1
|
Bennett AM, Tiganis T. Protein Tyrosine Phosphatases in Metabolism: A New Frontier for Therapeutics. Annu Rev Physiol 2025; 87:301-324. [PMID: 39531392 DOI: 10.1146/annurev-physiol-022724-105540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The increased prevalence of chronic metabolic disorders, including obesity and type 2 diabetes and their associated comorbidities, are among the world's greatest health and economic challenges. Metabolic homeostasis involves a complex interplay between hormones that act on different tissues to elicit changes in the storage and utilization of energy. Such processes are mediated by tyrosine phosphorylation-dependent signaling, which is coordinated by the opposing actions of protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Perturbations in the functions of PTPs can be instrumental in the pathophysiology of metabolic diseases. The goal of this review is to highlight key advances in our understanding of how PTPs control body weight and glucose metabolism, as well as their contributions to obesity and type 2 diabetes. The emerging appreciation of the integrated functions of PTPs in metabolism, coupled with significant advances in pharmaceutical strategies aimed at targeting this class of enzymes, marks the advent of a new frontier in combating metabolic disorders.
Collapse
Affiliation(s)
- Anton M Bennett
- Yale Center for Molecular and Systems Metabolism, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia;
| |
Collapse
|
2
|
Yang Y, He S, Wang W, Lu Y, Ren B, Dan C, Ji Y, Yu R, Ju X, Qiao X, Xiao Y, Cai J, Hong X. NIR-II Image-Guided Wound Healing in Hypoxic Diabetic Foot Ulcers: The Potential of Ergothioneine-Luteolin-Chitin Hydrogels. Macromol Rapid Commun 2024; 45:e2400528. [PMID: 39422630 DOI: 10.1002/marc.202400528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/18/2024] [Indexed: 10/19/2024]
Abstract
Hypoxic diabetic foot ulcers (HDFUs) pose a challenging chronic condition characterized by oxidative stress damage, bacterial infection, and persistent inflammation. This study introduces a novel therapeutic approach combining ergothioneine (EGT), luteolin (LUT), and quaternized chitosan oxidized dextran (QCOD) to address these challenges and facilitate wound healing in hypoxic DFUs. In vitro, assessments have validated the biosafety, antioxidant, and antimicrobial properties of the ergothioneine-luteolin-chitin (QCOD@EGT-LUT) hydrogel. Furthermore, near-infrared II (NIR-II) fluorescence image-guided the application of QCOD@EGT-LUT hydrogel in simulated HDFUs. Mechanistically, QCOD@EGT-LUT hydrogel modulates the diabetic wound microenvironment by reducing reactive oxygen species (ROS). In vivo studies demonstrated increased expression of angiogenic factors mannose receptor (CD206) and latelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), coupled with decreased inflammatory factors tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6), thereby promoting diabetic wound healing through up-regulation of transforming growth factor β-1 (TGF-β1).
Collapse
Affiliation(s)
- Yao Yang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Shengnan He
- Key Laboratory of Virology and Biosafety (CAS), Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Wumei Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Yiwen Lu
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Bingtao Ren
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Ci Dan
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Yang Ji
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Rui Yu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Xinpeng Ju
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Xue Qiao
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
- Key Laboratory of Virology and Biosafety (CAS), Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Yuling Xiao
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Jie Cai
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuechuan Hong
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| |
Collapse
|
3
|
Read NE, Wilson HM. Recent Developments in the Role of Protein Tyrosine Phosphatase 1B (PTP1B) as a Regulator of Immune Cell Signalling in Health and Disease. Int J Mol Sci 2024; 25:7207. [PMID: 39000313 PMCID: PMC11241678 DOI: 10.3390/ijms25137207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a non-receptor tyrosine phosphatase best known for its role in regulating insulin and leptin signalling. Recently, knowledge on the role of PTP1B as a major regulator of multiple signalling pathways involved in cell growth, proliferation, viability and metabolism has expanded, and PTP1B is recognised as a therapeutic target in several human disorders, including diabetes, obesity, cardiovascular diseases and hematopoietic malignancies. The function of PTP1B in the immune system was largely overlooked until it was discovered that PTP1B negatively regulates the Janus kinase-a signal transducer and activator of the transcription (JAK/STAT) signalling pathway, which plays a significant role in modulating immune responses. PTP1B is now known to determine the magnitude of many signalling pathways that drive immune cell activation and function. As such, PTP1B inhibitors are being developed and tested in the context of inflammation and autoimmune diseases. Here, we provide an up-to-date summary of the molecular role of PTP1B in regulating immune cell function and how targeting its expression and/or activity has the potential to change the outcomes of immune-mediated and inflammatory disorders.
Collapse
Affiliation(s)
- Neve E Read
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Heather M Wilson
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
4
|
Pinho ACO, Santos D, Oliveira PJ, Leal EC, Carvalho E. Real-time OXPHOS capacity analysis in wounded skin from diabetic mice: A pilot study. Eur J Clin Invest 2024; 54:e14128. [PMID: 37975307 DOI: 10.1111/eci.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Diabetes mellitus (DM) impairs wound healing. The aim was to determine whether DM influences mitochondrial respiration in wounded skin (WS) and non-wounded skin (NWS), in a pre-clinical wound healing model of streptozotocin (STZ)-induced diabetes. METHODS Six weeks after diabetes induction, two wounds were created in the back of C57BL/J6 mice. Using high-resolution respirometry (HRR), oxygen flux was measured, in WS and NWS, using two substrate-uncoupler-inhibitor titration protocols, at baseline (day 0), day 3 and 10 post-wounding, in STZ-DM and non-diabetic (NDM) mice. Flux control ratios for the oxidative phosphorylation (OXPHOS) capacity were calculated. RESULTS A significant increase in mitochondrial respiration was observed in STZ-DM skin compared to control skin at baseline. The OXPHOS capacity was decreased in WS under diabetes at day 3 post-wounding (inflammation phase). However, at day 10 post-wounding (remodeling phase), the OXPHOS capacity was higher in WS from STZ-DM compared to NDM mice, and compared to NWS from STZ-DM mice. A significant relative contribution of pyruvate, malate and glutamate (PMG) oxidation to the OXPHOS capacity was observed in WS compared to NWS from STZ-DM mice, at day 10, while the relative contribution of fatty acid oxidation to the OXPHOS capacity was higher in NWS. The OXPHOS capacity is altered in WS from STZ-DM compared to NDM mice across the healing process, and so is the substrate contribution in WS and NWS from STZ-DM mice, at each time point. CONCLUSION HRR may be a sensitive tool to evaluate the underlying mechanisms of tissue repair during wound healing.
Collapse
Grants
- DL57/2016/CP1448/ CT0024 Fundação para a Ciência e a Tecnologia (FCT), I. P, Portugal
- POCI-01-0145-FEDER-007440 Fundação para a Ciência e a Tecnologia (FCT), I. P, Portugal
- SFRH/BD/144199/2019 Fundação para a Ciência e a Tecnologia (FCT), I. P, Portugal
- SFRH/BD/145054/2019 Fundação para a Ciência e a Tecnologia (FCT), I. P, Portugal
- UIDB/04539/2020 Fundação para a Ciência e a Tecnologia (FCT), I. P, Portugal
Collapse
Affiliation(s)
- Aryane Cruz Oliveira Pinho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Inovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, PhD Programme in Biosciences, University of Coimbra, Coimbra, Portugal
| | - Diana Santos
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Inovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Inovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ermelindo Carreira Leal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Inovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Eugenia Carvalho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Inovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- APDP-Portuguese Diabetes Association, Lisbon, Portugal
| |
Collapse
|
5
|
He W, Mu X, Wu X, Liu Y, Deng J, Liu Y, Han F, Nie X. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. BURNS & TRAUMA 2024; 12:tkad050. [PMID: 38312740 PMCID: PMC10838060 DOI: 10.1093/burnst/tkad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024]
Abstract
Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
6
|
Nain A, Tseng YT, Gupta A, Lin YF, Arumugam S, Huang YF, Huang CC, Chang HT. NIR-activated quercetin-based nanogels embedded with CuS nanoclusters for the treatment of drug-resistant biofilms and accelerated chronic wound healing. NANOSCALE HORIZONS 2023; 8:1652-1664. [PMID: 37747295 DOI: 10.1039/d3nh00275f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
We have developed multifunctional nanogels with antimicrobial, antioxidant, and anti-inflammatory properties, facilitating rapid wound healing. To prepare the multifunctional nanogels, we utilized quercetin (Qu) and a mild carbonization process to form carbonized nanogels (CNGs). These CNGs possess excellent antioxidative and bacterial targeting properties. Subsequently, we utilized the Qu-CNGs as templates to prepare nanogels incorporating copper sulfide (CuS) nanoclusters, further enhancing their functionality. Notably, the CuS/Qu-CNGs nanocomposites demonstrated an exceptional minimum inhibitory concentration against tested bacteria, approximately 125-fold lower than monomeric Qu or Qu-CNGs. This enhanced antimicrobial effect was achieved by leveraging near-infrared II (NIR-II) light irradiation. Additionally, the CuS/Qu-CNGs exhibited efficient penetration into the extracellular biofilm matrix, eradicating methicillin-resistant Staphylococcus aureus-associated biofilms in diabetic mice wounds. Furthermore, the nanocomposites were found to suppress proinflammatory cytokines, such as IL-1β, at the wound sites while regulating the expression of anti-inflammatory factors, including IL-10 and TGF-β1, throughout the recovery process. The presence of CuS/Qu-CNGs promoted angiogenesis, epithelialization, and collagen synthesis, thereby accelerating wound healing. Our developed CuS/Qu-CNGs nanocomposites have great potential in addressing the challenges associated with delayed wound healing caused by microbial pathogenesis.
Collapse
Affiliation(s)
- Amit Nain
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Yu-Ting Tseng
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yu-Feng Lin
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Sangili Arumugam
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan.
| | - Yu-Fen Huang
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan.
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan.
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
- Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| |
Collapse
|
7
|
Friedman AJ, Padgette HM, Kramer L, Liechty ET, Donovan GW, Fox JM, Shirts MR. Biophysical Rationale for the Selective Inhibition of PTP1B over TCPTP by Nonpolar Terpenoids. J Phys Chem B 2023; 127:8305-8316. [PMID: 37729547 PMCID: PMC10694825 DOI: 10.1021/acs.jpcb.3c03791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are emerging drug targets for many diseases, including cancer, autoimmunity, and neurological disorders. A high degree of structural similarity between their catalytic domains, however, has hindered the development of selective pharmacological agents. Our previous research uncovered two unfunctionalized terpenoid inhibitors that selectively inhibit PTP1B over T-cell PTP (TCPTP), two PTPs with high sequence conservation. Here, we use molecular modeling, with supporting experimental validation, to study the molecular basis of this unusual selectivity. Molecular dynamics (MD) simulations suggest that PTP1B and TCPTP share a h-bond network that connects the active site to a distal allosteric pocket; this network stabilizes the closed conformation of the catalytically essential WPD loop, which it links to the L-11 loop and neighboring α3 and α7 helices on the other side of the catalytic domain. Terpenoid binding to either of two proximal C-terminal sites─an α site and a β site─can disrupt the allosteric network; however, binding to the α site forms a stable complex only in PTP1B. In TCPTP, two charged residues disfavor binding at the α site in favor of binding at the β site, which is conserved between the two proteins. Our findings thus indicate that minor amino acid differences at the poorly conserved α site enable selective binding, a property that might be enhanced with chemical elaboration, and illustrate more broadly how minor differences in the conservation of neighboring─yet functionally similar─allosteric sites can affect the selectivity of inhibitory scaffolds (e.g., fragments).
Collapse
Affiliation(s)
- Anika J Friedman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hannah M Padgette
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Levi Kramer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Evan T Liechty
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Gregory W Donovan
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Yang Q, Zou Y, Wei X, Ye P, Wu Y, Ai H, Zhang Z, Tan J, Zhou J, Yang Y, Dai Q, Dou C, Luo F. PTP1B knockdown alleviates BMSCs senescence via activating AMPK-mediated mitophagy and promotes osteogenesis in senile osteoporosis. Biochim Biophys Acta Mol Basis Dis 2023:166795. [PMID: 37385514 DOI: 10.1016/j.bbadis.2023.166795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
The senescence of bone marrow mesenchymal stem cells (BMSCs) is the basis of senile osteoporosis (SOP). Targeting BMSCs senescence is of paramount importance for developing anti-osteoporotic strategy. In this study, we found that protein tyrosine phosphatase 1B (PTP1B), an enzyme responsible for tyrosine dephosphorylation, was significantly upregulated in BMSCs and femurs with advancing chronological age. Therefore, the potential role of PTP1B in BMSCs senescence and senile osteoporosis was studied. Firstly, significantly upregulated PTP1B expression along with impaired osteogenic differentiation capacity was observed in D-galactose (D-gal)-induced BMSCs and naturally-aged BMSCs. Furthermore, PTP1B silencing could effectively alleviate senescence, improve mitochondrial dysfunction, and restore osteogenic differentiation in aged BMSCs, which was attributable to enhanced mitophagy mediated by PKM2/AMPK pathway. In addition, hydroxychloroquine (HCQ), an autophagy inhibitor, significantly reversed the protective effects from PTP1B knockdown. In SOP animal model, transplantation of LVsh-PTP1B-transfected D-gal-induced BMSCs harvested double protective effects, including increased bone formation and reduced osteoclastogenesis. Similarly, HCQ treatment remarkably suppressed osteogenesis of LVsh-PTP1B-transfected D-gal-induced BMSCs in vivo. Taken together, our data demonstrated that PTP1B silencing protects against BMSCs senescence and mitigates SOP via activating AMPK-mediated mitophagy. Targeting PTP1B may represent a promising interventional strategy to attenuate SOP.
Collapse
Affiliation(s)
- QianKun Yang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - YuChi Zou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - XiaoYu Wei
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peng Ye
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - YuTong Wu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - HongBo Ai
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhao Zhang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Orthopedics Department, The General Hospital of Western Theater Command PLA, Chengdu 610083, Sichuan Province, China
| | - JiuLin Tan
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiangling Zhou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - YuSheng Yang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - QiJie Dai
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ce Dou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Fei Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
9
|
Maccari R, Ottanà R. Can Allostery Be a Key Strategy for Targeting PTP1B in Drug Discovery? A Lesson from Trodusquemine. Int J Mol Sci 2023; 24:ijms24119621. [PMID: 37298571 DOI: 10.3390/ijms24119621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an enzyme crucially implicated in aberrations of various signaling pathways that underlie the development of different human pathologies, such as obesity, diabetes, cancer, and neurodegenerative disorders. Its inhibition can prevent these pathogenetic events, thus providing a useful tool for the discovery of novel therapeutic agents. The search for allosteric PTP1B inhibitors can represent a successful strategy to identify drug-like candidates by offering the opportunity to overcome some issues related to catalytic site-directed inhibitors, which have so far hampered the development of drugs targeting this enzyme. In this context, trodusquemine (MSI-1436), a natural aminosterol that acts as a non-competitive PTP1B inhibitor, appears to be a milestone. Initially discovered as a broad-spectrum antimicrobial agent, trodusquemine exhibited a variety of unexpected properties, ranging from antidiabetic and anti-obesity activities to effects useful to counteract cancer and neurodegeneration, which prompted its evaluation in several preclinical and clinical studies. In this review article, we provide an overview of the main findings regarding the activities and therapeutic potential of trodusquemine and their correlation with PTP1B inhibition. We also included some aminosterol analogues and related structure-activity relationships that could be useful for further studies aimed at the discovery of new allosteric PTP1B inhibitors.
Collapse
Affiliation(s)
- Rosanna Maccari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rosaria Ottanà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
10
|
Friedman AJ, Padgette HM, Kramer L, Liechty ET, Donovan GW, Fox JM, Shirts MR. A biophysical rationale for the selective inhibition of PTP1B over TCPTP by nonpolar terpenoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537234. [PMID: 37131728 PMCID: PMC10153121 DOI: 10.1101/2023.04.17.537234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are emerging drug targets for many diseases, including type 2 diabetes, obesity, and cancer. However, a high degree of structural similarity between the catalytic domains of these enzymes has made the development of selective pharmacological inhibitors an enormous challenge. Our previous research uncovered two unfunctionalized terpenoid inhibitors that selectively inhibit PTP1B over TCPTP, two PTPs with high sequence conservation. Here, we use molecular modeling with experimental validation to study the molecular basis of this unusual selectivity. Molecular dynamics (MD) simulations indicate that PTP1B and TCPTP contain a conserved h-bond network that connects the active site to a distal allosteric pocket; this network stabilizes the closed conformation of the catalytically influential WPD loop, which it links to the L-11 loop and α 3 and α 7 helices-the C-terminal side of the catalytic domain. Terpenoid binding to either of two proximal allosteric sites-an α site and a β site-can disrupt the allosteric network. Interestingly, binding to the α site forms a stable complex with only PTP1B; in TCPTP, where two charged residues disfavor binding at the α site, the terpenoids bind to the β site, which is conserved between the two proteins. Our findings indicate that minor amino acid differences at the poorly conserved α site enable selective binding, a property that might be enhanced with chemical elaboration, and illustrate, more broadly, how minor differences in the conservation of neighboring-yet functionally similar-allosteric sites can have very different implications for inhibitor selectivity.
Collapse
Affiliation(s)
- Anika J Friedman
- University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Hannah M Padgette
- University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Levi Kramer
- University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Evan T Liechty
- University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Gregory W Donovan
- University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Jerome M Fox
- University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Michael R Shirts
- University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
11
|
Teixeira ID, Carvalho E, Leal EC. Green Antimicrobials as Therapeutic Agents for Diabetic Foot Ulcers. Antibiotics (Basel) 2023; 12:467. [PMID: 36978333 PMCID: PMC10044531 DOI: 10.3390/antibiotics12030467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Diabetic foot ulcers (DFU) are one of the most serious and devastating complications of diabetes and account for a significant decrease in quality of life and costly healthcare expenses worldwide. This condition affects around 15% of diabetic patients and is one of the leading causes of lower limb amputations. DFUs generally present poor clinical outcomes, mainly due to the impaired healing process and the elevated risk of microbial infections which leads to tissue damage. Nowadays, antimicrobial resistance poses a rising threat to global health, thus hampering DFU treatment and care. Faced with this reality, it is pivotal to find greener and less environmentally impactful alternatives for fighting these resistant microbes. Antimicrobial peptides are small molecules that play a crucial role in the innate immune system of the host and can be found in nature. Some of these molecules have shown broad-spectrum antimicrobial properties and wound-healing activity, making them good potential therapeutic compounds to treat DFUs. This review aims to describe antimicrobial peptides derived from green, eco-friendly processes that can be used as potential therapeutic compounds to treat DFUs, thereby granting a better quality of life to patients and their families while protecting our fundamental bio-resources.
Collapse
Affiliation(s)
- Ines D. Teixeira
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ermelindo C. Leal
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
12
|
The use of innovative targeted angiogenic therapies for ischemic diabetic foot ulcer repair: From nanomedicine and microRNAs toward hyperbaric oxygen therapy. Porto Biomed J 2023; 8:e187. [DOI: 10.1097/j.pbj.0000000000000187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 02/10/2023] Open
|
13
|
Akinnusi PA, Olubode SO, Alade AA, Ashimi AA, Onawola OL, Agbolade AO, Emeka AP, Shodehinde SA, Adeniran OY. Potential Inhibitory Biomolecular Interactions of Natural Compounds With Different Molecular Targets of Diabetes. Bioinform Biol Insights 2023; 17:11779322231167970. [PMID: 37124131 PMCID: PMC10134171 DOI: 10.1177/11779322231167970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Type II diabetes is an endemic disease and is responsible for approximately 90% to 95% of diabetes cases. The pathophysiological distortions are majorly β-cell dysfunction, insulin resistance, and long-term inflammation, which all progressively unsettle the control of blood glucose levels and trigger microvascular and macrovascular complications. The diverse pathological disruptions which patients with type II diabetes mellitus exhibit precipitate the opinion that different antidiabetic agents, administered in combination, might be required to curb this menace and maintain normal blood glucose. To this end, natural compounds were screened to identify small molecular weight compounds with inhibitory effects on protein tyrosine phosphatase 1B (PTP1B), dipeptidyl-peptidase-4 (DPP-4), and α-amylase. From the result, the top 5 anthocyanins with the highest binding affinity are reported herein. Further ADMET profiling showed moderate pharmacokinetic profiles for these compounds as well as insignificant toxicity. Cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside (-15.272 kcal/mol), cyanidin 3-O-(6"-malonyl-3"-glucosyl-glucoside) (-9.691 kcal/mol), and delphinidin 3,5-O-diglucoside (-12.36 kcal/mol) had the highest binding affinities to PTP1B, DPP-4, and α-amylase, respectively, and can be used in combination to control glucose fluctuations. However, validations must be carried out through further in vitro and in vivo tests.
Collapse
Affiliation(s)
- Precious A Akinnusi
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
- Department of Biochemistry, Federal University of Oye-Ekiti, Oye-Ekiti, Nigeria
- Precious A Akinnusi, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko 342111, Ondo, Nigeria.
| | - Samuel O Olubode
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Adebowale A Alade
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Aderemi A Ashimi
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Olamide L Onawola
- Department of Microbiology, Lagos State University, Ojo, Nigeria
- Molecular Biology Research Laboratory, Department of Microbiology, Covenant University, Ota, Nigeria
| | - Abigail O Agbolade
- Department of Biochemistry, Federal University of Oye-Ekiti, Oye-Ekiti, Nigeria
- Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | - Adaobi P Emeka
- Department of Biological Sciences, Godfrey Okoye University, Enugu, Nigeria
| | | | - Olawole Y Adeniran
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
14
|
Lintel H, Abbas DB, Mackay DJ, Griffin M, Lavin CV, Berry CE, Guardino NJ, Guo JL, Momeni A, Mackay DR, Longaker MT, Wan DC. Topical vanadate improves tensile strength and alters collagen organisation of excisional wounds in a mouse model. Wound Repair Regen 2023; 31:77-86. [PMID: 36484112 PMCID: PMC10513738 DOI: 10.1111/wrr.13062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 12/13/2022]
Abstract
Wound dehiscence, oftentimes a result of the poor tensile strength of early healing wounds, is a significant threat to the post-operative patient, potentially causing life-threatening complications. Vanadate, a protein tyrosine phosphatase inhibitor, has been shown to alter the organisation of deposited collagen in healing wounds and significantly improve the tensile strength of incisional wounds in rats. In this study, we sought to explore the effects of locally administered vanadate on tensile strength and collagen organisation in both the early and remodelling phases of excisional wound healing in a murine model. Wild-type mice underwent stented excisional wounding on their dorsal skin and were divided equally into three treatment conditions: vanadate injection, saline injection control and an untreated control. Tensile strength testing, in vivo suction Cutometer analysis, gross wound measurements and histologic analysis were performed during healing, immediately upon wound closure, and after 4 weeks of remodelling. We found that vanadate treatment significantly increased the tensile strength of wounds and their stiffness relative to control wounds, both immediately upon healing and into the remodelling phase. Histologic analysis revealed that these biomechanical changes were likely the result of increased collagen deposition and an altered collagen organisation composed of thicker and distinctly organised collagen bundles. Given the risk that dehiscence poses to all operative patients, vanadate presents an interesting therapeutic avenue to improve the strength of post-operative wounds and unstable chronic wounds to reduce the risk of dehiscence.
Collapse
Affiliation(s)
- Hendrik Lintel
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Darren B. Abbas
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Duncan J. Mackay
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Christopher V. Lavin
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Charlotte E. Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Nicholas J. Guardino
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jason L. Guo
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Arash Momeni
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Donald R. Mackay
- Department of Plastic Surgery, Pennsylvania State University Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California, USA
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
15
|
Friedman AJ, Liechty ET, Kramer L, Sarkar A, Fox JM, Shirts MR. Allosteric Inhibition of PTP1B by a Nonpolar Terpenoid. J Phys Chem B 2022; 126:8427-8438. [PMID: 36223525 PMCID: PMC10040085 DOI: 10.1021/acs.jpcb.2c05423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are promising drug targets for treating a wide range of diseases such as diabetes, cancer, and neurological disorders, but their conserved active sites have complicated the design of selective therapeutics. This study examines the allosteric inhibition of PTP1B by amorphadiene (AD), a terpenoid hydrocarbon that is an unusually selective inhibitor. Molecular dynamics (MD) simulations carried out in this study suggest that AD can stably sample multiple neighboring sites on the allosterically influential C-terminus of the catalytic domain. Binding to these sites requires a disordered α7 helix, which stabilizes the PTP1B-AD complex and may contribute to the selectivity of AD for PTP1B over TCPTP. Intriguingly, the binding mode of AD differs from that of the most well-studied allosteric inhibitor of PTP1B. Indeed, biophysical measurements and MD simulations indicate that the two molecules can bind simultaneously. Upon binding, both inhibitors destabilize the α7 helix by disrupting interactions at the α3-α7 interface and prevent the formation of hydrogen bonds that facilitate closure of the catalytically essential WPD loop. These findings indicate that AD is a promising scaffold for building allosteric inhibitors of PTP1B and illustrate, more broadly, how unfunctionalized terpenoids can engage in specific interactions with protein surfaces.
Collapse
Affiliation(s)
- Anika J Friedman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Evan T Liechty
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Levi Kramer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Ankur Sarkar
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| |
Collapse
|
16
|
Leal EC, Carvalho E. Heme Oxygenase-1 as Therapeutic Target for Diabetic Foot Ulcers. Int J Mol Sci 2022; 23:ijms231912043. [PMID: 36233341 PMCID: PMC9569859 DOI: 10.3390/ijms231912043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
A diabetic foot ulcer (DFU) is one of the major complications of diabetes. Wound healing under diabetic conditions is often impaired. This is in part due to the excessive oxidative stress, prolonged inflammation, immune cell dysfunction, delayed re-epithelialization, and decreased angiogenesis present at the wound site. As a result of these multifactorial impaired healing pathways, it has been difficult to develop effective therapeutic strategies for DFU. Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in heme degradation generating carbon monoxide (CO), biliverdin (BV) which is converted into bilirubin (BR), and iron. HO-1 is a potent antioxidant. It can act as an anti-inflammatory, proliferative, angiogenic and cytoprotective enzyme. Due to its biological functions, HO-1 plays a very important role in wound healing, in part mediated through the biologically active end products generated by its enzymatic activity, particularly CO, BV, and BR. Therapeutic strategies involving the activation of HO-1, or the topical application of its biologically active end products are important in diabetic wound healing. Therefore, HO-1 is an attractive therapeutic target for DFU treatment. This review will provide an overview and discussion of the importance of HO-1 as a therapeutic target for diabetic wound healing.
Collapse
Affiliation(s)
- Ermelindo Carreira Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (E.C.L.); (E.C.); Tel.: +351-239-820-190 (E.C.L. & E.C.)
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (E.C.L.); (E.C.); Tel.: +351-239-820-190 (E.C.L. & E.C.)
| |
Collapse
|
17
|
Pan J, Zhou L, Zhang C, Xu Q, Sun Y. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduct Target Ther 2022; 7:177. [PMID: 35665742 PMCID: PMC9166240 DOI: 10.1038/s41392-022-01038-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is the common pathological basis of autoimmune diseases, metabolic diseases, malignant tumors, and other major chronic diseases. Inflammation plays an important role in tissue homeostasis. On one hand, inflammation can sense changes in the tissue environment, induce imbalance of tissue homeostasis, and cause tissue damage. On the other hand, inflammation can also initiate tissue damage repair and maintain normal tissue function by resolving injury and restoring homeostasis. These opposing functions emphasize the significance of accurate regulation of inflammatory homeostasis to ameliorate inflammation-related diseases. Potential mechanisms involve protein phosphorylation modifications by kinases and phosphatases, which have a crucial role in inflammatory homeostasis. The mechanisms by which many kinases resolve inflammation have been well reviewed, whereas a systematic summary of the functions of protein phosphatases in regulating inflammatory homeostasis is lacking. The molecular knowledge of protein phosphatases, and especially the unique biochemical traits of each family member, will be of critical importance for developing drugs that target phosphatases. Here, we provide a comprehensive summary of the structure, the "double-edged sword" function, and the extensive signaling pathways of all protein phosphatases in inflammation-related diseases, as well as their potential inhibitors or activators that can be used in therapeutic interventions in preclinical or clinical trials. We provide an integrated perspective on the current understanding of all the protein phosphatases associated with inflammation-related diseases, with the aim of facilitating the development of drugs that target protein phosphatases for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lisha Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
18
|
Brooks-Warburton J, Modos D, Sudhakar P, Madgwick M, Thomas JP, Bohar B, Fazekas D, Zoufir A, Kapuy O, Szalay-Beko M, Verstockt B, Hall LJ, Watson A, Tremelling M, Parkes M, Vermeire S, Bender A, Carding SR, Korcsmaros T. A systems genomics approach to uncover patient-specific pathogenic pathways and proteins in ulcerative colitis. Nat Commun 2022; 13:2299. [PMID: 35484353 PMCID: PMC9051123 DOI: 10.1038/s41467-022-29998-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/06/2022] [Indexed: 12/11/2022] Open
Abstract
We describe a precision medicine workflow, the integrated single nucleotide polymorphism network platform (iSNP), designed to determine the mechanisms by which SNPs affect cellular regulatory networks, and how SNP co-occurrences contribute to disease pathogenesis in ulcerative colitis (UC). Using SNP profiles of 378 UC patients we map the regulatory effects of the SNPs to a human signalling network containing protein-protein, miRNA-mRNA and transcription factor binding interactions. With unsupervised clustering algorithms we group these patient-specific networks into four distinct clusters driven by PRKCB, HLA, SNAI1/CEBPB/PTPN1 and VEGFA/XPO5/POLH hubs. The pathway analysis identifies calcium homeostasis, wound healing and cell motility as key processes in UC pathogenesis. Using transcriptomic data from an independent patient cohort, with three complementary validation approaches focusing on the SNP-affected genes, the patient specific modules and affected functions, we confirm the regulatory impact of non-coding SNPs. iSNP identified regulatory effects for disease-associated non-coding SNPs, and by predicting the patient-specific pathogenic processes, we propose a systems-level way to stratify patients.
Collapse
Affiliation(s)
- Johanne Brooks-Warburton
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hertford, UK
- Gastroenterology Department, Lister Hospital, Stevenage, UK
| | - Dezso Modos
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Padhmanand Sudhakar
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- KU Leuven, Department of Chronic diseases, Metabolism and Ageing, Leuven, Belgium
| | - Matthew Madgwick
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - John P Thomas
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Department of Gastroenterology, Norfolk and Norwich University Hospitals, Norwich, UK
| | - Balazs Bohar
- Earlham Institute, Norwich Research Park, Norwich, UK
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - David Fazekas
- Earlham Institute, Norwich Research Park, Norwich, UK
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Azedine Zoufir
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Orsolya Kapuy
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | | | - Bram Verstockt
- KU Leuven, Department of Chronic diseases, Metabolism and Ageing, Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
| | - Lindsay J Hall
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, 80333, Freising, Germany
| | - Alastair Watson
- Department of Gastroenterology, Norfolk and Norwich University Hospitals, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Mark Tremelling
- Department of Gastroenterology, Norfolk and Norwich University Hospitals, Norwich, UK
| | - Miles Parkes
- Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Severine Vermeire
- KU Leuven, Department of Chronic diseases, Metabolism and Ageing, Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
| | - Andreas Bender
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Simon R Carding
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich, UK.
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| |
Collapse
|
19
|
Rath P, Ranjan A, Ghosh A, Chauhan A, Gurnani M, Tuli HS, Habeeballah H, Alkhanani MF, Haque S, Dhama K, Verma NK, Jindal T. Potential Therapeutic Target Protein Tyrosine Phosphatase-1B for Modulation of Insulin Resistance with Polyphenols and Its Quantitative Structure–Activity Relationship. Molecules 2022; 27:molecules27072212. [PMID: 35408611 PMCID: PMC9000704 DOI: 10.3390/molecules27072212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
The increase in the number of cases of type 2 diabetes mellitus (T2DM) and the complications associated with the side effects of chemical/synthetic drugs have raised concerns about the safety of the drugs. Hence, there is an urgent need to explore and identify natural bioactive compounds as alternative drugs. Protein tyrosine phosphatase 1B (PTP1B) functions as a negative regulator and is therefore considered as one of the key protein targets modulating insulin signaling and insulin resistance. This article deals with the screening of a database of polyphenols against PTP1B activity for the identification of a potential inhibitor. The research plan had two clear objectives. Under first objective, we conducted a quantitative structure–activity relationship analysis of flavonoids with PTP1B that revealed the strongest correlation (R2 = 93.25%) between the number of aromatic bonds (naro) and inhibitory concentrations (IC50) of PTP1B. The second objective emphasized the binding potential of the selected polyphenols against the activity of PTP1B using molecular docking, molecular dynamic (MD) simulation and free energy estimation. Among all the polyphenols, silydianin, a flavonolignan, was identified as a lead compound that possesses drug-likeness properties, has a higher negative binding energy of −7.235 kcal/mol and a pKd value of 5.2. The free energy-based binding affinity (ΔG) was estimated to be −7.02 kcal/mol. MD simulation revealed the stability of interacting residues (Gly183, Arg221, Thr263 and Asp265). The results demonstrated that the identified polyphenol, silydianin, could act as a promising natural PTP1B inhibitor that can modulate the insulin resistance.
Collapse
Affiliation(s)
- Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India; (P.R.); (M.G.)
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
- Correspondence: (A.R.); (A.G.); Tel.: +91-999-090-7571 (A.R.); +91-967-862-9146 (A.G.)
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati 781014, India
- Correspondence: (A.R.); (A.G.); Tel.: +91-999-090-7571 (A.R.); +91-967-862-9146 (A.G.)
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida 201303, India; (A.C.); (T.J.)
| | - Manisha Gurnani
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India; (P.R.); (M.G.)
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Hamza Habeeballah
- Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh Branch, Rabigh 25732, Saudi Arabia;
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Faculty of Medicine, Bursa Uludağ University Görükle Campus, Nilüfer 16059, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India;
| | - Naval Kumar Verma
- Homeopathy, Ministry of Ayush, Ayush Bhawan, B Block, GPO Complex INA, New Delhi 110023, India;
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida 201303, India; (A.C.); (T.J.)
| |
Collapse
|
20
|
Teimouri M, Hosseini H, ArabSadeghabadi Z, Babaei-Khorzoughi R, Gorgani-Firuzjaee S, Meshkani R. The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications. J Physiol Biochem 2022; 78:307-322. [PMID: 34988903 DOI: 10.1007/s13105-021-00860-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Insulin resistance, the most important characteristic of the type 2 diabetes mellitus (T2DM), is mostly caused by impairment in the insulin receptor (IR) signal transduction pathway. Protein tyrosine phosphatase 1B (PTP1B), one of the main negative regulators of the IR signaling pathway, is broadly expressed in various cells and tissues. PTP1B decreases the phosphorylation of the IR resulting in insulin resistance in various tissues. The evidence for the physiological role of PTP1B in regulation of metabolic pathways came from whole-body PTP1B-knockout mice. Whole-body and tissue-specific PTP1B-knockout mice showed improvement in adiposity, insulin resistance, and glucose tolerance. In addition, the key role of PTP1B in the pathogenesis of T2DM and its complications was further investigated in mice models of PTP1B deficient/overexpression. In recent years, targeting PTP1B using PTP1B inhibitors is being considered an attractive target to treat T2DM. PTP1B inhibitors improve the sensitivity of the insulin receptor and have the ability to cure insulin resistance-related diseases. We herein summarized the biological functions of PTP1B in different tissues in vivo and in vitro. We also describe the effectiveness of potent PTP1B inhibitors as pharmaceutical agents to treat T2DM.
Collapse
Affiliation(s)
- Maryam Teimouri
- Department of Clinical Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra ArabSadeghabadi
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Reyhaneh Babaei-Khorzoughi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Golledge J, Thanigaimani S. Novel therapeutic targets for diabetes-related wounds or ulcers: an update on preclinical and clinical research. Expert Opin Ther Targets 2021; 25:1061-1075. [PMID: 34873970 DOI: 10.1080/14728222.2021.2014816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Diabetes-related wounds, particularly diabetes-related foot ulcers, are mainly caused by lack of foot sensation and high plantar tissue stress secondary to peripheral neuropathy, ischemia secondary to peripheral artery disease, and dysfunctional wound healing. Current management of diabetes-related wounds involves the offloading of high foot pressures and the treatment of ischemia through revascularization. Despite these treatments, the global burden of diabetes-related wounds is growing, and thus, novel therapies are needed. The normal wound healing process is a coordinated remodeling process orchestrated by fibroblasts, endothelial cells, phagocytes, and platelets, controlled by an array of growth factors. In diabetes-related wounds, these coordinated processes are dysfunctional. The past animal model and human research suggest that prolonged wound inflammation, failure to adequately correct ischemia, and impaired wound maturation are key therapeutic targets to improve diabetes-related wound healing. AREAS COVERED This review summarizes recent preclinical and clinical research on novel diabetes-related wound treatments. Animal models of diabetes-related wounds and recent studies testing novel therapeutic agents in these models are described. Findings from clinical trials are also discussed. Finally, challenges to identifying and implementing novel therapies are described. EXPERT OPINION Given the growing volume of promising drug therapies currently under investigation, it is expected within the next decade, that diabetes-related wound treatment will be transformed.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
22
|
Qian L, Wang Q, Wei C, Wang L, Yang Y, Deng X, Liu J, Qi F. Protein tyrosine phosphatase 1B regulates fibroblasts proliferation, motility and extracellular matrix synthesis via the MAPK/ERK signalling pathway in keloid. Exp Dermatol 2021; 31:202-213. [PMID: 34370343 DOI: 10.1111/exd.14443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/27/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022]
Abstract
Keloid is a fibroproliferative disorder resulting from trauma, characterized by abnormal activation of keloid fibroblasts and excessive deposition of extracellular matrix (ECM). It affects life quality of patients and lacks of effective therapeutic targets. Protein tyrosine phosphatase 1B (PTP1B) belongs to the protein tyrosine phosphatases and participates in many cellular processes such as metabolism, proliferation and motility. It has been reported that PTP1B negatively regulated diabetic wound healing and tumor progression. However, its effects in keloid remain unclear. Here, we aimed to evaluate the effects of PTP1B on keloid fibroblasts which play essential roles in keloids pathogenesis. Our results revealed that PTP1B expression was decreased both in keloid tissues and in keloid fibroblasts compared to healthy controls. Keloid fibroblasts (KFs) showed higher cell proliferation, motility, ECM production and ERK activity than normal fibroblasts (NFs). Overexpression of PTP1B in KFs and NFs inhibited cell proliferation, motility, ECM synthesis and the MAPK/ERK signalling pathway while knockdown of PTP1B showed converse effects. The rescue experiments with ERK inhibitor further verified that MAPK/ERK signalling pathway involved in PTP1B regulatory network. Taken together, our findings indicated that overexpression of PTP1B suppressed keloid fibroblasts bio-behaviours and promoted their phenotype switch to normal cells via inhibiting the MAPK/ERK signalling pathway, suggesting it may be a potential anti-keloid therapy.
Collapse
Affiliation(s)
- Leqi Qian
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanwen Yang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyi Deng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Artificial Intelligence Center for Plastic Surgery and Cutaneous Soft Tissue Cancers, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fazhi Qi
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Active agents loaded extracellular matrix mimetic electrospun membranes for wound healing applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Khoury ZH, Salameh F. Trodusquemine: Potential Utility in Wound Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00211-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Geng K, Ma X, Jiang Z, Huang W, Gao C, Pu Y, Luo L, Xu Y, Xu Y. Innate Immunity in Diabetic Wound Healing: Focus on the Mastermind Hidden in Chronic Inflammatory. Front Pharmacol 2021; 12:653940. [PMID: 33967796 PMCID: PMC8097165 DOI: 10.3389/fphar.2021.653940] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
A growing body of evidence suggests that the interaction between immune and metabolic responses is essential for maintaining tissue and organ homeostasis. These interacting disorders contribute to the development of chronic diseases associated with immune-aging such as diabetes, obesity, atherosclerosis, and nonalcoholic fatty liver disease. In Diabetic wound (DW), innate immune cells respond to the Pathogen-associated molecular patterns (PAMAs) and/or Damage-associated molecular patterns (DAMPs), changes from resting to an active phenotype, and play an important role in the triggering and maintenance of inflammation. Furthermore, the abnormal activation of innate immune pathways secondary to immune-aging also plays a key role in DW healing. Here, we review studies of innate immune cellular molecular events that identify metabolic disorders in the local microenvironment of DW and provide a historical perspective. At the same time, we describe some of the recent progress, such as TLR receptor-mediated intracellular signaling pathways that lead to the activation of NF-κB and the production of various pro-inflammatory mediators, NLRP3 inflammatory via pyroptosis, induction of IL-1β and IL-18, cGAS-STING responds to mitochondrial injury and endoplasmic reticulum stress, links sensing of metabolic stress to activation of pro-inflammatory cascades. Besides, JAK-STAT is also involved in DW healing by mediating the action of various innate immune effectors. Finally, we discuss the great potential of targeting these innate immune pathways and reprogramming innate immune cell phenotypes in DW therapy.
Collapse
Affiliation(s)
- Kang Geng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China.,Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,National Key Clinical Construction Specialty, Luzhou, China
| | - Xiumei Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Zongzhe Jiang
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Chenlin Gao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Yueli Pu
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Lifang Luo
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China
| | - Yong Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
26
|
Angiogenesis regulation by microRNAs and long non-coding RNAs in human breast cancer. Pathol Res Pract 2021; 219:153326. [PMID: 33601152 DOI: 10.1016/j.prp.2020.153326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are capable of regulating gene expression post-transcriptionally. Since the past decade, a number of in vitro, in vivo, and clinical studies reported the roles of these non-coding RNAs (ncRNAs) in regulating angiogenesis, an important cancer hallmark that is associated with metastases and poor prognosis. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signalling pathways regulated by these ncRNAs will be discussed in this review. In light of the recent trend in exploiting ncRNAs as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agent against angiogenesis was also discussed.
Collapse
|
27
|
Protein tyrosine phosphatases (PTPs) in diabetes: causes and therapeutic opportunities. Arch Pharm Res 2021; 44:310-321. [PMID: 33590390 DOI: 10.1007/s12272-021-01315-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Protein tyrosine phosphatases (PTPs) have an emerging paradigm for the development of antidiabetic drugs. Herein, we provide a comprehensive overview of the relevance of PTPs to type 2 diabetes (T2D) and the therapeutic opportunities thereof, while critically evaluating the potential challenges for PTP inhibitors to be next generation antidiabetics. This review briefly discusses the structure and function of PTPs. An account of importance and relevance of PTPs in various human diseases is presented with special attention to diabetes. The PTPs relevant to T2D have been targeted by small molecule inhibitors such as natural products and synthetic compounds as well as antisense nucleic acids. This review will give better understanding of the important concepts helpful in outlining the strategies for the development of new therapeutic agents with promising antidiabetic activities.
Collapse
|
28
|
Exploring the Chemical Space of Macro- and Micro-Algae Using Comparative Metabolomics. Microorganisms 2021; 9:microorganisms9020311. [PMID: 33546180 PMCID: PMC7913273 DOI: 10.3390/microorganisms9020311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 02/08/2023] Open
Abstract
With more than 156,000 described species, eukaryotic algae (both macro- and micro-algae) are a rich source of biological diversity, however their chemical diversity remains largely unexplored. Specialised metabolites with promising biological activities have been widely reported for seaweeds, and more recently extracts from microalgae have exhibited activity in anticancer, antimicrobial, and antioxidant screens. However, we are still missing critical information on the distinction of chemical profiles between macro- and microalgae, as well as the chemical space these metabolites cover. This study has used an untargeted comparative metabolomics approach to explore the chemical diversity of seven seaweeds and 36 microalgal strains. A total of 1390 liquid chromatography-mass spectrometry (LC-MS) features were detected, representing small organic algal metabolites, with no overlap between the seaweeds and microalgae. An in-depth analysis of four Dunaliella tertiolecta strains shows that environmental factors may play a larger role than phylogeny when classifying their metabolomic profiles.
Collapse
|