder capacity and bladder compliance. However, the peak voiding pressure was lower than BOO group. SFN treatment can ameliorate the increase of collagen fibers induced by obstruction. SFN treatment also increased the activity of SOD, GSH-Px, and CAT compared to the other groups. The level of bladder cell apoptosis was decreased in BOO rats with SFN treatment. Moreover, SFN could reduce the ratio of Bax/Bcl-2 expression. Furthermore, SFN could activate the Nrf2 expression with elevation of its target antioxidant proteins. Conclusions. The sulforaphane-mediated decrease of oxidative stress and activation of the Nrf2-ARE pathway may ameliorate bladder dysfunction caused by bladder outlet obstruction.
Collapse
|
45
|
Bonetto JHP, Fernandes RO, Seolin BGDL, Müller DD, Teixeira RB, Araujo AS, Vassallo D, Schenkel PC, Belló-Klein A. Sulforaphane improves oxidative status without attenuating the inflammatory response or cardiac impairment induced by ischemia–reperfusion in rats. Can J Physiol Pharmacol 2016; 94:508-16. [DOI: 10.1139/cjpp-2015-0282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sulforaphane, a natural isothiocyanate, demonstrates cardioprotection associated with its capacity to stimulate endogenous antioxidants and to inhibit inflammation. The aim of this study was to investigate whether sulforaphane is capable of attenuating oxidative stress and inflammatory responses through the TLR4/MyD88/NFκB pathway, and thereby could modulate post-ischemic ventricular function in isolated rat hearts submitted to ischemia and reperfusion. Male Wistar rats received sulforaphane (10 mg·kg−1·day−1) or vehicle i.p. for 3 days. Global ischemia was performed using isolated hearts, 24 h after the last injection, by interruption of the perfusion flow. The protocol included a 20 min pre-ischemic period followed by 20 min of ischemia and a 20 min reperfusion. Although no changes in mechanical function were observed, sulforaphane induced a significant increase in superoxide dismutase and heme oxygenase-1 expression (both 66%) and significantly reduced reactive oxygen species levels (7%). No differences were observed for catalase and glutathione peroxidase expression or their activities, nor for thioredoxin reductase, glutaredoxin reductase and glutathione-S-transferase. No differences were found in lipid peroxidation or TLR4, MyD88, and NF-κB expression. In conclusion, although sulforaphane was able to stimulate endogenous antioxidants modestly, this result did not impact inflammatory signaling or cardiac function of hearts submitted to ischemia and reperfusion.
Collapse
Affiliation(s)
- Jéssica Hellen Poletto Bonetto
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Rafael Oliveira Fernandes
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Bruna Gazzi de Lima Seolin
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Dalvana Daneliza Müller
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Rayane Brinck Teixeira
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Alex Sander Araujo
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Dalton Vassallo
- Health Science Center of Vitória (EMESCAM), Espírito Santo, Brazil
| | - Paulo Cavalheiro Schenkel
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| |
Collapse
|
46
|
Park BM, Cha SA, Lee SH, Kim SH. Angiotensin IV protects cardiac reperfusion injury by inhibiting apoptosis and inflammation via AT4R in rats. Peptides 2016; 79:66-74. [PMID: 27038740 DOI: 10.1016/j.peptides.2016.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
Abstract
Angiotensin IV (Ang IV) is formed by aminopeptidase N from Ang III by removing the first N-terminal amino acid. Previously, we reported that Ang III has some cardioprotective effects against global ischemia in Langendorff heart. However, it is not clear whether Ang IV has cardioprotective effects. The aim of the present study was to evaluate the effect of Ang IV on myocardial ischemia-reperfusion (I/R) injury in rats. Before ischemia, male Sprague-Dawley rats received Ang IV (1mg/kg/day) for 3 days. Anesthetized rats were subjected to 45min of ischemia by ligation of left anterior descending coronary artery followed by reperfusion and then, sacrificed 1 day or 1 week after reperfusion. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) concentrations, and infarct size were measured. Quantitative analysis of apoptotic and inflammatory proteins in ventricles were performed using Western blotting. Pretreatment with Ang IV attenuated I/R-induced increases in plasma CK and LDH levels, and infarct size, which were blunted by Ang IV receptor (AT4R) antagonist and but not by antagonist for AT1R, AT2R, or Mas receptor. I/R increased Bax, caspase-3 and caspase-9 protein levels, and decreased Bcl-2 protein level in ventricles, which were blunted by Ang IV. I/R-induced increases in TNF-α, MMP-9, and VCAM-1 protein levels in ventricles were also blunted by Ang IV. Ang IV increased the phosphorylation of Akt and mTOR. These effects were attenuated by co-treatment with AT4R antagonist or inhibitors of downstream signaling pathway. Myocardial dysfunction after reperfusion was improved by Ang IV. These results suggest that Ang IV has cardioprotective effect against I/R injury by inhibiting apoptosis via AT4R and PI3K-Akt-mTOR pathway.
Collapse
Affiliation(s)
- Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seung Ah Cha
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sun Hwa Lee
- Internal Medicine, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea.
| |
Collapse
|
47
|
Gastroprotective effects of sulforaphane and thymoquinone against acetylsalicylic acid-induced gastric ulcer in rats. J Surg Res 2016; 203:348-59. [PMID: 27363643 DOI: 10.1016/j.jss.2016.03.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) commonly cause gastric ulcers (GUs). We investigated the effects of sulforaphane (SF) and thymoquinone (TQ) in rats with acetylsalicylic acid (ASA)-induced GUs. MATERIALS AND METHODS Thirty-five male Wistar-Albino rats were divided into five groups: control; ASA; ASA with vehicle; ASA + SF; and ASA + TQ. Compounds were administered by oral gavage before GU induction. GUs were induced by intragastric administration of ASA. Four hours after GU induction, rats were killed and stomachs excised. Total oxidant status, total antioxidant status, total thiol, nitric oxide, asymmetric dimethylarginine, tumor necrosis factor-alpha levels, superoxide dismutase activity, and glutathione peroxidase activity in tissue were measured. Messenger RNA expression of dimethylarginine dimethylaminohydrolases, heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2, and nuclear factor kappa-light-chain-enhancer of activated B cells were analyzed. Renal tissues were evaluated by histopathologic and immunohistochemical means. RESULTS SF and TQ reduced GU indices, apoptosis, total oxidant status, asymmetric dimethylarginine, and tumor necrosis factor-alpha levels, nuclear factor kappa-light-chain-enhancer of activated B cells, and inducible nitric oxide synthase expressions (P < 0.001, P = 0.001). Both examined compounds increased superoxide dismutase activity, glutathione peroxidase activity, total antioxidant status, total thiol, nitric oxide levels, endothelial nitric oxide synthase, dimethylarginine dimethylaminohydrolases, HO-1, nuclear factor erythroid 2-related factor 2, and HO-1 expressions (P < 0.001). CONCLUSIONS These results suggest that pretreatment with SF or TQ can reduce ASA-induced GUs via anti-inflammatory, antioxidant, and antiapoptotic effects. These compounds may be useful therapeutic strategies to prevent the gastrointestinal adverse effects that limit nonsteroidal anti-inflammatory drugs use.
Collapse
|
48
|
Intravenous Administration of Lycopene, a Tomato Extract, Protects against Myocardial Ischemia-Reperfusion Injury. Nutrients 2016; 8:138. [PMID: 26950150 PMCID: PMC4808867 DOI: 10.3390/nu8030138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 12/30/2022] Open
Abstract
Background: Oral uptake of lycopene has been shown to be beneficial for preventing myocardial ischemia-reperfusion (I/R) injury. However, the strong first-pass metabolism of lycopene influences its bioavailability and impedes its clinic application. In this study, we determined an intravenous (IV) administration dose of lycopene protects against myocardial infarction (MI) in a mouse model, and investigated the effects of acute lycopene administration on reactive oxygen species (ROS) production and related signaling pathways during myocardial I/R. Methods: In this study, we established both in vitro hypoxia/reoxygenation (H/R) cell model and in vivo regional myocardial I/R mouse model by ligating left anterior artery descending. TTC dual staining was used to assess I/R induced MI in the absence and presence of acute lycopene administration via tail vein injection. Results: Lycopene treatment (1 μM) before reoxygenation significantly reduced cardiomyocyte death induced by H/R. Intravenous administration of lycopene to achieve 1 μM concentration in circulating blood significantly suppressed MI, ROS production, and JNK phosphorylation in the cardiac tissue of mice during in vivo regional I/R. Conclusion: Elevating circulating lycopene to 1 μM via IV injection protects against myocardial I/R injury through inhibition of ROS accumulation and consequent inflammation in mice.
Collapse
|
49
|
Sulforaphane prevents rat cardiomyocytes from hypoxia/reoxygenation injury in vitro via activating SIRT1 and subsequently inhibiting ER stress. Acta Pharmacol Sin 2016; 37:344-53. [PMID: 26775664 DOI: 10.1038/aps.2015.130] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023] Open
Abstract
AIM Sulforaphane (SFN), a natural dietary isothiocyanate, is found to exert beneficial effects for cardiovascular diseases. This study aimed to investigate the mechanisms underlying the protective effects of SFN in a model of myocardial hypoxia/reoxygenation (H/R) injury in vitro. METHODS Cultured neonatal rat cardiomyocytes pretreated with SFN were subjected to 3-h hypoxia followed by 3-h reoxygenation. Cell viability and apoptosis were detected. Caspase-3 activity and mitochondrial membrane potential (ΔΨm) was measured. The expression of ER stress-related apoptotic proteins were analyzed with Western blot analyses. Silent information regulator 1 (SIRT1) activity was determined with SIRT1 deacetylase fluorometric assay kit. RESULTS SFN (0.1-5 μmol/L) dose-dependently improved the viability of cardiomyocytes, diminished apoptotic cells and suppressed caspase-3 activity. Meanwhile, SFN significantly alleviated the damage of ΔΨm and decreased the expression of ER stress-related apoptosis proteins (GRP78, CHOP and caspase-12), elevating the expression of SIRT1 and Bcl-2/Bax ratio in the cardiomyocytes. Co-treatment of the cardiomyocytes with the SIRT1-specific inhibitor Ex-527 (1 μmol/L) blocked the SFN-induced cardioprotective effects. CONCLUSION SFN prevents cardiomyocytes from H/R injury in vitro most likely via activating SIRT1 pathway and subsequently inhibiting the ER stress-dependent apoptosis.
Collapse
|
50
|
Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:407580. [PMID: 26583056 PMCID: PMC4637098 DOI: 10.1155/2015/407580] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/20/2015] [Accepted: 04/28/2015] [Indexed: 01/18/2023]
Abstract
Cardiovascular disease (CVD) causes an unparalleled proportion of the global burden of disease and will remain the main cause of mortality for the near future. Oxidative stress plays a major role in the pathophysiology of cardiac disorders. Several studies have highlighted the cardinal role played by the overproduction of reactive oxygen or nitrogen species in the pathogenesis of ischemic myocardial damage and consequent cardiac dysfunction. Isothiocyanates (ITC) are sulfur-containing compounds that are broadly distributed among cruciferous vegetables. Sulforaphane (SFN) is an ITC shown to possess anticancer activities by both in vivo and epidemiological studies. Recent data have indicated that the beneficial effects of SFN in CVD are due to its antioxidant and anti-inflammatory properties. SFN activates NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor that serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than a hundred cytoprotective proteins, including antioxidants and phase II detoxifying enzymes. This review will summarize the evidence from clinical studies and animal experiments relating to the potential mechanisms by which SFN modulates Nrf2 activation and protects against CVD.
Collapse
|