1
|
Berger KD, MacLean DM. Mechanism of acid-sensing ion channel modulation by Hi1a. J Gen Physiol 2024; 156:e202313519. [PMID: 39446054 PMCID: PMC11513431 DOI: 10.1085/jgp.202313519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric cation-selective channels activated by extracellular acidification. Amongst many pathological roles, ASICs are an important mediator of ischemic cell death and hence an attractive drug target for stroke treatment as well as other conditions. A peptide called Hi1a, isolated from Australian funnel web spider venom, inhibits ASIC1a and attenuates cell death in a stroke model up to 8 h after stroke induction. Here, we set out to understand the molecular basis for Hi1a's action. Hi1a is a bivalent toxin with two inhibitory cystine knot domains joined by a short linker. We found that both Hi1a domains modulate human ASIC1a gating with the N-terminal domain impairing channel activation while the C-terminal domain produces a "pro-open" phenotype even at submicromolar concentrations. Interestingly, both domains bind at the same site since a single point mutation, F352A, abolishes functional effects and reduces toxin affinity in surface plasmon resonance measurements. Therefore, the action of Hi1a at ASIC1a appears to arise through a mutually exclusive binding model where either the N or C domain of a single Hi1a binds one ASIC1a subunit. An ASIC1a trimer may bind several inhibitory N domains and one or more pro-open C domains at any one time, accounting for the incomplete inhibition of wild type Hi1a. We also found that the functional differences between these two domains are partially transferred by mutagenesis, affording new insight into the channel function and possible novel avenues of drug design.
Collapse
Affiliation(s)
- Kyle D. Berger
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - David M. MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
2
|
Zhang Y, Dong D, Zhang J, Cheng K, Zhen F, Li M, Chen B. Pathology and physiology of acid-sensitive ion channels in the bladder. Heliyon 2024; 10:e38031. [PMID: 39347393 PMCID: PMC11437851 DOI: 10.1016/j.heliyon.2024.e38031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/08/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Acid-sensitive ion channels (ASICs) are sodium-permeable channels activated by extracellular acidification. They can be activated and trigger the inward flow of Na+ when the extracellular environment is acidic, leading to membrane depolarization and thus inducing action potentials in neurons. There are four ASIC genes in mammals (ASIC1-4). ASIC is widely expressed in humans. It is closely associated with pain, neurological disorders, multiple sclerosis, epilepsy, migraines, and many other disorders. Bladder pain syndrome/interstitial cystitis (BPS/IC) is a specific syndrome characterized by bladder pain. Recent studies have shown that ASICs are closely associated with the development of BPS/IC. A study revealed that ASIC levels are significantly elevated in a BPS/IC model. Additionally, researchers have reported differential changes in ASICs in the bladders of patients with neurogenic lower urinary tract dysfunction (NLUTD) caused by spinal cord injury (SCI). In this review, we summarize the structure and physiological functions of ASICs and focus on the mechanisms by which ASICs mediate bladder disease.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Di Dong
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jialong Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kang Cheng
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fang Zhen
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Translational Medicine, Jiangsu University, China
| |
Collapse
|
3
|
Olov N, Nour S, Harris AR, Li D, Cook M, Williams RJ, Cheeseman S, Nisbet DR. Using Nanoscale Passports To Understand and Unlock Ion Channels as Gatekeepers of the Cell. ACS NANO 2024; 18:22709-22733. [PMID: 39136685 DOI: 10.1021/acsnano.4c05654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Natural ion channels are proteins embedded in the cell membrane that control many aspects of cell and human physiology by acting as gatekeepers, regulating the flow of ions in and out of cells. Advances in nanotechnology have influenced the methods for studying ion channels in vitro, as well as ways to unlock the delivery of therapeutics by modulating them in vivo. This review provides an overview of nanotechnology-enabled approaches for ion channel research with a focus on the synthesis and applications of synthetic ion channels. Further, the uses of nanotechnology for therapeutic applications are critically analyzed. Finally, we provide an outlook on the opportunities and challenges at the intersection of nanotechnology and ion channels. This work highlights the key role of nanoscale interactions in the operation and modulation of ion channels, which may prompt insights into nanotechnology-enabled mechanisms to study and exploit these systems in the near future.
Collapse
Affiliation(s)
- Nafiseh Olov
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Cook
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Department of Medicine, St Vincent's Hospital, Melbourne, Fitzroy, VIC 3065, Australia
| | - Richard J Williams
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
- IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Samuel Cheeseman
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| |
Collapse
|
4
|
Maciel JB, Liberato HR, da Silva AW, da Silva JPV, das Chagas L Pinto F, de Lima Rebouças E, da Silva FSH, Ferreira MKA, Marinho MM, Marinho ES, Pessoa ODL, de Barros Silva PG, Coelho-de-Souza AN, Guedes MIF, de Castro Gomes AF, de Menezes JESA, Dos Santos HS. Withanicandrin Isolated from Datura Ferox Promotes Antinociception by Modulating the Asics and TRPS Channels and Anti-Inflammation in Adult Zebrafish. Chem Biodivers 2024; 21:e202400538. [PMID: 38639566 DOI: 10.1002/cbdv.202400538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 04/20/2024]
Abstract
This is the first study to analyze the anti-inflammatory and antinociceptive effect of withanicandrin, isolated from Datura Ferox leaves, and the possible mechanism of action involved in adult zebrafish (ZFa). To this end, the animals were treated intraperitoneally (i. p.) with withanicandrin (4; 20 and 40 mg/kg; 20 μL) and subjected to locomotor activity and acute toxicity. Nociception tests were also carried out with chemical agents, in addition to tests to evaluate inflammatory processes induced by κ-Carrageenan 1.5 % and a Molecular Docking study. As a result, withanicandrin reduced nociceptive behavior by capsaicin at a dose of 40 mg/kg and by acid saline at doses of 4 and 40 mg/kg, through neuromodulation of TRPV1 channels and ASICs, identified through blocking the antinociceptive effect of withanicandrin by the antagonists capsazepine and naloxone. Furthermore, withanicandrin caused an anti-inflammatory effect through the reduction of abdominal edema, absence of leukocyte infiltrate in the liver tissue and reduction of ROS in thel liver tissue and presented better affinity energy compared to control morphine (TRPV1) and ibuprofen (COX-1 and COX-2).
Collapse
Affiliation(s)
- Jéssica Bezerra Maciel
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Hortência Ribeiro Liberato
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Antônio Wlisses da Silva
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - João Pedro Vieira da Silva
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Francisco das Chagas L Pinto
- Laboratório de Análise Fitoquímica de Plantas Medicinais II -, LAFIPLAM II Departamento de Química Orgânica e Inorgânica -, DQOI, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Emanuela de Lima Rebouças
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Francisco Sydney Henrique da Silva
- Laboratório de Fisiologia Experimental -, LAFIEX, Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Maria Kueirislene Amâncio Ferreira
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Emmanuel Silva Marinho
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
- Grupo de Química Teórica e Eletroquímica -, GQTE, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Otília Deusdênia Loiola Pessoa
- Laboratório de Análise Fitoquímica de Plantas Medicinais II -, LAFIPLAM II Departamento de Química Orgânica e Inorgânica -, DQOI, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Goberlânio de Barros Silva
- Laboratório de Patologia,Programa de Pós-Graduação em Odontologia, Ciências Odontológicas, Centro Universitário Unichristus, Fortaleza, Ceará, Brazil
| | - Andrelina Noronha Coelho-de-Souza
- Laboratório de Fisiologia Experimental -, LAFIEX, Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Maria Izabel Florindo Guedes
- Laboratório de Biotecnologia e Biologia Molecular -, LBBM, Centro de Ciências da Saúde, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Jane Eire Silva Alencar de Menezes
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Hélcio Silva Dos Santos
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental - LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
- Curso de Química, Universidade Estadual Vale do Acaraú, Sobral, Ceará, Brazil
| |
Collapse
|
5
|
Sarkar D, Galleano I, Heusser SA, Ou SY, Uzun GR, Khoo KK, van der Heden van Noort GJ, Harrison JS, Pless SA. Protein semisynthesis underscores the role of a conserved lysine in activation and desensitization of acid-sensing ion channels. Cell Chem Biol 2024; 31:1000-1010.e6. [PMID: 38113885 DOI: 10.1016/j.chembiol.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/21/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Acid-sensing ion channels (ASICs) are trimeric ion channels that open a cation-conducting pore in response to proton binding. Excessive ASIC activation during prolonged acidosis in conditions such as inflammation and ischemia is linked to pain and stroke. A conserved lysine in the extracellular domain (Lys211 in mASIC1a) is suggested to play a key role in ASIC function. However, the precise contributions are difficult to dissect with conventional mutagenesis, as replacement of Lys211 with naturally occurring amino acids invariably changes multiple physico-chemical parameters. Here, we study the contribution of Lys211 to mASIC1a function using tandem protein trans-splicing (tPTS) to incorporate non-canonical lysine analogs. We conduct optimization efforts to improve splicing and functionally interrogate semisynthetic mASIC1a. In combination with molecular modeling, we show that Lys211 charge and side-chain length are crucial to activation and desensitization, thus emphasizing that tPTS can enable atomic-scale interrogations of membrane proteins in live cells.
Collapse
Affiliation(s)
- Debayan Sarkar
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Iacopo Galleano
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Sofie Yuewei Ou
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Gül Refika Uzun
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Keith K Khoo
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | - Stephan Alexander Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
6
|
Ribeiro Liberato H, Bezerra Maciel J, Wlisses Da Silva A, Eduarda Uchoa Bezerra M, San De Oliveira Brito L, Silva J, Kuerislene Amâncio Ferreira M, Machado Marinho M, Marinho GS, Deusdênia Loiola Pessoa O, Guedes MIF, Goberlânio De Barros Silva P, Ferreira de Castro Gomes A, Silva Alencar De Menezes JE, Silva Dos Santos H. Neuromodulation of Acid-Sensitive Ion Channels (ASICs) and Anti-Inflammatory Potential by Lichenxanthone in Adult Zebrafish (Danio rerio): Experimental and Docking Studies. Chem Biodivers 2024; 21:e202400063. [PMID: 38329295 DOI: 10.1002/cbdv.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/09/2024]
Abstract
The xanthone lichenxanthone did not show toxic effects (LC50>1.0 mg/mL). lichenxanthone prevented nociceptive behavior induced by acidic saline, and its analgesic effect was blocked by amiloride, highlighting the involvement of neuromodulation of acid-sensitive ion channels (ASICs). In the analysis of anti-inflammatory activity, concentrations of 0.1 and 0.5 mg/mL of lichenxanthone reduced the edema induced by k-carrageenan 3.5 %, observed from the fourth hour of analysis. This effect was similar to that observed with ibuprofen (positive control). No leukocyte infiltrates were observed in lichenxanthone, suggesting that the compound acts in the acute inflammatory response. The results of the molecular docking study revealed that lichenxanthone exhibited better affinity energy when compared to the ibuprofen control against the two targets evaluated.
Collapse
Affiliation(s)
- Hortência Ribeiro Liberato
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Jéssica Bezerra Maciel
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Luana San De Oliveira Brito
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici s/n, Fortaleza, Ceará, Brazil
| | - Jacilene Silva
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Marcia Machado Marinho
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Gabrielle S Marinho
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Otília Deusdênia Loiola Pessoa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici s/n, Fortaleza, Ceará, Brazil
| | - Maria Izabel F Guedes
- Centro de Ciências da Saúde, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | - Hélcio Silva Dos Santos
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
- Universidade Estadual do Vale do Acaraú, Centro de Ciências Exatas e Tecnologia, Sobral, Ceará, Brasil
| |
Collapse
|
7
|
Platonov M, Maximyuk O, Rayevsky A, Hurmach V, Iegorova O, Naumchyk V, Bulgakov E, Cherninskyi A, Ozheredov D, Ryabukhin SV, Krishtal O, Volochnyuk DM. 4-(Azolyl)-Benzamidines as a Novel Chemotype for ASIC1a Inhibitors. Int J Mol Sci 2024; 25:3584. [PMID: 38612396 PMCID: PMC11011685 DOI: 10.3390/ijms25073584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Acid-sensing ion channels (ASICs) play a key role in the perception and response to extracellular acidification changes. These proton-gated cation channels are critical for neuronal functions, like learning and memory, fear, mechanosensation and internal adjustments like synaptic plasticity. Moreover, they play a key role in neuronal degeneration, ischemic neuronal injury, seizure termination, pain-sensing, etc. Functional ASICs are homo or heterotrimers formed with (ASIC1-ASIC3) homologous subunits. ASIC1a, a major ASIC isoform in the central nervous system (CNS), possesses an acidic pocket in the extracellular region, which is a key regulator of channel gating. Growing data suggest that ASIC1a channels are a potential therapeutic target for treating a variety of neurological disorders, including stroke, epilepsy and pain. Many studies were aimed at identifying allosteric modulators of ASIC channels. However, the regulation of ASICs remains poorly understood. Using all available crystal structures, which correspond to different functional states of ASIC1, and a molecular dynamics simulation (MD) protocol, we analyzed the process of channel inactivation. Then we applied a molecular docking procedure to predict the protein conformation suitable for the amiloride binding. To confirm the effect of its sole active blocker against the ASIC1 state transition route we studied the complex with another MD simulation run. Further experiments evaluated various compounds in the Enamine library that emerge with a detectable ASIC inhibitory activity. We performed a detailed analysis of the structural basis of ASIC1a inhibition by amiloride, using a combination of in silico approaches to visualize its interaction with the ion pore in the open state. An artificial activation (otherwise, expansion of the central pore) causes a complex modification of the channel structure, namely its transmembrane domain. The output protein conformations were used as a set of docking models, suitable for a high-throughput virtual screening of the Enamine chemical library. The outcome of the virtual screening was confirmed by electrophysiological assays with the best results shown for three hit compounds.
Collapse
Affiliation(s)
- Maksym Platonov
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Str., 150, 03143 Kyiv, Ukraine; (M.P.); (V.H.)
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine; (O.M.); (O.I.); (A.C.); (O.K.)
| | - Alexey Rayevsky
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Str., 150, 03143 Kyiv, Ukraine; (M.P.); (V.H.)
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2A, 04123 Kyiv, Ukraine;
| | - Vasyl Hurmach
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Str., 150, 03143 Kyiv, Ukraine; (M.P.); (V.H.)
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
| | - Olena Iegorova
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine; (O.M.); (O.I.); (A.C.); (O.K.)
| | - Vasyl Naumchyk
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601 Kyiv, Ukraine
| | - Elijah Bulgakov
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2A, 04123 Kyiv, Ukraine;
| | - Andrii Cherninskyi
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine; (O.M.); (O.I.); (A.C.); (O.K.)
| | - Danil Ozheredov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2A, 04123 Kyiv, Ukraine;
| | - Serhiy V. Ryabukhin
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Academik Kukhar Str., 02660 Kyiv, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine; (O.M.); (O.I.); (A.C.); (O.K.)
| | - Dmytro M. Volochnyuk
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Academik Kukhar Str., 02660 Kyiv, Ukraine
| |
Collapse
|
8
|
Witczyńska A, Alaburda A, Grześk G, Nowaczyk J, Nowaczyk A. Unveiling the Multifaceted Problems Associated with Dysrhythmia. Int J Mol Sci 2023; 25:263. [PMID: 38203440 PMCID: PMC10778936 DOI: 10.3390/ijms25010263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Dysrhythmia is a term referring to the occurrence of spontaneous and repetitive changes in potentials with parameters deviating from those considered normal. The term refers to heart anomalies but has a broader meaning. Dysrhythmias may concern the heart, neurological system, digestive system, and sensory organs. Ion currents conducted through ion channels are a universal phenomenon. The occurrence of channel abnormalities will therefore result in disorders with clinical manifestations depending on the affected tissue, but phenomena from other tissues and organs may also manifest themselves. A similar problem concerns the implementation of pharmacotherapy, the mechanism of which is related to the impact on various ion currents. Treatment in this case may cause unfavorable effects on other tissues and organs. Drugs acting through the modulation of ion currents are characterized by relatively low tissue specificity. To assess a therapy's efficacy and safety, the risk of occurrences in other tissues with similar mechanisms of action must be considered. In the present review, the focus is shifted prominently onto a comparison of abnormal electrical activity within different tissues and organs. This review includes an overview of the types of dysrhythmias and the basic techniques of clinical examination of electrophysiological disorders. It also presents a concise overview of the available pharmacotherapy in particular diseases. In addition, the authors review the relevant ion channels and their research technique based on patch clumping.
Collapse
Affiliation(s)
- Adrianna Witczyńska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Aidas Alaburda
- Department of Neurobiology and Biophysics, Institute of Bioscience, Vilnius University Saulėtekio Ave. 7, LT-10257 Vilnius, Lithuania;
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina St., 87-100 Toruń, Poland;
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| |
Collapse
|
9
|
Evlanenkov KK, Nikolaev MV, Potapieva NN, Bolshakov KV, Tikhonov DB. Probing the Proton-Gated ASIC Channels Using Tetraalkylammonium Ions. Biomolecules 2023; 13:1631. [PMID: 38002313 PMCID: PMC10669046 DOI: 10.3390/biom13111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
The action of tetraalkylammonium ions, from tetrametylammonium (TMA) to tetrapentylammonium (TPtA), on the recombinant and native acid-sensing ion channels (ASICs) was studied using the patch-clamp approach. The responses of ASIC1a, ASIC2a, and native heteromeric ASICs were inhibited by TPtA. The peak currents through ASIC3 were unaffected, whereas the steady-state currents were significantly potentiated. This effect was characterized by an EC50 value of 1.22 ± 0.12 mM and a maximal effect of 3.2 ± 0.5. The effects of TPtA were voltage-independent but significantly decreased under conditions of strong acidification, which caused saturation of ASIC responses. Molecular modeling predicted TPtA binding in the acidic pocket of closed ASICs. Bound TPtA can prevent acidic pocket collapse through a process involving ASIC activation and desensitization. Tetraethylammonium (TEA) inhibited ASIC1a and native ASICs. The effect was independent of the activating pH but decreased with depolarization, suggesting a pore-blocking mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Denis B. Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg 194223, Russia or (K.K.E.); (M.V.N.); or (N.N.P.); or (K.V.B.)
| |
Collapse
|
10
|
Zhao P, Tang C, Yang Y, Xiao Z, Perez-Miller S, Zhang H, Luo G, Liu H, Li Y, Liao Q, Yang F, Dong H, Khanna R, Liu Z. A new polymodal gating model of the proton-activated chloride channel. PLoS Biol 2023; 21:e3002309. [PMID: 37713449 PMCID: PMC10529583 DOI: 10.1371/journal.pbio.3002309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/27/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
The proton-activated chloride (PAC) channel plays critical roles in ischemic neuron death, but its activation mechanisms remain elusive. Here, we investigated the gating of PAC channels using its novel bifunctional modulator C77304. C77304 acted as a weak activator of the PAC channel, causing moderate activation by acting on its proton gating. However, at higher concentrations, C77304 acted as a weak inhibitor, suppressing channel activity. This dual function was achieved by interacting with 2 modulatory sites of the channel, each with different affinities and dependencies on the channel's state. Moreover, we discovered a protonation-independent voltage activation of the PAC channel that appears to operate through an ion-flux gating mechanism. Through scanning-mutagenesis and molecular dynamics simulation, we confirmed that E181, E257, and E261 in the human PAC channel serve as primary proton sensors, as their alanine mutations eliminated the channel's proton gating while sparing the voltage-dependent gating. This proton-sensing mechanism was conserved among orthologous PAC channels from different species. Collectively, our data unveils the polymodal gating and proton-sensing mechanisms in the PAC channel that may inspire potential drug development.
Collapse
Affiliation(s)
- Piao Zhao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Yuqin Yang
- Kuang Yaming Honors School, State Key Laboratory of Analytical Chemistry for Life Science, Engineering Research Center of Protein and Peptide Medicine of Ministry of Education, & Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhen Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology and NYU Pain Research Center, College of Dentistry, New York University, New York, New York, United States of America
| | - Heng Zhang
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guoqing Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hao Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qingyi Liao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Dong
- Kuang Yaming Honors School, State Key Laboratory of Analytical Chemistry for Life Science, Engineering Research Center of Protein and Peptide Medicine of Ministry of Education, & Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Rajesh Khanna
- Department of Molecular Pathobiology and NYU Pain Research Center, College of Dentistry, New York University, New York, New York, United States of America
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, New York, United States of America
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, China
| |
Collapse
|
11
|
Cherninskyi A, Storozhuk M, Maximyuk O, Kulyk V, Krishtal O. Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors. Neurosci Bull 2023; 39:845-862. [PMID: 36445556 PMCID: PMC9707125 DOI: 10.1007/s12264-022-00986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.
Collapse
Affiliation(s)
- Andrii Cherninskyi
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine.
| | - Maksim Storozhuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Vyacheslav Kulyk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| |
Collapse
|
12
|
Kaulich E, McCubbin PTN, Schafer WR, Walker DS. Physiological insight into the conserved properties of Caenorhabditis elegans acid-sensing degenerin/epithelial sodium channels. J Physiol 2023; 601:1625-1653. [PMID: 36200489 PMCID: PMC10424705 DOI: 10.1113/jp283238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are members of the diverse family of degenerin/epithelial sodium channels (DEG/ENaCs). They perform a wide range of physiological roles in healthy organisms, including in gut function and synaptic transmission, but also play important roles in disease, as acidosis is a hallmark of painful inflammatory and ischaemic conditions. We performed a screen for acid sensitivity on all 30 subunits of the Caenorhabditis elegans DEG/ENaC family using two-electrode voltage clamp in Xenopus oocytes. We found two groups of acid-sensitive DEG/ENaCs characterised by being either inhibited or activated by increasing proton concentrations. Three of these acid-sensitive C. elegans DEG/ENaCs were activated by acidic pH, making them functionally similar to the vertebrate ASICs. We also identified three new members of the acid-inhibited DEG/ENaC group, giving a total of seven additional acid-sensitive channels. We observed sensitivity to the anti-hypertensive drug amiloride as well as modulation by the trace element zinc. Acid-sensitive DEG/ENaCs were found to be expressed in both neurons and non-neuronal tissue, highlighting the likely functional diversity of these channels. Our findings provide a framework to exploit the C. elegans channels as models to study the function of these acid-sensing channels in vivo, as well as to study them as potential targets for anti-helminthic drugs. KEY POINTS: Acidosis plays many roles in healthy physiology, including synaptic transmission and gut function, but is also a key feature of inflammatory pain, ischaemia and many other conditions. Cells monitor acidosis of their surroundings via pH-sensing channels, including the acid-sensing ion channels (ASICs). These are members of the degenerin/epithelial sodium channel (DEG/ENaC) family, along with, as the name suggests, vertebrate ENaCs and degenerins of the roundworm Caenorhabditis elegans. By screening all 30 C. elegans DEG/ENaCs for pH dependence, we describe, for the first time, three acid-activated members, as well as three additional acid-inhibited channels. We surveyed both groups for sensitivity to amiloride and zinc; like their mammalian counterparts, their currents can be blocked, enhanced or unaffected by these modulators. Likewise, they exhibit diverse ion selectivity. Our findings underline the diversity of acid-sensitive DEG/ENaCs across species and provide a comparative resource for better understanding the molecular basis of their function.
Collapse
Affiliation(s)
- Eva Kaulich
- Neurobiology DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| | | | - William R. Schafer
- Neurobiology DivisionMRC Laboratory of Molecular BiologyCambridgeUK
- Department of BiologyKU LeuvenLeuvenBelgium
| | - Denise S. Walker
- Neurobiology DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
13
|
Harmata GIS, Chan AC, Merfeld MJ, Taugher-Hebl RJ, Harijan AK, Hardie JB, Fan R, Long JD, Wang GZ, Dlouhy BJ, Bera AK, Narayanan NS, Wemmie JA. Intoxicating effects of alcohol depend on acid-sensing ion channels. Neuropsychopharmacology 2023; 48:806-815. [PMID: 36243771 PMCID: PMC10066229 DOI: 10.1038/s41386-022-01473-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
Persons at risk for developing alcohol use disorder (AUD) differ in their sensitivity to acute alcohol intoxication. Alcohol effects are complex and thought to depend on multiple mechanisms. Here, we explored whether acid-sensing ion channels (ASICs) might play a role. We tested ASIC function in transfected CHO cells and amygdala principal neurons, and found alcohol potentiated currents mediated by ASIC1A homomeric channels, but not ASIC1A/2 A heteromeric channels. Supporting a role for ASIC1A in the intoxicating effects of alcohol in vivo, we observed marked alcohol-induced changes on local field potentials in basolateral amygdala, which differed significantly in Asic1a-/- mice, particularly in the gamma, delta, and theta frequency ranges. Altered electrophysiological responses to alcohol in mice lacking ASIC1A, were accompanied by changes in multiple behavioral measures. Alcohol administration during amygdala-dependent fear conditioning dramatically diminished context and cue-evoked memory on subsequent days after the alcohol had cleared. There was a significant alcohol by genotype interaction. Context- and cue-evoked memory were notably worse in Asic1a-/- mice. We further examined acute stimulating and sedating effects of alcohol on locomotor activity, loss of righting reflex, and in an acute intoxication severity scale. We found loss of ASIC1A increased the stimulating effects of alcohol and reduced the sedating effects compared to wild-type mice, despite similar blood alcohol levels. Together these observations suggest a novel role for ASIC1A in the acute intoxicating effects of alcohol in mice. They further suggest that ASICs might contribute to intoxicating effects of alcohol and AUD in humans.
Collapse
Affiliation(s)
- Gail I S Harmata
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Pharmacological Sciences Predoctoral Research Training Program, Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Aubrey C Chan
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Madison J Merfeld
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Rebecca J Taugher-Hebl
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Anjit K Harijan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Jason B Hardie
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Rong Fan
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Grace Z Wang
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Brian J Dlouhy
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Amal K Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Nandakumar S Narayanan
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - John A Wemmie
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA.
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA.
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA.
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.
- Roy J. Carver Chair of Psychiatry and Neuroscience, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
14
|
Zhang L, Wang X, Chen J, Sheng S, Kleyman TR. Extracellular intersubunit interactions modulate epithelial Na + channel gating. J Biol Chem 2023; 299:102914. [PMID: 36649907 PMCID: PMC9975279 DOI: 10.1016/j.jbc.2023.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/13/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Epithelial Na+ channels (ENaCs) and related channels have large extracellular domains where specific factors interact and induce conformational changes, leading to altered channel activity. However, extracellular structural transitions associated with changes in ENaC activity are not well defined. Using crosslinking and two-electrode voltage clamp in Xenopus oocytes, we identified several pairs of functional intersubunit contacts where mouse ENaC activity was modulated by inducing or breaking a disulfide bond between introduced Cys residues. Specifically, crosslinking E499C in the β-subunit palm domain and N510C in the α-subunit palm domain activated ENaC, whereas crosslinking βE499C with αQ441C in the α-subunit thumb domain inhibited ENaC. We determined that bridging βE499C to αN510C or αQ441C altered the Na+ self-inhibition response via distinct mechanisms. Similar to bridging βE499C and αQ441C, we found that crosslinking palm domain αE557C with thumb domain γQ398C strongly inhibited ENaC activity. In conclusion, we propose that certain residues at specific subunit interfaces form microswitches that convey a conformational wave during ENaC gating and its regulation.
Collapse
Affiliation(s)
- Lei Zhang
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueqi Wang
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingxin Chen
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shaohu Sheng
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Thomas R Kleyman
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Li Q, Qin L, Li J. Characteristics of acid-sensing ion channel currents in male rat muscle dorsal root ganglion neurons following ischemia/reperfusion. Physiol Rep 2023; 11:e15654. [PMID: 36967457 PMCID: PMC10040404 DOI: 10.14814/phy2.15654] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/28/2023] Open
Abstract
Peripheral artery diseases (PAD) increases muscle afferent nerve-activated reflex sympathetic nervous and blood pressure responses during exercise (termed as exercise pressor reflex). However, the precise signaling pathways leading to the exaggerated autonomic responses in PAD are undetermined. Considering that limb ischemia/reperfusion (I/R) is a feature of PAD, we determined the characteristics of acid-sensing ion channel (ASIC) currents in muscle dorsal root ganglion (DRG) neurons under the conditions of hindlimb I/R and ischemia of PAD. In particular, we examined ASIC currents in two distinct subpopulations, isolectin B4 -positive, and B4 -negative (IB4+ and IB4-) muscle DRG neurons, linking to glial cell line-derived neurotrophic factor and nerve growth factor. In results, ASIC1a- and ASIC3-like currents were observed in IB4- muscle DRG neurons with a greater percentage of ASIC3-like currents. Hindimb I/R and ischemia did not alter the distribution of ASIC1a and ASIC3 currents with activation of pH 6.7 in IB4+ and IB4- muscle DRG neurons; however, I/R altered the distribution of ASIC3 currents in IB4+ muscle DRG neurons with pH 5.5, but not in IB4- neurons. In addition, I/R and ischemia amplified the density of ASIC3-like currents in IB4- muscle DRG neurons. Our results suggest that a selective subpopulation of muscle afferent nerves should be taken into consideration when ASIC signaling pathways are studied to determine the exercise pressor reflex in PAD.
Collapse
Affiliation(s)
- Qin Li
- Heart and Vascular InstituteThe Pennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Lu Qin
- Heart and Vascular InstituteThe Pennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Jianhua Li
- Heart and Vascular InstituteThe Pennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| |
Collapse
|
16
|
Evlanenkov KK, Komarova MS, Dron MY, Nikolaev MV, Zhukovskaya ON, Gurova NA, Tikhonov DB. Derivatives of 2-aminobenzimidazole potentiate ASIC open state with slow kinetics of activation and desensitization. Front Physiol 2023; 14:1018551. [PMID: 36711018 PMCID: PMC9878307 DOI: 10.3389/fphys.2023.1018551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
The pharmacology of acid-sensitive ion channels (ASICs) is diverse, but potent and selective modulators, for instance for ASIC2a, are still lacking. In the present work we studied the effect of five 2-aminobenzimidazole derivatives on native ASICs in rat brain neurons and recombinant receptors expressed in CHO cells using the whole-cell patch clamp method. 2-aminobenzimidazole selectively potentiated ASIC3. Compound Ru-1355 strongly enhanced responses of ASIC2a and caused moderate potentiation of native ASICs and heteromeric ASIC1a/ASIC2a. The most active compound, Ru-1199, caused the strongest potentiation of ASIC2a, but also potentiated native ASICs, ASIC1a and ASIC3. The potentiating effects depended on the pH and was most pronounced with intermediate acidifications. In the presence of high concentrations of Ru-1355 and Ru-1199, the ASIC2a responses were biphasic, the initial transient currents were followed by slow component. These slow additional currents were weakly sensitive to the acid-sensitive ion channels pore blocker diminazene. We also found that sustained currents mediated by ASIC2a and ASIC3 are less sensitive to diminazene than the peak currents. Different sensitivities of peak and sustained components to the pore-blocking drug suggest that they are mediated by different open states. We propose that the main mechanism of action of 2-aminobenzimidazole derivatives is potentiation of the open state with slow kinetics of activation and desensitization.
Collapse
Affiliation(s)
| | - Margarita S Komarova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | - Mikhail Y Dron
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | - Maxim V Nikolaev
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | - Olga N Zhukovskaya
- Research Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
| | - Nataliya A Gurova
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| | - Denis B Tikhonov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia,*Correspondence: Denis B Tikhonov,
| |
Collapse
|
17
|
Aguilar-Camacho JM, Foreman K, Jaimes-Becerra A, Aharoni R, Gründer S, Moran Y. Functional analysis in a model sea anemone reveals phylogenetic complexity and a role in cnidocyte discharge of DEG/ENaC ion channels. Commun Biol 2023; 6:17. [PMID: 36609696 PMCID: PMC9822975 DOI: 10.1038/s42003-022-04399-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Ion channels of the DEG/ENaC family share a similar structure but serve strikingly diverse biological functions, such as Na+ reabsorption, mechanosensing, proton-sensing, chemosensing and cell-cell communication via neuropeptides. This functional diversity raises the question of the ancient function of DEG/ENaCs. Using an extensive phylogenetic analysis across many different animal groups, we found a surprising diversity of DEG/ENaCs already in Cnidaria (corals, sea anemones, hydroids and jellyfish). Using a combination of gene expression analysis, electrophysiological and functional studies combined with pharmacological inhibition as well as genetic knockout in the model cnidarian Nematostella vectensis, we reveal an unanticipated role for a proton-sensitive DEG/ENaC in discharge of N. vectensis cnidocytes, the stinging cells typifying all cnidarians. Our study supports the view that DEG/ENaCs are versatile channels that have been co-opted for diverse functions since their early occurrence in animals and that respond to simple and ancient stimuli, such as omnipresent protons.
Collapse
Affiliation(s)
- Jose Maria Aguilar-Camacho
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | | - Adrian Jaimes-Becerra
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Aachen, Germany.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
18
|
Batista A, Bellettini IC, Brondani PB. Pain and nociception bioinspiration for the development of a micellar-based screening test for antinociceptive drugs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Kaulich E, Grundy LJ, Schafer WR, Walker DS. The diverse functions of the DEG/ENaC family: linking genetic and physiological insights. J Physiol 2022; 601:1521-1542. [PMID: 36314992 PMCID: PMC10148893 DOI: 10.1113/jp283335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The DEG/ENaC family of ion channels was defined based on the sequence similarity between degenerins (DEG) from the nematode Caenorhabditis elegans and subunits of the mammalian epithelial sodium channel (ENaC), and also includes a diverse array of non-voltage-gated cation channels from across animal phyla, including the mammalian acid-sensing ion channels (ASICs) and Drosophila pickpockets. ENaCs and ASICs have wide ranging medical importance; for example, ENaCs play an important role in respiratory and renal function, and ASICs in ischaemia and inflammatory pain, as well as being implicated in memory and learning. Electrophysiological approaches, both in vitro and in vivo, have played an essential role in establishing the physiological properties of this diverse family, identifying an array of modulators and implicating them in an extensive range of cellular functions, including mechanosensation, acid sensation and synaptic modulation. Likewise, genetic studies in both invertebrates and vertebrates have played an important role in linking our understanding of channel properties to function at the cellular and whole animal/behavioural level. Drawing together genetic and physiological evidence is essential to furthering our understanding of the precise cellular roles of DEG/ENaC channels, with the diversity among family members allowing comparative physiological studies to dissect the molecular basis of these diverse functions.
Collapse
Affiliation(s)
- Eva Kaulich
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Laura J Grundy
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.,Department of Biology, KU Leuven, Leuven, Belgium
| | - Denise S Walker
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
20
|
Bignucolo O, Chipot C, Kellenberger S, Roux B. Galvani Offset Potential and Constant-pH Simulations of Membrane Proteins. J Phys Chem B 2022; 126:6868-6877. [PMID: 36049129 PMCID: PMC9483922 DOI: 10.1021/acs.jpcb.2c04593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Indexed: 02/01/2023]
Abstract
A central problem in computational biophysics is the treatment of titratable residues in molecular dynamics simulations of large biological macromolecular systems. Conventional simulation methods ascribe a fixed ionization state to titratable residues in accordance with their pKa and the pH of the system, assuming that an effective average model will be able to capture the predominant behavior of the system. While this assumption may be justifiable in many cases, it is certainly limited, and it is important to design alternative methodologies allowing a more realistic treatment. Constant-pH simulation methods provide powerful approaches to handle titratable residues more realistically by allowing the ionization state to vary statistically during the simulation. Extending the molecular mechanical (MM) potential energy function to a family of potential functions accounting for different ionization states, constant-pH simulations are designed to sample all accessible configurations and ionization states, properly weighted according to their Boltzmann factor. Because protonation and deprotonation events correspond to a change in the total charge, difficulties arise when the long-range Coulomb interaction is treated on the basis of an idealized infinite simulation model and periodic boundary conditions with particle-mesh Ewald lattice sums. Charging free-energy calculations performed under these conditions in aqueous solution depend on the Galvani potential of the bulk water phase. This has important implications for the equilibrium and nonequilibrium constant-pH simulation methods grounded in the relative free-energy difference corresponding to the protonated and unprotonated residues. Here, the effect of the Galvani potential is clarified, and a simple practical solution is introduced to address this issue in constant-pH simulations of the acid-sensing ion channel (ASIC).
Collapse
Affiliation(s)
- Olivier Bignucolo
- Department
of Biomedical Sciences, University of Lausanne, 1015 Lausanne, Switzerland
- SIB
Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Christophe Chipot
- Department
of Biochemistry and Molecular Biology, The
University of Chicago, Chicago, Illinois 60637, United States
- Laboratoire
International Associé Centre National de la Recherche Scientifique
et University of Illinois at Urbana−Champaign, Unité
Mixte de Recherche n◦7019, Université
de Lorraine, B.P. 70239, 54506 Cedex Vandœuvre-lès-Nancy, France
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61820, United States
| | - Stephan Kellenberger
- Department
of Biomedical Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Benoît Roux
- Department
of Biochemistry and Molecular Biology, The
University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
21
|
Zha XM, Xiong ZG, Simon RP. pH and proton-sensitive receptors in brain ischemia. J Cereb Blood Flow Metab 2022; 42:1349-1363. [PMID: 35301897 PMCID: PMC9274858 DOI: 10.1177/0271678x221089074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
Extracellular proton concentration is at 40 nM when pH is 7.4. In disease conditions such as brain ischemia, proton concentration can reach µM range. To respond to this increase in extracellular proton concentration, the mammalian brain expresses at least three classes of proton receptors. Acid-sensing ion channels (ASICs) are the main neuronal cationic proton receptor. The proton-activated chloride channel (PAC), which is also known as (aka) acid-sensitive outwardly rectifying anion channel (ASOR; TMEM206), mediates acid-induced chloride currents. Besides proton-activated channels, GPR4, GPR65 (aka TDAG8, T-cell death-associated gene 8), and GPR68 (aka OGR1, ovarian cancer G protein-coupled receptor 1) function as proton-sensitive G protein-coupled receptors (GPCRs). Though earlier studies on these GPCRs mainly focus on peripheral cells, we and others have recently provided evidence for their functional importance in brain injury. Specifically, GPR4 shows strong expression in brain endothelium, GPR65 is present in a fraction of microglia, while GPR68 exhibits predominant expression in brain neurons. Here, to get a better view of brain acid signaling and its contribution to ischemic injury, we will review the recent findings regarding the differential contribution of proton-sensitive GPCRs to cerebrovascular function, neuroinflammation, and neuronal injury following acidosis and brain ischemia.
Collapse
Affiliation(s)
- Xiang-ming Zha
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Roger P Simon
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
22
|
Majagi S, Mangat S, Chu XP. Commentary: Pharmacological Validation of ASIC1a as a Druggable Target for Neuroprotection in Cerebral Ischemia Using an Intravenously Available Small Molecule Inhibitor. Front Pharmacol 2022; 13:938748. [PMID: 35865964 PMCID: PMC9294732 DOI: 10.3389/fphar.2022.938748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
|
23
|
On the quest of small molecules that can mimic Psalmotoxin-1, the most powerful peptidic modulator of the acid sensing channel ASIC1a. Struct Chem 2022. [DOI: 10.1007/s11224-021-01826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Baldwin DS. Clinical management of withdrawal from benzodiazepine anxiolytic and hypnotic medications. Addiction 2022; 117:1472-1482. [PMID: 34542216 DOI: 10.1111/add.15695] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022]
Abstract
Benzodiazepines continue to be prescribed widely in the management of patients with insomnia or anxiety disorders, despite the availability and acceptability of alternative pharmacological and psychological treatments. Many patients will experience adverse effects during treatment and considerable distress when the dosage is reduced and stopped. Management of benzodiazepine withdrawal includes measures to prevent the development of dependence, careful attention to underlying medical conditions, medication consolidation and gradual dosage reduction, accompanying psychological interventions, occasional prescription of concomitant medication, and relapse prevention with on-going support to address psychosocial stressors. There are needs for easier patient access to services with refined expertise and for further research to optimise strategies for preventing dependence and facilitating withdrawal.
Collapse
Affiliation(s)
- David S Baldwin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.,Mood and Anxiety Disorders Service, Southern Health NHS Foundation Trust, Southampton, UK
| |
Collapse
|
25
|
Zhang Y, Cao N, Gao J, Liang J, Liang Y, Xie Y, Zhou S, Tang X. ASIC1a stimulates the resistance of human hepatocellular carcinoma by promoting EMT via the AKT/GSK3β/Snail pathway driven by TGFβ/Smad signals. J Cell Mol Med 2022; 26:2777-2792. [PMID: 35426224 PMCID: PMC9097844 DOI: 10.1111/jcmm.17288] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance is the main obstacle to curing hepatocellular carcinoma (HCC). Acid‐sensing ion channel 1a (ASIC1a) has critical roles in all stages of cancer progression, especially invasion and metastasis, and in resistance to therapy. Epithelial to mesenchymal transition (EMT) transforms epithelial cells into mesenchymal cells after being stimulated by extracellular factors and is closely related to tumour infiltration and resistance. We used Western blotting, immunofluorescence, qRT‐PCR, immunohistochemical staining, MTT, colony formation and scratch healing assay to determine ASIC1a levels and its relationship to cell proliferation, migration and invasion. ASIC1a is overexpressed in HCC tissues, and the amount increased in resistant HCC cells. EMT occurred more frequently in drug‐resistant cells than in parental cells. Inactivation of ASIC1a inhibited cell migration and invasion and increased the chemosensitivity of cells through EMT. Overexpression of ASIC1a upregulated EMT and increased the cells’ proliferation, migration and invasion and induced drug resistance; knocking down ASIC1a with shRNA had the opposite effects. ASIC1a increased cell migration and invasion through EMT by regulating α and β‐catenin, vimentin and fibronectin expression via the AKT/GSK‐3β/Snail pathway driven by TGFβ/Smad signals. ASIC1a mediates drug resistance of HCC through EMT via the AKT/GSK‐3β/Snail pathway.
Collapse
Affiliation(s)
- Yinci Zhang
- Medcial School Anhui University of Science & Technology Huainan China
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
| | - Niandie Cao
- Medcial School Anhui University of Science & Technology Huainan China
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
| | - Jiafeng Gao
- Medcial School Anhui University of Science & Technology Huainan China
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
| | - Jiaojiao Liang
- Medcial School Anhui University of Science & Technology Huainan China
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
| | - Yong Liang
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
- Huai’an Hospital Affiliated of Xuzhou Medical College and Huai’an Second Hospital Huai’an China
| | - Yinghai Xie
- Medcial School Anhui University of Science & Technology Huainan China
- First Affiliated Hospital Anhui University of Science & Technology Huainan China
| | - Shuping Zhou
- Medcial School Anhui University of Science & Technology Huainan China
- First Affiliated Hospital Anhui University of Science & Technology Huainan China
| | - Xiaolong Tang
- Medcial School Anhui University of Science & Technology Huainan China
- Institute of Environment‐friendly Materials and Occupational Health of Anhui University of Science and Technology Wuhu China
| |
Collapse
|
26
|
Wang Z, Han L, Chen H, Zhang S, Zhang S, Zhang H, Li Y, Tao H, Li J. Sa12b Improves Biological Activity of Human Degenerative Nucleus Pulposus Mesenchymal Stem Cells in a Severe Acid Environment by Inhibiting Acid-Sensitive Ion Channels. Front Bioeng Biotechnol 2022; 10:816362. [PMID: 35178382 PMCID: PMC8845463 DOI: 10.3389/fbioe.2022.816362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Sa12b is a wasp peptide that can inhibit acid-sensitive ion channels (ASICs). The biological effects of nucleus pulposus mesenchymal stem cells (NP-MSCs) have not been investigated. Therefore, this study investigated the effect of Sa12b on the biological activity of NP-MSCs through ASICs in the acidic environment of intervertebral disc degeneration (IVDD). In this study, NP-MSCs were isolated from the nucleus pulposus (NP) in patients who underwent lumbar disc herniation surgery, identified by flow cytometry and tertiary differentiation, and cultured in vitro in an acidic environment model of IVDD with a pH of 6.2. Proliferation, and apoptosis were observed after different Sa12b concentrations were added to P2 generation NP-MSCs. The Ca2+ influx was detected using flow cytometry and laser confocal scanning microscopy, and qPCR was used to detect the relative expression of stem cell–associated genes (Oct4, Nanog, Jag1, and Notch1), the relative expression of extracellular matrix (ECM)–associated genes (collagen II, aggrecan, and SOX-9), and the relative expression of genes encoding ASICs (ASIC1, ASIC2, ASIC3, and ASIC4). Western blotting was used to detect the protein expression of collagen II and aggrecan in different treatment groups. Cells isolated and cultured from normal NP were spindle-shaped and adherent, and they exhibited expansion in vitro. Flow cytometry results showed that the cells exhibited high expression of CD73 (98.1%), CD90 (97.5%), and CD105 (98.3%) and low expression of HLA-DR (0.93%), CD34 (2.63%), and CD45 (0.33%). The cells differentiated into osteoblasts, adipocytes, and chondrocytes. According to the International Society for Cellular Therapy criteria, the isolated and cultured cells were NP-MSCs. With an increase in Sa12b concentration, the cell proliferation rate of NP-MSCs increased, and the apoptosis rate decreased significantly, reaching the optimal level when the concentration of Sa12b was 8 μg/μl. When the Sa12b concentration was 8 μg/μl and contained the ASIC non-specific inhibitor amiloride, the Ca2+ influx was the lowest, followed by that when the Sa12b concentration was 8 μg/μl. The Ca2+ influx was the highest in the untreated control group. qPCR results showed that as the concentration of Sa12b increased, the relative expression of Oct4, Nanog, Jag1, Notch1, collagen II, aggrecan, and SOX-9 increased, while that of ASIC1, ASIC2, ASIC3, and ASIC4 decreased. The difference was statistically significant (p < 0.05). In conclusion, Sa12b can improve the biological activity of NP-MSCs in severely acidic environments of the intervertebral disc by reducing Ca2+ influx via AISC inhibition and, probably, the Notch signaling pathway. This study provides a new approach for the biological treatment of IVDD. Inhibition of AISCs by Sa12b may delay IVDD and improve low back pain.
Collapse
Affiliation(s)
- Ziyu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Letian Han
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haoyu Chen
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shengquan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Sumei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hua Zhang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuhao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hui Tao
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Hui Tao, ; Jie Li,
| | - Jie Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Hui Tao, ; Jie Li,
| |
Collapse
|
27
|
Acid-Sensing Ion Channels in Glial Cells. MEMBRANES 2022; 12:membranes12020119. [PMID: 35207041 PMCID: PMC8878633 DOI: 10.3390/membranes12020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022]
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels and key mediators of responses to neuronal injury. ASICs exhibit unique patterns of distribution in the brain, with high expression in neurons and low expression in glial cells. While there has been a lot of focus on ASIC in neurons, less is known about the roles of ASICs in glial cells. ASIC1a is expressed in astrocytes and might contribute to synaptic transmission and long-term potentiation. In oligodendrocytes, constitutive activation of ASIC1a participates in demyelinating diseases. ASIC1a, ASIC2a, and ASIC3, found in microglial cells, could mediate the inflammatory response. Under pathological conditions, ASIC dysregulation in glial cells can contribute to disease states. For example, activation of astrocytic ASIC1a may worsen neurodegeneration and glioma staging, activation of microglial ASIC1a and ASIC2a may perpetuate ischemia and inflammation, while oligodendrocytic ASIC1a might be involved in multiple sclerosis. This review concentrates on the unique ASIC components in each of the glial cells and integrates these glial-specific ASICs with their physiological and pathological conditions. Such knowledge provides promising evidence for targeting of ASICs in individual glial cells as a therapeutic strategy for a diverse range of conditions.
Collapse
|
28
|
Retinoic Acid-Differentiated Neuroblastoma SH-SY5Y Is an Accessible In Vitro Model to Study Native Human Acid-Sensing Ion Channels 1a (ASIC1a). BIOLOGY 2022; 11:biology11020167. [PMID: 35205034 PMCID: PMC8868828 DOI: 10.3390/biology11020167] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Human neuroblastoma SH-SY5Y is used in neurobiology for studying various neuropathophysiological processes. In this study, we differentiated neuroblastoma cells into a neuronal-like phenotype with retinoic acid and studied if functional acid-sensing, transient receptor potential vanilloid-1 and ankyrin-1 ion channels were expressed in it. We found that homomeric acid-sensing ion channels 1a were expressed predominantly and yielded large ionic currents that can be modulated with different ligands. This channel plays important roles in synaptic plasticity, neurodegeneration, and pain perception. Thus, retinoic acid-treated neuroblastoma is a suitable model system for pharmacological testing on native human acid-sensing ion channels 1a. This approach can facilitate the development of new drugs for neuroprotection and pain management. Abstract Human neuroblastoma SH-SY5Y is a prominent neurobiological tool used for studying neuropathophysiological processes. We investigated acid-sensing (ASIC) and transient receptor potential vanilloid-1 (TRPV1) and ankyrin-1 (TRPA1) ion channels present in untreated and differentiated neuroblastoma SH-SY5Y to propose a new means for their study in neuronal-like cells. Using a quantitative real-time PCR and a whole-cell patch-clamp technique, ion channel expression profiles, functionality, and the pharmacological actions of their ligands were characterized. A low-level expression of ASIC1a and ASIC2 was detected in untreated cells. The treatment with 10 μM of retinoic acid (RA) for 6 days resulted in neuronal differentiation that was accompanied by a remarkable increase in ASIC1a expression, while ASIC2 expression remained almost unaltered. In response to acid stimuli, differentiated cells showed prominent ASIC-like currents. Detailed kinetic and pharmacological characterization suggests that homomeric ASIC1a is a dominant isoform among the present ASIC channels. RA-treatment also reduced the expression of TRPV1 and TRPA1, and minor electrophysiological responses to their agonists were found in untreated cells. Neuroblastoma SH-SY5Y treated with RA can serve as a model system to study the effects of different ligands on native human ASIC1a in neuronal-like cells. This approach can improve the characterization of modulators for the development of new neuroprotective and analgesic drugs.
Collapse
|
29
|
Sivils A, Yang F, Wang JQ, Chu XP. Acid-Sensing Ion Channel 2: Function and Modulation. MEMBRANES 2022; 12:membranes12020113. [PMID: 35207035 PMCID: PMC8880099 DOI: 10.3390/membranes12020113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/08/2023]
Abstract
Acid-sensing ion channels (ASICs) have an important influence on human physiology and pathology. They are members of the degenerin/epithelial sodium channel family. Four genes encode at least six subunits, which combine to form a variety of homotrimers and heterotrimers. Of these, ASIC1a homotrimers and ASIC1a/2 heterotrimers are most widely expressed in the central nervous system (CNS). Investigations into the function of ASIC1a in the CNS have revealed a wealth of information, culminating in multiple contemporary reviews. The lesser-studied ASIC2 subunits are in need of examination. This review will focus on ASIC2 in health and disease, with discussions of its role in modulating ASIC function, synaptic targeting, cardiovascular responses, and pharmacology, while exploring evidence of its influence in pathologies such as ischemic brain injury, multiple sclerosis, epilepsy, migraines, drug addiction, etc. This information substantiates the ASIC2 protein as a potential therapeutic target for various neurological, psychological, and cerebrovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Xiang-Ping Chu
- Correspondence: ; Tel.: +1-816-235-2248; Fax: +1-816-235-6517
| |
Collapse
|
30
|
Adedara IA, Costa FV, Biasuz E, Canzian J, Farombi EO, Rosemberg DB. Influence of acid-sensing ion channel blocker on behavioral responses in a zebrafish model of acute visceral pain. Behav Brain Res 2022; 416:113565. [PMID: 34499933 DOI: 10.1016/j.bbr.2021.113565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022]
Abstract
Acid-sensing ion channels (ASICs) play significant roles in numerous neurological and pathological conditions, including pain. Although acid-induced nociception has been characterized previously in zebrafish, the contribution of ASICs in modulating pain-like behaviors is still unknown. Here, we investigated the role of amiloride, a nonselective ASICs blocker, in the negative modulation of specific behavioral responses in a zebrafish-based model of acute visceral pain. We verified that intraperitoneal injection (i.p.) of 0.25, 0.5, 1.0, and 2.0 mg/mL amiloride alone or vehicle did not change zebrafish behavior compared to saline-treated fish. Administration of 2.5% acetic acid (i.p.) elicited writhing-like response evidenced by the abnormal body curvature and impaired locomotion and motor activity. Attenuation of acetic acid-induced pain was verified at lower amiloride doses (0.25 and 0.5 mg/mL) whereas 1.0 and 2.0 mg/mL abolished pain-like responses. The protective effect of the highest amiloride dose tested was evident in preventing writhing-like responses and impaired locomotion and vertical activity. Collectively, amiloride antagonized abdominal writhing-like phenotype and aberrant behaviors, supporting the involvement of ASICs in a zebrafish-based model of acute visceral pain.
Collapse
Affiliation(s)
- Isaac A Adedara
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Eduarda Biasuz
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
31
|
Comes N, Gasull X, Callejo G. Proton Sensing on the Ocular Surface: Implications in Eye Pain. Front Pharmacol 2021; 12:773871. [PMID: 34899333 PMCID: PMC8652213 DOI: 10.3389/fphar.2021.773871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023] Open
Abstract
Protons reaching the eyeball from exogenous acidic substances or released from damaged cells during inflammation, immune cells, after tissue injury or during chronic ophthalmic conditions, activate or modulate ion channels present in sensory nerve fibers that innervate the ocular anterior surface. Their identification as well as their role during disease is critical for the understanding of sensory ocular pathophysiology. They are likely to mediate some of the discomfort sensations accompanying several ophthalmic formulations and may represent novel targets for the development of new therapeutics for ocular pathologies. Among the ion channels expressed in trigeminal nociceptors innervating the anterior surface of the eye (cornea and conjunctiva) and annex ocular structures (eyelids), members of the TRP and ASIC families play a critical role in ocular acidic pain. Low pH (pH 6) activates TRPV1, a polymodal ion channel also activated by heat, capsaicin and hyperosmolar conditions. ASIC1, ASIC3 and heteromeric ASIC1/ASIC3 channels present in ocular nerve terminals are activated at pH 7.2–6.5, inducing pain by moderate acidifications of the ocular surface. These channels, together with TRPA1, are involved in acute ocular pain, as well as in painful sensations during allergic keratoconjunctivitis or other ophthalmic conditions, as blocking or reducing channel expression ameliorates ocular pain. TRPV1, TRPA1 and other ion channels are also present in corneal and conjunctival cells, promoting inflammation of the ocular surface after injury. In addition to the above-mentioned ion channels, members of the K2P and P2X ion channel families are also expressed in trigeminal neurons, however, their role in ocular pain remains unclear to date. In this report, these and other ion channels and receptors involved in acid sensing during ocular pathologies and pain are reviewed.
Collapse
Affiliation(s)
- Núria Comes
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gerard Callejo
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
32
|
Sivils A, Wang JQ, Chu XP. Striatonigrostriatal Spirals in Addiction. Front Neural Circuits 2021; 15:803501. [PMID: 34955762 PMCID: PMC8703003 DOI: 10.3389/fncir.2021.803501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
A biological reward system is integral to all animal life and humans are no exception. For millennia individuals have investigated this system and its influences on human behavior. In the modern day, with the US facing an ongoing epidemic of substance use without an effective treatment, these investigations are of paramount importance. It is well known that basal ganglia contribute to rewards and are involved in learning, approach behavior, economic choices, and positive emotions. This review aims to elucidate the physiological role of striatonigrostriatal (SNS) spirals, as part of basal ganglia circuits, in this reward system and their pathophysiological role in perpetuating addiction. Additionally, the main functions of neurotransmitters such as dopamine and glutamate and their receptors in SNS circuits will be summarized. With this information, the claim that SNS spirals are crucial intermediaries in the shift from goal-directed behavior to habitual behavior will be supported, making this circuit a viable target for potential therapeutic intervention in those with substance use disorders.
Collapse
Affiliation(s)
| | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
33
|
Mango D, Nisticò R. Neurodegenerative Disease: What Potential Therapeutic Role of Acid-Sensing Ion Channels? Front Cell Neurosci 2021; 15:730641. [PMID: 34690702 PMCID: PMC8531221 DOI: 10.3389/fncel.2021.730641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Acidic pH shift occurs in many physiological neuronal activities such as synaptic transmission and synaptic plasticity but also represents a characteristic feature of many pathological conditions including inflammation and ischemia. Neuroinflammation is a complex process that occurs in various neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and Huntington’s disease. Acid-sensing ion channels (ASICs) represent a widely expressed pH sensor in the brain that play a key role in neuroinflammation. On this basis, acid-sensing ion channel blockers are able to exert neuroprotective effects in different neurodegenerative diseases. In this review, we discuss the multifaceted roles of ASICs in brain physiology and pathology and highlight ASIC1a as a potential pharmacological target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dalila Mango
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.,School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.,School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
34
|
Heusser SA, Pless SA. Acid-sensing ion channels as potential therapeutic targets. Trends Pharmacol Sci 2021; 42:1035-1050. [PMID: 34674886 DOI: 10.1016/j.tips.2021.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Tissue acidification is associated with a variety of disease states, and acid-sensing ion channels (ASICs) that can sense changes in pH have gained traction as possible pharmaceutical targets. An array of modulators, ranging from small molecules to large biopharmaceuticals, are known to inhibit ASICs. Here, we summarize recent insights from animal studies to assess the therapeutic potential of ASICs in disorders such as ischemic stroke, various pain-related processes, anxiety, and cardiac pathologies. We also review the factors that present a challenge in the pharmacological targeting of ASICs, and which need to be taken into careful consideration when developing potent and selective modulators in the future.
Collapse
Affiliation(s)
- Stephanie A Heusser
- Department for Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Stephan A Pless
- Department for Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
35
|
Shah S, Chu Y, Cegielski V, Chu XP. Acid-Sensing Ion Channel 1 Contributes to Weak Acid-Induced Migration of Human Malignant Glioma Cells. Front Physiol 2021; 12:734418. [PMID: 34557113 PMCID: PMC8452845 DOI: 10.3389/fphys.2021.734418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sareena Shah
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Yuyang Chu
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Victoria Cegielski
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
36
|
Leisle L, Margreiter M, Ortega-Ramírez A, Cleuvers E, Bachmann M, Rossetti G, Gründer S. Dynorphin Neuropeptides Decrease Apparent Proton Affinity of ASIC1a by Occluding the Acidic Pocket. J Med Chem 2021; 64:13299-13311. [PMID: 34461722 DOI: 10.1021/acs.jmedchem.1c00447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prolonged acidosis, as it occurs during ischemic stroke, induces neuronal death via acid-sensing ion channel 1a (ASIC1a). Concomitantly, it desensitizes ASIC1a, highlighting the pathophysiological significance of modulators of ASIC1a acid sensitivity. One such modulator is the opioid neuropeptide big dynorphin (Big Dyn) which binds to ASIC1a and enhances its activity during prolonged acidosis. The molecular determinants and dynamics of this interaction remain unclear, however. Here, we present a molecular interaction model showing a dynorphin peptide inserting deep into the acidic pocket of ASIC1a. We confirmed experimentally that the interaction is predominantly driven by electrostatic forces, and using noncanonical amino acids as photo-cross-linkers, we identified 16 residues in ASIC1a contributing to Big Dyn binding. Covalently tethering Big Dyn to its ASIC1a binding site dramatically decreased the proton sensitivity of channel activation, suggesting that Big Dyn stabilizes a resting conformation of ASIC1a and dissociates from its binding site during channel opening.
Collapse
Affiliation(s)
- Lilia Leisle
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Margreiter
- Computational Biomedicine-Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | | | - Elinor Cleuvers
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Michèle Bachmann
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine-Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
37
|
High-throughput characterization of photocrosslinker-bearing ion channel variants to map residues critical for function and pharmacology. PLoS Biol 2021; 19:e3001321. [PMID: 34491979 PMCID: PMC8448361 DOI: 10.1371/journal.pbio.3001321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/17/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Incorporation of noncanonical amino acids (ncAAs) can endow proteins with novel functionalities, such as crosslinking or fluorescence. In ion channels, the function of these variants can be studied with great precision using standard electrophysiology, but this approach is typically labor intensive and low throughput. Here, we establish a high-throughput protocol to conduct functional and pharmacological investigations of ncAA-containing human acid-sensing ion channel 1a (hASIC1a) variants in transiently transfected mammalian cells. We introduce 3 different photocrosslinking ncAAs into 103 positions and assess the function of the resulting 309 variants with automated patch clamp (APC). We demonstrate that the approach is efficient and versatile, as it is amenable to assessing even complex pharmacological modulation by peptides. The data show that the acidic pocket is a major determinant for current decay, and live-cell crosslinking provides insight into the hASIC1a–psalmotoxin 1 (PcTx1) interaction. Further, we provide evidence that the protocol can be applied to other ion channels, such as P2X2 and GluA2 receptors. We therefore anticipate the approach to enable future APC-based studies of ncAA-containing ion channels in mammalian cells. This study describes a method to rapidly screen hundreds of ion channel variants containing non-canonical amino acids. A proof-of-principle introducing photocrosslinking non-canonical amino acids into the human ion channel hASIC1a shows how this approach can provide insights into function and pharmacology.
Collapse
|
38
|
Di Pompo G, Cortini M, Baldini N, Avnet S. Acid Microenvironment in Bone Sarcomas. Cancers (Basel) 2021; 13:cancers13153848. [PMID: 34359749 PMCID: PMC8345667 DOI: 10.3390/cancers13153848] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Although rare, malignant bone sarcomas have devastating clinical implications for the health and survival of young adults and children. To date, efforts to identify the molecular drivers and targets have focused on cancer cells or on the interplay between cancer cells and stromal cells in the tumour microenvironment. On the contrary, in the current literature, the role of the chemical-physical conditions of the tumour microenvironment that may be implicated in sarcoma aggressiveness and progression are poorly reported and discussed. Among these, extracellular acidosis is a well-recognized hallmark of bone sarcomas and promotes cancer growth and dissemination but data presented on this topic are fragmented. Hence, we intended to provide a general and comprehensive overview of the causes and implications of acidosis in bone sarcoma. Abstract In bone sarcomas, extracellular proton accumulation is an intrinsic driver of malignancy. Extracellular acidosis increases stemness, invasion, angiogenesis, metastasis, and resistance to therapy of cancer cells. It reprograms tumour-associated stroma into a protumour phenotype through the release of inflammatory cytokines. It affects bone homeostasis, as extracellular proton accumulation is perceived by acid-sensing ion channels located at the cell membrane of normal bone cells. In bone, acidosis results from the altered glycolytic metabolism of bone cancer cells and the resorption activity of tumour-induced osteoclasts that share the same ecosystem. Proton extrusion activity is mediated by extruders and transporters located at the cell membrane of normal and transformed cells, including vacuolar ATPase and carbonic anhydrase IX, or by the release of highly acidic lysosomes by exocytosis. To date, a number of investigations have focused on the effects of acidosis and its inhibition in bone sarcomas, including studies evaluating the use of photodynamic therapy. In this review, we will discuss the current status of all findings on extracellular acidosis in bone sarcomas, with a specific focus on the characteristics of the bone microenvironment and the acid-targeting therapeutic approaches that are currently being evaluated.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
| | - Margherita Cortini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
| | - Nicola Baldini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence:
| |
Collapse
|
39
|
Redd MA, Scheuer SE, Saez NJ, Yoshikawa Y, Chiu HS, Gao L, Hicks M, Villanueva JE, Joshi Y, Chow CY, Cuellar-Partida G, Peart JN, See Hoe LE, Chen X, Sun Y, Suen JY, Hatch RJ, Rollo B, Xia D, Alzubaidi MAH, Maljevic S, Quaife-Ryan GA, Hudson JE, Porrello ER, White MY, Cordwell SJ, Fraser JF, Petrou S, Reichelt ME, Thomas WG, King GF, Macdonald PS, Palpant NJ. Therapeutic Inhibition of Acid Sensing Ion Channel 1a Recovers Heart Function After Ischemia-Reperfusion Injury. Circulation 2021; 144:947-960. [PMID: 34264749 DOI: 10.1161/circulationaha.121.054360] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Ischemia-reperfusion injury (IRI) is one of the major risk factors implicated in morbidity and mortality associated with cardiovascular disease. During cardiac ischemia, the build-up of acidic metabolites results in decreased intracellular and extracellular pH that can reach as low as 6.0-6.5. The resulting tissue acidosis exacerbates ischemic injury and significantly impacts cardiac function. Methods: We used genetic and pharmacological methods to investigate the role of acid sensing ion channel 1a (ASIC1a) in cardiac IRI at the cellular and whole organ level. Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) as well as ex vivo and in vivo models of IRI were used to test the efficacy of ASIC1a inhibitors as pre- and post-conditioning therapeutic agents. Results: Analysis of human complex trait genetics indicate that variants in the ASIC1 genetic locus are significantly associated with cardiac and cerebrovascular ischemic injuries. Using hiPSC-CMs in vitro and murine ex vivo heart models, we demonstrate that genetic ablation of ASIC1a improves cardiomyocyte viability after acute IRI. Therapeutic blockade of ASIC1a using specific and potent pharmacological inhibitors recapitulates this cardioprotective effect. We used an in vivo model of myocardial infarction (MI) and two models of ex vivo donor heart procurement and storage as clinical models to show that ASIC1a inhibition improves post-IRI cardiac viability. Use of ASIC1a inhibitors as pre- or post-conditioning agents provided equivalent cardioprotection to benchmark drugs, including the sodium-hydrogen exchange inhibitor zoniporide. At the cellular and whole organ level, we show that acute exposure to ASIC1a inhibitors has no impact on cardiac ion channels regulating baseline electromechanical coupling and physiological performance. Conclusions: Collectively, our data provide compelling evidence for a novel pharmacological strategy involving ASIC1a blockade as a cardioprotective therapy to improve the viability of hearts subjected to IRI.
Collapse
Affiliation(s)
- Meredith A Redd
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, Australia (M.A.R., L.E.S.H., J.Y.S., J.F.F.)
| | - Sarah E Scheuer
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
- Cardiopulmonary Transplant Unit (S.E.S., Y.J., P.S.M.), St Vincent's Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia (S.E.S., M.H., J.E.V., Y.J., P.S.M.)
| | - Natalie J Saez
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science (N.J.S., G.F.K.), The University of Queensland, St Lucia, Australia
| | - Yusuke Yoshikawa
- School of Biomedical Sciences (Y.Y., M.E.R., W.G.T.), The University of Queensland, St Lucia, Australia
| | - Han Sheng Chiu
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| | - Ling Gao
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
| | - Mark Hicks
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
- Department of Pharmacology (M.H.), St Vincent's Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia (S.E.S., M.H., J.E.V., Y.J., P.S.M.)
| | - Jeanette E Villanueva
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
- Faculty of Medicine, University of New South Wales, Sydney, Australia (S.E.S., M.H., J.E.V., Y.J., P.S.M.)
| | - Yashutosh Joshi
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
- Cardiopulmonary Transplant Unit (S.E.S., Y.J., P.S.M.), St Vincent's Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia (S.E.S., M.H., J.E.V., Y.J., P.S.M.)
| | - Chun Yuen Chow
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| | - Gabriel Cuellar-Partida
- The University of Queensland Diamantina Institute, Faculty of Medicine and Translational Research Institute, Woolloongabba, Australia (G.C.-P.)
| | - Jason N Peart
- School of Medical Science, Griffith University, Southport, Australia (J.N.P.)
| | - Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, Australia (M.A.R., L.E.S.H., J.Y.S., J.F.F.)
- Faculty of Medicine, The University of Queensland, Brisbane, Australia (L.E.S.H., J.Y.S., J.F.F.)
| | - Xiaoli Chen
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| | - Yuliangzi Sun
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, Australia (M.A.R., L.E.S.H., J.Y.S., J.F.F.)
- Faculty of Medicine, The University of Queensland, Brisbane, Australia (L.E.S.H., J.Y.S., J.F.F.)
| | - Robert J Hatch
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia (R.J.H., B.R., S.M., S.P.)
| | - Ben Rollo
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia (R.J.H., B.R., S.M., S.P.)
| | - Di Xia
- Genome Innovation Hub (D.X.), The University of Queensland, St Lucia, Australia
| | - Mubarak A H Alzubaidi
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| | - Snezana Maljevic
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia (R.J.H., B.R., S.M., S.P.)
| | | | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, Australia (G.A.Q.-R., J.E.H.)
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia (E.R.P.)
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, Australia (E.R.P.)
| | - Melanie Y White
- School of Medical Sciences, School of Life and Environmental Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, Australia (M.Y.W., S.J.C.)
| | - Stuart J Cordwell
- School of Medical Sciences, School of Life and Environmental Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, Australia (M.Y.W., S.J.C.)
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, Australia (M.A.R., L.E.S.H., J.Y.S., J.F.F.)
- Faculty of Medicine, The University of Queensland, Brisbane, Australia (L.E.S.H., J.Y.S., J.F.F.)
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia (R.J.H., B.R., S.M., S.P.)
| | - Melissa E Reichelt
- School of Biomedical Sciences (Y.Y., M.E.R., W.G.T.), The University of Queensland, St Lucia, Australia
| | - Walter G Thomas
- School of Biomedical Sciences (Y.Y., M.E.R., W.G.T.), The University of Queensland, St Lucia, Australia
| | - Glenn F King
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science (N.J.S., G.F.K.), The University of Queensland, St Lucia, Australia
| | - Peter S Macdonald
- Victor Chang Cardiac Research Institute, Sydney, Australia (S.E.S., L.G., M.H., J.E.V., Y.J., P.S.M.)
- Cardiopulmonary Transplant Unit (S.E.S., Y.J., P.S.M.), St Vincent's Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia (S.E.S., M.H., J.E.V., Y.J., P.S.M.)
| | - Nathan J Palpant
- Institute for Molecular Bioscience (M.A.R., N.J.S., H.S.C., C.Y.C., X.C., Y.S., M.A.H.A., G.F.K., N.J.P.), The University of Queensland, St Lucia, Australia
| |
Collapse
|
40
|
Zhu Y, Warrenfelt CIC, Flannery JC, Lindgren CA. Extracellular Protons Mediate Presynaptic Homeostatic Potentiation at the Mouse Neuromuscular Junction. Neuroscience 2021; 467:188-200. [PMID: 34215419 DOI: 10.1016/j.neuroscience.2021.01.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/27/2023]
Abstract
At the vertebrate neuromuscular junction (NMJ), presynaptic homeostatic potentiation (PHP) refers to the upregulation of neurotransmitter release via an increase in quantal content (QC) when the postsynaptic nicotinic acetylcholine receptors (nAChRs) are partially blocked. The mechanism of PHP has not been completely worked out. In particular, the identity of the presumed retrograde signal is still a mystery. We investigated the role of acid-sensing ion channels (ASICs) and extracellular protons in mediating PHP at the mouse NMJ. We found that blocking AISCs using benzamil, psalmotoxin-1 (PcTx1), or mambalgin-3 (Mamb3) prevented PHP. Likewise, extracellular acidification from pH 7.4 to 7.2 triggered a significant, reversable increase in QC and this increase could be prevented by PcTx1. Interestingly, an acidic saline (pH 7.2) also precluded the subsequent induction of PHP. Using immunofluorescence we observed ASIC2a and ASIC1 subunits at the NMJ. Our results indicate that protons and ASIC channels are involved in activating PHP at the mouse NMJ. We speculate that the partial blockade of nAChRs leads to a modest decrease in the pH of the synaptic cleft (∼0.2 pH units) and this activates ASIC channels on the presynaptic nerve terminal.
Collapse
Affiliation(s)
- Yiyang Zhu
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | | | - Jill C Flannery
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | - Clark A Lindgren
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA.
| |
Collapse
|
41
|
Ruan N, Tribble J, Peterson AM, Jiang Q, Wang JQ, Chu XP. Acid-Sensing Ion Channels and Mechanosensation. Int J Mol Sci 2021; 22:ijms22094810. [PMID: 34062742 PMCID: PMC8125064 DOI: 10.3390/ijms22094810] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are mainly proton-gated cation channels that are activated by pH drops and nonproton ligands. They are part of the degenerin/epithelial sodium channel superfamily due to their sodium permeability. Predominantly expressed in the central nervous system, ASICs are involved in synaptic plasticity, learning/memory, and fear conditioning. These channels have also been implicated in multiple disease conditions, including ischemic brain injury, multiple sclerosis, Alzheimer’s disease, and drug addiction. Recent research has illustrated the involvement of ASICs in mechanosensation. Mechanosensation is a form of signal transduction in which mechanical forces are converted into neuronal signals. Specific mechanosensitive functions have been elucidated in functional ASIC1a, ASIC1b, ASIC2a, and ASIC3. The implications of mechanosensation in ASICs indicate their subsequent involvement in functions such as maintaining blood pressure, modulating the gastrointestinal function, and bladder micturition, and contributing to nociception. The underlying mechanism of ASIC mechanosensation is the tether-gate model, which uses a gating-spring mechanism to activate ASIC responses. Further understanding of the mechanism of ASICs will help in treatments for ASIC-related pathologies. Along with the well-known chemosensitive functions of ASICs, emerging evidence has revealed that mechanosensitive functions of ASICs are important for maintaining homeostasis and contribute to various disease conditions.
Collapse
|
42
|
Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Despite the development of several medications for the acute and preventive treatment of migraine, there are still many patients in whom lack of efficacy, tolerability, interactions or contraindications make other options necessary. CGRP-based drugs have opened the door to a new era of migraine-targeted treatments. Beyond CGRP, there are other promising targets covered here. RECENT FINDINGS For the acute treatment of migraine, 5-HT1F receptor agonists, ditans, are now available. Unlike triptans, 5-HT1B/1D receptor agonists, cardiovascular disease is not a contraindication for the use of ditans. The first study on a monoclonal antibody targeting PAC1 receptor was negative, although this may not be the end for the pituitary adenylate cyclase-activating polypeptide (PACAP) pathway as a target. SUMMARY Following positive phase-III clinical trials, lasmiditan is the first ditan to be FDA-approved. PACAP has experimental evidence suggesting a role in migraine pathophysiology. As for CGRP, the presence of PACAP in key migraine structures along with positive provocative tests for both PACAP-38 and PACAP-27 indicate this pathway may still be a pharmacological target. Glutamate-based targets have long been considered in migraine. Two clinical trials with memantine, an NMDA-R antagonist, for the preventive treatment of migraine have now been published. The hypothalamus has also been implicated in migraine pathophysiology: the potential role of orexins in migraine is discussed. Acid-sensing ion channels, as well as amylin-blocking drugs, may also become migraine treatments in the future: more research is warranted.
Collapse
|
44
|
Szabo C. Hydrogen Sulfide, an Emerging Regulator of Acid-Sensing Ion Channels. FUNCTION 2021; 2:zqab014. [PMID: 35330814 PMCID: PMC8788848 DOI: 10.1093/function/zqab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/06/2023] Open
Affiliation(s)
- Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
45
|
Fechner S, D'Alessandro I, Wang L, Tower C, Tao L, Goodman MB. DEG/ENaC/ASIC channels vary in their sensitivity to anti-hypertensive and non-steroidal anti-inflammatory drugs. J Gen Physiol 2021; 153:211847. [PMID: 33656557 PMCID: PMC7933985 DOI: 10.1085/jgp.202012655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
The degenerin channels, epithelial sodium channels, and acid-sensing ion channels (DEG/ENaC/ASICs) play important roles in sensing mechanical stimuli, regulating salt homeostasis, and responding to acidification in the nervous system. They have two transmembrane domains separated by a large extracellular domain and are believed to assemble as homomeric or heteromeric trimers. Based on studies of selected family members, these channels are assumed to form nonvoltage-gated and sodium-selective channels sensitive to the anti-hypertensive drug amiloride. They are also emerging as a target of nonsteroidal anti-inflammatory drugs (NSAIDs). Caenorhabditis elegans has more than two dozen genes encoding DEG/ENaC/ASIC subunits, providing an excellent opportunity to examine variations in drug sensitivity. Here, we analyze a subset of the C. elegans DEG/ENaC/ASIC proteins to test the hypothesis that individual family members vary not only in their ability to form homomeric channels but also in their drug sensitivity. We selected a panel of C. elegans DEG/ENaC/ASICs that are coexpressed in mechanosensory neurons and expressed gain-of-function or d mutants in Xenopus laevis oocytes. We found that only DEGT‑1d, UNC‑8d, and MEC‑4d formed homomeric channels and that, unlike MEC‑4d and UNC‑8d, DEGT‑1d channels were insensitive to amiloride and its analogues. As reported for rat ASIC1a, NSAIDs inhibit DEGT‑1d and UNC‑8d channels. Unexpectedly, MEC‑4d was strongly potentiated by NSAIDs, an effect that was decreased by mutations in the putative NSAID-binding site in the extracellular domain. Collectively, these findings reveal that not all DEG/ENaC/ASIC channels are amiloride-sensitive and that NSAIDs can both inhibit and potentiate these channels.
Collapse
Affiliation(s)
- Sylvia Fechner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Isabel D'Alessandro
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Lingxin Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Calvin Tower
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Li Tao
- Department of Biology, Stanford University, Stanford, CA
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| |
Collapse
|
46
|
Tsai HH, Schmidt W. The enigma of environmental pH sensing in plants. NATURE PLANTS 2021; 7:106-115. [PMID: 33558755 DOI: 10.1038/s41477-020-00831-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Environmental pH is a critical parameter for innumerable chemical reactions, myriad biological processes and all forms of life. The mechanisms that underlie the perception of external pH (pHe) have been elucidated in detail for bacteria, fungi and mammalian cells; however, little information is available on whether and, if so, how pHe is perceived by plants. This is particularly surprising since hydrogen ion activity of the substrate is of paramount significance for plants, governing the availability of mineral nutrients, the structure of the soil microbiome and the composition of natural plant communities. Rapid changes in soil pH require constant readjustment of nutrient acquisition strategies, which is associated with dynamic alterations in gene expression. Referring to observations made in diverse experimental set-ups that unambiguously show that pHe per se affects gene expression, we hypothesize that sensing of pHe in plants is mandatory to prioritize responses to various simultaneously received environmental cues.
Collapse
Affiliation(s)
- Huei-Hsuan Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
47
|
Xu Y, Chen F. Acid-Sensing Ion Channel-1a in Articular Chondrocytes and Synovial Fibroblasts: A Novel Therapeutic Target for Rheumatoid Arthritis. Front Immunol 2021; 11:580936. [PMID: 33584647 PMCID: PMC7876322 DOI: 10.3389/fimmu.2020.580936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) is a member of the extracellular H+-activated cation channel family. Emerging evidence has suggested that ASIC1a plays a crucial role in the pathogenesis of rheumatoid arthritis (RA). Specifically, ASIC1a could promote inflammation, synovial hyperplasia, articular cartilage, and bone destruction; these lead to the progression of RA, a chronic autoimmune disease characterized by chronic synovial inflammation and extra-articular lesions. In this review, we provided a brief overview of the molecular properties of ASIC1a, including the basic biological characteristics, tissue and cell distribution, channel blocker, and factors influencing the expression and function, and focused on the potential therapeutic targets of ASIC1a in RA and possible mechanisms of blocking ASIC1a to improve RA symptoms, such as regulation of apoptosis, autophagy, pyroptosis, and necroptosis of articular cartilage, and synovial inflammation and invasion of fibroblast-like cells in synovial tissue.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Feihu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
48
|
Tang R, Ba G, Li M, Li Z, Ye H, Lin H, Zhang W. Evidence for role of acid-sensing ion channel 1a in chronic rhinosinusitis with nasal polyps. Eur Arch Otorhinolaryngol 2021; 278:2379-2386. [PMID: 33392760 DOI: 10.1007/s00405-020-06521-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/26/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE A variety of inflammatory cells are infiltrated histologically in sinonasal mucosa of chronic rhinosinusitis with nasal polyps (CRSwNP), especially CRSwNP with asthma. Acid-sensing ion channel 1a (ASIC1a) is essential in the process of sensing acidification and triggering inflammation. Whereas, its role and mechanism in CRSwNP remain uncertain. The present study aimed to explore the roles and mechanism of ASIC1a in the pathogenesis of CRSwNP. METHODS Nasal secretions from control subjects, patients with CRSwNP with or without asthma were collected for measuring pH values. Western blotting, real-time PCR and immunohistochemistry (IHC) were employed to assess ASIC1a expression in nasal tissue samples from included subjects. The co-localization of ASIC1a with inflammatory cells was evaluated by immunofluorescence staining. Then, dispersed nasal polyp cells (DNPCs) were cultured under acidified condition (pH 6.0), with or without ASIC1a inhibitor amiloride. Western blotting, real-time PCR, LDH activity kit, and ELISA were performed to assess the effects and mechanisms of stimulators on the cells. RESULTS The pH values were significantly lower in the nasal secretions from patients with CRSwNP with asthma. Significant upregulation of ASIC1a protein, mRNA levels, and positive cells was found in CRSwNP with asthma. ASIC1a was detected in a variety of inflammatory cells. In cultured DNPCs, significant alterations of ASIC1a levels, LDH activity, HIF-1α levels, and inflammatory cytokines were found under acidified condition (pH 6.0), but were prevented by amiloride. CONCLUSION Upregulation of ASIC1a might be essential in the process of sensing acidification and triggering inflammatory response via enhancing HIF-1α expression and LDH activity to activate inflammatory cells in the pathogenesis of CRSwNP, especially in CRSwNP with asthma.
Collapse
Affiliation(s)
- Ru Tang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Guangyi Ba
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Mingxian Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Haibo Ye
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
49
|
Choi DW. Excitotoxicity: Still Hammering the Ischemic Brain in 2020. Front Neurosci 2020; 14:579953. [PMID: 33192266 PMCID: PMC7649323 DOI: 10.3389/fnins.2020.579953] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Interest in excitotoxicity expanded following its implication in the pathogenesis of ischemic brain injury in the 1980s, but waned subsequent to the failure of N-methyl-D-aspartate (NMDA) antagonists in high profile clinical stroke trials. Nonetheless there has been steady progress in elucidating underlying mechanisms. This review will outline the historical path to current understandings of excitotoxicity in the ischemic brain, and suggest that this knowledge should be leveraged now to develop neuroprotective treatments for stroke.
Collapse
Affiliation(s)
- Dennis W Choi
- Department of Neurology, SUNY Stony Brook, Stony Brook, NY, United States
| |
Collapse
|
50
|
Wang K, Kretschmannova K, Prévide RM, Smiljanic K, Chen Q, Fletcher PA, Sherman A, Stojilkovic SS. Cell-Type-Specific Expression Pattern of Proton-Sensing Receptors and Channels in Pituitary Gland. Biophys J 2020; 119:2335-2348. [PMID: 33098866 DOI: 10.1016/j.bpj.2020.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/29/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
In mammalian cells, extracellular protons act as orthosteric and allosteric ligands for multiple receptors and channels. The aim of this study is to identify proton sensors in the rat pituitary gland. qRT-PCR analysis indicated the expression of G-protein-coupled receptor 68 gene (Gpr68) and acid-sensing ion channel (ASIC) genes Asic1, Asic2, and Asic4 in anterior pituitary cells and Asic1 and Asic2 in immortalized GH3 pituitary cells. Asic1a and Asic2b were the dominant splice isoforms. Single anterior pituitary cell RNA sequencing and immunocytochemical analysis showed that nonexcitable folliculostellate cells express GPR68 gene and protein, whereas excitable secretory cells express ASIC genes and proteins. Asic1 was detected in all secretory cell types, Asic2 in gonadotrophs, thyrotrophs, and somatotrophs, and Asic4 in lactotrophs. Extracellular acidification activated two types of currents in a concentration-dependent manner: a fast-developing, desensitizing current with an estimated EC50-value of pH 6.7 and a slow-developing, non-desensitizing current that required a higher proton concentration for activation. The desensitizing current was abolished by removal of bath sodium and application of amiloride, a blocker of ASIC channels, whereas the non-desensitizing current was amiloride insensitive and voltage dependent. Activation of both currents increased the excitability of secretory pituitary cells, consistent with their potential physiological relevance in control of voltage-gated calcium influx and calcium-dependent cellular functions.
Collapse
Affiliation(s)
- Kai Wang
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Karla Kretschmannova
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Rafael M Prévide
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Kosara Smiljanic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Qing Chen
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland.
| |
Collapse
|