1
|
Horkaew P, Kupittayanant S, Kupittayanant P. Noninvasive in ovo sexing in Korat chicken by pattern recognition of its embryologic vasculature. J APPL POULTRY RES 2024; 33:100424. [DOI: 10.1016/j.japr.2024.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024] Open
|
2
|
Cignarella A, Bolego C, Barton M. Sex and sex steroids as determinants of cardiovascular risk. Steroids 2024; 206:109423. [PMID: 38631602 DOI: 10.1016/j.steroids.2024.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
There are considerable sex differences regarding the risk of cardiovascular disease (CVD), including arterial hypertension, coronary artery disease (CAD) and stroke, as well as chronic renal disease. Women are largely protected from these conditions prior to menopause, and the risk increases following cessation of endogenous estrogen production or after surgical menopause. Cardiovascular diseases in women generally begin to occur at a later age than in men (on average with a delay of 10 years). Cessation of estrogen production also impacts metabolism, increasing the risk of developing obesity and diabetes. In middle-aged individuals, hypertension develops earlier and faster in women than in men, and smoking increases cardiovascular risk to a greater degree in women than it does in men. It is not only estrogen that affects female cardiovascular health and plays a protective role until menopause: other sex hormones such as progesterone and androgen hormones generate a complex balance that differentiates heart and blood vessel function in women compared to men. Estrogens improve vasodilation of epicardial coronary arteries and the coronary microvasculature by augmenting the release of vasodilating factors such as nitric oxide and prostacyclin, which are mechanisms of coronary vasodilatation that are more pronounced in women compared to men. Estrogens are also powerful inhibitors of inflammation, which in part explains their protective effects on CVD and chronic renal disease. Emerging evidence suggests that sex chromosomes also play a significant role in shaping cardiovascular risk. The cardiovascular protection conferred by endogenous estrogens may be extended by hormone therapy, especially using bioidentical hormones and starting treatment early after menopause.
Collapse
Affiliation(s)
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland; Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
3
|
Franconi F, Capobianco G, Diana G, Lodde V, De Donno A, Idda ML, Montella A, Campesi I. Sex Influence on Autophagy Markers and miRNAs in Basal and Angiotensin II-Treated Human Umbilical Vein Endothelial Cells. Int J Mol Sci 2023; 24:14929. [PMID: 37834376 PMCID: PMC10573886 DOI: 10.3390/ijms241914929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Cardiovascular diseases (CVD) display many sex and gender differences, and endothelial dysfunction, angiotensin II (Ang II), and autophagy represent key factors in the autophagic process Therefore, we studied whether Ang II modulates the mentioned processes in a sex-specific way in HUVECs obtained from healthy male and female newborns. In basal HUVECs, the Parkin gene and protein were higher in FHUVECs than in MHUVECs, while the Beclin-1 protein was more expressed in MHUVECs, and no other significant differences were detected. Ang II significantly increases LAMP-1 and p62 protein expression and decreases the expression of Parkin protein in comparison to basal in MHUVECs. In FHUVECs, Ang II significantly increases the expression of Beclin-1 gene and protein, and Parkin gene. The LC3 II/I ratio and LAMP-1 protein were significantly higher in MHUVECs than in FHUVECs, while Parkin protein was significantly more expressed in Ang II-treated FHUVECs than in male cells. Ang II affects the single miRNA levels: miR-126-3p and miR-133a-3p are downregulated and upregulated in MHUVECs and FHUVECs, respectively. MiR-223 is downregulated in MHUVEC and FHUVECs. Finally, miR-29b-3p and miR-133b are not affected by Ang II. Ang II effects and the relationship between miRNAs and organelles-specific autophagy is sex-dependent in HUVECs. This could lead to a better understanding of the mechanisms underlying sex differences in endothelial dysfunction, providing useful indications for innovative biomarkers and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Flavia Franconi
- Laboratory of Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
| | - Giampiero Capobianco
- Department of Medicine, Surgery and Pharmacy, Gynecologic and Obstetric Clinic, University of Sassari, 07100 Sassari, Italy; (G.C.); (A.D.D.)
| | - Giuseppe Diana
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (V.L.)
| | - Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (V.L.)
| | - Alberto De Donno
- Department of Medicine, Surgery and Pharmacy, Gynecologic and Obstetric Clinic, University of Sassari, 07100 Sassari, Italy; (G.C.); (A.D.D.)
| | - Maria Laura Idda
- Institute of Genetics and Biomedical Research, National Research Council, 07100 Sassari, Italy;
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (V.L.)
| | - Ilaria Campesi
- Laboratory of Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (V.L.)
| |
Collapse
|
4
|
Hobson S, Arefin S, Witasp A, Hernandez L, Kublickiene K, Shiels PG, Stenvinkel P. Accelerated Vascular Aging in Chronic Kidney Disease: The Potential for Novel Therapies. Circ Res 2023; 132:950-969. [PMID: 37053277 DOI: 10.1161/circresaha.122.321751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The pathophysiology of vascular disease is linked to accelerated biological aging and a combination of genetic, lifestyle, biological, and environmental risk factors. Within the scenario of uncontrolled artery wall aging processes, CKD (chronic kidney disease) stands out as a valid model for detailed structural, functional, and molecular studies of this process. The cardiorenal syndrome relates to the detrimental bidirectional interplay between the kidney and the cardiovascular system. In addition to established risk factors, this group of patients is subjected to a plethora of other emerging vascular risk factors, such as inflammation, oxidative stress, mitochondrial dysfunction, vitamin K deficiency, cellular senescence, somatic mutations, epigenetic modifications, and increased apoptosis. A better understanding of the molecular mechanisms through which the uremic milieu triggers and maintains early vascular aging processes, has provided important new clues on inflammatory pathways and emerging risk factors alike, and to the altered behavior of cells in the arterial wall. Advances in the understanding of the biology of uremic early vascular aging opens avenues to novel pharmacological and nutritional therapeutic interventions. Such strategies hold promise to improve future prevention and treatment of early vascular aging not only in CKD but also in the elderly general population.
Collapse
Affiliation(s)
- S Hobson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - S Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - A Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - L Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - K Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - P G Shiels
- School of Molecular Biosciences, MVLS, University of Glasgow, United Kingdom (P.G.S.)
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| |
Collapse
|
5
|
Hyperuricemia and Endothelial Function: Is It a Simple Association or Do Gender Differences Play a Role in This Binomial? Biomedicines 2022; 10:biomedicines10123067. [PMID: 36551823 PMCID: PMC9775568 DOI: 10.3390/biomedicines10123067] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
The endothelium plays a fundamental role in the biological processes that ensure physiological vessel integrity, synthesizing numerous substances that are capable of modulating the tone of vessels, inflammation and the immune system, and platelet function. Endothelial dysfunction refers to an anomaly that develops at the level of the tunica that lines the internal surface of arterial and venous vessels, or, more precisely, an alteration to normal endothelial function, which involves the loss of some structural and/or functional characteristics. Studies on sex differences in endothelial function are conflicting, with some showing an earlier decline in endothelial function in men compared to women, while others show a similar age of onset between the sexes. Since increased cardiovascular risk coincides with menopause, female hormones, particularly estrogen, are generally believed to be cardioprotective. Furthermore, it is often proposed that androgens are harmful. In truth, these relationships are more complex than one might think and are not just dependent on fluctuations in circulating hormones. An increase in serum uric acid is widely regarded as a possible risk factor for cardiovascular disease; however, its role in the occurrence of endothelial dysfunction has not yet been elucidated. Several studies in the literature have evaluated sex-related differences in the association between elevated uric acid levels and cardiovascular events, with conflicting results. The association between uric acid and cardiovascular disease is still controversial, and it is not yet clear how gender differences affect the serum concentration of these substances. This review was primarily aimed at clarifying the effects of uric acid at the level of the vascular endothelium and describing how it could theoretically cause damage to endothelial integrity. The second aim was to determine if there are gender differences in uric acid metabolism and how these differences interact with the vascular endothelium.
Collapse
|
6
|
Gender differences and pharmacological regulation of angiogenesis induced by synovial fluids in inflammatory arthritis. Biomed Pharmacother 2022; 152:113181. [PMID: 35653890 DOI: 10.1016/j.biopha.2022.113181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 11/27/2022] Open
Abstract
Several mediators including cytokines, growth factors and metalloproteinases (MMP) modulate pathological angiogenesis associated with inflammatory arthritis. The biological factors underlying sex disparities in the incidence and severity of rheumatic musculoskeletal diseases are only partially understood. We hypothesized that synovial fluids (SFs) from rheumatoid arthritis (RA) and psoriatic arthritis (PsA) patients would impact on endothelial biology in a sexually dimorphic fashion. Immune cell counts and levels of pro-angiogenic cytokines found in SFs from RA and PsA patients (n = 17) were higher than in osteoarthritis patients (n = 6). Synovial VEGF concentration was significantly higher in male than in female RA patients. Zymography revealed that SFs comprised solely MMP-9 and MMP-2, with significantly higher MMP-9 levels in male than female RA patients. Using in vitro approaches that mimic the major steps of the angiogenic process, SFs from RA and PsA patients induced endothelial migration and formation of capillary-like structures compared to control. Notably, endothelial cells from female donors displayed enhanced angiogenic response to SFs with respect to males. Treatment with the established anti-angiogenic agent digitoxin prevented activation of focal adhesion kinase and SF-induced in vitro angiogenesis. Thus, despite higher synovial VEGF and MMP-9 levels in male patients, the responsiveness of vascular endothelium to SF priming was higher in females, suggesting that gender differences in angiogenic responses were mainly related to the endothelial genotype. These findings may have implications for pathogenesis and targeted therapies of inflammatory arthritis.
Collapse
|
7
|
Yu X, Nguyen P, Burns NC, Heaps CL, Stallone JN, Sohrabji F, Han G. Activation of G protein-coupled estrogen receptor fine-tunes age-related decreased vascular activities in the aortae of female and male rats. Steroids 2022; 183:108997. [PMID: 35314416 DOI: 10.1016/j.steroids.2022.108997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hormone replacement therapy was found to be effective in cardiovascular protection only in younger women, not in older women. In this study, we tested whether G protein-coupled estrogen receptor 1 (GPER) activation improves vascular activities in response to ET-1 and ACh in aging rats. METHODS Isometric tension study was applied on aortic rings isolated from young adult (5-7 months) and reproductive senescent middle-aged (10-12 months) female Sprague Dawley rats and age matched males. RESULTS The aortic contractile response to ET-1 and the relaxation response to ACh were reduced in the female middle-aged rats compared to the female young adult rats. The presence of G-1, the GPER agonist, normalized the reduced vascular activities. Cyclooxygenase inhibitor, meclofenamate, blocked the increased constriction effect of G-1, but further enhanced relaxation effect of G-1. There was no significant difference in aortic reactivity to either ET-1 or ACh between the male middle-aged and young adult rats. The contractile response to ET-1 was not different within the same age of the two sex groups, but there was a remarkable difference in relaxation response to ACh between young adult females and males with better response in females. GPER activation greatly improved the aortic relaxation of both young adult and middle-aged females, but not the males. CONCLUSIONS Endothelial dysfunction occurs earlier in males, but in females, dysfunction delays until middle age. GPER activation improves the vascular activities in females, but not males. It is promising to employ GPER as a potential drug target in cardiovascular disease in women.
Collapse
Affiliation(s)
- Xuan Yu
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA
| | - Peter Nguyen
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA
| | - Nioka C Burns
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, TX, USA
| | - Cristine L Heaps
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA
| | - John N Stallone
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, TX, USA
| | - Guichun Han
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA; Department of Basic Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, KY, USA.
| |
Collapse
|
8
|
Endothelial Dysfunction in the Pathogenesis of Abdominal Aortic Aneurysm. Biomolecules 2022; 12:biom12040509. [PMID: 35454098 PMCID: PMC9030795 DOI: 10.3390/biom12040509] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Accepted: 03/27/2022] [Indexed: 12/25/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), defined as a focal dilation of the abdominal aorta beyond 50% of its normal diameter, is a common and potentially life-threatening vascular disease. The molecular and cellular mechanisms underlying AAA pathogenesis remain unclear. Healthy endothelial cells (ECs) play a critical role in maintaining vascular homeostasis by regulating vascular tone and maintaining an anti-inflammatory, anti-thrombotic local environment. Increasing evidence indicates that endothelial dysfunction is an early pathologic event in AAA formation, contributing to both oxidative stress and inflammation in the degenerating arterial wall. Recent studies utilizing single-cell RNA sequencing revealed heterogeneous EC sub-populations, as determined by their transcriptional profiles, in aortic aneurysm tissue. This review summarizes recent findings, including clinical evidence of endothelial dysfunction in AAA, the impact of biomechanical stress on EC in AAA, the role of endothelial nitric oxide synthase (eNOS) uncoupling in AAA, and EC heterogeneity in AAA. These studies help to improve our understanding of AAA pathogenesis and ultimately may lead to the generation of EC-targeted therapeutics to treat or prevent this deadly disease.
Collapse
|
9
|
Seeland U, Nemcsik J, Lønnebakken MT, Kublickiene K, Schluchter H, Park C, Pucci G, Mozos I, Bruno RM. Sex and Gender Aspects in Vascular Ageing - Focus on Epidemiology, Pathophysiology, and Outcomes. Heart Lung Circ 2021; 30:1637-1646. [PMID: 34452844 DOI: 10.1016/j.hlc.2021.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022]
Abstract
Sex and gender are important modifiers of cardiovascular system physiology, pathophysiology, and disease development. The atherosclerosis process, together with the progressive loss of arterial elasticity with age, is a major factor influencing the development of overt cardiovascular, renal, and cerebrovascular disease. While differences between women and men in epidemiology and pathophysiology of vascular ageing are increasingly reported, sex-disaggregated data are still scarcely available for prospective studies. A better knowledge of sex differences in physiological ageing as well as in disease-related changes in vascular ageing trajectories is crucial to avoid misdiagnosis and mistreatment. This review presents key concepts and knowledge gaps identified in vascular ageing due to gonadal function, vascular physiology, pathophysiology, psychosocial factors, pregnancy, and prognostic relevance. Gender roles determine the effectiveness of any cardiovascular preventive strategy and acceptance for non-invasive or invasive diagnostics and therapeutics. Gender differences in health behaviour, also due to sociocultural norms conditioned by society, contribute to behaviours that may lead to premature arterial vascular ageing. These include differences in risk behaviours like smoking, diet, exercise, and in stress, but also conditions such as housing, noise pollution, poverty, disability, and any kind of stigmatisation. The VascAgeNet Gender Expert Group aims to advance the use of non-invasive vascular ageing measures in routine clinical settings by providing facts to fill in the gaps concerning sex and gender differences at each step of this process, and to search for solutions.
Collapse
Affiliation(s)
- Ute Seeland
- Institute of Physiology and Science-IT, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - János Nemcsik
- Semmelweis University, Department of Family Medicine and Health Service of Zuglo (ZESZ), Budapest, Hungary
| | - Mai Tone Lønnebakken
- Department of Clinical Science, University of Bergen, Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Karolina Kublickiene
- Institution for Clinical Science, Intervention & Technology, Department of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Schluchter
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Chloe Park
- MRC Unit for Lifelong Health and Ageing at UCL, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Giacomo Pucci
- Unit of Internal Medicine, Terni University Hospital - Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ioana Mozos
- Department of Functional Sciences - Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Rosa-Maria Bruno
- University of Paris and Assistance-Publique Hopitaux de Paris, Georges Pompidou European Hospital and Cardiovascular Research Center - PARCC INSERM, Paris, France
| | | |
Collapse
|
10
|
Dama A, Baggio C, Boscaro C, Albiero M, Cignarella A. Estrogen Receptor Functions and Pathways at the Vascular Immune Interface. Int J Mol Sci 2021; 22:4254. [PMID: 33923905 PMCID: PMC8073008 DOI: 10.3390/ijms22084254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022] Open
Abstract
Estrogen receptor (ER) activity mediates multiple physiological processes in the cardiovascular system. ERα and ERβ are ligand-activated transcription factors of the nuclear hormone receptor superfamily, while the G protein-coupled estrogen receptor (GPER) mediates estrogenic signals by modulating non-nuclear second messengers, including activation of the MAP kinase signaling cascade. Membrane localizations of ERs are generally associated with rapid, non-genomic effects while nuclear localizations are associated with nuclear activities/transcriptional modulation of target genes. Gender dependence of endothelial biology, either through the action of sex hormones or sex chromosome-related factors, is becoming increasingly evident. Accordingly, cardiometabolic risk increases as women transition to menopause. Estrogen pathways control angiogenesis progression through complex mechanisms. The classic ERs have been acknowledged to function in mediating estrogen effects on glucose metabolism, but 17β-estradiol also rapidly promotes endothelial glycolysis by increasing glucose transporter 1 (GLUT1) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) levels through GPER-dependent mechanisms. Estrogens alter monocyte and macrophage phenotype(s), and induce effects on other estrogen-responsive cell lineages (e.g., secretion of cytokines/chemokines/growth factors) that impact macrophage function. The pharmacological modulation of ERs for therapeutic purposes, however, is particularly challenging due to the lack of ER subtype selectivity of currently used agents. Identifying the determinants of biological responses to estrogenic agents at the vascular immune interface and developing targeted pharmacological interventions may result in novel improved therapeutic solutions.
Collapse
Affiliation(s)
- Aida Dama
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
| | - Chiara Baggio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy; (C.B.); (C.B.)
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy; (C.B.); (C.B.)
| | - Mattia Albiero
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Andrea Cignarella
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
| |
Collapse
|
11
|
Farooqi AS, Detchou DK, Glauser G, Strouz K, McClintock SD, Malhotra NR. Gender is associated with long-term mortality after cerebellopontine angle tumor resection. Clin Neurol Neurosurg 2020; 201:106452. [PMID: 33422925 DOI: 10.1016/j.clineuro.2020.106452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Gender can contribute to adverse patient outcomes through social and biological factors. It is important to assess the effects of gender on long-term patient outcomes after care has already been accessed, in order to improve quality of care and mitigate healthcare disparities. PATIENTS AND METHODS 277 consecutive patients undergoing cerebellopontine angle tumor resection over a six-year period (June 09, 2013 - April 29, 2019) at a university health system were retrospectively evaluated. Outcomes included 90-day emergency department (ED) visit, readmission, reoperation and mortality following resection. Male and female patients in the whole population were analyzed by logistic regression. Thereafter, Coarsened Exact Matching was used to match female and male on important demographic factors, including history of prior surgery, median household income, and Charlson Comorbidity Index (CCI) score, among others. Regression was carried out in the matched population, with significance set at a p-value < 0.05. RESULTS In the matched population analysis, males were significantly more likely to experience mortality during the length of follow-up (p = 0.03) but not within 90-days of resection. There were no significant differences in 90-day mortality or reoperation during the length of follow-up in either the matched or pre-matched populations. No significant differences were found in any of the 90-day morbidity outcomes in either the matched or pre-matched populations. CONCLUSION Gender may predict long-term outcomes in patients following CPA tumor resection. It is possible that gender also contributes to outcome disparities in other neurosurgical procedures, which future studies should evaluate.
Collapse
Affiliation(s)
- Ali S Farooqi
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Donald K Detchou
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Gregory Glauser
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Krista Strouz
- McKenna EpiLog Fellowship in Population Health at the University of Pennsylvania, Philadelphia, PA, United States; West Chester University, The West Chester Statistical Institute and Department of Mathematics, West Chester, PA, United States
| | - Scott D McClintock
- West Chester University, The West Chester Statistical Institute and Department of Mathematics, West Chester, PA, United States
| | - Neil R Malhotra
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Boscaro C, Trenti A, Baggio C, Scapin C, Trevisi L, Cignarella A, Bolego C. Sex Differences in the Pro-Angiogenic Response of Human Endothelial Cells: Focus on PFKFB3 and FAK Activation. Front Pharmacol 2020; 11:587221. [PMID: 33390959 PMCID: PMC7773665 DOI: 10.3389/fphar.2020.587221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/06/2020] [Indexed: 01/14/2023] Open
Abstract
Female hormones and sex-specific factors are established determinants of endothelial function, yet their relative contribution to human endothelium phenotypes has not been defined. Using human umbilical vein endothelial cells (HUVECs) genotyped by donor's sex, we investigated the influence of sex and estrogenic agents on the main steps of the angiogenic process and on key proteins governing HUVEC metabolism and migratory properties. HUVECs from female donors (fHUVECs) showed increased viability (p < 0.01) and growth rate (p < 0.01) compared with those from males (mHUVECs). Despite higher levels of G-protein coupled estrogen receptor (GPER) in fHUVECs (p < 0.001), treatment with 17β-estradiol (E2) and the selective GPER agonist G1 (both 1-100 nM) did not affect HUVEC viability. Migration and tubularization in vitro under physiological conditions were higher in fHUVECs than in mHUVECs (p < 0.05). E2 treatment (1-100 nM) upregulated the glycolytic activator PFKFB3 with higher potency in fHUVECs than in mHUVECs, despite comparable baseline levels. Moreover, Y576/577 phosphorylation of focal adhesion kinase (FAK) was markedly enhanced in fHUVECs (p < 0.001), despite comparable Src activation levels. While the PI3K inhibitor LY294002 (25 µM) inhibited HUVEC migration (p < 0.05), Akt phosphorylation levels in fHUVECs and mHUVECs were comparable. Finally, digitoxin treatment, which inhibits Y576/577 FAK phosphorylation, abolished sexual dimorphism in HUVEC migration. These findings unravel complementary modulation of HUVEC functional phenotypes and signaling molecules involved in angiogenesis by hormone microenvironment and sex-specific factors, and highlight the need for sex-oriented pharmacological targeting of endothelial function.
Collapse
Affiliation(s)
- Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Chiara Baggio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Chiara Scapin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Farooqi A, Dimentberg R, Shultz K, McClintock SD, Malhotra NR. Absence of Gender Disparity in Thirty-Day Morbidity and Mortality After Supratentorial Brain Tumor Resection. World Neurosurg 2020; 144:e361-e367. [DOI: 10.1016/j.wneu.2020.08.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022]
|
14
|
Victorio JA, da Costa RM, Tostes RC, Davel AP. Modulation of Vascular Function by Perivascular Adipose Tissue: Sex Differences. Curr Pharm Des 2020; 26:3768-3777. [DOI: 10.2174/1381612826666200701211912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022]
Abstract
In addition to the endothelium, the perivascular adipose tissue (PVAT) has been described to be involved
in the local modulation of vascular function by synthetizing and releasing vasoactive factors. Under
physiological conditions, PVAT has anticontractile and anti-inflammatory effects. However, in the context of
hypertension, obesity and type 2 diabetes, the PVAT pattern of anticontractile adipokines is altered, favoring
oxidative stress, inflammation and, consequently, vascular dysfunction. Therefore, dysfunctional PVAT has become
a target for therapeutic intervention in cardiometabolic diseases. An increasing number of studies have
revealed sex differences in PVAT morphology and in the modulatory effects of PVAT on endothelial function
and vascular tone. Moreover, distinct mechanisms underlying PVAT dysfunction may account for vascular abnormalities
in males and females. Therefore, targeting sex-specific mechanisms of PVAT dysfunction in cardiovascular
diseases is an evolving strategy for cardiovascular protection.
Collapse
Affiliation(s)
- Jamaira A. Victorio
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas-SP, Brazil
| | - Rafael M. da Costa
- Special Academic Unit of Health Sciences, Federal University of Goias-Jatai, Jatai-GO, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Ana P. Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas-SP, Brazil
| |
Collapse
|
15
|
Hartman RJG, Kapteijn DMC, Haitjema S, Bekker MN, Mokry M, Pasterkamp G, Civelek M, den Ruijter HM. Intrinsic transcriptomic sex differences in human endothelial cells at birth and in adults are associated with coronary artery disease targets. Sci Rep 2020; 10:12367. [PMID: 32704153 PMCID: PMC7378217 DOI: 10.1038/s41598-020-69451-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Sex differences in endothelial cell (EC) biology may reflect intrinsic differences driven by chromosomes or sex steroid exposure and gender differences accumulated over life. We analysed EC gene expression data from boy-girl twins at birth and in non-twin adults to detect sex differences at different stages of life, and show that 14-25% of the EC transcriptome is sex-biased. By combining data from both stages of life, we identified sex differences that are present at birth and maintained throughout life, and those that are acquired over life. Promisingly, we found that genes that present with an acquired sex difference in ECs are more likely to be targets of sex steroids. Annotating both gene sets with data from multiple genome-wide association studies (GWAS) revealed that genes with an intrinsic sex difference in ECs are enriched for coronary artery disease GWAS hits. This study underscores the need for treating sex as a biological variable.
Collapse
Affiliation(s)
- Robin J G Hartman
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniek M C Kapteijn
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saskia Haitjema
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mireille N Bekker
- Department of Obstetrics and Gynecology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mete Civelek
- Center for Public Health Genomics, Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Division of Heart and Lungs, Department of Experimental Cardiology, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508GA, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Sexual dimorphism of miRNA signatures in feto-placental endothelial cells is associated with altered barrier function and actin organization. Clin Sci (Lond) 2020; 134:39-51. [PMID: 31825070 DOI: 10.1042/cs20190379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022]
Abstract
Endothelial function and the risk for endothelial dysfunction differ between males and females. Besides the action of estrogen, sex chromosome gene expression and programming effects also provoke this sexual dimorphism. MicroRNAs (miRNAs) have emerged as regulators of endothelial cell function and dysfunction. We here hypothesized distinct miRNA expression patterns in male versus female human endothelial cells that contribute to the functional differences. We used our well-established model of fetal endothelial cells isolated from placenta (fpEC) and analyzed sexual dimorphic miRNA expression and potentially affected biological functions. Next-generation miRNA sequencing of fpEC isolated after pregnancies with male and female neonates identified sex-dependent miRNA expression patterns. Potential biological pathways regulated by the altered set of miRNAs were determined using mirPath and mirSystem softwares, and suggested differences in barrier function and actin organization. The identified pathways were further investigated by monolayer impedance measurements (ECIS) and analysis of F-actin organization (Phalloidin). Nine miRNAs were differentially expressed in fpEC of male versus female neonates. Functional pathways most significantly regulated by these miRNAs included 'Adherens junction', 'ECM receptor interaction' and 'Focal adhesion'. These pathways control monolayer barrier function and may be paralleled by altered cytoskeletal organization. In fact, monolayer impedance was higher in fpEC of male progeny, and F-actin staining revealed more pronounced peripheral stress fibers in male versus female fpEC. Our data highlight that endothelial cell function differs between males and females already in utero, and that altered miRNAs are associated with sex dependent differences in barrier function and actin organization.
Collapse
|
17
|
Lorenz M, Blaschke B, Benn A, Hammer E, Witt E, Kirwan J, Fritsche-Guenther R, Gloaguen Y, Bartsch C, Vietzke A, Kramer F, Kappert K, Brunner P, Nguyen HG, Dreger H, Stangl K, Knaus P, Stangl V. Sex-specific metabolic and functional differences in human umbilical vein endothelial cells from twin pairs. Atherosclerosis 2019; 291:99-106. [PMID: 31706078 DOI: 10.1016/j.atherosclerosis.2019.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/09/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Gonadal hormones are mainly thought to account for sex and gender differences in the incidence, clinical manifestation and therapy of many cardiovascular diseases. However, intrinsic sex differences at the cellular level are mostly overlooked. Here, we assessed sex-specific metabolic and functional differences between male and female human umbilical vein endothelial cells (HUVECs). METHODS Cellular metabolism was investigated by bioenergetic studies (Seahorse Analyser) and a metabolomic approach. Protein levels were determined by Western blots and proteome analysis. Vascular endothelial growth factor (VEGF)-stimulated cellular migration was assessed by gap closure. HUVECs from dizygotic twin pairs were used for most experiments. RESULTS No sex differences were observed in untreated cells. However, sexual dimorphisms appeared after stressing the cells by serum starvation and treatment with VEGF. Under both conditions, female cells had higher intracellular ATP and metabolite levels. A significant decline in ATP levels was observed in male cells after serum starvation. After VEGF, the ratio of glycolysis/mitochondrial respiration was higher in female cells and migration was more pronounced. CONCLUSIONS These results point to an increased stress tolerance of female cells. We therefore propose that female cells have an energetic advantage over male cells under conditions of diminished nutrient supply. A more favourable energy balance of female HUVECs after serum starvation and VEGF could potentially explain their stronger migratory capacity.
Collapse
Affiliation(s)
- Mario Lorenz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Benjamin Blaschke
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Andreas Benn
- Institut für Chemie und Biochemie, Freie Universität Berlin, Germany; Berlin School of Integrative Oncology (DFG Graduate School 1093), Germany
| | - Elke Hammer
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Abteilung für Funktionelle Genomforschung, Universitätsmedizin Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany
| | - Eric Witt
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Abteilung für Funktionelle Genomforschung, Universitätsmedizin Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany
| | - Jennifer Kirwan
- Berlin Institute of Health Metabolomics Platform, Berlin Institute of Health (BIH), Berlin, Germany; Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Raphaela Fritsche-Guenther
- Berlin Institute of Health Metabolomics Platform, Berlin Institute of Health (BIH), Berlin, Germany; Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Yoann Gloaguen
- Berlin Institute of Health Metabolomics Platform, Berlin Institute of Health (BIH), Berlin, Germany; Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany; Core Unit Bioinformatics, Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Cornelia Bartsch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Berlin, Germany
| | - Angelika Vietzke
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Berlin, Germany
| | - Frederike Kramer
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Center for Cardiovascular Research (CCR), Berlin, Germany
| | - Kai Kappert
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany; Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Center for Cardiovascular Research (CCR), Berlin, Germany
| | - Patrizia Brunner
- Institut für Chemie und Biochemie, Freie Universität Berlin, Germany; Berlin School of Integrative Oncology (DFG Graduate School 1093), Germany
| | - Hoang Giang Nguyen
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Center for Cardiovascular Research (CCR), Berlin, Germany
| | - Henryk Dreger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Karl Stangl
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Berlin, Germany
| | - Petra Knaus
- Institut für Chemie und Biochemie, Freie Universität Berlin, Germany; Berlin School of Integrative Oncology (DFG Graduate School 1093), Germany
| | - Verena Stangl
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany.
| |
Collapse
|
18
|
Torres C, Machado R, Lima M. Flow cytometric characterization of the saphenous veins endothelial cells in patients with chronic venous disease and in patients undergoing bypass surgery: an exploratory study. Heart Vessels 2019; 35:1-13. [PMID: 31227876 DOI: 10.1007/s00380-019-01451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Recent findings have suggested that the primary factors for development of chronic venous disease (CVD), which commonly manifests as varicose veins (VV), are due to structural and biochemical modifications of the vessel wall. The aim of this exploratory study was to characterize by flow cytometry the endothelial cells (EC) mechanically extracted from the varicose saphenous veins (VSV) segments of patients submitted to VV surgery, and to compare the expression of cell surface molecules in these EC with that observed in the EC from the graft SV (GSV) of patients undergoing bypass surgery. EC were isolated from distal- (varicose trunk) and from proximal- (nearly normal) VSV segments of 30 patients submitted to VV surgery, and from proximal GSV segments of 20 patients submitted to bypass surgery (control group), using a mechanical method, and their immunophenotype was characterized by flow cytometry. EC were identified as being CD45negCD146brightCD31bright, and analyzed for expression of activation-related (CD54, CD62E, CD106), procoagulant (CD142), and cell junction (CD31, CD146) molecules, and for the scavenger receptor, CD36. The EC harvested from the SV segments of CVD patients had lower expression of all the molecules evaluated, in comparison to controls; these differences were more evident for the EC isolated from the distal-VSV. The EC extracted from the proximal- and distal-VSV segments of the CVD patients also differ from each other, the first having lower levels of CD62E, CD106, CD142 and CD36. Groups did not match for gender and controls were heterogeneous concerning the underlying pathologies, which may have a confounding effect. Our study revealed that the EC isolated from varicose (distal) and nearly normal (proximal) VSV segments of the CVD patients differ phenotypically from each other, and from the EC of the control group. The VSV segments more affected by the CVD have the lowest expression of the studied markers. We hypothesize that CVD is associated with a decrease on the EC surface molecules, causing EC dysfunctionality. Further studies with a large number of gender-matched participants are needed, to confirm the results obtained in this exploratory study.
Collapse
Affiliation(s)
- Cláudia Torres
- Laboratório de Citometria, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Rua D. Manuel II 57, 4050-014, Porto, Portugal. .,Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (UMIB/ICBAS/UP), Rua Jorge Viterbo Ferreira 228, 4050-343, Porto, Portugal.
| | - Rui Machado
- Serviço de Angiologia e Cirurgia Vascular, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Largo Prof. Abel Salazar, 4099-001, Porto, Portugal
| | - Margarida Lima
- Laboratório de Citometria, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Rua D. Manuel II 57, 4050-014, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (UMIB/ICBAS/UP), Rua Jorge Viterbo Ferreira 228, 4050-343, Porto, Portugal
| |
Collapse
|
19
|
Witt E, Lorenz M, Völker U, Stangl K, Hammer E, Stangl V. Sex-specific differences in the intracellular proteome of human endothelial cells from dizygotic twins. J Proteomics 2019; 201:48-56. [PMID: 30951907 DOI: 10.1016/j.jprot.2019.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/11/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Differences between men and women are being continuously identified in many human diseases. The underlying reasons are not yet fully understood. Beside the influence of endogenous hormones and life style, intrinsic sex-specific dimorphisms at the cellular level may also play a role. HUVECs from twin pairs of opposite sex provide an excellent tool to address the question of sex-specific differences at the molecular level. We compared for the first time protein levels of male and female HUVECs from dizygotic twins using a proteomic approach. To investigate differences under basal and stress conditions, cells were either left untreated or wounded and serum starved for different time points. Approximately 10% of all proteins monitored showed significant sexual dimorphisms in their level under the different conditions tested. The majority of the proteins displayed a higher abundance in female cells. The magnitude of the difference in protein levels between male and female cells was rather small. The most prominent differences throughout all conditions were observed for several X-chromosome encoded proteins with higher levels in female (UBA1, HDHD1) or in male cells (G6PD). Proteins involved in basic cellular processes, such as gene expression and translation (e.g. HMGN1, SRP54) displayed sex-specific levels in particular conditions only. SIGNIFICANCE: This study provides novel insights into sexual dimorphic protein levels in HUVECs from twin pairs of the opposite sex. The findings identify proteins with sex-specific differences in their levels under different cell culture conditions. The study also highlights the presence of X-chromosome encoded proteins escaping X-chromosomal inactivation. The results emphasize the need to consider the cellular sex of male and female HUVECs in in vitro experiments.
Collapse
Affiliation(s)
- Eric Witt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany
| | - Mario Lorenz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany
| | - Karl Stangl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany.
| | - Verena Stangl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
20
|
Rydell A, Janson C, Lisspers K, Ställberg B, Nowak C, Carlsson AC, Feldreich T, Iggman D, Lind L, Ärnlöv J. Endothelial dysfunction is associated with impaired lung function in two independent community cohorts. Respir Med 2018; 143:123-128. [PMID: 30261983 DOI: 10.1016/j.rmed.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Prior studies investigating the association between endothelial dysfunction and impaired lung function have been small and inconsistent. The primary aim was to investigate the association between endothelial function and lung function in two community-based cohorts. METHODS We used a discovery/replication approach to study the association between endothelial function and lung function in the Prospective investigation of Obesity, Energy and Metabolism (POEM, discovery cohort, n = 490, mean age 50.3 ± 0.2 years) and the Prospective Study of the Vasculature in Uppsala Seniors (PIVUS, replication cohort, n = 892, mean age 70.2 ± 0.15 years). Spirometry and three different measures of endothelial function were performed including both the invasive forearm technique (endothelium-dependent and endothelium-independent vasodilation [EDV and EIDV, respectively] and noninvasive flow mediated dilation [FMD]). RESULTS An age and sex adjusted association between lower EDV and lower FEV1 was found in POEM and replicated in PIVUS. After merging the two cohorts, 1 standard deviation decrease in EDV was associated with 1.57% lower FEV1 after additional adjustment for smoking status, body mass index, exercise level, and C-reactive protein (95% confidence intervals 0.63-2.51, p = 0.001). The association was slightly lower albeit still statistically significant after excluding participants without cardiovascular disease and chronic respiratory disease and appeared stronger among previous/current smokers vs. non-smokers and in men vs. women (p for interaction = 0.2 and 0.02 respectively). CONCLUSIONS Our findings suggest that even individuals with sub-clinical impairments of lung function in the community have concomitant endothelial dysfunction.
Collapse
Affiliation(s)
- Andreas Rydell
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Huddinge, Sweden; Dalarna County Council, Norslund-Svärdsjö Primary Health Care Center, Falun, Sweden
| | - Christer Janson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Karin Lisspers
- Department of Public Health and Caring Science, Family Medicine and Preventive Medicine, Uppsala University, Uppsala, Sweden
| | - Björn Ställberg
- Department of Public Health and Caring Science, Family Medicine and Preventive Medicine, Uppsala University, Uppsala, Sweden
| | - Christoph Nowak
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Huddinge, Sweden
| | - Axel C Carlsson
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Huddinge, Sweden; Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Tobias Feldreich
- School of Health and Social Sciences, Dalarna University, Falun, Sweden; Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - David Iggman
- Dalarna County Council, Norslund-Svärdsjö Primary Health Care Center, Falun, Sweden; Unit for Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Johan Ärnlöv
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Huddinge, Sweden; Dalarna County Council, Norslund-Svärdsjö Primary Health Care Center, Falun, Sweden; School of Health and Social Sciences, Dalarna University, Falun, Sweden.
| |
Collapse
|
21
|
Huxley VH, Kemp SS. Sex-Specific Characteristics of the Microcirculation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1065:307-328. [PMID: 30051393 DOI: 10.1007/978-3-319-77932-4_20] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The requirements of metabolizing tissue are both continuous and variable; accordingly, the microvasculature serving that tissue must be similarly dynamic. Just as it is recognized that males and females of the same species have differing metabolic requirements, is it not likely that the microvasculature serving these tissues will differ by sex? This section focusing on the constituents of the microcirculation identifies what is known presently about the role sex plays in matching metabolic demand with microvascular function and areas requiring additional study. Many of the identified sex differences are subtle and easily ignored. In the aggregate, though, they can profoundly alter phenotype, especially under stressful conditions including pregnancy, exercise, and disease states ranging from diabetes to heart failure. Although the features presently identified to "have sex" range from differences in growth, morphology, protein expression, and intracellular signaling, males and females alike achieve homeostasis, likely by different means. Studies of microvascular sexual dimorphism are also identifying age as an independent but interacting factor requiring additional attention. Overall, attempting to ignore either sex and/or age is inappropriate and will prevent the design and implementation of appropriate interventions to present, ameliorate, or correct microvascular dysfunction.
Collapse
Affiliation(s)
- Virginia H Huxley
- Center for Gender Physiology, Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA.
| | - Scott S Kemp
- Center for Gender Physiology, Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
22
|
Abstract
Sex and gender, as biological and social factors, significantly influence health outcomes. Among the biological factors, sex differences in vascular physiology may be one specific mechanism contributing to the observed differences in clinical presentation, response to treatment, and clinical outcomes in several vascular disorders. This review focuses on the cerebrovascular bed and summarizes the existing literature on sex differences in cerebrovascular hemodynamics to highlight the knowledge deficit that exists in this domain. The available evidence is used to generate mechanistically plausible and testable hypotheses to underscore the unmet need in understanding sex-specific mechanisms as targets for more effective therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Cristina Duque
- Division of Stroke and Neurocritical Care, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Neurology, Coimbra University Hospital Center, Coimbra, Portugal
| | - Steven K Feske
- Division of Stroke, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Farzaneh A Sorond
- Division of Stroke and Neurocritical Care, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
23
|
Sex Differences of Human Cardiac Progenitor Cells in the Biological Response to TNF- α Treatment. Stem Cells Int 2017; 2017:4790563. [PMID: 29104594 PMCID: PMC5623773 DOI: 10.1155/2017/4790563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 01/25/2023] Open
Abstract
Adult cardiac progenitor cells (CPCs), isolated as cardiosphere-derived cells (CDCs), represent promising candidates for cardiac regenerative therapy. CDCs can be expanded in vitro manyfolds without losing their differentiation potential, reaching numbers that are appropriate for clinical applications. Since mechanisms of successful CDC survival and engraftment in the damaged myocardium are still critical and unresolved issues, we aimed at deciphering possible key factors capable of bolstering CDC function. In particular, the response and the phenotype of CDCs exposed to low concentrations of the multifunctional cytokine tumor necrosis factor α (TNF-α), known to be capable of activating cell survival pathways, have been investigated. Furthermore, differential biological responses of CDCs from male and female donors, in terms of cell cycle progression and cell spreading, have also been assessed. The results obtained indicate that (i) the intracellular signaling activated in our experimental conditions is most likely due to the prosurvival and proliferative signaling of TNF-α receptor 2 and that (ii) cells from female patients appear more responsive to TNF-α treatment in terms of cell cycle progression and migration ability. In conclusion, the present report highlights the hypothesis that TNF-stimulated CDCs isolated from females may represent a promising candidate for cardiac regenerative therapy applications.
Collapse
|
24
|
Cattaneo MG, Vanetti C, Decimo I, Di Chio M, Martano G, Garrone G, Bifari F, Vicentini LM. Sex-specific eNOS activity and function in human endothelial cells. Sci Rep 2017; 7:9612. [PMID: 28852041 PMCID: PMC5575132 DOI: 10.1038/s41598-017-10139-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Clinical and epidemiological data show that biological sex is one of the major determinants for the development and progression of cardiovascular disease (CVD). Impaired endothelial function, characterized by an imbalance in endothelial Nitric Oxide Synthase (eNOS) activity, precedes and accelerates the development of CVD. However, whether there is any sexual dimorphism in eNOS activity and function in endothelial cells (ECs) is still unknown. Here, by independently studying human male and female ECs, we found that female ECs expressed higher eNOS mRNA and protein levels both in vitro and ex vivo. The increased eNOS expression was associated to higher enzymatic activity and nitric oxide production. Pharmacological and genetic inhibition of eNOS affected migratory properties only in female ECs. In vitro angiogenesis experiments confirmed that sprouting mostly relied on eNOS-dependent migration in female ECs. At variance, capillary outgrowth from male ECs was independent of eNOS activity but required cell proliferation. In this study, we found sex-specific differences in the EC expression, activity, and function of eNOS. This intrinsic sexual dimorphism of ECs should be further evaluated to achieve more effective and precise strategies for the prevention and therapy of diseases associated to an impaired endothelial function such as CVD and pathological angiogenesis.
Collapse
Affiliation(s)
- Maria Grazia Cattaneo
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy.
| | - Claudia Vanetti
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | - Ilaria Decimo
- Department of Diagnostics and Public Health, Università di Verona, 37134, Verona, Italy
| | - Marzia Di Chio
- Department of Diagnostics and Public Health, Università di Verona, 37134, Verona, Italy
| | | | - Giulia Garrone
- Fondazione IRCCS, Istituto Nazionale dei Tumori, 20133, Milano, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | - Lucia Maria Vicentini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy.
| |
Collapse
|
25
|
Feijóo-Bandín S, Aragón-Herrera A, Rodríguez-Penas D, Portolés M, Roselló-Lletí E, Rivera M, González-Juanatey JR, Lago F. Relaxin-2 in Cardiometabolic Diseases: Mechanisms of Action and Future Perspectives. Front Physiol 2017; 8:599. [PMID: 28868039 PMCID: PMC5563388 DOI: 10.3389/fphys.2017.00599] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Despite the great effort of the medical community during the last decades, cardiovascular diseases remain the leading cause of death worldwide, increasing their prevalence every year mainly due to our new way of life. In the last years, the study of new hormones implicated in the regulation of energy metabolism and inflammation has raised a great interest among the scientific community regarding their implications in the development of cardiometabolic diseases. In this review, we will summarize the main actions of relaxin, a pleiotropic hormone that was previously suggested to improve acute heart failure and that participates in both metabolism and inflammation regulation at cardiovascular level, and will discuss its potential as future therapeutic target to prevent/reduce cardiovascular diseases.
Collapse
Affiliation(s)
- Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
| | - Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
| | - Diego Rodríguez-Penas
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
| | - Manuel Portolés
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
- Cardiocirculatory Unit, Health Research Institute of La Fe University HospitalValencia, Spain
| | - Esther Roselló-Lletí
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
- Cardiocirculatory Unit, Health Research Institute of La Fe University HospitalValencia, Spain
| | - Miguel Rivera
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
- Cardiocirculatory Unit, Health Research Institute of La Fe University HospitalValencia, Spain
| | - José R. González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
| |
Collapse
|
26
|
Mikhail M, Vachon PH, D'Orléans-Juste P, Jacques D, Bkaily G. Role of endothelin-1 and its receptors, ET A and ET B, in the survival of human vascular endothelial cells. Can J Physiol Pharmacol 2017; 95:1298-1305. [PMID: 28732172 DOI: 10.1139/cjpp-2017-0412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous work showed the presence of endothelin-1 (ET-1) receptors, ETA and ETB, in human vascular endothelial cells (hVECs). In this study, we wanted to verify whether ET-1 plays a role in the survival of hVECs via the activation of its receptors ETA and (or) ETB (ETAR and ETBR, respectively). Our results showed that treatment of hVECs with ET-1 prevented apoptosis induced by genistein, an effect that was mimicked by treatment with ETBR-specific agonist IRL1620. Furthermore, blockade of ETBR with the selective ETBR antagonist A-192621 prevented the anti-apoptotic effect of ET-1 in hVECs. However, activation of ETA receptor alone did not seem to contribute to the anti-apoptotic effect of ET-1. In addition, the anti-apoptotic effect of ETBR was found to be associated with caspase 3 inhibition and does not depend on the density of this type of receptor. In conclusion, our results showed that ET-1 possesses an anti-apoptotic effect in hVECs and that this effect is mediated, to a great extent, via the activation of ETBR. This study revealed a new role for ETBR in the survival of hVECs.
Collapse
Affiliation(s)
- Marianne Mikhail
- a Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre H Vachon
- a Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pedro D'Orléans-Juste
- b Department of Pharmacology and Physiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- a Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Ghassan Bkaily
- a Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
27
|
|