1
|
Fang H, Tian H, Liu J, Peng T, Wang D. Ginsenoside Rg1 attenuates Aβ 1-42-induced microglial cell apoptosis and inflammation in Alzheimer's disease via the GATA4/PDE4A/PI3K/AKT axis. Neuroscience 2025; 565:377-385. [PMID: 39653247 DOI: 10.1016/j.neuroscience.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Ginsenoside Rg1 (Rg1) has been shown to treat a variety of human diseases, including Alzheimer's disease (AD). However, its mechanism in AD needs further investigation. Microglial cells (BV2) were treated with Aβ1-42 to induce AD cell models. Cell viability and apoptosis were tested by cell counting kit 8 assay and flow cytometry. The protein levels of GATA-binding protein 4 (GATA4), phosphodiesterase 4A (PDE4A), autophagy-related markers, M1/M2 polarization-related markers and PI3K/AKT-related markers were detected by western blot. Inflammation factors were detected by ELISA. Jaspar and dual-luciferase reporter assay were used to evaluate the interaction between GATA4 and PDE4A. Our results showed that Rg1 promoted viability and autophagy, while suppressed apoptosis and inflammation in Aβ1-42-induced BV2 cells. Rg1 reduced GATA4 protein expression, and GATA4 upregulation reversed the regulation of Rg1 on Aβ1-42-induced BV2 cell injury. GATA4 interacted with PDE4A, and GATA4 facilitated Aβ1-42-induced BV2 cell injury by increasing PDE4A expression. Besides, GATA4 knockdown reduced PDE4A protein expression and inactivated PI3K/AKT axis, while these effects were abolished by PDE4A overexpression. In conclusion, our data suggested that Ginsenoside Rg1 inhibited microglial cell apoptosis and inflammation to attenuate AD progression by regulating the GATA4/PDE4A/PI3K/AKT axis.
Collapse
Affiliation(s)
- Houying Fang
- Department of Neurology, Hubei NO.3 People(')s Hospital of Jianghan University, Wuhan, Hubei, 430000, China
| | - Hao Tian
- Department of Neurology, Hubei NO.3 People(')s Hospital of Jianghan University, Wuhan, Hubei, 430000, China
| | - Jianlin Liu
- Department of Neurology, Hubei NO.3 People(')s Hospital of Jianghan University, Wuhan, Hubei, 430000, China
| | - Tao Peng
- Department of Neurology, Hubei NO.3 People(')s Hospital of Jianghan University, Wuhan, Hubei, 430000, China
| | - Dan Wang
- Department of Neurology, Hubei NO.3 People(')s Hospital of Jianghan University, Wuhan, Hubei, 430000, China.
| |
Collapse
|
2
|
Xia F, Hu Y, Wang Y, Xue M, Zhu L, Li Y, Zhang Y, Wang S, Wang R, Yuan Q, He Y, Yuan D, Zhang J, Yuan C. Total saponins from Panax japonicus mediate the paracrine interaction between adipocytes and macrophages to promote lipolysis in the adipose tissue during aging via the NLRP3 inflammasome/GDF3/ATGL axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156304. [PMID: 39662098 DOI: 10.1016/j.phymed.2024.156304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Adipocytic lipolysis is strongly related to the increase of visceral fat, decrease of exercise capacity, and various other metabolic syndromes during aging. It is significantly influenced by the paracrine relationship between adipocytes and the adipose tissue macrophages (ATMs), and the cytokines secreted by ATMs have endocrine effects on adjacent tissues. We previously reported that the total saponins from Panax japonicus (TSPJs) can enhance lipid metabolism. In this work, we for the first time proved that TSPJs promoted adipocytic lipolysis by preventing NLRP3 activation in ATMs to inhibit the expression of GDF3. The decrease of GDF3 by TSPJs restored the expression of the adipose triglyceride lipase (ATGL) and phosphorylated hormone-sensitive lipase (p-HSL), both of which are known to decrease with aging. Thus, the NLRP3 inflammasome/GDF3/ATGL axis may be a worthy target in developing future clinical solutions for aging-related obesity.
Collapse
Affiliation(s)
- Fangqi Xia
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Mengzhen Xue
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Leiqi Zhu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yuanyang Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Qi Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yumin He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Jihong Zhang
- Hubei Clinical Research Center for Functional Digestive Diseases of Traditional Chinese Medicine& Traditional Chinese Medicine Hospital of China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
3
|
Zeng R, Xiong Y, Lin Z, Chu X, Lv B, Lu L, Lin C, Liao J, Ouyang L, Sun Y, Dai G, Cao F, Liu G. Novel cocktail therapy based on multifunctional supramolecular hydrogel targeting immune-angiogenesis-nerve network for enhanced diabetic wound healing. J Nanobiotechnology 2024; 22:749. [PMID: 39623443 PMCID: PMC11613776 DOI: 10.1186/s12951-024-03038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Diabetes-associated chronic skin wounds present a formidable challenge due to inadequate angiogenesis and nerve regeneration during the healing process. In the present study, we introduce a groundbreaking approach in the form of a novel cocktail therapy utilizing a multifunctional supramolecular hydrogel. Formulated through the photo-crosslinking of gelatinized aromatic residues and β-cyclodextrin (β-CD), this injectable hydrogel fosters weak host-guest interactions, offering a promising solution. The therapeutic efficacy of the hydrogel is realized through its integration with adipose-derived stem cells (ADSCs) and lipid nanoparticles encapsulating ginsenoside RG1 and Stromal cell-derived factor-1 (SDF-1). This strategic combination directs ADSCs to the injury site, guiding them toward neurogenic specialization while establishing an advantageous immunomodulatory environment through macrophage reprogramming. The synergistic effects of the newly differentiated nerve cells and the regenerative cytokines secreted by ADSCs contribute significantly to enhanced angiogenesis, ultimately expediting the diabetic wound healing process. To summarize, this innovative hydrogel-based therapeutic system represents a novel perspective for the management of diabetic wounds by concurrently targeting immune response, angiogenesis, and nerve regeneration-a pivotal advancement in the quest for effective solutions in diabetic wound care.
Collapse
Affiliation(s)
- Ruiyin Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanlu Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiewen Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lizhi Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Sun
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Guandong Dai
- Department of Orthopaedics, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, 518118, Guangdong, China.
| | - Faqi Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Sana SS, Chandel AKS, Raorane CJ, Aly Aly Saad M, Kim SC, Raj V, Sangkil Lee. Recent advances in nano and micro formulations of Ginsenoside to enhance their therapeutic efficacy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156007. [PMID: 39276537 DOI: 10.1016/j.phymed.2024.156007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND AND AIMS Ginsenosides, the main component of Panax ginseng, have long been recognized for their therapeutic benefits and are thought to have neuroprotective, antidiabetic, anti-depressant, antioxidant, anti-cancer, and anti-stress properties. However, due to their low water solubility, low biomembrane permeability, gastrointestinal dysfunction, and total metabolism in the body, ginsenosides have a poor absorption profile that has hindered the therapeutic potential of these organic molecules. METHODS Initially, we broadly illuminated the several techniques of extraction of Ginsenosides using Panax quinquefolius and Panax ginseng. Subsequently, we focused on different delivery methods to improve the stability, permeability, and solubility of natural chemicals, which raises the bioavailability of ginsenoside. Lastly, we explained significance of a variety of nano and microscale delivery systems, including liposomes, ethosomes, transfersomes, metal/metal oxide systems, micro/nanoemulsions, polymeric micro/nanoparticles (NPs), liposomes, transfersomes, and micelles to increase the bioavailability of ginsenosides. RESULTS The utilization of micro/nanoscale delivery methods, such as liposome-based delivery, polymer micro/nanoparticle distribution, and micro/nanoemulsion, to increase the bioavailability of ginsenosides has recently advanced, and we have emphasized these advances in this study. Furthermore, the disadvantages of ginsenosides were also discussed, including the challenges associated with putting these delivery systems into practice in clinical settings and suggestions for further research. CONCLUSION In summary, ginsenosides-based administration has several benefits that make it a potentially useful substance for a range of therapeutic purposes.
Collapse
Affiliation(s)
- Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | | | - Mohamed Aly Aly Saad
- Department of Electrical and Computer Engineering, Georgia Tech Shenzhen Institute (GTSI), Shenzhen, Guangdong 518052, China
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Zhang W, Li F, Cheng J, Wang Y, Zheng Y, Li H, Lin M, Ruan J, Zhang Y, Wang T. Saponins from Dolichos lablab seeds with anti-inflammatory activity. Bioorg Chem 2024; 151:107692. [PMID: 39102757 DOI: 10.1016/j.bioorg.2024.107692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
As one of a traditional Chinese medicine with dual applications in both medicinal treatment and dietary consumption, the mature seeds of D. lablab were reported to be rich in saponins and have a good effect on inflammatory related diseases. However, the substance basis for its anti-inflammatory activity remains unclear. Thus, a comprehensive phytochemical investigation on triterpenoid saponins from D. lablab seeds was carried out, resulting in the isolation and identification of twenty-one new triterpenoid saponins including dolilabsaponins A1-A4, B, C, D1-D3, E-M, N1, N2 and O (1-21) along with thirteen known analogs (22-34). Notably, the known saponins, 31, 32, and 34 were obtained from Leguminosae family for the first time. The 1H and 13C NMR data of saponins 24 and 28 were firstly reported here. Additionally, lipopolysaccharide (LPS)-stimulated RAW264.7 cells model was utilized to assess inhibitory activities of compounds 1-34 on nitric oxide (NO) production. The results revealed that compounds 1-3, 9, 10, 13-15, 18, 22, 23 and 28-34 significantly suppressed the elevation of NO levels in LPS-induced RAW264.7 cells at the concentration of 30 μM, exhibiting a concentration-dependent manner at 3, 10, and 30 μM. The results suggested that compounds 1-3, 9, 10, 13-15, 18, 22, 23, and 28-34 possessed potential anti-inflammatory activity. Further western blot assay demonstrated that 1, 9, 10, 13, 14, and 18 suppressed inflammatory response via down-regulated the expression levels of inflammatory factors, tumor necrosis factor-alpha and interleukin-6.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Fei Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Jiaming Cheng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Yingying Wang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Yinuo Zheng
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Huimin Li
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Minghao Lin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Jingya Ruan
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China.
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China.
| |
Collapse
|
6
|
Gong P, Wang J, Wang S, Yang W, Yao W, Li N, Wang J, Zhao Y, Chen F, Xie J, Zhou T, Guo Y. Metabolomic analysis of the Puerarin hypoglycemic activity via AMPK-mTOR and PPARγ-NF-κB signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155546. [PMID: 38833790 DOI: 10.1016/j.phymed.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia, and its increasing prevalence is a global concern. Early diagnostic markers and therapeutic targets are essential for DM prevention and treatment. Pueraria, derived from kudzu root, is used clinically for various symptoms, and its active compound, Puerarin, shows promise in improving insulin resistance and reducing inflammation. PURPOSE This study aims to evaluate the protective effects of metformin and Puerarin at different doses in an STZ-induced DM mouse model. The intricate metabolites within the serum of STZ-induced diabetic mice were subjected to thorough investigation, thus elucidating the intricate mechanism through which Puerarin demonstrates notable efficacy in the treatment of diabetes. METHODS An STZ-induced DM mouse model is established. Mice are treated with metformin and puerarin at varying doses. Physiological, biochemical, and histomorphological assessments are performed. Metabolomics analysis is carried out on serum samples from control, DM, metformin, and medium-dose Puerarin groups. Western blot and qRT-PCR technologies are used to validate the mechanisms. RESULTS The DM mouse model replicates abnormal blood glucose, insulin levels, physiological, biochemical irregularities, as well as liver and pancreas damage. Treatment with metformin and Puerarin restores these abnormalities, reduces organ injury, and modulates AMPK, PPARγ, mTOR, and NF-κB protein and mRNA expression. Puerarin activates the AMPK-mTOR and PPARγ-NF-κB signaling pathways, regulating insulin signaling, glucolipid metabolism, and mitigating inflammatory damage. CONCLUSION This study demonstrates that Puerarin has the potential to treat diabetes by modulating key signaling pathways. The focus was on the finding that Puerarin has been shown to improve insulin signaling, glucolipid metabolism and attenuate inflammatory damage through the modulation of the AMPK-mTOR and PPARγ-NF-κB pathways. The discovery of Puerarin's favorable protective effect and extremely complex mechanism highlights its prospect in the treatment of diabetes and provides theoretical support for its comprehensive development and utilization.
Collapse
Affiliation(s)
- Pin Gong
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China.
| | - Jiating Wang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Shuang Wang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Wenjuan Yang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Wenbo Yao
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Nan Li
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Jing Wang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Yanni Zhao
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi' an University of Science and Technology, Xi'an 710054, China
| | - Jianwu Xie
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Ting Zhou
- China Certification & Inspection Group shaanxi Co, Ltd., Xi'an 710054, China
| | - Yuxi Guo
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi' an 710021, China.
| |
Collapse
|
7
|
Wang YT, Wang XL, Lei L, Zhang Y. Efficacy of ginsenoside Rg1 on rodent models of depression: A systematic review and meta-analysis. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06649-y. [PMID: 39039242 DOI: 10.1007/s00213-024-06649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/07/2024] [Indexed: 07/24/2024]
Abstract
RATIONALE Depression is a prevalent psychiatric disease, and ginsenoside Rg1 is a bioactive compound extracted from the root of Panax ginseng C.A.Mey. To systematically investigate the effectiveness of Rg1 in rodent models of depression and provide evidence-based references for treating depression. METHODS Electronic searches for rodent studies were performed from inception to October 2022, e.g., PUBMED and EMBASE. Data extraction and quality evaluation were performed for the references, and meta-analysis was performed on the selected data using Review Manager 5.3.5. The outcomes were analyzed via a random-effect model and presented as mean difference (MD) with 95% confidence intervals (CIs). RESULTS A total of 24 studies and 678 animals were included in this meta-analysis. Rg1 remarkably improved depressive-like symptoms of depressed rodents, including the sucrose preference test (25.08, 95% CI: 20.17-30.00, Z = 10.01, P < 0.00001), forced swimming test (MD = -37.69, 95% CI: (-45.18, -30.2); Z = 9.86, P < 0.00001), and the tail suspension test (MD = -22.93, seconds, 95% CI: (-38.49, -7.37); Z = 2.89, P = 0.004). CONCLUSIONS The main antidepressant mechanism of Rg1 was concluded to be the neurotransmitter system, oxidant stress system, and inflammation. Conclusively, this study indicated the possible protective and therapeutic effects of Rg1 for treating depression via multiple mechanisms.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
8
|
Xie J, Liu X, Wu B, Chen B, Song Q, Guan Y, Gong Y, Yang C, Lin J, Huang M, Tan X, Lai R, Lin X, Zhang S, Xie X, Chen X, Zhang C, Yang M, Nong H, Zhao X, Xia L, Zhou W, Xiao G, Jiang Q, Zou W, Chen D, Lu D, Liu J, Bai X. Bone transport induces the release of factors with multi-tissue regenerative potential for diabetic wound healing in rats and patients. Cell Rep Med 2024; 5:101588. [PMID: 38781961 PMCID: PMC11228591 DOI: 10.1016/j.xcrm.2024.101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/08/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Tibial cortex transverse distraction is a surgical method for treating severe diabetic foot ulcers (DFUs), but the underlying mechanism is unclear. We show that antioxidant proteins and small extracellular vesicles (sEVs) with multiple-tissue regenerative potential are released during bone transport (BT) in humans and rats. These vesicles accumulate in diabetic wounds and are enriched with microRNAs (miRNAs) (e.g., miR-494-3p) that have high regenerative activities that improve the circulation of ischemic lower limbs while also promoting neovascularization, fibroblast migration, and nerve fiber regeneration. Deletion of miR-494-3p in rats reduces the beneficial effects of BT on diabetic wounds, while hydrogels containing miR-494-3p and reduced glutathione (GSH) effectively repair them. Importantly, the ginsenoside Rg1 can upregulate miR-494-3p, and a randomized controlled trial verifies that the regimen of oral Rg1 and GSH accelerates wound healing in refractory DFU patients. These findings identify potential functional factors for tissue regeneration and suggest a potential therapy for DFUs.
Collapse
Affiliation(s)
- Jing Xie
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xuhua Liu
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Biaoliang Wu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Bochong Chen
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiancheng Song
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuan Guan
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Yuanxun Gong
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Chengliang Yang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Jinbo Lin
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingfeng Huang
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xinyu Tan
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Ruijun Lai
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Xiaozhen Lin
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Sheng Zhang
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoling Xie
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Chen
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chunyuan Zhang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Mei Yang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Huijiao Nong
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Di Chen
- Research Center for Human Tissue and Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China.
| | - Jia Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China.
| | - Xiaochun Bai
- Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
9
|
Zhou Z, Hu C, Cui B, You L, An R, Liang K, Wang X. Ginsenoside Rg1 Suppresses Pyroptosis via the NF-κB/NLRP3/GSDMD Pathway to Alleviate Chronic Atrophic Gastritis In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38855973 DOI: 10.1021/acs.jafc.4c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Chronic atrophic gastritis (CAG) is characterized by the loss of gastric glandular cells, which are replaced by the intestinal-type epithelium and fibrous tissue. Ginsenoside Rg1 (Rg1) is the prevalent ginsenoside in ginseng, with a variety of biological activities, and is usually added to functional foods. As a novel form of programmed cell death (PCD), pyroptosis has received substantial attention in recent years. Despite the numerous beneficial effects, the curative impact of Rg1 on CAG and whether its putative mechanism is partially via inhibiting pyroptosis still remain unknown. To address this gap, we conducted a study to explore the mechanisms underlying the potential anti-CAG effect of Rg1. We constructed a CAG rat model using a multifactor comprehensive method. A cellular model was developed by using 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) combined with Nigericin as a stimulus applied to GES-1 cells. After Rg1 intervention, the levels of inflammatory indicators in the gastric tissue/cell supernatant were reduced. Rg1 relieved oxidative stress via reducing the myeloperoxidase (MPO) and malonaldehyde (MDA) levels in the gastric tissue and increasing the level of superoxide dismutase (SOD). Additionally, Rg1 improved MNNG+Nigericin-induced pyroptosis in the morphology and plasma membrane of the cells. Further research supported novel evidence for Rg1 in the regulation of the NF-κB/NLRP3/GSDMD pathway and the resulting pyroptosis underlying its therapeutic effect. Moreover, by overexpression and knockout of GSDMD in GES-1 cells, our findings suggested that GSDMD might serve as the key target in the effect of Rg1 on suppressing pyroptosis. All of these offer a potential theoretical foundation for applying Rg1 in ameliorating CAG.
Collapse
Affiliation(s)
- Zehua Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Hu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bo Cui
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lisha You
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui An
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kun Liang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinhong Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
10
|
Liang P, Zhang J, Hou J, Feng R, Yin J. Pharmacokinetics study of ginsenoside Rg1 liposome by pulmonary administration. Heliyon 2024; 10:e29906. [PMID: 38720740 PMCID: PMC11076820 DOI: 10.1016/j.heliyon.2024.e29906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Ginsenoside Rg1 (Rg1), a monomer saponin component, is one of the components with the highest content in total saponins of Panaxnotoginseng. It had various pharmacological effects. The bioavailability of oral tablets is only 1-20 %, and it is eliminated quickly in the blood. The development of new dosage forms and new routes of administration of ginsenoside Rg1 with sustained release and high bioavailability has become a significant problem to be solved. The Rg1 liposomes study used a thin film dispersion ultrasound method for its preparation. This study focused the pharmacokinetic parameters of ginsenoside Rg1 liposomes in rats through the lung perfusion method. Ginsenoside Rg1 liposomes were round and uniform in shape, the particle size was 2-3 μm, and the encapsulation efficiency of ginsenoside Rg1 liposome was 51.2 %. Results showed that, after pulmonary administration of ginsenoside Rg1, the time of ginsenoside Rg1 detected by Rg1 liposomes was longer than that of Rg1 solution, the relative bioavailability of ginsenoside Rg1 liposome lung administration AUC liposome/AUC solution = 122.67 %. These results provided the scientific theoretical and experimental basis for further development of new dosage forms and new routes of administration of ginsenoside Rg1.
Collapse
Affiliation(s)
- Ping Liang
- Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
| | - Jie Zhang
- Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
| | - Juan Hou
- Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
| | - Rui Feng
- Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
- Tianjin University, Nankai District, 300072, Tianjin, China
| | - Jintuo Yin
- Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
| |
Collapse
|
11
|
Kim TH. Ginsenosides for the treatment of insulin resistance and diabetes: Therapeutic perspectives and mechanistic insights. J Ginseng Res 2024; 48:276-285. [PMID: 38707641 PMCID: PMC11068994 DOI: 10.1016/j.jgr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a systemic disorder of energy metabolism characterized by a sustained elevation of blood glucose in conjunction with impaired insulin action in multiple peripheral tissues (i.e., insulin resistance). Although extensive research has been conducted to identify therapeutic targets for the treatment of DM, its global prevalence and associated mortailty rates are still increasing, possibly because of challenges related to long-term adherence, limited efficacy, and undesirable side effects of currently available medications, implying an urgent need to develop effective and safe pharmacotherapies for DM. Phytochemicals have recently drawn attention as novel pharmacotherapies for DM based on their clinical relevance, therapeutic efficacy, and safety. Ginsenosides, pharmacologically active ingredients primarily found in ginseng, have long been used as adjuvants to traditional medications in Asian countries and have been reported to exert promising therapeutic efficacy in various metabolic diseases, including hyperglycemia and diabetes. This review summarizes the current pharmacological effects of ginsenosides and their mechanistic insights for the treatment of insulin resistance and DM, providing comprehensive perspectives for the development of novel strategies to treat DM and related metabolic complications.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Liu X, Li J, Huang Q, Jin M, Huang G. Ginsenoside Rh2 shifts tumor metabolism from aerobic glycolysis to oxidative phosphorylation through regulating the HIF1-α/PDK4 axis in non-small cell lung cancer. Mol Med 2024; 30:56. [PMID: 38671369 PMCID: PMC11055298 DOI: 10.1186/s10020-024-00813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Ginsenoside Rh2 (G-Rh2), a steroidal compound extracted from roots of ginseng, has been extensively studied in tumor therapy. However, its specific regulatory mechanism in non-small cell lung cancer (NSCLC) is not well understood. Pyruvate dehydrogenase kinase 4 (PDK4), a central regulator of cellular energy metabolism, is highly expressed in various malignant tumors. We investigated the impact of G-Rh2 on the malignant progression of NSCLC and how it regulated PDK4 to influence tumor aerobic glycolysis and mitochondrial function. METHOD We examined the inhibitory effect of G-Rh2 on NSCLC through I proliferation assay, migration assay and flow cytometry in vitro. Subsequently, we verified the ability of G-Rh2 to inhibit tumor growth and metastasis by constructing subcutaneous tumor and metastasis models in nude mice. Proteomics analysis was conducted to analyze the action pathways of G-Rh2. Additionally, we assessed glycolysis and mitochondrial function using seahorse, PET-CT, Western blot, and RT-qPCR. RESULT Treatment with G-Rh2 significantly inhibited tumor proliferation and migration ability both in vitro and in vivo. Furthermore, G-Rh2 inhibited the tumor's aerobic glycolytic capacity, including glucose uptake and lactate production, through the HIF1-α/PDK4 pathway. Overexpression of PDK4 demonstrated that G-Rh2 targeted the inhibition of PDK4 expression, thereby restoring mitochondrial function, promoting reactive oxygen species (ROS) accumulation, and inducing apoptosis. When combined with sodium dichloroacetate, a PDK inhibitor, it complemented the inhibitory capacity of PDKs, acting synergistically as a detoxifier. CONCLUSION G-Rh2 could target and down-regulate the expression of HIF-1α, resulting in decreased expression of glycolytic enzymes and inhibition of aerobic glycolysis in tumors. Additionally, by directly targeting mitochondrial PDK, it elevated mitochondrial oxidative phosphorylation and enhanced ROS accumulation, thereby promoting tumor cells to undergo normal apoptotic processes.
Collapse
Affiliation(s)
- Xiyu Liu
- Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, 201318, Shanghai, China
| | - Jingjing Li
- Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, 201318, Shanghai, China
| | - Qingqing Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, 201318, Shanghai, China.
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, 201318, Shanghai, China.
| | - Gang Huang
- Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China.
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, 201318, Shanghai, China.
| |
Collapse
|
13
|
Zhou H, Liu Y, Su Y, Ji P, Kong L, Sun R, Zhang D, Xu H, Li W, Li W. Ginsenoside Rg1 attenuates lipopolysaccharide-induced chronic liver damage by activating Nrf2 signaling and inhibiting inflammasomes in hepatic cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117794. [PMID: 38244950 DOI: 10.1016/j.jep.2024.117794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng C. A. Meyer) is a precious traditional Chinese medicine with multiple pharmacological effects. Ginsenoside Rg1 is a main active ingredient extracted from ginseng, which is known for its age-delaying and antioxidant effects. Increasing evidence indicates that Rg1 exhibits anti-inflammatory properties in numerous diseases and may ameliorate oxidative damage and inflammation in many chronic liver diseases. AIM OF THE STUDY Chronic inflammatory injury in liver cells is an important pathological basis of many liver diseases. However, its mechanism remains unclear and therapeutic strategies to prevent its development need to be further explored. Thus, our study is to delve the protective effect and mechanism of Rg1 against chronic hepatic inflammatory injuries induced by lipopolysaccharide (LPS). MATERIALS AND METHODS The chronic liver damage model in mice was build up by injecting intraperitoneally with LPS (200 μg/kg) for 21 days. Serum liver function indicators and levels of IL-1β, IL-6 and TNF-α were examined by using corresponding Kits. Hematoxylin and Eosin (H&E), Periodic acid-Schiff (PAS), and Masson stains were utilized to visualize hepatic histopathological damage, glycogen deposition, and liver fibrosis. The nuclear import of p-Nrf2 and the generation of Col4 in the liver were detected by IF, while IHC was employed to detect the expressions of NLRP3 and AIM2 in the hepatic. The Western blot and q-PCR were used to survey the expressions of proteins and mRNAs of fibrosis and apoptosis, and the expressions of Keap1, p-Nrf2 and NLRP3, NLRP1, AIM2 inflammasome-related proteins in mouse liver. The cell viability of human hepatocellular carcinoma cells (HepG2) was detected by Cell Counting Kit-8 to select the action concentration of LPS, and intracellular ROS generation was detected using a kit. The expressions of Nuclear Nrf2, HO-1, NQO1 and NLRP3, NLRP1, and AIM2 inflammasome-related proteins in HepG2 cells were detected by Western blot. Finally, the feasibility of the molecular interlinking between Rg1 and Nrf2 was demonstrated by molecular docking. RESULTS Rg1 treatment for 21 days decreased the levels of ALT, AST, and inflammatory factors of serum IL-1β, IL-6 and TNF-α in mice induced by LPS. Pathological results indicated that Rg1 treatment obviously alleviated hepatocellular injury and apoptosis, inflammatory cell infiltration and liver fibrosis in LPS stimulated mice. Rg1 promoted Keap1 degradation and enhanced the expressions of p-Nrf2, HO-1 and decreased the levels of NLRP1, NLRP3, AIM2, cleaved caspase-1, IL-1β and IL-6 in livers caused by LPS. Furthermore, Rg1 effectively suppressed the rise of ROS in HepG2 cells induced by LPS, whereas inhibition of Nrf2 reversed the role of Rg1 in reducing the production of ROS and NLRP3, NLRP1, and AIM2 expressions in LPS-stimulated HepG2 cells. Finally, the molecular docking illustrated that Rg1 exhibits a strong affinity towards Nrf2. CONCLUSION The findings indicate that Rg1 significantly ameliorates chronic liver damage and fibrosis induced by LPS. The mechanism may be mediated through promoting the dissociation of Nrf2 from Keap1 and then activating Nrf2 signaling and further inhibiting NLRP3, NLRP1, and AIM2 inflammasomes in liver cells.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yong Su
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Pengmin Ji
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Liangliang Kong
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Ran Sun
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Duoduo Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Hanyang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weiping Li
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| | - Weizu Li
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
14
|
You J, Li Y, Chong W. The role and therapeutic potential of SIRTs in sepsis. Front Immunol 2024; 15:1394925. [PMID: 38690282 PMCID: PMC11058839 DOI: 10.3389/fimmu.2024.1394925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Jiaqi You
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Chong
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Yu L, Hao YJ, Ren ZN, Zhu GD, Zhou WW, Lian X, Wu XJ. Ginsenoside Rg1 relieves rat intervertebral disc degeneration and inhibits IL-1β-induced nucleus pulposus cell apoptosis and inflammation via NF-κB signaling pathway. In Vitro Cell Dev Biol Anim 2024; 60:287-299. [PMID: 38485818 PMCID: PMC11014818 DOI: 10.1007/s11626-024-00883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/09/2024] [Indexed: 04/13/2024]
Abstract
The study aimed to investigate the effect of ginsenoside Rg1 on intervertebral disc degeneration (IVDD) in rats and IL-1β-induced nucleus pulposus (NP) cells, and explore its underlying mechanism. Forty IVDD rat models were divided into the IVDD group, low-dose (L-Rg1) group (intraperitoneal injection of 20 mg/kg/d ginsenoside Rg1), medium-dose (M-Rg1) group (intraperitoneal injection of 40 mg/kg/d ginsenoside Rg1), and high-dose (H-Rg1) group (intraperitoneal injection of 80 mg/kg/d ginsenoside Rg1). The pathological change was observed by HE and safranin O-fast green staining. The expression of IL-1β, IL-6, TNF-α, MMP3, aggrecan, and collagen II was detected. The expression of NF-κB p65 in IVD tissues was detected. Rat NP cells were induced by IL-1β to simulate IVDD environment and divided into the control group, IL-1β group, and 20, 50, and 100 µmol/L Rg1 groups. The cell proliferation activity, the apoptosis, and the expression of IL-6, TNF-α, MMP3, aggrecan, collagen II, and NF-κB pathway-related protein were detected. In IVDD rats, ginsenoside Rg1 improved the pathology of IVD tissues; suppressed the expression of IL-1β, IL-6, TNF-α, aggrecan, and collagen II; and inhibited the expression of p-p65/p65 and nuclear translocation of p65, to alleviate the IVDD progression. In the IL-1β-induced NP cells, ginsenoside Rg1 also improved the cell proliferation and inhibited the apoptosis and the expression of IL-6, TNF-α, aggrecan, collagen II, p-p65/p65, and IκK in a dose-dependent manner. Ginsenoside Rg1 alleviated IVDD in rats and inhibited apoptosis, inflammatory response, and ECM degradation in IL-1β-induced NP cells. And Rg1 may exert its effect via inhibiting the activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Ying-Jie Hao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Zhi-Nan Ren
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Guang-Duo Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Wei-Wei Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Xu Lian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Xue-Jian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China.
| |
Collapse
|
16
|
Zhang Z, Jiang Q, Huang L, Huang J, Wan Q, Zhong Y, Liu D, Zhou W, Zhao H. Ginsenoside Rg1 regulated subpopulation homeostasis of Tfh cells ameliorate experimental colitis by inhibiting TLR/MyD88 pathway. J Funct Foods 2024; 113:106011. [DOI: 10.1016/j.jff.2024.106011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
|
17
|
Gong P, Long H, Guo Y, Wang Z, Yao W, Wang J, Yang W, Li N, Xie J, Chen F. Chinese herbal medicines: The modulator of nonalcoholic fatty liver disease targeting oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116927. [PMID: 37532073 DOI: 10.1016/j.jep.2023.116927] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a natural treasure trove; their secondary metabolites participate in several pharmacological processes, making them a crucial component in the synthesis of novel pharmaceuticals and serving as a reserve resource foundation in this process. Nonalcoholic fatty liver disease (NAFLD) is associated with the risk of progression to hepatitis and liver cancer. The "Treatise on Febrile Diseases," "Compendium of Materia Medica," and "Thousand Golden Prescriptions" have listed herbal remedies to treat liver diseases. AIM OF THE REVIEW Chinese herbal medicines have been widely used for the prevention and treatment of NAFLD owing to their efficacy and low side effects. The production of reactive oxygen species (ROS) during NAFLD, and the impact and potential mechanism of ROS on the pathogenesis of NAFLD are discussed in this review. Furthermore, common foods and herbs that can be used to prevent NAFLD, as well as the structure-activity relationships and potential mechanisms, are discussed. METHODS Web of Science, PubMed, CNKI database, Google Scholar, and WanFang database were searched for natural products that have been used to treat or prevent NAFLD in the past five years. The primary search was performed using the following keywords in different combinations in full articles: NAFLD, herb, natural products, medicine, and ROS. More than 400 research papers and review articles were found and analyzed in this review. RESULTS By classifying and discussing the literature, we obtained 86 herbaceous plants, 28 of which were derived from food and 58 from Chinese herbal medicines. The mechanism of NAFLD was proposed through experimental studies on thirteen natural compounds (quercetin, hesperidin, rutin, curcumin, resveratrol, epigallocatechin-3-gallate, salvianolic acid B, paeoniflorin, ginsenoside Rg1, ursolic acid, berberine, honokiol, emodin). The occurrence and progression of NAFLD could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce hepatic cell injuries caused by excessive ROS. CONCLUSION This review summarizes the natural products and routinely used herbs (prescription) in the prevention and treatment of NAFLD. Firstly, the mechanisms by which natural products improve NAFLD through antioxidant pathways are elucidated. Secondly, the potential of traditional Chinese medicine theory in improving NAFLD is discussed, highlighting the safety of food-medicine homology and the broader clinical potential of multi-component formulations in improving NAFLD. Aiming to provide theoretical basis for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hui Long
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxi Guo
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jing Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nan Li
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianwu Xie
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
18
|
Yu T, Xu J, Wang Q, Han X, Tu Y, Wang Y, Luo W, Wang M, Liang G. 20(S)-ginsenoside Rh2 inhibits angiotensin-2 mediated cardiac remodeling and inflammation associated with suppression of the JNK/AP-1 pathway. Biomed Pharmacother 2023; 169:115880. [PMID: 37956481 DOI: 10.1016/j.biopha.2023.115880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Enhanced levels of angiotensin-2 (Ang-II) causes hypertensive heart failure (HHF) through non-hemodynamical and hemodynamical alterations. 20(S)-ginsenoside Rh2 (20(S)-Rh2) is a natural ginseng compound with numerous cardiovascular benefits. This investigation elucidates the influence of 20(S)-Rh2 on Ang-II-induced heart failure and cardiac alterations. METHODS Ang-II was administered in C57BL/6 mice for 4 weeks to induce HHF. In the last 2 weeks of treatment, 20(S)-Rh2 was orally administered in mice to assess the potential 20(S)-Rh2 mechanism. Subsequently, RNA sequencing was carried out. RESULTS It was indicated that 20(S)-Rh2 suppresses myocardial fibrosis, hypertrophy, and inflammation, thereby inhibiting cardiac disruption in Ang-II-challenged mice without affecting blood pressure. According to the RNA sequencing data, this cardio-protective effect was linked with the (JNK)/AP 1 pathway. 20(S)-Rh2 alleviated heart tissue and cardiomyocytes inflammation by inhibiting the Ang-II-mediated JNK/AP-1 pathway. Within cardiomyocytes, JNK or AP-1 absence abolished the anti-inflammatory effects of 20(S)-Rh2. CONCLUSION This study investigation indicated that 20(S)-Rh2 prevents cardiovascular dysfunction induced by Ang-II induced by decreasing JNK-regulated inflammatory responses, providing evidence for its use as an efficient regimen for HHF.
Collapse
Affiliation(s)
- Tianxiang Yu
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiachen Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qinyan Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Han
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Tu
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengyang Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, China.
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
19
|
Zhang YY, Li MZ, Shen HH, Abudukeyoumu A, Xie F, Ye JF, Xu FY, Sun JS, Li MQ. Ginsenosides in endometrium-related diseases: Emerging roles and mechanisms. Biomed Pharmacother 2023; 166:115340. [PMID: 37625321 DOI: 10.1016/j.biopha.2023.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Ginsenosides, agents extracted from an important herb (ginseng), are expected to provide new therapies for endometrium-related diseases. Based on the molecular types of ginsenosides, we reviewed the main pharmacological effects of ginsenosides against endometrium-related diseases (e.g., endometrial cancers, endometriosis, and endometritis). The mechanism of action of ginsenosides involves inducing apoptosis of endometrium-related cells, promoting autophagy of endometrium-related cells, regulating epithelial-mesenchymal transition (EMT) in endometrium-related cells, and activating the immune system to kill cells associated with endometrial diseases. We hope to provide a theoretical foundation for the treatment of endometrium-related diseases by ginsenosides.
Collapse
Affiliation(s)
- Yang-Yang Zhang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Mao-Zhi Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Hui-Hui Shen
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ayitila Abudukeyoumu
- Department of Gynecology, Shanghai Jiading Maternal Child Health Hospital, Shanghai 201800, People's Republic of China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Jiang-Feng Ye
- Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Feng-Yuan Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jian-Song Sun
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Ming-Qing Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.
| |
Collapse
|
20
|
Yang C, Liu H, Xie Z, Yang Q, Du L, Xie C. The protective role of shenqi compound in type 2 diabetes: A comprehensive investigation of pancreatic β-cell function and mass. Biomed Pharmacother 2023; 166:115287. [PMID: 37572639 DOI: 10.1016/j.biopha.2023.115287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Type 2 diabetes (T2D) is a prevalent metabolic disorder characterized by impaired insulin secretion and insulin resistance, resulting in elevated blood glucose levels. The dysfunction and loss of pancreatic β-cells, responsible for producing insulin, contribute to the development of T2D. Traditional Chinese medicine (TCM) has emerged as a potential source of innovative therapeutic interventions. However, limited research exists on Chinese herbal formulations specifically targeting the protection of pancreatic β-cell function and mass. One such formulation is the Shenqi compound (SQC), widely used in China and consisting of Panax Ginseng, Astragali Radix, Rhizoma Dioscoreae, Corni Fructus, Rehmanniae Radix, Salviae Miltiorrhizae Radix et Rhizoma, Radix Trichosanthis, and Rhei Radix et Rhizoma. Understanding the mechanisms underlying the therapeutic effects of SQC is crucial for developing novel treatment strategies for T2D. This study aims to comprehensively investigate the scientific evidence supporting the role of SQC in alleviating T2D by targeting the protection of pancreatic β-cell function and mass. Spontaneously diabetic GK rats were used as the animal model, receiving SQC (14.4 g/kg/d) for 8 weeks. The results demonstrate multiple beneficial effects of SQC, including significant control of blood glucose levels (P < 0.05), inhibition of insulin resistance (measured by Western Blot), reduction of hyperinsulinemia (P < 0.05), attenuation of oxidative stress (P < 0.05), suppression of inflammation (P < 0.05), protection against islet hypertrophy and beta cell proliferation (evaluated through pathological staining), and inhibition of β-cell apoptosis and senescence (also assessed through pathological staining). These findings indicate the promotion of β-cell survival and function. In vitro experiments using isolated islets further support these results, revealing improvements in insulin secretion (P < 0.05) and β-cell function following SQC therapy (P < 0.05). This represents a significant breakthrough in addressing β-cell dysfunction and preserving mass within the context of TCM. Overall, SQC shows promise as a natural therapeutic approach for T2D, with potential benefits in preserving pancreatic β-cell function and mass. This enhances the practical applicability and significance of the research by bridging the gap between experimental findings and clinical practice, thereby providing important clinical value in TCM treatment of T2D. Further research is necessary to elucidate its precise mechanisms of action and optimize its clinical application.
Collapse
Affiliation(s)
- Chan Yang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China.
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM regulating metabolic diseases key Laboratory of Sichuan Province, 610075 Chengdu, Sichuan, China
| | - Ziyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM regulating metabolic diseases key Laboratory of Sichuan Province, 610075 Chengdu, Sichuan, China
| | - Qiangfei Yang
- Jianyang City People's Hospital, 610040 Sichuan, China
| | - Lian Du
- Chengdu University of Traditional Chinese Medicine, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM regulating metabolic diseases key Laboratory of Sichuan Province, 610075 Chengdu, Sichuan, China.
| |
Collapse
|
21
|
Xu J, Zhang Z, Ren X, Zhang Y, Zhou Y, Lan X, Guo L. In situ photo-crosslinked hydrogel promotes oral mucosal wound healing through sustained delivery of ginsenoside Rg1. Front Bioeng Biotechnol 2023; 11:1252574. [PMID: 37840668 PMCID: PMC10569426 DOI: 10.3389/fbioe.2023.1252574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Oral mucosal wounds exhibit an increased susceptibility to inflammation as a consequence of their direct exposure to a diverse range of microorganisms. This causes pain, slow healing, and other complications that interfere with patients' daily activities like eating and speaking. Consequently, patients experience a significant decline in their overall quality of life. Therefore, the pursuit of novel treatment approaches is of great importance. In this study, ginsenoside Rg1, a natural active substance extracted from ginseng root, was chosen as a therapeutic agent. It was encapsulated in a screened photo-crosslinked hydrogel scaffold for the treatment of mucosal defects in the rat palate. The results demonstrated that Rg1-hydrogel possessed excellent physical and chemical properties, and that oral mucosa wounds treated with Rg1-hydrogel exhibited the greatest healing performance, as evidenced by more pronounced wound re-epithelialization, increased collagen deposition, and decreased inflammatory infiltration. Subsequent investigations in molecular biology confirmed that Rg1-hydrogel stimulated the secretion of repair-related factors and inhibited the secretion of inflammatory factors. This study demonstrated that the hydrogel containing ginsenoside Rg1 significantly promotes oral mucosal tissue healing in vivo. Based on the findings, it can be inferred that the Rg1-hydrogel has promising prospects for the therapeutic management of oral mucosal wounds.
Collapse
Affiliation(s)
- Jie Xu
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Zhenghao Zhang
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Xiaofeng Ren
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Yunan Zhang
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Yang Zhou
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Xiaorong Lan
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Ling Guo
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| |
Collapse
|
22
|
Xie Q, Zhang X, Zhou Q, Xu Y, Sun L, Wen Q, Wang W, Chen Q. Antioxidant and anti-inflammatory properties of ginsenoside Rg1 for hyperglycemia in type 2 diabetes mellitus: systematic reviews and meta-analyses of animal studies. Front Pharmacol 2023; 14:1179705. [PMID: 37745069 PMCID: PMC10514510 DOI: 10.3389/fphar.2023.1179705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/02/2023] [Indexed: 09/26/2023] Open
Abstract
Background: According to existing laboratory data, ginsenoside Rg1 may help cure diabetes and its complications by reducing oxidative stress (OS) and managing inflammation. However, this conclusion lacks reliability and is unclear. As a result, the purpose of this systematic review and meta-analysis was to evaluate the antioxidant and anti-inflammatory effects of ginsenoside Rg1 in the treatment of diabetes and its complications. Methods: We searched for relevant studies published through December 2022, including electronic bibliographic databases such as PubMed, EMBASE, Web of Science, CNKI, and Wanfang. The SYstematic Review Center for Laboratory Animal Experimentation Risk of Bias (SYRCLE RoB) tool was used to conduct a meta-analysis to assess the methodological quality of animal research. The meta-analysis was conducted using RevMan5.4 software, following the Cochrane Handbook for Systematic Reviews of Interventions. This study is registered in the International Systems Review Prospective Registry (PROSPERO) as CRD42023386830. Results: Eighteen eligible studies involving 401 animals were included. Ginsenoside Rg1 was significantly correlated with blood glucose (BG), insulin levels, body weight, superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels. In addition, according to subgroup analysis, the hypoglycemic, anti-inflammatory, and antioxidant effects of ginsenoside Rg1 in type 2 diabetic animals were not affected by experimental species, modeling, experimental drug dosage, or course of treatment. Conclusion: This meta-analysis presents a summary of the hypoglycemic effects of ginsenoside Rg1, which are achieved through anti-inflammatory and antioxidant mechanisms. These findings provide evidence-based support for the medical efficacy of ginsenoside Rg1. Specifically, ginsenoside Rg1 reduced MDA levels and restored SOD activity to exert its antioxidant activity. It had a positive effect on the reduction of IL-6 and TNF-α levels. However, the inclusion of studies with low methodological quality and the presence of publication bias may undermine the validity of the results. Further investigation with a more rigorous experimental design and comprehensive studies is necessary to fully understand the specific glycemic mechanisms of ginsenosides. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier https://CRD42023386830.
Collapse
Affiliation(s)
- Qian Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoran Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumei Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lisha Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Wen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Wang
- School of Biomedical Sciences, Mianyang Normal University, Mianyang, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Niu Y, Zhang J, Shi D, Zang W, Niu J. Glycosides as Potential Medicinal Components for Ulcerative Colitis: A Review. Molecules 2023; 28:5210. [PMID: 37446872 DOI: 10.3390/molecules28135210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic, non-specific disease of unknown etiology. The disease develops mainly in the rectum or colon, and the main clinical symptoms include abdominal pain, diarrhea, and purulent bloody stools, with a wide variation in severity. The specific causative factors and pathogenesis of the disease are not yet clear, but most scholars believe that the disease is caused by the interaction of genetic, environmental, infectious, immune, and intestinal flora factors. As for the treatment of UC, medications are commonly used in clinical practice, mainly including aminosalicylates, glucocorticoids, and immunosuppressive drugs. However, due to the many complications associated with conventional drug therapy and the tendency for UC to recur, there is an urgent need to discover new, safer, and more effective drugs. Natural compounds with biodiversity and chemical structure diversity from medicinal plants are the most reliable source for the development of new drug precursors. Evidence suggests that glycosides may reduce the development and progression of UC by modulating anti-inflammatory responses, inhibiting oxidative stress, suppressing abnormal immune responses, and regulating signal transduction. In this manuscript, we provide a review of the epidemiology of UC and the available drugs for disease prevention and treatment. In addition, we demonstrate the protective or therapeutic role of glycosides in UC and describe the possible mechanisms of action to provide a theoretical basis for preclinical studies in drug development.
Collapse
Affiliation(s)
- Yating Niu
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Jun Zhang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Dianhua Shi
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Weibiao Zang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianguo Niu
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
24
|
Zhang R, Zeng M, Zhang X, Zheng Y, Lv N, Wang L, Gan J, Li Y, Jiang X, Yang L. Therapeutic Candidates for Alzheimer's Disease: Saponins. Int J Mol Sci 2023; 24:10505. [PMID: 37445682 DOI: 10.3390/ijms241310505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Drug development for Alzheimer's disease, the leading cause of dementia, has been a long-standing challenge. Saponins, which are steroid or triterpenoid glycosides with various pharmacological activities, have displayed therapeutic potential in treating Alzheimer's disease. In a comprehensive review of the literature from May 2007 to May 2023, we identified 63 references involving 40 different types of saponins that have been studied for their effects on Alzheimer's disease. These studies suggest that saponins have the potential to ameliorate Alzheimer's disease by reducing amyloid beta peptide deposition, inhibiting tau phosphorylation, modulating oxidative stress, reducing inflammation, and antiapoptosis. Most intriguingly, ginsenoside Rg1 and pseudoginsenoside-F11 possess these important pharmacological properties and show the best promise for the treatment of Alzheimer's disease. This review provides a summary and classification of common saponins that have been studied for their therapeutic potential in Alzheimer's disease, showcasing their underlying mechanisms. This highlights the promising potential of saponins for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yawen Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
25
|
Chen X, Chu X, Li X, Cao F, Guo Q, Wang J. Non-thermal plasma modulation of the interaction between whey protein isolate and ginsenoside Rg 1 to improve the rheological and oxidative properties of emulsion. Food Res Int 2023; 165:112548. [PMID: 36869457 DOI: 10.1016/j.foodres.2023.112548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Molecular interaction forces regulate the interfacial properties of oil-in-water emulsion and play a key role in the rheology and stability of the emulsion in the food industry. In this study, the effects of non-thermal plasma (NTP) treatment on the structural and functional properties of whey protein isolate (WPI) and its binding interaction with ginsenoside Rg1 (GR1) were investigated. The results based on surface hydrophobicity, infrared spectroscopy and fluorescence spectroscopy test showed that the NTP treatment induced the unfolding of the structure of WPI and promoted the binding affinity between WPI and GR1. By comparing with untreated WPI (an α-helix content of 19.63 % and a β-sheet content of 31.66 %), there was a greater decrease in α-helix content and an increase in β-sheet content of WPI in N20-WPI (α-helix = 9.63 %, β-sheet = 39.63 %) and N20-WPI-GR1 (α-helix = 4.98 %, β-sheet = 48.66 %) groups. Importantly, the NTP treatment increased the interfacial adsorption and antioxidant capacity of the WPI-GR1 complexes, which contributed to the improvement of the rheological properties and oxidation stability of the emulsion. As a result, the NTP treatment could markedly improve the rheological and antioxidative properties of the WPI-GR1 complexes and the NTP-treated WPI-GR1 emulsions was more stable than that untreated. The present research indicated that NTP-treated formation of protein-saponin complexes could enhance the functional properties of the proteins, thus expanding their application as functional ingradients in nutritionally fortified food.
Collapse
Affiliation(s)
- Xianqiang Chen
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyu Chu
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xue Li
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fuliang Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Qirong Guo
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahong Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
26
|
Huang L, Xiong S, Liu H, Li M, Zhang R, Liu Y, Hu X. Bioinformatics Analysis of the Inflammation-Associated lncRNA-mRNA Coexpression Network in Type 2 Diabetes. J Renin Angiotensin Aldosterone Syst 2023; 2023:6072438. [PMID: 36874406 PMCID: PMC9977555 DOI: 10.1155/2023/6072438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Diabetes is a chronic inflammatory state, and a key role of lncRNAs in diabetes complications is a new area of research. Methods In this study, key lncRNAs related to diabetes inflammation were identified by RNA-chip mining and lncRNA-mRNA coexpression network construction and finally verified by RT-qPCR. Results We ultimately obtained 12 genes, including A1BG-AS1, AC084125.4, RAMP2-AS1, FTX, DBH-AS1, LOXL1-AS1, LINC00893, LINC00894, PVT1, RUSC1-AS1, HCG25, and ATP1B3-AS1. RT-qPCR assays verified that LOXL1-AS1, A1BG-AS1, FTX, PVT1, and HCG25 were upregulated in the HG+LPS-induced THP-1 cells, and LINC00893, LINC00894, RUSC1-AS1, DBH-AS1, and RAMP2-AS1 were downregulated in the HG+LPS-induced THP-1 cells. Conclusions lncRNAs and mRNAs are extensively linked and form a coexpression network, and lncRNAs may influence the development of type 2 diabetes by regulating the corresponding mRNAs. The ten key genes obtained may become biomarkers of inflammation in type 2 diabetes in the future.
Collapse
Affiliation(s)
- Linjuan Huang
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Shengxi Xiong
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Hanshuang Liu
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Min Li
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Ranran Zhang
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Yan Liu
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Xiaolei Hu
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
27
|
Li J, Zhang J, Yang M, Huang X, Zhang M, Fang X, Wu S. Kirenol alleviates diabetic nephropathy via regulating TGF-β/Smads and the NF-κB signal pathway. PHARMACEUTICAL BIOLOGY 2022; 60:1690-1700. [PMID: 36073930 PMCID: PMC9467559 DOI: 10.1080/13880209.2022.2112239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Kirenol possesses anti-inflammatory, antifibrotic and anti-arthritic effects. However, its reno-protective effects against diabetic nephropathy (DN) have not been evaluated. OBJECTIVE This study explores the reno-protective effects of kirenol against DN and clarifies the potential mechanisms. MATERIALS AND METHODS The mesangial cells were treated with 20 µM kirenol and 10 ng/mL human recombinant TGF-β1 or 30 mM glucose for 24 h. Then the cells were harvested to assay the expression of the target genes or proteins. Thirty C57BL/6J male mice were given high-fat diet with streptozotocin injection to induce diabetes and then were randomized into three groups (n = 10): vehicle administration (DM group), 2 mg/kg kirenol (DM + kirenol group) and 200 mg/kg metformin (Met group) for 3 months, orally. A healthy group (Con, n = 10) was included as the control. RESULTS Compared to the DM group, kirenol treatment decreased the phosphorylation of Smad2/3 and NF-κB (0.64- and 0.43-fold) as well as the accumulation of FN and Col IV (0.58- and 0.35-fold); moreover, the expression of IκBα was restored to normal level by kirenol treatment both in vivo and in vitro. After kirenol treatment, IL-6 expression was decreased 0.35- and 0.57-fold, and TNF-α expression was decreased 0.34- and 0.46-fold, in vitro and in vivo, respectively. Furthermore, kirenol alleviated the glomerular basement membrane thickness and foot process fusion. DISCUSSION AND CONCLUSIONS Kirenol could alleviate DN by downregulating the TGF-β/Smads and the NF-κB signal pathway. Our study provides a potential mechanism for the treatment of DN with kirenol.
Collapse
Affiliation(s)
- Jialin Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jiawen Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Meng Yang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiaocui Huang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Meng Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Suzhen Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
28
|
Wu H, Pei H, Liu J, Zeng J, Liu S, Chen W, He Z, Du R. Protective effect of total saponins of ginseng stems and leaves (GSLS) on chlorpyrifos-induced brain toxicity in mice through the PTEN/PI3K/AKT axis. Aging (Albany NY) 2022; 14:8982-8999. [PMID: 36374217 PMCID: PMC9740365 DOI: 10.18632/aging.204374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
Chlorpyrifos (CPF) is a class of toxic compounds which has been widely used in agriculture that can cause multi-organ damage to the liver, kidneys, testes, and nervous system. Currently, most studies on ginseng have concentrated on the roots and rhizomes, and less research has been conducted on the above-ground parts. Our laboratory found that ginseng stem and leaf total saponin (GSLS) features strong antioxidant activity. In this experiment, we selected different concentrations of CPF to induce hippocampal neuronal cell injury model in mice, conducted a cell survival screening test, and also selected appropriate concentrations of CPF to induce brain injury model in mice. CCK-8, flow cytometry, Elisa, Hoechst 33258 staining, Annexin V-FITC/PI staining, HE staining, Morris water maze, and qRT-PCR were adopted for detecting the effects of GSLS treatment on CPF-induced cell viability, mitochondrial membrane potential, reactive oxygen species (ROS) levels, Ca2+ concentration and GSLS treatment on CPF-induced brain injury and related signaling in mice, respectively. The effects of GSLS treatment on CPF-induced brain injury and the related signaling pathways in mice were examined. The results showed that GSLS at 60 μg/ml and 125 μg/ml concentrations elevated the viability of CPF-induced HT22 cells, increased mitochondrial membrane potential, depleted ROS, decreased Ca2+ concentration, and decreased apoptosis rate. Meanwhile, GSLS treatment significantly reduced CPF-induced escape latency in mice, elevated the number of entries into the plateau and effective area, increased the effective area and target quadrant residence time, as well as improved the pathological damage of mouse hippocampal neurons. The results of mouse brain sections demonstrated that GSLS treatment significantly increased SOD and CAT activities and lowered MDA accumulation in CPF-induced mice. qRT-PCR revealed that PTEN mRNA expression was significantly decreased with PI3K and AKT expression being significantly increased in GSLS-treated CPF-induced mice. Thus, the obtained results indicate that GSLS can effectively antagonize CPF-induced brain toxicity in mice through regulating PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Hong Wu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jinze Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jianning Zeng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
29
|
Shi H, Zhao J, Li Y, Li J, Li Y, Zhang J, Qiu Z, Wu C, Qin M, Liu C, Zeng Z, Zhang C, Gao L. Ginsenosides Rg1 regulate lipid metabolism and temperature adaptation in Caenorhabditis elegans. J Ginseng Res 2022. [DOI: 10.1016/j.jgr.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Li W, Wu X, Wu M, Yin J, Ding H, Wu T, Bie S, Li F, He Y, Han L, Yang W, Song X, Yu H, Li Z. Ultrahigh-performance liquid chromatography coupled to ion mobility quadrupole time-of-flight mass spectrometry profiling and unveiling the transformation of ginsenosides by the dual conditions of citric acid and high-pressure steaming. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9363. [PMID: 35902380 DOI: 10.1002/rcm.9363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Many methods have been reported for the production of rare ginsenosides, including heat treatment, acid hydrolysis, alkaline hydrolysis, enzymatic hydrolysis, and microbial transformation. However, the conversion of original ginsenosides to rare ginsenosides under the dual conditions of citric acid and high-pressure steam sterilization has rarely been reported. METHODS In this study, a method involving ultrahigh-performance liquid chromatography coupled to ion mobility quadrupole time-of-flight mass spectrometry was developed for analysis of chemical transformation of protopanaxatriol (PPT)-type ginsenosides Rg1 and Re, protopanaxadiol (PPD)-type ginsenoside Rb1 , and total ginsenosides in the dual conditions of citric acid and high-pressure steam sterilization. An internal ginsenoside database containing 126 known ginsenosides and 18 ginsenoside reference compounds was established to identify the transformation products and explore possible transformation pathways and mechanisms. RESULTS A total of 54 ginsenosides have been preliminarily identified in the transformation products of PPD-type ginsenosides Rg1 and Re, PPD-type ginsenoside Rb1 , and total ginsenosides, and the possible transformation pathways were as follows: Rg1 , Re → 20(S)-Rh12 , 20(R)-Rh12 ; Rg1 , Re → 20(S)-Rh1 , 20(R)-Rh1 → Rk3 , Rh4 , Rh5 ; Rb1 → gypenoside LXXV; Rb1 → 20(S)-Rg3 , 20(R)-Rg3 → Rk1 , Rg5 ; Re → 20(S)-Rg2 , 20(R)-Rg2 → 20(S)-Rf2 , 20(R)-Rf2 , Rg4 , F4 . CONCLUSIONS The results elucidated the possible transformation pathways and mechanisms of ginsenosides in the dual conditions of citric acid and high-pressure steam sterilization, which were helpful for revealing the mechanisms of ginsenosides and enhanced safety and quality control of pharmaceuticals and nutraceuticals. Meanwhile, a simple, efficient, and practical method was developed for the production of rare ginsenosides, which has the potential to produce diverse rare ginsenosides on an industrial scale.
Collapse
Affiliation(s)
- Wei Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Xinlong Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Mengfan Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Jiaxin Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Hui Ding
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Tong Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Songtao Bie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Xinbo Song
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| |
Collapse
|
31
|
Ginsenoside Rg1 Inhibits STAT3 Expression by miR-15b-5p to Attenuate Lung Injury in Mice with Type 2 Diabetes Mellitus-Associated Pulmonary Tuberculosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9017021. [PMID: 36248428 PMCID: PMC9553455 DOI: 10.1155/2022/9017021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes mellitus (T2DM) has been regarded as a critical risk factor for pulmonary tuberculosis (PTB). Ginsenoside Rg1 has been identified as a potential therapeutic agent for T2DM by suppressing the inflammatory response. However, the effect of Rg1 on T2DM-associated PTB has not been reported. In this study, we aimed to explore the function of Rg1 in the regulation of T2DM-associated PTB. We established a T2DM-associated PTB mouse model and found that the fibrosis of lung tissues was inhibited by Rg1 in T2DM-associated PTB mice. The lung injury of T2DM-associated PTB mice was repressed by Rg1. Moreover, the levels of IL-6, TNF-α, and IL-1β in the lung tissues and serum were decreased by Rg1 in T2DM-associated PTB mice. The treatment with Rg1 inhibited the levels of free fatty acid and enhanced the expression of miR-15b-5p in lung tissues of T2DM-associated PTB mice. MiR-15b-5p targeted and inhibited the STAT3 expression. The expression of STAT3 was downregulated by Rg1, while the inhibition of miR-15b-5p reversed the downregulation. The expression of miR-15b-5p was reduced, but the expression of STAT3 was upregulated in the lung tissues of T2DM-associated PTB mice. We validated that miR-15b-5p attenuated inflammation and lung injury in the T2DM-associated PTB mouse model. The overexpression of STAT3 or the suppression of miR-15b-5p restored lung fibrosis and injury inhibited by Rg1 in T2DM-associated PTB mice. Meanwhile, the Rg1-repressed levels of IL-6, TNF-α, and IL-1β were enhanced by the overexpression of STAT3 or the suppression of miR-15b-5p. In addition, the levels of free fatty acid repressed by Rg1 were reversed by STAT3 overexpression and miR-15b-5p inhibition. Thus, we conclude that ginsenoside Rg1 inhibits the STAT3 expression by miR-15b-5p to attenuate lung injury in mice with type 2 diabetes mellitus-associated pulmonary tuberculosis.
Collapse
|
32
|
Hou J, Ma R, Zhu S, Wang Y. Revealing the Therapeutic Targets and Mechanism of Ginsenoside Rg1 for Liver Damage Related to Anti-Oxidative Stress Using Proteomic Analysis. Int J Mol Sci 2022; 23:ijms231710045. [PMID: 36077440 PMCID: PMC9455996 DOI: 10.3390/ijms231710045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Ginsenoside Rg1 is an important active substance isolated from the root of ginseng. In previous studies, Rg1 has shown excellent therapeutic effects in antioxidant, anti-inflammatory, and metabolic modulation. However, the therapeutic targets of Rg1 are still unknown. In this study, we investigated the therapeutic effects of Rg1 on oxidative stress-related liver damage. The oxidative stress damage model was achieved by intraperitoneal injection of D-galactose (D-gal) for 42 consecutive days in C57BL/6J mice. Rg1 treatment started on Day 16. Body weight, liver weight, degree of hepatic oxidative stress damage, serum lipid levels, and hepatic lipid and glucose metabolism were measured. Proteomics analysis was used to measure liver protein expression. The differential expression proteins were analyzed with bioinformatics. The results showed that Rg1 treatment attenuated liver damage from oxidative stress, reduced hepatic fat accumulation, promoted hepatic glycogen synthesis, and attenuated peripheral blood low-density lipoprotein (LDL), cholesterol (CHO), and triglycerides (TG) levels. Proteomic analysis suggested that Rg1 may regulate hepatocyte metabolism through ECM-Receptor, the PI3K-AKT pathway. The epidermal growth factor receptor (EGFR) and activator of transcription 1 (STAT1) may be the key protein. In conclusion, this study provides an experimental basis for further clarifying the specific mechanism of Rg1 in the treatment of oxidative stress damage-related liver disease.
Collapse
Affiliation(s)
- Jiying Hou
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Ruoxiang Ma
- Faculty of Basic Medical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Shisheng Zhu
- Faculty of Basic Medical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
- Correspondence: (S.Z.); (Y.W.)
| | - Yaping Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
- Correspondence: (S.Z.); (Y.W.)
| |
Collapse
|
33
|
20(S)-ginsenoside Rh1 alleviates T2DM induced liver injury via the Akt/FOXO1 pathway. Chin J Nat Med 2022; 20:669-678. [DOI: 10.1016/s1875-5364(22)60201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/18/2022]
|
34
|
New Therapeutic Approaches to and Mechanisms of Ginsenoside Rg1 against Neurological Diseases. Cells 2022; 11:cells11162529. [PMID: 36010610 PMCID: PMC9406801 DOI: 10.3390/cells11162529] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Neurological diseases, including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), stroke, cerebral infarction, ischemia-reperfusion injury, depression and, stress, have high incidence and morbidity and often lead to disability. However, there is no particularly effective medication against them. Therefore, finding drugs with a suitable efficacy, low toxicity and manageable effects to improve the quality of life of patients is an urgent problem. Ginsenoside Rg1 (Rg1) is the main active component of ginseng and has a variety of pharmacological effects. In this review, we focused on the therapeutic potential of Rg1 for improving neurological diseases. We introduce the mechanisms of Ginsenoside Rg1 in neurological diseases, including apoptosis, neuroinflammation, the microRNA (miRNA) family, the mitogen-activated protein kinase (MAPK) family, oxidative stress, nuclear factor-κB (NF-κB), and learning and memory of Rg1 in neurological diseases. In addition, Rg1 can also improve neurological diseases through the interaction of different signal pathways. The purpose of this review is to explore more in-depth ideas for the clinical treatment of neurological diseases (including PD, AD, HD, stroke, cerebral infarction, ischemia–reperfusion injury, depression, and stress). Therefore, Rg1 is expected to become a new therapeutic method for the clinical treatment of neurological diseases.
Collapse
|
35
|
Peng M, Wang L, Su H, Zhang L, Yang Y, Sun L, Wu Y, Ran L, Liu S, Yin M, Li S, Chunyu W. Ginsenoside Rg1 improved diabetes through regulating the intestinal microbiota in high‐fat diet and streptozotocin‐induced type 2 diabetes rats. J Food Biochem 2022; 46:e14321. [DOI: 10.1111/jfbc.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Man Peng
- Faculty of Basic Medical Science Kunming Medical University Kunming China
| | - Liming Wang
- Faculty of Basic Medical Science Kunming Medical University Kunming China
| | - Hui Su
- Faculty of Basic Medical Science Kunming Medical University Kunming China
- Department of Pharmacy, People's Hospital Affiliated of Shandong First Medical University Jinan China
| | - Lei Zhang
- Faculty of Basic Medical Science Kunming Medical University Kunming China
| | - Yue Yang
- Department of Anesthesiology The Affiliated Hospital of Yunnan University Kunming Yunnan China
| | - Le Sun
- Faculty of Basic Medical Science Kunming Medical University Kunming China
| | - Yi Wu
- Faculty of Basic Medical Science Kunming Medical University Kunming China
| | - Lei Ran
- Faculty of Basic Medical Science Kunming Medical University Kunming China
| | - Sida Liu
- Faculty of Basic Medical Science Kunming Medical University Kunming China
| | - Min Yin
- School of Medicine Yunnan University Kunming China
| | - Shude Li
- Faculty of Basic Medical Science Kunming Medical University Kunming China
| | - Weixun Chunyu
- Faculty of Basic Medical Science Kunming Medical University Kunming China
| |
Collapse
|
36
|
Wu T, Qi W, Shan H, Tu B, Jiang S, Lu Y, Wang F. Ginsenoside Rg1 enhances the healing of injured tendon in achilles tendinitis through the activation of IGF1R signaling mediated by oestrogen receptor. J Ginseng Res 2022; 46:526-535. [PMID: 35818420 PMCID: PMC9270649 DOI: 10.1016/j.jgr.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022] Open
Abstract
Background During the pathogenesis of tendinopathy, the chronic inflammation caused by the injury and apoptosis leads to the generation of scars. Ginsenoside Rg1 (Rg1) is extracted from ginseng and has anti-inflammatory effects. Rg1 is a unique phytoestrogen that can activate the estrogen response element. This research aimed to explore whether Rg1 can function in the process of tendon repair through the estrogen receptor. Methods In this research, the effects of Rg1 were evaluated in tenocytes and in a rat model of Achilles tendinitis (AT). Protein levels were shown by western blotting. qRT-PCR was employed for evaluating mRNA levels. Cell proliferation was evaluated through EdU assay and cell migration was evaluated by transwell assay and scratch test assay. Results Rg1 up-regulated the expression of matrix-related factors and function of tendon in AT rat model. Rg1 reduced early inflammatory response and apoptosis in the tendon tissue of AT rat model. Rg1 promoted tenocyte migration and proliferation. The effects of Rg1 on tenocytes were inhibited by ICI182780. Rg1 activates the insulin-like growth factor-I receptor (IGF1R) and MAPK signaling pathway. Conclusion Rg1 promotes injured tendon healing in AT rat model through IGF1R and MAPK signaling pathway activation.
Collapse
Affiliation(s)
| | | | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bin Tu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shilin Jiang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ye Lu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
37
|
Ghafouri-Fard S, Balaei N, Shoorei H, Hasan SMF, Hussen BM, Talebi SF, Taheri M, Ayatollahi SA. The effects of Ginsenosides on PI3K/AKT signaling pathway. Mol Biol Rep 2022; 49:6701-6716. [PMID: 35220526 PMCID: PMC9270311 DOI: 10.1007/s11033-022-07270-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 12/14/2022]
Abstract
Ginsenosides belong to a group of steroid glycosides that are extracted from the plant genus Panax (ginseng). This plant has been used for a long time for the treatment of a variety of disorders in traditional medicine. Recent studies have assessed the biological impact of Ginsenosides in cell culture or animal models. Animal studies have shown their beneficial impacts in the remedy of pathological conditions in different tissues. The ameliorating effects of Ginsenosides in diverse pathogenic conditions can be attributed to their effects on the production of reactive oxygen species. These substances mainly affect the activity of AMPK/AKT and PI3K/AKT pathways. The beneficial effects of Ginsenosides have been appraised in diabetes-related complications, spinal cord injury, cerebral ischemia, myocardial ischemia, and other disorders which are associated with oxidative stress. Moreover, these substances have been shown to interfere with the pathologic conditions during carcinogenesis. In the current study, we explain these impacts in two distinct sections including non-neoplastic conditions and neoplastic conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Balaei
- Department of Pharmacology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Syed Muhammad Farid Hasan
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Seyedeh Fahimeh Talebi
- Department of Pharmacology, College of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | | |
Collapse
|
38
|
Bioactive Compounds from the Zingiberaceae Family with Known Antioxidant Activities for Possible Therapeutic Uses. Antioxidants (Basel) 2022; 11:antiox11071281. [PMID: 35883772 PMCID: PMC9311506 DOI: 10.3390/antiox11071281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The Zingiberaceae family is a rich source of diverse bioactive phytochemicals. It comprises about 52 genera and 1300 species of aromatic flowering perennial herbs with characteristic creeping horizontal or tuberous rhizomes. Notable members of this family include ginger (Zingiber officinale Roscoe), turmeric (Curcuma longa L.), Javanese ginger (Curcuma zanthorrhiza Roxb.), and Thai ginger (Alpinia galanga L.). This review focuses on two main classes of bioactive compounds: the gingerols (and their derivatives) and the curcuminoids. These compounds are known for their antioxidant activity against several maladies. We highlight the centrality of their antioxidant activities with notable biological activities, including anti-inflammatory, antidiabetic, hepatoprotective, neuroprotective, antimicrobial, and anticancer effects. We also outline various strategies that have been applied to enhance these activities and make suggestions for research areas that require attention.
Collapse
|
39
|
The Efficacy of Ginseng (Panax) on Human Prediabetes and Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14122401. [PMID: 35745129 PMCID: PMC9227417 DOI: 10.3390/nu14122401] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Results from different clinical trials on the effects of ginseng on prediabetes and type 2 diabetes (T2DM) are still inconsistent. To fill this knowledge gap, we investigated the overall effects of ginseng supplementation on improving cardiometabolic biomarkers among these patients. A systematic literature search was conducted on PubMed/MEDLINE, Scopus, Web of Science, and Cochrane library. A random-effect model was applied to estimate the weighted mean difference and 95% CI for each outcome. Overall, 20 eligible RCTs were included. Meta-analyses revealed that ginseng supplementation significantly reduced serum concentration of FPG, TC, IL-6, and HOMA-IR values. It also increased HR and TNF-α levels. Ginseng supplementation changed HOMA-IR and HDL-C significantly based on dose and changed HOMA-IR and LDL-C significantly based on study duration in a non-linear fashion. Furthermore, meta-regression analyses indicated a linear relationship between ginseng dose and absolute changes in HDL-C. Moreover, subgroup analyses showed that ginseng supplementation changed TC and LDL-C when the supplementation dose was ≥2 g/day. Our findings suggest that ginseng supplementation may be an effective strategy for improving cardiometabolic profiles in individuals with prediabetes and T2DM.
Collapse
|
40
|
Ren HC, Sun JG, A JY, Gu SH, Shi J, Shao F, Ai H, Zhang JW, Peng Y, Yan B, Huang Q, Liu LS, Sai Y, Wang GJ, Yang CG. Mechanism-Based Pharmacokinetic Model for the Deglycosylation Kinetics of 20(S)-Ginsenosides Rh2. Front Pharmacol 2022; 13:804377. [PMID: 35694247 PMCID: PMC9175024 DOI: 10.3389/fphar.2022.804377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: The 20(S)-ginsenoside Rh2 (Rh2) is being developed as a new antitumor drug. However, to date, little is known about the kinetics of its deglycosylation metabolite (protopanoxadiol) (PPD) following Rh2 administration. The aim of this work was to 1) simultaneously characterise the pharmacokinetics of Rh2 and PPD following intravenous and oral Rh2 administration, 2) develop and validate a mechanism-based pharmacokinetic model to describe the deglycosylation kinetics and 3) predict the percentage of Rh2 entering the systemic circulation in PPD form. Methods: Plasma samples were collected from rats after the I.V. or P.O. administration of Rh2. The plasma Rh2 and PPD concentrations were determined using HPLC-MS. The transformation from Rh2 to PPD, its absorption, and elimination were integrated into the mechanism based pharmacokinetic model to describe the pharmacokinetics of Rh2 and PPD simultaneously at 10 mg/kg. The concentration data collected following a 20 mg/kg dose of Rh2 was used for model validation. Results: Following Rh2 administration, PPD exhibited high exposure and atypical double peaks. The model described the abnormal kinetics well and was further validated using external data. A total of 11% of the administered Rh2 was predicted to be transformed into PPD and enter the systemic circulation after I.V. administration, and a total of 20% of Rh2 was predicted to be absorbed into the systemic circulation in PPD form after P.O. administration of Rh2. Conclusion: The developed model provides a useful tool to quantitatively study the deglycosylation kinetics of Rh2 and thus, provides a valuable resource for future pharmacokinetic studies of glycosides with similar deglycosylation metabolism.
Collapse
Affiliation(s)
- Hong-can Ren
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- DMPK and Clinical Pharmacology Group, Hutchison MediPharma Ltd., Shanghai, China
- Department of Biology, GenFleet Therapeutics, Shanghai, China
| | - Jian-guo Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ji-ye A
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- *Correspondence: Ji-ye A, ; Guang-ji Wang, ; Cheng-guang Yang,
| | - Sheng-hua Gu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- School of Pharmacy, Shanghai University of Tranditional Chinese Medicine, Shanghai, China
| | - Jian Shi
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Feng Shao
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hua Ai
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing-wei Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ying Peng
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Bei Yan
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Huang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- NMPA Key Laboratory for Impurity Profile of Chemical Drugs, Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Lin-sheng Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Sai
- DMPK and Clinical Pharmacology Group, Hutchison MediPharma Ltd., Shanghai, China
| | - Guang-ji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- *Correspondence: Ji-ye A, ; Guang-ji Wang, ; Cheng-guang Yang,
| | - Cheng-guang Yang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Ji-ye A, ; Guang-ji Wang, ; Cheng-guang Yang,
| |
Collapse
|
41
|
Cheng H, Liu J, Zhang D, Wang J, Tan Y, Feng W, Peng C. Ginsenoside Rg1 Alleviates Acute Ulcerative Colitis by Modulating Gut Microbiota and Microbial Tryptophan Metabolism. Front Immunol 2022; 13:817600. [PMID: 35655785 PMCID: PMC9152015 DOI: 10.3389/fimmu.2022.817600] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory disorder in the gastrointestinal tract. Here, we examined the pharmacological effects of ginsenoside Rg1, a natural compound with low bioavailability, on the acute experimental colitis mice induced by dextran sulfate sodium (DSS) and explored underlying mechanisms. Acute UC was induced in C57BL/6 mice by 2.5% DSS for 7 days, meanwhile, 2 mg/10 g b.w. ginsenoside Rg1 was administrated to treat the mice. Body weight, colon length, colon tissue pathology, and colon tissue inflammatory cytokines were assessed. The composition structure of gut microbiota was profiled using 16s rRNA sequencing. Global metabolomic profiling of the feces was performed, and tryptophan and its metabolites in the serum were detected. The results showed that Rg1 significantly ameliorated DSS-induced colonic injury and colonic inflammation. In addition, Rg1 also partly reversed the imbalance of gut microbiota composition caused by DSS. Rg1 intervention can regulate various metabolic pathways of gut microbiota such as valine, leucine, and isoleucine biosynthesis and vitamin B6 metabolism and the most prominent metabolic alteration was tryptophan metabolism. DSS decreased the levels of tryptophan metabolites in the serum, including indole-3-carboxaldehyde, indole-3-lactic acid, 3-indolepropionic acid, and niacinamide and Rg1 can increase the levels of these metabolites. In conclusion, the study discovered that Rg1 can protect the intestinal barrier and alleviate colon inflammation in UC mice, and the underlying mechanism is closely related to the regulation of gut microbiota composition and microbial tryptophan metabolism.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
42
|
Miranda RDS, Jesus BDSM, Silva Luiz SR, Viana CB, Adão Malafaia CR, Figueiredo FDS, Carvalho TDSC, Silva ML, Londero VS, Costa‐Silva TA, Lago JHG, Martins RCC. Antiinflammatory activity of natural triterpenes—An overview from 2006 to 2021. Phytother Res 2022; 36:1459-1506. [DOI: 10.1002/ptr.7359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Rodrigo de Souza Miranda
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | | | - Sandra Regina Silva Luiz
- Institute of Microbiology Paulo de Góes Federal University of Rio de Janeiro (IMPG‐UFRJ) Rio de Janeiro Brazil
| | - Cristina Borges Viana
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Camila Rodrigues Adão Malafaia
- Laboratory of Natural Products and Biological Assays, Natural Products and Food Department, Faculty of Pharmacy Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Fabiana de Souza Figueiredo
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | | | - Matheus Lopes Silva
- Center of Human and Natural Sciences Federal University of ABC (UFABC) Santo André Brazil
| | - Vinicius Silva Londero
- Institute of Environmental, Chemical and Pharmaceutical Sciences Federal University of São Paulo (UNIFESP) Diadema Brazil
| | | | | | - Roberto Carlos Campos Martins
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| |
Collapse
|
43
|
Song Z, Xie K, Zhang Y, Xie Q, He X, Zhang H. Effects of Dietary Ginsenoside Rg1 Supplementation on Growth Performance, Gut Health, and Serum Immunity in Broiler Chickens. Front Nutr 2021; 8:705279. [PMID: 34912836 PMCID: PMC8667319 DOI: 10.3389/fnut.2021.705279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
The restriction and banning of antibiotics in farm animal feed has led to a search for promising substitutes for antibiotics to promote growth and maintain health for livestock and poultry. Ginsenoside Rg1, which is one of the most effective bioactive components in ginseng, has been reported to have great potential to improve the anti-inflammatory and anti-oxidative status of animals. In this study, 360 Chinese indigenous broiler chickens with close initial body weight were divided into 5 groups. Each group contained 6 replicates and each replicate had 12 birds. The experimental groups were: the control group, fed with the basal diet; the antibiotic group, fed basal diet + 300 mg/kg 15% chlortetracycline; and three Rg1 supplementation groups, fed with basal diet + 100, 200, and 300 mg/kg ginsenoside Rg1, respectively. The growth performance, immune function, and intestinal health of birds were examined at early (day 1-28) and late (day 29-51) stages. Our results showed that dietary supplementation of 300 mg/kg ginsenoside Rg1 significantly improved the growth performance for broilers, particularly at the late stage, including an increase in final body weight and decrease of feed conversion ratio (P < 0.05). Additionally, the integrity of intestinal morphology (Villus height, Crypt depth, and Villus height/Crypt depth) and tight junction (ZO-1 and Occludin), and the secretion of sIgA in the intestine were enhanced by the supplementation of Rg1 in chicken diet (P < 0.05). The immune organ index showed that the weight of the thymus, spleen, and bursa was significantly increased at the early stage in ginsenoside Rg1 supplementation groups (P < 0.05). Our findings might demonstrate that ginsenoside Rg1 could serve as a promising antibiotic alternative to improve the growth performance and gut health for broiler chickens mainly through its amelioration of inflammatory and oxidative activities.
Collapse
Affiliation(s)
- Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China.,Hunan Engineering Research Center of Poultry Production Safety, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Kaihuan Xie
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yunlu Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qian Xie
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China.,Hunan Engineering Research Center of Poultry Production Safety, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China.,Hunan Engineering Research Center of Poultry Production Safety, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| |
Collapse
|
44
|
Zhang R, Zhang Q, Zhu S, Liu B, Liu F, Xu Y. Mulberry leaf (Morus alba L.): A review of its potential influences in mechanisms of action on metabolic diseases. Pharmacol Res 2021; 175:106029. [PMID: 34896248 DOI: 10.1016/j.phrs.2021.106029] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
The leaves of Morus alba L. (called Sangye in Chinese, ML), which belong to the genus Morus., are highly valuable edible plants in nutrients and nutraceuticals. In Asian countries including China, Japan and Korea, ML are widely used as functional foods including beverages, noodles and herbal tea because of its biological and nutritional value. Meanwhile, ML-derived products in the form of powders, extracts and capsules are widely consumed as dietary supplements for controlling blood glucose and sugar. Clinical studies showed that ML play an important role in the treatment of metabolic diseases including the diabetes, dyslipidemia, obesity, atherosclerosis and hypertension. People broadly use ML due to their nutritiousness, deliciousness, safety, and abundant active benefits. However, the systematic pharmacological mechanisms of ML on metabolic diseases have not been fully revealed. Therefore, in order to fully utilize and scale relevant products about ML, this review summarizes the up-to-date information about the ML and its constituents effecting on metabolic disease.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Qian Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Shun Zhu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Biyang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China.
| | - Yao Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, People's Republic of China.
| |
Collapse
|
45
|
Wu T, Liu W, Huang S, Chen J, He F, Wang H, Zheng X, Li Z, Zhang H, Zha Z, Lin Z, Chen Y. Bioactive strontium ions/ginsenoside Rg1-incorporated biodegradable silk fibroin-gelatin scaffold promoted challenging osteoporotic bone regeneration. Mater Today Bio 2021; 12:100141. [PMID: 34632364 PMCID: PMC8488313 DOI: 10.1016/j.mtbio.2021.100141] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Autogenous healing of osteoporotic fractures is challenging, as the regenerative capacity of bone tissues is impaired by estrogen reduction and existed pro-inflammatory cytokines. In this study, a biofunctional ginsenoside Rg1 and strontium-containing mineral (SrHPO4, SrP)-incorporated biodegradable silk fibroin-gelatin (SG) scaffold (Rg1/SrP/SG) was developed to stimulate the osteoporotic bone repair. The incorporation of 15 wt% SrP significantly enhanced the mechanical strength, stimulated the osteogenic differentiation of mouse bone marrow mesenchymal stem cells, and suppressed the osteoclastogenesis of RAW264.7 in a concentration-related manner. The loading of Rg1 in SG and 15SrP/SG scaffolds obviously promoted the angiogenesis of human umbilical vein endothelial cells via activating the expression of vascular endothelial growth factor and basic fibroblast growth factor genes and proteins. The bioactive strontium ions (Sr2+) and Rg1 released from the scaffolds together mediated lipopolysaccharide-treated macrophages polarizing into M2 type. They downregulated the expression of inflammatory-related genes (interleukin (IL)-1β, tumor necrosis factor α, and IL-6) and stimulated the expression of genes related to anti-inflammation (Arginase and IL-10) as well as bone repair (BMP-2 and PDGF-BB) in the macrophages. The in vivo results also displayed that SrP and Rg1 significantly promoted the bone repair effect of SG scaffolds in osteoporotic critical-sized calvarial defects. Besides, the degradation rate of the scaffolds was close to the bone regeneration rate. Therefore, the simultaneous addition of SrP and Rg1 is a promising way for facilitating the osteoporotic bone repair activity of SG scaffolds via promoting the osteogenesis and angiogenesis, as well as inhibiting the osteoclastogenesis and inflammation.
Collapse
Affiliation(s)
- Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Medicine and Health, Guangdong Academy of Sciences, Guangzhou, 510500, China.,Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Wenping Liu
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Shusen Huang
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Jiwen Chen
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Huajun Wang
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Xiaofei Zheng
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zhenyan Li
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Huantian Zhang
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zhengang Zha
- Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yuanfeng Chen
- Research Center of Medical Science, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.,Institute of Orthopedic Diseases, Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
46
|
Wang Z, Wang L, Jiang R, Li C, Chen X, Xiao H, Hou J, Hu L, Huang C, Wang Y. Ginsenoside Rg1 prevents bone marrow mesenchymal stem cell senescence via NRF2 and PI3K/Akt signaling. Free Radic Biol Med 2021; 174:182-194. [PMID: 34364981 DOI: 10.1016/j.freeradbiomed.2021.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/18/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
Senescence limits the characteristics and functionality of mesenchymal stem cells (MSCs), thereby severely restricting their application in tissue engineering. Here, we investigated ways to prevent MSCs from entering a state of senescence. We found that Rg1, an extract of natural ginseng, can reduce the expression of senescence markers in cultured cells in vitro and in various tissues in vivo. Simultaneously, ginsenoside Rg1 improved the antioxidant capacity of cells, and the senescence-inhibiting and antioxidant effect of Rg1 were associated with the activation of the nuclear factor E2-related factor 2 (NRF2) signaling pathway. Furthermore, Rg1 may activate the NRF2 pathway by increasing the interaction between P62 and KEAP1through P62 upregulation and AKT activation. Taken together, our findings indicate that Rg1 prevents cell senescence via NRF2 and AKT, and activation of AKT or NRF2 may thus represent therapeutic targets for preventing cell senescence.
Collapse
Affiliation(s)
- Ziling Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Lu Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Chang Li
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Xiongbin Chen
- Department of Anatomy and Histology and Embryology, Basic Medical College, Chengdu University of Traditional Chinese Medicine, Sichuan, 610075, China
| | - Hanxianzhi Xiao
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Jiying Hou
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Ling Hu
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Caihong Huang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Yaping Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
47
|
Zhu Y, Yang H, Deng J, Fan D. Ginsenoside Rg5 Improves Insulin Resistance and Mitochondrial Biogenesis of Liver via Regulation of the Sirt1/PGC-1α Signaling Pathway in db/db Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8428-8439. [PMID: 34309383 DOI: 10.1021/acs.jafc.1c02476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a common metabolic syndrome that decreases insulin sensitivity and mitochondrial biogenesis in the liver. Our previous study demonstrated that ginsenoside Rg5 (Rg5) could attenuate renal injury in diabetic mice but its underlying mechanism in mitochondrial biogenesis and insulin sensitivity remains poorly understood. In this study, we found that Rg5 intervention significantly inhibited blood glucose increases in db/db mice, improved liver function damage and hepatocyte apoptosis, and activated the IRS-1/phosphatidylinositol 3-kinase/AKT insulin metabolism signaling pathway. Rg5 treatment also increased the level of glycogen synthesis and activated sirtuin1 (Sirt1) to increase glucose uptake and insulin sensitivity in insulin-resistant HepG2 (IR-HepG2) cells. Rg5 intervention also effectively improved liver oxidative stress and inflammation in db/db mice and increased mitochondrial biogenesis caused by T2DM. Additionally, the Rg5 treatment increased the mitochondrial mass in IR-HepG2 cells and activated Sirt1 to regulate the Sirt1/PGC-1α/mitofusin-2 mitochondrial biosynthesis pathway. Our findings demonstrated that Rg5 enhanced liver mitochondrial biogenesis and insulin sensitivity in db/db mice by activating the Sirt1/PGC-1α signaling pathway, suggesting the potential of Rg5 as a natural product for T2DM interventions.
Collapse
Affiliation(s)
- Yanyan Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotechnology & Biomedical Research Institute, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Haixia Yang
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotechnology & Biomedical Research Institute, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotechnology & Biomedical Research Institute, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| |
Collapse
|
48
|
Pan L, Fu L, Jia XG, Jia XY, Zhang T, Zou ZM. New stilbenoligan and flavonoid from the roots of Caragana stenophylla Pojark. and their anti-inflammatory activity. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:627-636. [PMID: 33985389 DOI: 10.1080/10286020.2021.1918119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
A phytochemical investigation on the 80% ethanol extract of the roots of Caragana stenophylla Pojark. resulted in the isolation of 20 compounds, including two new ones, named kompasinol P (2) and 3,5,7,2',3'-pentahydroxy-4'-methoxyisoflavanone (3). Among them, a pair of enantiomers, (7S, 8 R, 7'R, 8'S)-kompasinol A (1a) and (7 R, 8S, 7'S, 8'R)-kompasinol A (1b), were successfully separated by the chiral-phase HPLC resolution for the first time. The absolute configurations of 1a and 1b were determined by the experimental and calculated electronic circular dichroism (ECD) data. 15 isolates were evaluated for their anti-inflammatory activity via inhibiting the production of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 cells. Compounds 1a/1b, 6, 7, 9, 10, 12, 14, and 16-18 showed moderate inhibition with IC50 values ranging from 11.45 to 68.54 μM.
Collapse
Affiliation(s)
- Lan Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Lu Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiao-Guang Jia
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China
| | - Xin-Yue Jia
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China
| | - Tao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
49
|
Exploration of tissue distribution of ginsenoside Rg1 by LC-MS/MS and nanospray desorption electrospray ionization mass spectrometry. J Pharm Biomed Anal 2021; 198:113999. [PMID: 33706145 DOI: 10.1016/j.jpba.2021.113999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 11/21/2022]
Abstract
Ginsenoside Rg1 (Rg1) was one of the dominent active components in several Panax medicinal species as Panax notoginseng and Panaxginseng with diversified bioactivities. However, the study on tissue distribution of Rg1 remained limited and needed to be further explored for elucidation of its spatial distribution. In the present study, a LC-MS/MS combined with nanospray desorption electrospray ionization (DESI) mass spectrometry method was developed for exploration of tissue distribution of Rg1 at different time points after intravenous administration to rats. Furthermore, a MS inlet-heat method was developed to improve the imaging efficacy of Rg1 in brain tissue. The results obtained from LC-MS/MS analysis indicated that kidney possessed the highest tissue concentration, followed by liver, lung, spleen, heart and brain. Meanwhile, the elimination of Rg1 was swift within 1 h. For the spatial distribution of Rg1 by DESI-MS, Rg1 mainly accumulated in the pelvis section of kidney. Meanwhile, the imaging result of brain implied that Rg1 might be distributed in the pons and medulla oblongata region of brain at 15 min after intravenous administration. It is anticipated that the data on tissue distribution of Rg1 could provide references for further probing its efficacy and drug development.
Collapse
|
50
|
Kang Z, Zhonga Y, Wu T, Huang J, Zhao H, Liu D. Ginsenoside from ginseng: a promising treatment for inflammatory bowel disease. Pharmacol Rep 2021; 73:700-711. [PMID: 33462754 PMCID: PMC8180475 DOI: 10.1007/s43440-020-00213-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease mediated by immune disorder and termed as one of the most refractory diseases by the Word Health Organization. Its morbidity has increased steadily over the past half century worldwide. Environmental, genetic, infectious, and immune factors are integral to the pathogenesis of IBD. Commonly known as the king of herbs, ginseng has been consumed in many countries for the past 2000 years. Its active ingredient ginsenosides, as the most prominent saponins of ginseng, have a wide range of pharmacological effects. Recent studies have confirmed that the active components of Panax ginseng have anti-inflammatory and immunomodulatory effects on IBD, including regulating the balance of immune cells, inhibiting the expression of cytokines, as well as activating Toll-like receptor 4, Nuclear factor-kappa B (NF-κB), nucleotide-binding oligomerization domain-like receptor (NLRP), mitogen-activated protein kinase signaling, and so on. Accumulated evidence indicates that ginsenosides may serve as a potential novel therapeutic drug or health product additive in IBD prevention and treatment in the future.
Collapse
Affiliation(s)
- Zengping Kang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Youbao Zhonga
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China.,Experimental Animal Science and Technology Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Tiantian Wu
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jiaqi Huang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, Jiangxi, China.
| | - Duanyong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, 1689 Meiling Road, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|