1
|
Wang YL, Zhu H, Pan YT, Shang D, Du LJ, Bai L, Zhu SW, Lin WZ, Zhang XY, Lu HX, Bi C, Liu Y, Liu Y, Xiao H, Qian YC, Zhou B, Li RG, Duan SZ. Dendritic cell mineralocorticoid receptor controls blood pressure by regulating T helper 17 differentiation: role of the Plcβ1/4-Stat5-NF-κB pathway. Eur Heart J 2024:ehae670. [PMID: 39498862 DOI: 10.1093/eurheartj/ehae670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/31/2024] [Accepted: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND AND AIMS Dendritic cells (DCs) are closely related to blood pressure (BP) regulation. Mineralocorticoid receptor (MR) is an important drug target for antihypertensive treatment. However, the role of DC MR in the pathogenesis of hypertension has not been fully elucidated. This study aimed to determine the role of DC MR in BP regulation and to explore the mechanism. METHODS Renal biopsy and peripheral blood samples were collected from hypertensive patients (HTN) for immunostaining and flow cytometry. Dendritic cell MR knockout (DCMRKO) mice, DC MR overexpressing (DCMROV) mice, DCMROV/IL-17A knockout (DCMROV/IL-17AKO) mice and finerenone-treated C57BL/6 mice were infused with angiotensin II (Ang II) to establish hypertensive models. Western blotting, chromatin immunoprecipitation, co-immunoprecipitation, and in vivo DC depletion or adoptive transfer were used to delineate the functional importance of DC MR in hypertension development. RESULTS Mineralocorticoid receptor antagonists (spironolactone and finerenone) suppressed DC aggregation and activation, as well as hypertension in HTN and mice. Compared with littermate control (LC) mice, dendritic cell MR knockout mice had strikingly decreased BPs and attenuated target organ damage after Ang II infusion. Flow cytometry showed that DC MR deficiency mitigated Ang II-induced DC activation and T helper 17 (Th17) cell differentiation. RNA sequencing revealed that MR-deficient DCs had elevated expression of Plcβ1 and Plcβ4, knockdown of which reversed the inhibitory effect of MR deficiency on DC activation and Th17 differentiation. Adoptive transfer of MR-deficient DCs protected Ang II-induced hypertension, whereas knockdown of Plcβ1/4 eliminated the protective effects. At the molecular level, MR negatively regulated Plcβ1/4, which recruited SHP-1 to inactivate of Stat5 activity, resulting in enhanced NF-κB activation and Th17 polarization. Furthermore, DCMROV mice manifested more elevated BPs and target organ damage than control mice after Ang II infusion, and these differences were abolished in DCMROV/IL-17AKO mice. Finally, MR antagonists decreased the aggregation of Th17 in HTN and mice. CONCLUSIONS Dendritic cell MR plays important roles in the pathogenesis of hypertension by regulating Th17 through Plcβ1/4-Stat5-NF-κB signalling, and blockade of DC MR is beneficial for treating hypertension.
Collapse
Affiliation(s)
- Yong-Li Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 West Huaihai Road, Shanghai 200030, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, 166 North Qiutao Rd, Hangzhou 310000, China
| | - Hong Zhu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Yi-Tong Pan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 West Huaihai Road, Shanghai 200030, China
| | - Da Shang
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Lan Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Shi-Wei Zhu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 West Huaihai Road, Shanghai 200030, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Xing-Yu Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 West Huaihai Road, Shanghai 200030, China
| | - Hai-Xia Lu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Chao Bi
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Hui Xiao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - You-Cun Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Zhou
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 West Huaihai Road, Shanghai 200030, China
| | - Sheng-Zhong Duan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, 166 North Qiutao Rd, Hangzhou 310000, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
2
|
Koga HK, Grodstein F, Williams DR, Demeo DL, Kubzansky LD. Relations of optimism and purpose in life to immune markers in aging. J Psychosom Res 2024; 184:111851. [PMID: 38964200 DOI: 10.1016/j.jpsychores.2024.111851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE Optimism and purpose in life are associated with improved health outcomes. More information is needed on biological mechanisms, including immunosenescence. We investigated if psychological well-being is associated with healthier immunosenescence-related measures including naïve and terminally differentiated CD4+ and CD8+ T cell percentages, CD4+:CD8+, and cytomegalovirus (CMV) IgG response. METHODS Participants were adults over age 50 from the Health and Retirement Study. Optimism was measured using the Life Orientation Test Revised. Purpose in life was assessed using the subscale from the Ryff psychological well-being measure. We examined the cross-sectional associations of optimism and purpose in life with measures of T cell subsets using linear regression and with CMV IgG using ordered logit regression, controlling for potential confounding factors. RESULTS The final analytic sample ranged from 7250 to 7870. After adjusting for sociodemographic factors, a 1-SD increment in optimism was associated with the percentage of naïve CD4+ T cells increasing by 0.6 (95%CI 0.2%, 1.0%). A 1-SD increment in purpose in life was associated with the percentage of naïve CD4+ T cells increasing by 0.9 (95%CI 0.5%, 1.3%) after adjusting for sociodemographic factors and the association was maintained after further adjustments for health conditions, depression, and health behaviors. For naïve CD8+ T cell percentages, CD4:CD8 ratios, and CMV IgG antibodies, associations were seen only in models that adjusted for age. No significant associations were seen in any models for the terminally differentiated CD4+ and CD8+ T cells. CONCLUSIONS We found associations of optimism and purpose in life with naïve CD4+ T cell percentages.
Collapse
Affiliation(s)
- Hayami K Koga
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America; Harvard Center for Population and Development Studies, Cambridge, MA, United States of America.
| | - Francine Grodstein
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States of America
| | - David R Williams
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America; Department of African and African American Studies, Department of Sociology, Harvard University, Cambridge, MA, United States of America
| | - Dawn L Demeo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| |
Collapse
|
3
|
Smirnova OV, Ovcharenko ES, Kasparov EV. Hormonal Imbalance as a Prognostic Factor of Physical Development of Children with Intellectual Disability. CHILDREN (BASEL, SWITZERLAND) 2024; 11:913. [PMID: 39201848 PMCID: PMC11352287 DOI: 10.3390/children11080913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024]
Abstract
INTRODUCTION The purpose was to study the indicators of physical development of primary-school-aged children with intellectual disability by observing the type of autonomic nervous regulation and their levels of catecholamines and serotonin. METHODS A total of 168 primary school age children were examined, of which 54 had intellectual disability. The autonomic nervous system was assessed using cardiointervalography; anthropometric parameters were applied in accordance with recommendations. The contents of serotonin and catecholamines in blood plasma and lymphocytes were assessed using enzyme immunoassay and luminescent histochemical methods. RESULTS AND CONCLUSIONS Delayed physical and mental development in children with intellectual disability were associated with low serotonin levels in this group of children. The optimal option for the physical development of children with intellectual disability is a sympathetic type of autonomic nervous regulation, while negative-type vagotonic nervous regulation was associated with the maximum delay in physical development. The hypersympathetic type of nervous regulation was accompanied by minimal changes in physical development, despite the hormonal imbalance in the ratio of catecholamines and serotonin. The level of the neurotransmitter serotonin is a prognostic marker of the physical development of children of primary school age. The total amount of catecholamines and serotonin in blood plasma has a direct relationship with the amount of these neurotransmitters in blood lymphocytes; the more hormones in plasma, the more of them in lymphocytes. Therefore, the determination of the contents of catecholamines and serotonin in lymphocytes can be used as a model for studying neurotransmitters in humans.
Collapse
Affiliation(s)
- Olga V. Smirnova
- Scientific Research Institute of Medical Problems of the North, Separate Division of Federal Research Centre “Krasnoyarsk Science Centre” of the Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia; (E.S.O.); (E.V.K.)
| | | | | |
Collapse
|
4
|
Lauten TH, Elkhatib SK, Natour T, Reed EC, Jojo CN, Case AJ. Beta-adrenergic signaling and T-lymphocyte-produced catecholamines are necessary for interleukin 17A synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597633. [PMID: 38895227 PMCID: PMC11185643 DOI: 10.1101/2024.06.05.597633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Background Post-traumatic stress disorder (PTSD) is a debilitating psychological disorder that also presents with neuroimmune irregularities. Patients display elevated sympathetic tone and are at an increased risk of developing secondary autoimmune diseases. Previously, using a preclinical model of PTSD, we demonstrated that elimination of sympathetic signaling to T-lymphocytes specifically limited their ability to produce pro-inflammatory interleukin 17A (IL-17A); a cytokine implicated in the development of many autoimmune disorders. However, the mechanism linking sympathetic signaling to T-lymphocyte IL-17A production remained unclear. Methods Using a modified version of repeated social defeat stress (RSDS) that allows for both males and females, we assessed the impact of adrenergic receptor blockade (genetically and pharmacologically) and catecholamine depletion on T-lymphocyte IL-17A generation. Additionally, we explored the impact of adrenergic signaling and T-lymphocyte-produced catecholamines on both CD4+ and CD8+ T-lymphocytes polarized to IL-17A-producing phenotypes ex vivo. Results Only pharmacological inhibition of the beta 1 and 2 adrenergic receptors (β1/2) significantly decreased circulating IL-17A levels after RSDS, but did not impact other pro-inflammatory cytokines (e.g., IL-6, TNF-α, and IL-10). This finding was confirmed using RSDS with both global β1/2 receptor knock-out mice, as well as by adoptively transferring β1/2 knock-out T-lymphocytes into immunodeficient hosts. Furthermore, ex vivo polarized T-lymphocytes produced significantly less IL-17A with the blockade of β1/2 signaling, even in the absence of exogenous sympathetic neurotransmitter supplementation, which suggested T-lymphocyte-produced catecholamines may be involved in IL-17A production. Indeed, pharmacological depletion of catecholamines both in vivo and ex vivo abrogated T-lymphocyte IL-17A production demonstrating the importance of immune-generated neurotransmission in pro-inflammatory cytokine generation. Conclusions Our data depict a novel role for β1/2 adrenergic receptors and autologous catecholamine signaling during T-lymphocyte IL-17A production. These findings provide a new target for pharmacological therapy in both psychiatric and autoimmune diseases associated with IL-17A-related pathology.
Collapse
Affiliation(s)
- Tatlock H. Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Safwan K. Elkhatib
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Tamara Natour
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Emily C. Reed
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Caroline N. Jojo
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Adam J. Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
5
|
Lauten TH, Natour T, Case AJ. Innate and adaptive immune system consequences of post-traumatic stress disorder. Auton Neurosci 2024; 252:103159. [PMID: 38428324 PMCID: PMC11494466 DOI: 10.1016/j.autneu.2024.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
In the field of psychiatry, biological markers are rarely, if ever, used in the diagnosis of mental health disorders. Clinicians rely primarily on patient histories and behavioral symptoms to identify specific psychopathologies, which makes diagnosis highly subjective. Moreover, therapies for mental health disorders are aimed specifically at attenuating behavioral manifestations, which overlooks the pathophysiological indices of the disease. This is highly evident in posttraumatic stress disorder (PTSD) where inflammation and immune system perturbations are becoming increasingly described. Further, patients with PTSD possess significantly elevated risks of developing comorbid inflammatory diseases such as autoimmune and cardiovascular diseases, which are likely linked (though not fully proven) to the apparent dysregulation of the immune system after psychological trauma. To date, there is little to no evidence that demonstrates current PTSD therapies are able to reverse the increased risk for psychological trauma-induced inflammatory diseases, which suggests the behavioral and somatic consequences of PTSD may not be tightly coupled. This observation provides an opportunity to explore unique mechanisms outside of the brain that contribute to the long-term pathology of PTSD. Herein, we provide an overview of neuroimmune mechanisms, describe what is known regarding innate and adaptive immunity in PTSD, and suggest new directions that are needed to advance the understanding, diagnosis, and treatment of PTSD moving forward.
Collapse
Affiliation(s)
- Tatlock H Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Tamara Natour
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States.
| |
Collapse
|
6
|
Gauthier MM, Hayoz S, Banek CT. Neuroimmune interplay in kidney health and disease: Role of renal nerves. Auton Neurosci 2023; 250:103133. [PMID: 38061177 PMCID: PMC10748436 DOI: 10.1016/j.autneu.2023.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Renal nerves and their role in physiology and disease have been a topic of increasing interest in the past few decades. Renal inflammation contributes to many cardiorenal disease conditions, including hypertension, chronic kidney disease, and polycystic kidney disease. Much is known about the role of renal sympathetic nerves in physiology - they contribute to the regulation of sodium reabsorption, renin release, and renal vascular resistance. In contrast, far less is known about afferent, or "sensory," renal nerves, which convey signals from the kidney to the brain. While much remains unknown about these nerves in the context of normal physiology, even less is known about their contribution to disease states. Furthermore, it has become apparent that the crosstalk between renal nerves and the immune system may augment or modulate disease. Research from other fields, especially pain research, has provided critical insight into neuroimmune crosstalk. Sympathetic renal nerve activity may increase immune cell recruitment, but far less work has been done investigating the interplay between afferent renal nerves and the immune system. Evidence from other fields suggests that inflammation may augment afferent renal nerve activity. Furthermore, these nerves may exacerbate renal inflammation through the release of afferent-specific neurotransmitters.
Collapse
Affiliation(s)
- Madeline M Gauthier
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, USA
| | - Sebastien Hayoz
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, USA
| | - Christopher T Banek
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, USA.
| |
Collapse
|
7
|
Mahdi AL-Musawi NR, Al-Gazally ME, AL-Saffar YR. Investigation of Cholecystokinin-Beta receptor, IL-27, IL-27 gene SNP and some biochemical parameters in patients with Type-1 Diabetes Mellitus. BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Diabetes mellitus (DM) is a central public health problem impacting more than 400 million humhttp://wsx5customurl.comans worldwide. This metabolic disorder progressively drives chronic microvascular, macrovascular and neuropathic life-threatening problems. DM is happened because of a decrease in insulin secretion, harm to pancreatic β cells or insulin resistance connected to the nonuse of insulin. Type – I DM The immune system, by mistake, will attack the β cells of the pancreas, where genes play a vital role. The work was designed to determine the levels of anthropometric variables (age and BMI), immunological parameters (IL-27, IL-27 gene SNP), CCKBR and other biochemical parameters (HbA1C, cholesterol, triglyceride, HDL, LDL, VLDL, urea and creatinine) in sera of T1DM patients. The study contains 180 subjects who are split into two groups; the two groups are the healthy control group and the T1DM patients' group. The result recorded in this research showed a non-significant (p>0.05) difference between the control and patients in age, BMI, CCKBR, TRI, HDL, LDL, and VLDL. A very high significant elevation (P<0.001) has been observed in the level of IL-27, HbA1C, urea and creatinine; there is a highly significant increase (p<0.05) in cholesterol, the gene SNP study shows a significant association of IL27 rs153109 with T1DM was observed under the allele model (OR=2.124, 95% CI (1.349–3.345), P=0.00105), and genotype model in the dominant model (OR=1.00, 95% CI, P=0.0016), recessive model (OR=0.35, 95% CI ( 0.12–1.02), P=0.043) and homozygous model (OR=1.00, 95%, P=0.0037). The study it is cleared that T1DM affects the SNP gene used as a promoter to the excretion of IL-27 and increases its excretion. Lipid profile shows an effect on the level of glucose in the blood, and a high level of cholesterol may cause a severe problem if it is combined with T1DM. The elevated glucose level happens because T1DM affects the renal and causes extreme conditions like renal failure and other renal dysfunction diseases.
Keywords: T1DM, CCKBR, genetic disease, IL-27, IL-27.
Collapse
|
8
|
Nayok SB, Sreeraj VS, Shivakumar V, Venkatasubramanian G. Understanding the interoception in schizophrenia through the window of Vagus Nerve Stimulation. Neurosci Biobehav Rev 2022; 141:104844. [PMID: 36037979 DOI: 10.1016/j.neubiorev.2022.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Swarna Buddha Nayok
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560029, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560029, Karnataka, India.
| | - Vanteemar S Sreeraj
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560029, Karnataka, India
| | - Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560029, Karnataka, India
| | - Ganesan Venkatasubramanian
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560029, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560029, Karnataka, India
| |
Collapse
|
9
|
Katrinli S, Oliveira NCS, Felger JC, Michopoulos V, Smith AK. The role of the immune system in posttraumatic stress disorder. Transl Psychiatry 2022; 12:313. [PMID: 35927237 PMCID: PMC9352784 DOI: 10.1038/s41398-022-02094-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) develops in a subset of individuals upon exposure to traumatic stress. In addition to well-defined psychological and behavioral symptoms, some individuals with PTSD also exhibit elevated concentrations of inflammatory markers, including C-reactive protein, interleukin-6, and tumor necrosis factor-α. Moreover, PTSD is often co-morbid with immune-related conditions, such as cardiometabolic and autoimmune disorders. Numerous factors, including lifetime trauma burden, biological sex, genetic background, metabolic conditions, and gut microbiota, may contribute to inflammation in PTSD. Importantly, inflammation can influence neural circuits and neurotransmitter signaling in regions of the brain relevant to fear, anxiety, and emotion regulation. Given the link between PTSD and the immune system, current studies are underway to evaluate the efficacy of anti-inflammatory treatments in those with PTSD. Understanding the complex interactions between PTSD and the immune system is essential for future discovery of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA.
| | - Nayara C. S. Oliveira
- grid.189967.80000 0001 0941 6502Department of Gynecology and Obstetrics, Emory University, Atlanta, GA USA ,National Institute of Woman, Child, and Adolescence Health Fernandes Figueira, Rio de Janeiro, RJ Brazil ,grid.418068.30000 0001 0723 0931Department of Violence and Health Studies Jorge Careli, National School of Public Health, Fiocruz, Rio de Janeiro, RJ Brazil
| | - Jennifer C. Felger
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502The Winship Cancer Institute, Emory University, Atlanta, GA USA
| | - Vasiliki Michopoulos
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Alicia K. Smith
- grid.189967.80000 0001 0941 6502Department of Gynecology and Obstetrics, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| |
Collapse
|
10
|
Elkhatib SK, Moshfegh CM, Watson GF, Case AJ. T-lymphocyte tyrosine hydroxylase regulates T H17 T-lymphocytes during repeated social defeat stress. Brain Behav Immun 2022; 104:18-28. [PMID: 35580792 PMCID: PMC9659669 DOI: 10.1016/j.bbi.2022.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating psychiatric disorder which results in deleterious changes to psychological and physical health. Patients with PTSD are especially susceptible to life-threatening co-morbid inflammation-driven pathologies, such as autoimmunity, while also demonstrating increased T-helper 17 (TH17) lymphocyte-driven inflammation. While the exact mechanism of this increased inflammation is unknown, overactivity of the sympathetic nervous system is a hallmark of PTSD. Neurotransmitters of the sympathetic nervous system (i.e., catecholamines) can alter T-lymphocyte function, which we have previously demonstrated to be partially mitochondrial redox-mediated. Furthermore, we have previously elucidated that T-lymphocytes generate their own catecholamines, and strong associations exist between tyrosine hydroxylase (TH; the rate-limiting enzyme in the synthesis of catecholamines) and pro-inflammatory interleukin 17A (IL-17A) expression within purified T-lymphocytes in a rodent model of psychological trauma. Therefore, we hypothesized that T-lymphocyte-generated catecholamines drive TH17 T-lymphocyte polarization through a mitochondrial superoxide-dependent mechanism during psychological trauma. To test this, T-lymphocyte-specific TH knockout mice (THT-KO) were subjected to psychological trauma utilizing repeated social defeat stress (RSDS). RSDS characteristically increased tumor necrosis factor-α (TNFα), IL-6, IL-17A, and IL-22, however, IL-17A and IL-22 (TH17 produced cytokines) were selectively attenuated in circulation and in T-lymphocytes of THT-KO animals. When activated ex vivo, secretion of IL-17A and IL-22 by THT-KO T-lymphocytes was also found to be reduced, but could be partially rescued with supplementation of norepinephrine specifically. Interestingly, THT-KO T-lymphocytes were still able to polarize to TH17 under exogenous polarizing conditions. Last, contrary to our hypothesis, we found RSDS-exposed THT-KO T-lymphocytes still displayed elevated mitochondrial superoxide, suggesting increased mitochondrial superoxide is upstream of T-lymphocyte TH induction, activity, and TH17 regulation. Overall, these data demonstrate TH in T-lymphocytes plays a critical role in RSDS-induced TH17 T-lymphocytes and offer a previously undescribed regulator of inflammation in RSDS.
Collapse
Affiliation(s)
- Safwan K Elkhatib
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Cassandra M Moshfegh
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Gabrielle F Watson
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M Health Science Center, College Station, TX, United States; Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX, United States.
| |
Collapse
|
11
|
Grotle AK, Darling AM, Saunders EF, Fadel PJ, Trott DW, Greaney JL. Augmented T-cell mitochondrial reactive oxygen species in adults with major depressive disorder. Am J Physiol Heart Circ Physiol 2022; 322:H568-H574. [PMID: 35179977 PMCID: PMC8917910 DOI: 10.1152/ajpheart.00019.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
The prevalence of major depressive disorder (MDD) is highest in young adulthood, an effect that has been magnified by the COVID-19 pandemic. Importantly, individuals with MDD are at a greater risk of developing cardiovascular disease (CVD). Accumulating evidence supports immune system dysregulation as a major contributor to the elevated CVD risk in older adults with MDD; however, whether this is present in young adults with MDD without comorbid disease remains unclear. Interestingly, recent data suggest augmented T-cell mitochondrial reactive oxygen species (T-cell mitoROS) as a potent driver of immune dysregulation in animal models of psychiatric disease. With this background in mind, we tested the hypothesis that young adults with MDD would have augmented T-cell mitoROS and circulating proinflammatory cytokines compared with healthy young adults without MDD (HA). Whole blood was drawn from 14 young adults with MDD (age: 23 ± 2 yr) and 11 HA (age: 22 ± 1 yr). T-cell mitoROS (MitoSOX red; total: CD3+, T-helper: CD4+, T cytotoxic: CD8+) and serum cytokines were assessed by flow cytometry. Total T-cell mitoROS was significantly greater in adults with MDD compared with HA [median: 14,089 arbitrary units (AU); median: 1,362 AU, P = 0.01]. Likewise, both T-helper and T-cytotoxic cell mitoROS were significantly greater in adults with MDD compared with HA (both: P < 0.05). There were no differences in circulating cytokines between groups (all cytokines: P > 0.05). Collectively, these findings suggest that elevated T-cell mitoROS may represent an early marker of immune system dysregulation in young, otherwise healthy, adults with MDD.NEW & NOTEWORTHY To our knowledge, we provide the first evidence of augmented T-cell mitochondrial reactive oxygen species (T-cell mitoROS) in young, otherwise healthy adults with MDD. Although the elevated T-cell mitoROS did not correspond to a proinflammatory profile, these findings suggest that elevated T-cell mitoROS may be an early marker of immune system dysregulation in young adults with MDD.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Ashley M Darling
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Erika F Saunders
- Department of Psychiatry and Behavioral Health, Penn State College of Medicine, and Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Jody L Greaney
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
12
|
Forstenpointner J, Elman I, Freeman R, Borsook D. The Omnipresence of Autonomic Modulation in Health and Disease. Prog Neurobiol 2022; 210:102218. [PMID: 35033599 DOI: 10.1016/j.pneurobio.2022.102218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
The Autonomic Nervous System (ANS) is a critical part of the homeostatic machinery with both central and peripheral components. However, little is known about the integration of these components and their joint role in the maintenance of health and in allostatic derailments leading to somatic and/or neuropsychiatric (co)morbidity. Based on a comprehensive literature search on the ANS neuroanatomy we dissect the complex integration of the ANS: (1) First we summarize Stress and Homeostatic Equilibrium - elucidating the responsivity of the ANS to stressors; (2) Second we describe the overall process of how the ANS is involved in Adaptation and Maladaptation to Stress; (3) In the third section the ANS is hierarchically partitioned into the peripheral/spinal, brainstem, subcortical and cortical components of the nervous system. We utilize this anatomical basis to define a model of autonomic integration. (4) Finally, we deploy the model to describe human ANS involvement in (a) Hypofunctional and (b) Hyperfunctional states providing examples in the healthy state and in clinical conditions.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, SH, Germany.
| | - Igor Elman
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Elkhatib SK, Alley J, Jepsen M, Smeins L, Barnes A, Naik S, Ackermann MR, Verhoeven D, Kohut ML. Exercise duration modulates upper and lower respiratory fluid cellularity, antiviral activity, and lung gene expression. Physiol Rep 2021; 9:e15075. [PMID: 34676696 PMCID: PMC8531599 DOI: 10.14814/phy2.15075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/18/2021] [Indexed: 12/02/2022] Open
Abstract
Exercise has substantial health benefits, but the effects of exercise on immune status and susceptibility to respiratory infections are less clear. Furthermore, there is limited research examining the effects of prolonged exercise on local respiratory immunity and antiviral activity. To assess the upper respiratory tract in response to exercise, we collected nasal lavage fluid (NALF) from human subjects (1) at rest, (2) after 45 min of moderate-intensity exercise, and (3) after 180 min of moderate-intensity exercise. To assess immune responses of the lower respiratory tract, we utilized a murine model to examine the effect of exercise duration on bronchoalveolar lavage (BAL) fluid immune cell content and lung gene expression. NALF cell counts did not change after 45 min of exercise, whereas 180 min significantly increased total cells and leukocytes in NALF. Importantly, fold change in NALF leukocytes correlated with the post-exercise fatigue rating in the 180-min exercise condition. The acellular portion of NALF contained strong antiviral activity against Influenza A in both resting and exercise paradigms. In mice undergoing moderate-intensity exercise, BAL total cells and neutrophils decreased in response to 45 or 90 min of exercise. In lung lobes, increased expression of heat shock proteins suggested that cellular stress occurred in response to exercise. However, a broad upregulation of inflammatory genes was not observed, even at 180 min of exercise. This work demonstrates that exercise duration differentially alters the cellularity of respiratory tract fluids, antiviral activity, and gene expression. These changes in local mucosal immunity may influence resistance to respiratory viruses, including influenza or possibly other pathogens in which nasal mucosa plays a protective role, such as rhinovirus or SARS-CoV-2.
Collapse
Affiliation(s)
- Safwan K. Elkhatib
- Department of KinesiologyIowa State UniversityAmesIowaUSA
- Present address:
Cellular & Integrative PhysiologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jessica Alley
- Department of KinesiologyIowa State UniversityAmesIowaUSA
- Program of ImmunobiologyIowa State UniversityAmesIowaUSA
- Present address:
Lineberger Comprehensive Cancer Center, School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Michael Jepsen
- Department of KinesiologyIowa State UniversityAmesIowaUSA
- Present address:
College of Osteopathic MedicineCampbell UniversityLillingtonNorth CarolinaUSA
| | - Laurel Smeins
- Department of KinesiologyIowa State UniversityAmesIowaUSA
| | - Andrew Barnes
- Department of KinesiologyIowa State UniversityAmesIowaUSA
- Present address:
Kirksville College of Osteopathic MedicineA.T. Still UniversityKirksvilleMissouriUSA
| | - Shibani Naik
- Program of ImmunobiologyIowa State UniversityAmesIowaUSA
- Present address:
Arisan Therapeutics11189 Sorrento Valley Rd, Suite 104, San DiegoCaliforniaUSA
| | - Mark R. Ackermann
- Department of Veterinary PathologyCollege of Veterinary MedicineIowa State UniversityAmesIowaUSA
- Present address:
Director, Anatomic Veterinary Pathology DiagnosticsZoetisClear LakeIowa50428USA
| | - David Verhoeven
- Department of Veterinary Microbiology and Preventive MedicineCollege of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | - Marian L. Kohut
- Department of KinesiologyIowa State UniversityAmesIowaUSA
- Program of ImmunobiologyIowa State UniversityAmesIowaUSA
| |
Collapse
|
14
|
Elkhatib SK, Moshfegh CM, Watson GF, Schwab AD, Katsurada K, Patel KP, Case AJ. Splenic denervation attenuates repeated social defeat stress-induced T-lymphocyte inflammation. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:190-200. [PMID: 35330608 PMCID: PMC8941638 DOI: 10.1016/j.bpsgos.2021.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022] Open
Abstract
Background Post-traumatic stress disorder (PTSD) is a devastating psychological disorder. Patients with PTSD canonically demonstrate an increased risk for inflammatory diseases, as well as increased sympathetic tone and norepinephrine (NE) outflow. Yet, the exact etiology and causal nature of these physiologic changes remain unclear. Previously, we demonstrated that exogenous NE alters mitochondrial superoxide in T-lymphocytes to produce a pro-inflammatory T-helper 17 (TH17) phenotype, and observed similar TH17 polarization in a preclinical model of PTSD. Therefore, we hypothesized sympathetic-driven neuroimmune interactions could mediate psychological trauma-induced T-lymphocyte inflammation. Methods Repeated social defeat stress (RSDS) is a preclinical murine model that recapitulates the behavioral, autonomic, and inflammatory aspects of PTSD. Targeted splenic denervation (Dnx) was performed to deduce the contribution of splenic sympathetic nerves to RSDS-induced inflammation. Eighty-five C57BL/6J mice underwent Dnx or sham-operation, followed by RSDS or control paradigms. Animals were assessed for behavioral, autonomic, inflammatory, and redox profiles. Results Dnx did not alter the antisocial or anxiety-like behavior induced by RSDS. In circulation, RSDS Dnx animals exhibited diminished levels of T-lymphocyte-specific cytokines (IL-2, IL-17A, and IL-22) compared to intact animals, whereas other non-specific inflammatory cytokines (e.g., IL-6, TNF-α, and IL-10) were unaffected by Dnx. Importantly, Dnx specifically ameliorated the increases in RSDS-induced T-lymphocyte mitochondrial superoxide, TH17 polarization, and pro-inflammatory gene expression with minimal impact to non-T-lymphocyte immune populations. Conclusions Overall, our data suggest that sympathetic nerves regulate RSDS-induced splenic T-lymphocyte inflammation, but play less of a role in the behavioral and non-T-lymphocyte inflammatory phenotypes induced by this psychological trauma paradigm.
Collapse
Affiliation(s)
- Safwan K. Elkhatib
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Cassandra M. Moshfegh
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gabrielle F. Watson
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron D. Schwab
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Adam J. Case
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Texas A&M Health Science Center, Bryan, Texas
| |
Collapse
|
15
|
Santarcangelo EL, Carli G. Individual Traits and Pain Treatment: The Case of Hypnotizability. Front Neurosci 2021; 15:683045. [PMID: 34149351 PMCID: PMC8206467 DOI: 10.3389/fnins.2021.683045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Enrica Laura Santarcangelo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giancarlo Carli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
16
|
Elkhatib SK, Ross DA, Case AJ. A Forgotten Rose: Embracing the Complexity of Neuroimmune Function. Biol Psychiatry 2021; 89:e21-e23. [PMID: 33541527 PMCID: PMC8278495 DOI: 10.1016/j.biopsych.2020.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/22/2022]
Affiliation(s)
- Safwan K Elkhatib
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska.
| | - David A Ross
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
17
|
Shouman K, Benarroch EE. Peripheral neuroimmune interactions: selected review and some clinical implications. Clin Auton Res 2021; 31:477-489. [PMID: 33641054 PMCID: PMC7914391 DOI: 10.1007/s10286-021-00787-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Purpose To provide a brief and focused review on peripheral neuroimmune interactions and their implications for some clinical disorders. Methods Narrative review of the literature including of English-language articles published between 1985 and 2021 using PubMed and MEDLINE. Results Many studies on experimental models and in vitro indicate that there are close interactions between the neural and immune systems. Processes from sensory afferents and autonomic efferents co-localize with immune cells and interact at discrete anatomical sites forming neuroimmune units. These neuroimmune interactions are bidirectional and mediated by a wide range of soluble factors including neuropeptides, classical neurotransmitters, cytokines, and other molecules that mediate complex cross-talk among nerves and immune cells. Small-diameter sensory afferents express a wide range of receptors that respond directly to tissue damage or pathogen signals and to chemokines, cytokines, or other molecules released from immune cells. Reciprocally, immune cells respond to neurotransmitters released from nociceptive and autonomic fibers. Neuroimmune interactions operate both at peripheral tissues and at the level of the central nervous system. Both centrally and peripherally, glial cells have a major active role in this bidirectional communication. Conclusions Peripheral neuroimmune interactions are complex and importantly contribute to the pathophysiology of several disorders, including skin, respiratory, and intestinal inflammatory disorders typically associated with pain and altered barrier function. These interactions may be relevant for persistence of symptoms in disorders associated with intense immune activation.
Collapse
Affiliation(s)
- Kamal Shouman
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Eduardo E Benarroch
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
18
|
The anti-inflammatory effect of resistance training in hypertensive women: the role of purinergic signaling. J Hypertens 2020; 38:2490-2500. [DOI: 10.1097/hjh.0000000000002578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|