1
|
Kim H, Park H, Jun J, Moon J, Oh J, Bhujbal SP, Hah JM. Targeting JNK3 for Alzheimer's disease: Design and synthesis of novel inhibitors with aryl group diversity utilizing wide pocket. Eur J Med Chem 2025; 285:117209. [PMID: 39788062 DOI: 10.1016/j.ejmech.2024.117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
JNK3, a brain-specific stress-activated protein kinase, plays a critical role in Alzheimer's disease pathogenesis through phosphorylation of Tau and APP. This study aimed to develop selective JNK3 inhibitors based on a pyrazole scaffold, focusing on (E)-1-(2-aminopyrimidin-4-yl)-4-styryl-1H-pyrazole-3-carboxamide derivatives. Through systematic structural modifications and extensive SAR analysis, we identified compounds 24a and 26a as highly potent JNK3 inhibitors, with IC50 values of 12 and 19 nM, respectively. Especially, 24a revealed its potent and selective inhibition of JNK3, coupled with inhibition of the GSK3α/β kinases involved in Tau phosphorylation. In vitro studies revealed significant neuroprotective effects against Aβ1-42-induced toxicity in primary neuronal cells and western blot analyses confirmed the compounds' ability to mitigate Aβ1-42-induced c-Jun and APP phosphorylation, suggesting a multi-faceted approach to neuroprotection. Docking studies validated the retention of optimal interactions within the JNK3 binding pocket. Importantly, BBB PAMPA assays and ADME predictions indicated favorable blood-brain barrier permeability and pharmacokinetic profiles for the lead compounds. These findings represent a significant advancement in the development of selective JNK3 inhibitors, providing a strong foundation for further preclinical development of potential Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 15588, Republic of Korea
| | - Haebeen Park
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 15588, Republic of Korea
| | - Joonhong Jun
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 15588, Republic of Korea
| | - Jihyun Moon
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 15588, Republic of Korea
| | - Jooyoung Oh
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 15588, Republic of Korea
| | - Swapnil P Bhujbal
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 15588, Republic of Korea
| | - Jung-Mi Hah
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
2
|
Oyovwi MO, Atere AD, Chimwuba P, Joseph UG. Implication of Pyrethroid Neurotoxicity for Human Health: A Lesson from Animal Models. Neurotox Res 2024; 43:1. [PMID: 39680194 DOI: 10.1007/s12640-024-00723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
Pyrethroids, synthetic insecticides used in pest management, pose health risks, particularly neurotoxic effects, with studies linking exposure to a neurodegenerative disorder. This review examines the neurotoxic mechanisms of pyrethroids analyzing literature from animal model studies. It identifies critical targets for neurotoxicity, including ion channels, oxidative stress, inflammation, neuronal cell loss, and mitochondrial dysfunction. The review also discusses key therapeutic targets and signaling pathways relevant to Pyrethroids neurotoxicity management, including calcium, Wnt/β-catenin, mTOR, MAPK/Erk, PI3K/Akt, Nrf2, Nurr1, and PPARγ. Our findings demonstrate that pyrethroid exposure triggers multiple neurotoxic pathways that bear resemblance to the mechanisms underlying neurotoxicity. Oxidative stress and inflammation emerge as prominent factors that contribute to neuronal degeneration, alongside disrupted mitochondrial function. The investigation highlights the significance of ion channels as primary neurodegeneration targets while acknowledging the potential involvement of various other receptors and enzymes that may exacerbate neurological damage. Additionally, we elucidate how pyrethroids may interfere with therapeutic targets associated with neuronal dysfunction, potentially impairing treatment efficacy.Also, exposure to these chemicals can alter DNA methylation patterns and histone modifications, ultimately leading to changes in gene expression that may enhance susceptibility to neurological disorders. Pyrethroid neurotoxicity poses a significant public health risk, necessitating future research for protective strategies against pesticide-induced neurological disorders and understanding the interplay between neurodegenerative diseases, potentially leading to innovative therapeutic interventions.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
| | - Adedeji David Atere
- Department of Medical Laboratory Science, College of Health Sciences, Osun State University, Osogbo, Nigeria
- Neurotoxicology Laboratory, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| | - Paul Chimwuba
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Uchechukwu Gregory Joseph
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
3
|
Cervera-Juanes R, Zimmerman KD, Wilhelm L, Zhu D, Bodie J, Kohama SG, Urbanski HF. Modulation of neural gene networks by estradiol in old rhesus macaque females. GeroScience 2024; 46:5819-5841. [PMID: 38509416 PMCID: PMC11493911 DOI: 10.1007/s11357-024-01133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent subcutaneous bioidentical E2 chronic treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC). The finding that hypomethylation (p = 1.6 × 10-51) and upregulation (p = 3.8 × 10-3) of UBE2M across both brain regions provide strong evidence for molecular differences in the brain induced by E2 depletion. Additionally, differential expression (p = 1.9 × 10-4; interaction p = 3.5 × 10-2) of LTBR in the PFC provides further support for the role E2 plays in the brain, by demonstrating that the regulation of some genes that are altered by ovariectomy may also be modulated by Ov followed by hormone replacement therapy (HRT). These results present real opportunities to understand the specific biological mechanisms that are altered with depleted E2. Given E2's potential role in cognitive decline and neuroinflammation, our findings could lead to the discovery of novel therapeutics to slow cognitive decline. Together, this work represents a major step toward understanding molecular changes in the brain that are caused by ovariectomy and how E2 treatment may revert or protect against the negative neuro-related consequences caused by a depletion in estrogen as women approach menopause.
Collapse
Affiliation(s)
- Rita Cervera-Juanes
- Department of Translational Neuroscience, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
- Center for Precision Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| | - Kip D Zimmerman
- Center for Precision Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Larry Wilhelm
- Department of Translational Neuroscience, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Dongqin Zhu
- Department of Translational Neuroscience, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Jessica Bodie
- Department of Translational Neuroscience, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
4
|
Toader C, Tataru CP, Munteanu O, Serban M, Covache-Busuioc RA, Ciurea AV, Enyedi M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer's, Parkinson's, and ALS. Int J Mol Sci 2024; 25:12613. [PMID: 39684324 PMCID: PMC11641752 DOI: 10.3390/ijms252312613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, ALS, and Huntington's, remain formidable challenges in medicine, with their relentless progression and limited therapeutic options. These diseases arise from a web of molecular disturbances-misfolded proteins, chronic neuroinflammation, mitochondrial dysfunction, and genetic mutations-that slowly dismantle neuronal integrity. Yet, recent scientific breakthroughs are opening new paths to intervene in these once-intractable conditions. This review synthesizes the latest insights into the underlying molecular dynamics of neurodegeneration, revealing how intertwined pathways drive the course of these diseases. With an eye on the most promising advances, we explore innovative therapies emerging from cutting-edge research: nanotechnology-based drug delivery systems capable of navigating the blood-brain barrier, gene-editing tools like CRISPR designed to correct harmful genetic variants, and stem cell strategies that not only replace lost neurons but foster neuroprotective environments. Pharmacogenomics is reshaping treatment personalization, enabling tailored therapies that align with individual genetic profiles, while molecular diagnostics and biomarkers are ushering in an era of early, precise disease detection. Furthermore, novel perspectives on the gut-brain axis are sparking interest as mounting evidence suggests that microbiome modulation may play a role in reducing neuroinflammatory responses linked to neurodegenerative progression. Taken together, these advances signal a shift toward a comprehensive, personalized approach that could transform neurodegenerative care. By integrating molecular insights and innovative therapeutic techniques, this review offers a forward-looking perspective on a future where treatments aim not just to manage symptoms but to fundamentally alter disease progression, presenting renewed hope for improved patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Ophthalmology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
5
|
Gupta V, Singh S, Singh TG. Pervasive expostulation of p53 gene promoting the precipitation of neurogenic convulsions: A journey in therapeutic advancements. Eur J Pharmacol 2024; 983:176990. [PMID: 39251181 DOI: 10.1016/j.ejphar.2024.176990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Epilepsy, a neurological disorder characterized by prolonged and excessive seizures, has been linked to elevated levels of the tumor suppressor gene p53, which contributes to neuronal dysfunction. This review explores the molecular mechanisms of p53 in epilepsy and discusses potential future therapeutic strategies. Research indicates that changes in p53 expression during neuronal apoptosis, neuroinflammation, and oxidative stress play a significant role in the pathogenesis of epilepsy. Elevated p53 disrupts glutamatergic neurotransmission and hyperactivates NMDA and AMPA receptors, leading to increased neuronal calcium influx, mitochondrial oxidative stress, and activation of apoptotic pathways mediated neuronal dysfunction, exacerbating epileptogenesis. The involvement of p53 in epilepsy suggests that targeting this protein could be beneficial in mitigating neuronal damage and preventing seizure recurrence. Pharmacological agents like pifithrin-α have shown promise in reducing p53-mediated apoptosis and seizure severity. Gene therapy approaches, such as viral vector-mediated delivery of wild-type p53 or RNA interference targeting mutant p53, have also been effective in restoring normal p53 function and reducing seizure susceptibility. Despite these advances, the heterogeneous nature of epilepsy and potential long-term side effects of p53 modulation present challenges. Future research should focus on elucidating the precise molecular mechanisms of p53 and developing personalized therapeutic strategies. Modulating p53 activity holds promise for reducing seizure susceptibility and improving the quality of life for individuals with epilepsy. The current review provides the understanding the intricate role of p53 in neuroinflammatory pathways, including JAK-STAT, JNK, NF-κB, Sonic Hedgehog, and Wnt, is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Vrinda Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India; School of Public Health, Faculty of Health, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
6
|
Shen Y, Zhu W, Li S, Zhang Z, Zhang J, Li M, Zheng W, Wang D, Zhong Y, Li M, Zheng H, Du J. Integrated analyses of 5 mC, 5hmC methylation and gene expression reveal pathology-associated AKT3 gene and potential biomarkers for Alzheimer's disease. J Psychiatr Res 2024; 178:367-377. [PMID: 39197298 DOI: 10.1016/j.jpsychires.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/18/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
AIMS 5 mC methylation and hydroxymethylation (5hmC) are associated with Alzheimer's disease (AD). However, previous studies were limited by the absence of a 5hmC calculation. This study aims to find AD associated predictors and potential therapeutic chemicals using bioinformatics approach integrating 5 mC, 5hmC, and expression changes, and an AD mouse model. METHODS Gene expression microarray and 5 mC and 5hmC sequencing datasets were downloaded from GEO repository. 142 AD and 52 normal entorhinal cortex specimens were enrolled. Data from oxidative bisulfite sequencing (oxBS)-treated samples, which represent only 5 mC, were used to calculate 5hmC level. Functional analyses, random forest supervised classification and methylation validation were applied. Potential chemicals were predicted by CMap. Morris water maze, Y maze and novel object recognition behavior tests were performed using FAD4T AD mice model. Cortex and hippocampus tissues were isolated for immunohistochemical staining. RESULTS C1QTNF5, UBD, ZFP106, NEDD1, AKT3, and MBP genes involving 13 promoter CpG sites with 5mc, 5hmC methylation and expression difference were identified. AKT3 and MBP were down-regulated in both patients and mouse model. Three CpG sites in AKT3 and MBP showed significant methylation difference on validation. FAD4T AD mice showed recession in brain functions and lower AKT3 expression in both cortex and hippocampus. Ten chemicals were predicted as potential treatments for AD. CONCLUSIONS AKT3 and MBP may be associated with AD pathology and could serve as biomarkers. The ten predicted chemicals might offer new therapeutic approaches. Our findings could contribute to identifying novel markers and advancing the understanding of AD mechanisms.
Collapse
Affiliation(s)
- Yupei Shen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Weiqiang Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Shuaicheng Li
- School of Computer Science, Fudan University, Shanghai Key Laboratory of Intelligent Information Processing Shanghai, China
| | - Zhaofeng Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jian Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Mingjie Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wei Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Difei Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yushun Zhong
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Min Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jing Du
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.
| |
Collapse
|
7
|
Shuai W, Yang P, Xiao H, Zhu Y, Bu F, Wang A, Sun Q, Wang G, Ouyang L. Selective Covalent Inhibiting JNK3 by Small Molecules for Parkinson's Diseases. Angew Chem Int Ed Engl 2024:e202411037. [PMID: 39276356 DOI: 10.1002/anie.202411037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/17/2024]
Abstract
c-Jun N-terminal kinases (JNKs) including JNK1/2/3 are key members of mitogen-activated protein kinase family. Wherein JNK3 is specifically expressed in brain and emerges as therapeutic target, especially for neurodegenerative diseases. However, developing JNK3 selective inhibitors as chemical probes to investigate its therapeutic potential in diseases remains challenging. Here, we adopted the covalent strategy for identifying JNK3-selective covalent inhibitor JC16I, with high inhibitory activity against JNK3. Despite targeting a conserved cysteine in the vicinity of ATP pocket in JNK family, JC16I exerted a greater than 160-fold selectivity for JNK3 over JNK1/2. Importantly, even at low concentration, JC16I showed enhanced and long-lasting inhibition against cellular JNK3. In addition, its alkyne-containing probe JC-P1 could label JNK3 in SH-SY5Y cell lysate and living cells, with good proteome-wide selectivity. JC16I selectively suppressed the abnormal activation of JNK3 signaling and sufficiently exhibited neuroprotective effect in Parkinson's diseases (PD) models. Overall, our findings highlight the potential of developing isoform-selective and cell-active JNK3 inhibitors by covalent drug design strategy targeting a conserved cysteine. This work not only provides a valuable chemical probe for JNK3-targeted investigations in vitro and in vivo but also opens new avenues for the treatment of PD.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Panpan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Aoxue Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| |
Collapse
|
8
|
Janpaijit S, Sukprasansap M, Tencomnao T, Prasansuklab A. Anti-Neuroinflammatory Potential of Areca Nut Extract and Its Bioactive Compounds in Anthracene-Induced BV-2 Microglial Cell Activation. Nutrients 2024; 16:2882. [PMID: 39275198 PMCID: PMC11397359 DOI: 10.3390/nu16172882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Particulate matter (PM2.5) containing polycyclic aromatic hydrocarbons (PAHs) is of considerable environmental importance worldwide due to its adverse effects on human health, which are associated with neurodegenerative diseases (NDDs). Areca catechu L. (AC) fruit is known to possess various pharmacological properties; however, the anti-neuroinflammatory roles of AC on the suppression of PAH-induced neuroinflammation are still limited. Thus, we focused on the effects and related signaling cascades of AC and its active compounds against anthracene-induced toxicity and inflammation in mouse microglial BV-2 cells. Phytochemicals in the ethanolic extract of AC (ACEE) were identified using LC-MS, and molecular docking was conducted to screen the interaction between compounds and target proteins. Significant bioactive compounds in ACEE such as arecoline, (-)-epicatechin, and syringic acid were evinced through the LC-MS spectrum. The docking study revealed that (-)-epicatechin showed the highest binding affinities against NF-κB. For cell-based approaches, anthracene induced intracellular ROS, mRNA levels of TNF-α, IL-1β, and IL-6, and the release of TNF-α through enhancing JNK, p38, and NF-κB signaling pathways. However, the co-treatment of cells with ACEE or (-)-epicatechin could reverse those anthracene-induced changes. The overall study suggested that ACEE-derived bioactive compounds such as (-)-epicatechin may be developed as a potential anti-neuroinflammatory agent by preventing inflammation-mediated NDDs.
Collapse
Affiliation(s)
- Sakawrat Janpaijit
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura), Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Tewin Tencomnao
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura), Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura), Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Lu S, Ji N, Wang W, Lin X, Gao D, Geng D. Salidroside improves cognitive function in Parkinson's disease via Braf-mediated mitogen‑activated protein kinase signaling pathway. Biomed Pharmacother 2024; 177:116968. [PMID: 38901199 DOI: 10.1016/j.biopha.2024.116968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVE To delve into the underlying mechanism of Salidroside (Sal) on the improvement of cognitive function in Parkinson's Disease (PD). METHODS The experimental mice were divided into Control group, Model group [injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)], and Model+Sal (low concentration, high concentration) group. Mouse hippocampal tissues were extracted for RNA sequencing to obtain the core pathway and core gene. Mouse plasma was prepared and analyzed by LC-MS to obtain differential metabolites. In vitro experiments were verified by immunofluorescence and lentiviral transduction. RESULTS ELISA signaled that Sal facilitated the reduction of neuronal damage and inflammatory reaction in mice. MPTP_Sal_Low and MPTP_Sal_High groups had high levels of glial cell derived neurotrophie factor (GDNF) expression. Differentially expressed genes (DEGs) in control group, MPTP group and MPTP_Sal_High group were identified by transcriptomic, which were classified to the mitogen-activated protein kinase (MAPK) signaling pathway, and the core gene Braf was obtained. Metabolomics manifested that the differential metabolites involved DL-tyrosine, adenosine, phosphoenolpyruvate, and L-tryptophan. In vitro experiments verified that Sal treatment inhibited the up-regulation of p-p38, p-c-Jun N-terminal kinase (JNK), and p-extracellular signal-regulated kinase (ERK) expression, and growth of neuronal protrusions. The OE-Braf group showed a significant up-regulation of the GDNF expression, a decrease in the expression of p-p38, p-JNK, and p-ERK, and a significant growth of neuronal protrusions. CONCLUSION Sal may exert its effects in PD through the Braf-mediated MAPK signaling pathway, which can increase GDNF expression and promote neuronal protrusion growth for the protection of neurological function and the improvement of cognitive function.
Collapse
Affiliation(s)
- Shujin Lu
- Nanjing Medical University, Nanjing, Jiangsu Province 211166, China; Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Niu Ji
- Nanjing Medical University, Nanjing, Jiangsu Province 211166, China; Department of Neurology, Lianyungang First People's Hospital, Lianyungang, Jiangsu Province 222000, China
| | - Wei Wang
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Xiaoqian Lin
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Dianshuai Gao
- Nanjing Medical University, Nanjing, Jiangsu Province 211166, China; School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| | - Deqin Geng
- Nanjing Medical University, Nanjing, Jiangsu Province 211166, China; Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China.
| |
Collapse
|
10
|
Xia M, Ding J, Wu S, Yan Z, Wang L, Dong M, Niu W. Milk-derived small extracellular vesicles inhibit the MAPK signaling pathway through CD36 in chronic apical periodontitis. Int J Biol Macromol 2024; 274:133422. [PMID: 38925187 DOI: 10.1016/j.ijbiomac.2024.133422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Small extracellular vesicles derived from milk (Milk-sEVs) have the advantages of easy availability, low cost, low toxicity, and inhibition of inflammation. CD36 mediates inflammation stress in a variety of disease states. The purpose of this study was to investigate the role of Milk-sEVs in inhibiting fibroblast inflammation through CD36 and provide reference data for the treatment of chronic apical periodontitis. RESULTS The addition of Milk-sEVs resulted in decreased expression of inflammation-related factors in L929 cells, and transcriptome sequencing screened for the DEG CD36 in the Milk-sEV treatment group under inflammation. The mouse model of apical periodontitis was successfully established, and CD36 expression increased with the development of inflammation. Transfection of si-CD36 into L929 cells reduced inflammation by inhibiting activation of the MAPK signaling pathway. CONCLUSIONS CD36 expression increased with the development of apical periodontitis. In the setting of LPS-mediated inflammation, Milk-sEVs inhibited activation of the MAPK signaling pathway by decreasing the expression of CD36 in L929 cells and thereby reducing inflammation.
Collapse
Affiliation(s)
- Meng Xia
- School of Stomatology, Dalian Medical University, Liaoning 116044, China
| | - Jiayin Ding
- School of Stomatology, Dalian Medical University, Liaoning 116044, China
| | - Saixuan Wu
- School of Stomatology, Dalian Medical University, Liaoning 116044, China.
| | - Zhengru Yan
- School of Stomatology, Dalian Medical University, Liaoning 116044, China
| | - Lina Wang
- School of Stomatology, Dalian Medical University, Liaoning 116044, China.
| | - Ming Dong
- School of Stomatology, Dalian Medical University, Liaoning 116044, China.
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Liaoning 116044, China.
| |
Collapse
|
11
|
El-Araby RE, Wasif K, Johnson R, Tu Q, Aboushousha T, Zhu ZX, Chen J. Establishment of a novel cellular model for Alzheimer's disease in vitro studies. Exp Neurol 2024; 378:114820. [PMID: 38789025 DOI: 10.1016/j.expneurol.2024.114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory loss, cognitive impairment, and behavioral and psychological symptoms of dementia. The limited efficacy of drugs for the treatment of neurodegenerative diseases reflects their complex etiology and pathogenesis. A novel in vitro model may help to bridge the gap between existing preclinical animal models and human clinical trials, thus identifying promising therapeutic targets that can be explored in upcoming clinical trials. By assisting in the identification of the mechanism of action and potential dangers, in vitro testing can also shorten the time and expense of translation. AIM As a result of these factors, our objective is to develop a powerful and informative cellular model of AD within a short period of time. Through triggering the MAPK and NF-κβ signaling pathways with the aid of small chemical compounds (PAF C-16 and BetA), respectively, in mouse microglial (SIM-A9) and neuroblast Neuro-2a (N2a) cell lines. RESULTS PAF C-16, initiated an activation effect at a concentration of 3.12 nM to 25 nM in the SIM-A9 and N2a cell lines after 72 h. BetA, activated the NF-κβ pathway with a concentration of 12.5 nM to 25 nM in the SIM-A9 and N2a cell lines after 72 h. The combination of the activator chemicals provided suitable activation for MEK1/2-ERK and NF-κβ in more than three subcultures. Activators significantly initiate APP and MAPT gene expression, as well as the expression of proteins APP, β. Amyloid, tau, and p-tau. The activation of the targeted pathways leads to significant morphological changes. CONCLUSION We can infer that the MEK1/2-ERK and NF-κβ pathways, respectively, are directly activated by the PAF C-16 and BetA chemicals. The activation of MEK1/2-ERK pathway results in the activation of the APP gene, which in turn activates the β. Amyloid protein, which in turn results in plaque. Furthermore, NF-κβ activation results in the activation of the MAPT gene, which leads to Tau and p-Tau protein activation, which ultimately results in tangles. This can be put into practice in just three days, with a high level of activity and stability that is passed down to the next three generations (subculture), with significant morphological changes. In microglial and neuroblast cell lines, we were successful in creating a novel AD-cell model.
Collapse
Affiliation(s)
- Rady E El-Araby
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA; Theodor Bilharz Research Institute, Ministry of scientific Research, Cairo, Egypt
| | - Komal Wasif
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA; Department of Human Physiology, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA 02215, USA
| | - Rebecca Johnson
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA; Department of Human Physiology, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA 02215, USA
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Tarek Aboushousha
- Theodor Bilharz Research Institute, Ministry of scientific Research, Cairo, Egypt
| | - Zoe Xiaofang Zhu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA; Department of Genetics, Molecular and Cell Biology, Tufts University School of Medicine, and Graduate School of Biomedical Sciences. 136 Harrison Ave, M&V 830, Boston, MA 02111, USA.
| |
Collapse
|
12
|
Awasthi P, Kumar D, Hasan S. Role of 14-3-3 protein family in the pathobiology of EBV in immortalized B cells and Alzheimer's disease. Front Mol Biosci 2024; 11:1353828. [PMID: 39144488 PMCID: PMC11322100 DOI: 10.3389/fmolb.2024.1353828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Abstract
Background and Aims Several studies have revealed that Epstein-Barr virus (EBV) infection raised the likelihood of developing Alzheimer's disease (AD) via infecting B lymphocytes. The purpose of the current investigation was to assess the possible association between EBV infection and AD. Methods The microarray datasets GSE49628, GSE126379, GSE122063, and GSE132903 were utilized to extract DEGs by using the GEO2R tool of the GEO platform. The STRING tool was used to determine the interaction between the DEGs, and Cytoscape was used to visualize the results. The DEGs that were found underwent function analysis, including pathway and GO, using the DAVID 2021 and ClueGo/CluePedia. By using MNC, MCC, Degree, and Radiality of cytoHubba, we identified seven common key genes. Gene co-expression analysis was performed through the GeneMANIA web tool. Furthermore, expression analysis of key genes was performed through GTEx software, which have been identified in various human brain regions. The miRNA-gene interaction was performed through the miRNet v 2.0 tool. DsigDB on the Enrichr platform was utilized to extract therapeutic drugs connected to key genes. Results In GEO2R analysis of datasets with |log2FC|≥ 0.5 and p-value <0.05, 8386, 10,434, 7408, and 759 genes were identified. A total of 141 common DEGs were identified by combining the extracted genes of different datasets. A total of 141 nodes and 207 edges were found during the PPI analysis. The DEG GO analysis with substantial alterations disclosed that they are associated to molecular functions and biological processes, such as positive regulation of neuron death, autophagy regulation of mitochondrion, response of cell to insulin stimulus, calcium signaling regulation, organelle transport along microtubules, protein kinase activity, and phosphoserine binding. Kyoto Encyclopedia of Genes and Genomes analysis discovered the correlation between the DEGs in pathways of neurodegeneration: multiple disease, cell cycle, and cGMP-PKG signaling pathway. Finally, YWHAH, YWHAG, YWHAB, YWHAZ, MAP2K1, PPP2CA, and TUBB genes were identified that are strongly linked to EBV and AD. Three miRNAs, i.e., hsa-mir-15a-5p, hsa-let-7a-5p, and hsa-mir-7-5p, were identified to regulate most of hub genes that are associated with EBV and AD. Further top 10 significant therapeutic drugs were predicted. Conclusion We have discovered new biomarkers and therapeutic targets for AD, as well as the possible biological mechanisms whereby infection with EBV may be involved in AD susceptibility for the first time.
Collapse
Affiliation(s)
- Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES University Dehradun, Dehradun, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
13
|
McGovern AJ, Arevalo MA, Ciordia S, Garcia-Segura LM, Barreto GE. Gonadal hormone deprivation regulates response to tibolone in neurodegenerative pathways. J Steroid Biochem Mol Biol 2024; 241:106520. [PMID: 38614433 DOI: 10.1016/j.jsbmb.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Gonadal hormone deprivation (GHD) and decline such as menopause and bilateral oophorectomy are associated with an increased risk of neurodegeneration. Yet, hormone therapies (HTs) show varying efficacy, influenced by factors such as sex, drug type, and timing of treatment relative to hormone decline. We hypothesize that the molecular environment of the brain undergoes a transition following GHD, impacting the effectiveness of HTs. Using a GHD model in mice treated with Tibolone, we conducted proteomic analysis and identified a reprogrammed response to Tibolone, a compound that stimulates estrogenic, progestogenic, and androgenic pathways. Through a comprehensive network pharmacological workflow, we identified a reprogrammed response to Tibolone, particularly within "Pathways of Neurodegeneration", as well as interconnected pathways including "cellular respiration", "carbon metabolism", and "cellular homeostasis". Analysis revealed 23 proteins whose Tibolone response depended on GHD and/or sex, implicating critical processes like oxidative phosphorylation and calcium signalling. Our findings suggest the therapeutic efficacy of HTs may depend on these variables, suggesting a need for greater precision medicine considerations whilst highlighting the need to uncover underlying mechanisms.
Collapse
Affiliation(s)
- Andrew J McGovern
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Maria Angeles Arevalo
- Instituto Cajal, CSIC, Madrid 28002, Spain; CIBERFES, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, Spain
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, Madrid 28002, Spain; CIBERFES, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - George E Barreto
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
| |
Collapse
|
14
|
Islam F, Roy S, Zehravi M, Paul S, Sutradhar H, Yaidikar L, Kumar BR, Dogiparthi LK, Prema S, Nainu F, Rab SO, Doukani K, Emran TB. Polyphenols Targeting MAP Kinase Signaling Pathway in Neurological Diseases: Understanding Molecular Mechanisms and Therapeutic Targets. Mol Neurobiol 2024; 61:2686-2706. [PMID: 37922063 DOI: 10.1007/s12035-023-03706-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2023]
Abstract
Polyphenols are a class of secondary metabolic products found in plants that have been extensively studied for how well they regulate biological processes, such as the proliferation of cells, autophagy, and apoptosis. The mitogen-activated protein kinase (MAPK)-mediated signaling cascade is currently identified as a crucial pro-inflammatory pathway that plays a significant role in the development of neuroinflammation. This process has been shown to contribute to the pathogenesis of several neurological conditions, such as Alzheimer's disease (AD), Parkinson's disease (PD), CNS damage, and cerebral ischemia. Getting enough polyphenols through eating habits has resulted in mitigating the effects of oxidative stress (OS) and lowering the susceptibility to associated neurodegenerative disorders, including but not limited to multiple sclerosis (MS), AD, stroke, and PD. Polyphenols possess significant promise in dealing with the root cause of neurological conditions by modulating multiple therapeutic targets simultaneously, thereby attenuating their complicated physiology. Several polyphenolic substances have demonstrated beneficial results in various studies and are presently undergoing clinical investigation to treat neurological diseases (NDs). The objective of this review is to provide a comprehensive summary of the different aspects of the MAPK pathway involved in neurological conditions, along with an appraisal of the progress made in using polyphenols to regulate the MAPK signaling system to facilitate the management of NDs.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sumon Roy
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Kingdom of Saudi Arabia.
| | - Shyamjit Paul
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Hriday Sutradhar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Lavanya Yaidikar
- Department of Pharmacology, Seven Hills College of Pharmacy, Tirupati, India
| | - B Raj Kumar
- Department of Pharmaceutical Analysis, Moonray Institute of Pharmaceutical Sciences, Raikal (V), Farooq Nagar (Tlq), Shadnagar (M), R.R Dist., Telangana, 501512, India
| | - Lakshman Kumar Dogiparthi
- Department of Pharmacognosy, MB School of Pharmaceutical Sciences, MBU, Tirupati, Andhra Pradesh, India
| | - S Prema
- Crescent School of Pharmacy, BS Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Koula Doukani
- Faculty of Nature and Life Sciences, University of Ibn Khaldoun-Tiaret, Tiaret, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
15
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
16
|
Wang J, Liu Y, Guo Y, Liu C, Yang Y, Fan X, Yang H, Liu Y, Ma T. Function and inhibition of P38 MAP kinase signaling: Targeting multiple inflammation diseases. Biochem Pharmacol 2024; 220:115973. [PMID: 38103797 DOI: 10.1016/j.bcp.2023.115973] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Inflammation is a natural host defense mechanism that protects the body from pathogenic microorganisms. A growing body of research suggests that inflammation is a key factor in triggering other diseases (lung injury, rheumatoid arthritis, etc.). However, there is no consensus on the complex mechanism of inflammatory response, which may include enzyme activation, mediator release, and tissue repair. In recent years, p38 MAPK, a member of the MAPKs family, has attracted much attention as a central target for the treatment of inflammatory diseases. However, many p38 MAPK inhibitors attempting to obtain marketing approval have failed at the clinical trial stage due to selectivity and/or toxicity issues. In this paper, we discuss the mechanism of p38 MAPK in regulating inflammatory response and its key role in major inflammatory diseases and summarize the synthetic or natural products targeting p38 MAPK to improve the inflammatory response in the last five years, which will provide ideas for the development of novel clinical anti-inflammatory drugs based on p38 MAPK inhibitors.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yushi Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cen Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuping Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxiao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
17
|
Medina-Vera D, López-Gambero AJ, Navarro JA, Sanjuan C, Baixeras E, Decara J, de Fonseca FR. Novel insights into D-Pinitol based therapies: a link between tau hyperphosphorylation and insulin resistance. Neural Regen Res 2024; 19:289-295. [PMID: 37488880 PMCID: PMC10503604 DOI: 10.4103/1673-5374.379015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 07/26/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer's disease. The pathogenesis of Alzheimer's disease is mainly mediated by the phosphorylation and aggregation of tau protein. Among the multiple causes of tau hyperphosphorylation, brain insulin resistance has generated much attention, and inositols as insulin sensitizers, are currently considered candidates for drug development. The present narrative review revises the interactions between these three elements: Alzheimer's disease-tau-inositols, which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER Enfermedades Cardiovasculares (CIBERCV), Hospital Universitario Virgen de la Victoria, UGC del Corazón, Málaga, Spain
| | - Antonio Jesús López-Gambero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
| | | | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
| |
Collapse
|
18
|
Soares Martins T, Pelech S, Ferreira M, Pinho B, Leandro K, de Almeida LP, Breitling B, Hansen N, Esselmann H, Wiltfang J, da Cruz e Silva OAB, Henriques AG. Phosphoproteome Microarray Analysis of Extracellular Particles as a Tool to Explore Novel Biomarker Candidates for Alzheimer's Disease. Int J Mol Sci 2024; 25:1584. [PMID: 38338863 PMCID: PMC10855802 DOI: 10.3390/ijms25031584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Phosphorylation plays a key role in Alzheimer's disease (AD) pathogenesis, impacting distinct processes such as amyloid-beta (Aβ) peptide production and tau phosphorylation. Impaired phosphorylation events contribute to senile plaques and neurofibrillary tangles' formation, two major histopathological hallmarks of AD. Blood-derived extracellular particles (bdEP) can represent a disease-related source of phosphobiomarker candidates, and hence, in this pilot study, bdEP of Control and AD cases were analyzed by a targeted phosphoproteomics approach using a high-density microarray that featured at least 1145 pan-specific and 913 phosphosite-specific antibodies. This approach, innovatively applied to bdEP, allowed the identification of 150 proteins whose expression levels and/or phosphorylation patterns were significantly altered across AD cases. Gene Ontology enrichment and Reactome pathway analysis unraveled potentially relevant molecular targets and disease-associated pathways, and protein-protein interaction networks were constructed to highlight key targets. The discriminatory value of both the total proteome and the phosphoproteome was evaluated by univariate and multivariate approaches. This pilot experiment supports that bdEP are enriched in phosphotargets relevant in an AD context, holding value as peripheral biomarker candidates for disease diagnosis.
Collapse
Affiliation(s)
- Tânia Soares Martins
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
| | - Steven Pelech
- Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Kinexus Bioinformatics Corporation, Vancouver, BC V6P 6T3, Canada
| | - Maria Ferreira
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
| | - Beatriz Pinho
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
| | - Kevin Leandro
- Center for Neuroscience and Cell Biology, Faculty of Pharmacy, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector–Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, Faculty of Pharmacy, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector–Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Benedict Breitling
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, 37075 Goettingen, Germany
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, 37075 Goettingen, Germany
| | - Hermann Esselmann
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, 37075 Goettingen, Germany
| | - Jens Wiltfang
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, 37075 Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 37075 Goettingen, Germany
| | - Odete A. B. da Cruz e Silva
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
| | - Ana Gabriela Henriques
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
| |
Collapse
|
19
|
Cervera-Juanes R, Zimmerman KD, Wilhelm L, Zhu D, Bodie J, Kohama SG, Urbanski HF. Modulation of neural gene networks by estradiol in old rhesus macaque females. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572105. [PMID: 38187564 PMCID: PMC10769303 DOI: 10.1101/2023.12.18.572105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent E2 treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC). The finding that hypomethylation (p=1.6×10-51) and upregulation (p=3.8×10-3) of UBE2M across both brain regions, provide strong evidence for molecular differences in the brain induced by E2 depletion. Additionally, differential expression (p=1.9×10-4; interaction p=3.5×10-2) of LTBR in the PFC, provides further support for the role E2 plays in the brain, by demonstrating that the regulation of some genes that are altered by ovariectomy may also be modulated by Ov followed by hormone replacement therapy (HRT). These results present real opportunities to understand the specific biological mechanisms that are altered with depleted E2. Given E2's potential role in cognitive decline and neuroinflammation, our findings could lead to the discovery of novel therapeutics to slow cognitive decline. Together, this work represents a major step towards understanding molecular changes in the brain that are caused by ovariectomy and how E2 treatment may revert or protect against the negative neuro-related consequences caused by a depletion in estrogen as women approach menopause.
Collapse
Affiliation(s)
- Rita Cervera-Juanes
- Department of Translational Neuroscience, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
- Center for Precision Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
| | - Kip D. Zimmerman
- Center for Precision Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
- Department of Internal Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
| | - Larry Wilhelm
- Department of Translational Neuroscience, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
| | - Dongqin Zhu
- Department of Translational Neuroscience, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
| | - Jessica Bodie
- Department of Translational Neuroscience, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
20
|
Al Amin M, Emran TB, Khan J, Zehravi M, Sharma I, Patil A, Gupta JK, Jeslin D, Krishnan K, Das R, Nainu F, Ahmad I, Wilairatana P. Research Progress of Indole Alkaloids: Targeting MAP Kinase Signaling Pathways in Cancer Treatment. Cancers (Basel) 2023; 15:5311. [PMID: 38001572 PMCID: PMC10670446 DOI: 10.3390/cancers15225311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is the leading cause of morbidity and mortality in people throughout the world. There are many signaling pathways associated with cancerous diseases, from which the Mitogen-activated protein kinase (MAPK) pathway performs a significant role in this regard. Apoptosis and proliferation are correlated with MAPK signaling pathways. Plenty of experimental investigations were carried out to assess the role of indole alkaloids in MAPK-mediated cancerous diseases. Previous reports established that indole alkaloids, such as vincristine and evodiamine are useful small molecules in cancer treatment via the MAPK signaling system. Indole alkaloids have the anticancer potential through different pathways. Vincristine and evodiamine are naturally occurring indole alkaloids that have strong anticancer properties. Additionally, much research is ongoing or completed with molecules belonging to this group. The current review aims to evaluate how indole alkaloids affect the MAPK signaling pathway in cancer treatment. Additionally, we focused on the advancement in the role of indole alkaloids, with the intention of modifying the MAPK signaling pathways to investigate potential new anticancer small molecules. Furthermore, clinical trials with indole alkaloids in cancer treatment are also highlighted.
Collapse
Affiliation(s)
- Md. Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia;
| | - Indu Sharma
- Department of Physics, Career Point University, Hamirpur 176041, Himachal Pradesh, India
| | - Anasuya Patil
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru 560010, Karnataka, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India;
| | - D. Jeslin
- Department of Pharmaceutics, Sree Balaji Medical College and Hospital Campus, Bharath Institute of Higher Education and Research, Chromepet, Chennai 600044, Tamil Nadu, India
| | - Karthickeyan Krishnan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai 600117, Tamil Nadu, India;
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia;
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61411, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
21
|
Postiglione AE, Adams LL, Ekhator ES, Odelade AE, Patwardhan S, Chaudhari M, Pardue AS, Kumari A, LeFever WA, Tornow OP, Kaoud TS, Neiswinger J, Jeong JS, Parsonage D, Nelson KJ, Kc DB, Furdui CM, Zhu H, Wommack AJ, Dalby KN, Dong M, Poole LB, Keyes JD, Newman RH. Hydrogen peroxide-dependent oxidation of ERK2 within its D-recruitment site alters its substrate selection. iScience 2023; 26:107817. [PMID: 37744034 PMCID: PMC10514464 DOI: 10.1016/j.isci.2023.107817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/11/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are dysregulated in many pervasive diseases. Recently, we discovered that ERK1/2 is oxidized by signal-generated hydrogen peroxide in various cell types. Since the putative sites of oxidation lie within or near ERK1/2's ligand-binding surfaces, we investigated how oxidation of ERK2 regulates interactions with the model substrates Sub-D and Sub-F. These studies revealed that ERK2 undergoes sulfenylation at C159 on its D-recruitment site surface and that this modification modulates ERK2 activity differentially between substrates. Integrated biochemical, computational, and mutational analyses suggest a plausible mechanism for peroxide-dependent changes in ERK2-substrate interactions. Interestingly, oxidation decreased ERK2's affinity for some D-site ligands while increasing its affinity for others. Finally, oxidation by signal-generated peroxide enhanced ERK1/2's ability to phosphorylate ribosomal S6 kinase A1 (RSK1) in HeLa cells. Together, these studies lay the foundation for examining crosstalk between redox- and phosphorylation-dependent signaling at the level of kinase-substrate selection.
Collapse
Affiliation(s)
- Anthony E. Postiglione
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Laquaundra L. Adams
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Ese S. Ekhator
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Anuoluwapo E. Odelade
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Supriya Patwardhan
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Meenal Chaudhari
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Computational Data Science and Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Mathematics and Computer Science, University of Virginia at Wise, Wise, VA 24293, USA
| | - Avery S. Pardue
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Anjali Kumari
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - William A. LeFever
- Department of Chemistry, High Point University, High Point, NC 27268, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Olivia P. Tornow
- Department of Chemistry, High Point University, High Point, NC 27268, USA
| | - Tamer S. Kaoud
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Johnathan Neiswinger
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biology, Belhaven University, Jackson, MS 39202, USA
| | - Jun Seop Jeong
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kimberly J. Nelson
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Dukka B. Kc
- Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew J. Wommack
- Department of Chemistry, High Point University, High Point, NC 27268, USA
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ming Dong
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jeremiah D. Keyes
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Biology, Penn State University Behrend, Erie, PA 16563, USA
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Robert H. Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
22
|
Gałgańska H, Jarmuszkiewicz W, Gałgański Ł. Carbon dioxide and MAPK signalling: towards therapy for inflammation. Cell Commun Signal 2023; 21:280. [PMID: 37817178 PMCID: PMC10566067 DOI: 10.1186/s12964-023-01306-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including metabolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient's condition; the pathogenesis of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are regulated by carbon dioxide (CO2); hence, we reviewed the literature to identify associations between CO2 and MAPKs and possible therapeutic benefits resulting from the elevation of CO2 levels. CO2 regulates key processes leading to and resulting from inflammation, and the therapeutic effects of CO2 (or bicarbonate, HCO3-) have been documented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The overlapping MAPK and CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary oedema (alveolar fluid resorption), and mechanical ventilation-induced responses in lungs and related to mitochondria are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Hanna Gałgańska
- Faculty of Biology, Molecular Biology Techniques Laboratory, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz Gałgański
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
23
|
Sneha NP, Dharshini SAP, Taguchi YH, Gromiha MM. Investigating Neuron Degeneration in Huntington's Disease Using RNA-Seq Based Transcriptome Study. Genes (Basel) 2023; 14:1801. [PMID: 37761940 PMCID: PMC10530489 DOI: 10.3390/genes14091801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused due to a CAG repeat expansion in the huntingtin (HTT) gene. The primary symptoms of HD include motor dysfunction such as chorea, dystonia, and involuntary movements. The primary motor cortex (BA4) is the key brain region responsible for executing motor/movement activities. Investigating patient and control samples from the BA4 region will provide a deeper understanding of the genes responsible for neuron degeneration and help to identify potential markers. Previous studies have focused on overall differential gene expression and associated biological functions. In this study, we illustrate the relationship between variants and differentially expressed genes/transcripts. We identified variants and their associated genes along with the quantification of genes and transcripts. We also predicted the effect of variants on various regulatory activities and found that many variants are regulating gene expression. Variants affecting miRNA and its targets are also highlighted in our study. Co-expression network studies revealed the role of novel genes. Function interaction network analysis unveiled the importance of genes involved in vesicle-mediated transport. From this unified approach, we propose that genes expressed in immune cells are crucial for reducing neuron death in HD.
Collapse
Affiliation(s)
- Nela Pragathi Sneha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| | - S. Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| | - Y.-h. Taguchi
- Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan;
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| |
Collapse
|
24
|
dos Santos DA, Souza HFS, Silber AM, de Souza TDACB, Ávila AR. Protein kinases on carbon metabolism: potential targets for alternative chemotherapies against toxoplasmosis. Front Cell Infect Microbiol 2023; 13:1175409. [PMID: 37287468 PMCID: PMC10242022 DOI: 10.3389/fcimb.2023.1175409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
The apicomplexan parasite Toxoplasma gondii is the causative agent of toxoplasmosis, a global disease that significantly impacts human health. The clinical manifestations are mainly observed in immunocompromised patients, including ocular damage and neuronal alterations leading to psychiatric disorders. The congenital infection leads to miscarriage or severe alterations in the development of newborns. The conventional treatment is limited to the acute phase of illness, without effects in latent parasites; consequently, a cure is not available yet. Furthermore, considerable toxic effects and long-term therapy contribute to high treatment abandonment rates. The investigation of exclusive parasite pathways would provide new drug targets for more effective therapies, eliminating or reducing the side effects of conventional pharmacological approaches. Protein kinases (PKs) have emerged as promising targets for developing specific inhibitors with high selectivity and efficiency against diseases. Studies in T. gondii have indicated the presence of exclusive PKs without homologs in human cells, which could become important targets for developing new drugs. Knockout of specific kinases linked to energy metabolism have shown to impair the parasite development, reinforcing the essentiality of these enzymes in parasite metabolism. In addition, the specificities found in the PKs that regulate the energy metabolism in this parasite could bring new perspectives for safer and more efficient therapies for treating toxoplasmosis. Therefore, this review provides an overview of the limitations for reaching an efficient treatment and explores the role of PKs in regulating carbon metabolism in Toxoplasma, discussing their potential as targets for more applied and efficient pharmacological approaches.
Collapse
Affiliation(s)
| | - Higo Fernando Santos Souza
- Laboratory of Biochemistry of Trypanosomes (LabTryp), Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ariel M. Silber
- Laboratory of Biochemistry of Trypanosomes (LabTryp), Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Andréa Rodrigues Ávila
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil
| |
Collapse
|
25
|
Jun J, Moon H, Yang S, Lee J, Baek J, Kim H, Cho H, Hwang K, Ahn S, Kim Y, Kim G, Kim H, Kwon H, Hah JM. Carbamate JNK3 Inhibitors Show Promise as Effective Treatments for Alzheimer's Disease: In Vivo Studies on Mouse Models. J Med Chem 2023; 66:6372-6390. [PMID: 37094094 DOI: 10.1021/acs.jmedchem.3c00393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
We have been developing new inhibitors for c-Jun N-terminal kinase 3 (JNK3) as a potential treatment for Alzheimer's disease (AD). We identified potential JNK3 inhibitors through pharmacodynamic optimization studies, including benzimidazole compounds 2 and 3, but their unreliable pharmacokinetic properties led us to develop carbamate inhibitors 2h and 3h. In vitro studies validated carbamate inhibitors 2h and 3h as potent and highly selective JNK3 inhibitors with favorable pharmacokinetic profiles. Oral administration of 2h and 3h to both APP/PS1 and 3xTg AD mouse models improved cognitive function, indicating their potential as effective treatments for Alzheimer's disease. Carbamate JNK3 inhibitor 3h, in particular, restored cognitive function to near-normal levels in the 3xTg mice model of AD and led to pTau reduction in the hippocampal tissues of 3xTg-AD mice during in vivo behavioral evaluations. We intend to further develop these carbamate JNK3 inhibitors in preclinical studies as a potential first-in-class treatment for AD.
Collapse
Affiliation(s)
- Joonhong Jun
- Department of Pharmacy & Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 15588, Republic of Korea
| | - Hyungwoo Moon
- Department of Pharmacy & Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 15588, Republic of Korea
| | - Songyi Yang
- Department of Pharmacy & Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 15588, Republic of Korea
| | - Junghun Lee
- Department of Pharmacy & Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 15588, Republic of Korea
| | - Jihyun Baek
- Department of Pharmacy & Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 15588, Republic of Korea
| | - Hyejin Kim
- Department of Pharmacy & Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 15588, Republic of Korea
| | - Hyunwook Cho
- Department of Pharmacy & Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 15588, Republic of Korea
| | - Kyungrim Hwang
- Research Center, Samjin Pharm. Co. Ltd. 90, Magokjungang 10-ro, Gangseo-gu, Seoul 07794, Republic of Korea
| | - Soyeon Ahn
- Research Center, Samjin Pharm. Co. Ltd. 90, Magokjungang 10-ro, Gangseo-gu, Seoul 07794, Republic of Korea
| | - Yuro Kim
- Research Center, Samjin Pharm. Co. Ltd. 90, Magokjungang 10-ro, Gangseo-gu, Seoul 07794, Republic of Korea
| | - Gibeom Kim
- Research Center, Samjin Pharm. Co. Ltd. 90, Magokjungang 10-ro, Gangseo-gu, Seoul 07794, Republic of Korea
| | - HyunTae Kim
- Research Center, Samjin Pharm. Co. Ltd. 90, Magokjungang 10-ro, Gangseo-gu, Seoul 07794, Republic of Korea
| | - Hoseok Kwon
- Research Center, Samjin Pharm. Co. Ltd. 90, Magokjungang 10-ro, Gangseo-gu, Seoul 07794, Republic of Korea
| | - Jung-Mi Hah
- Department of Pharmacy & Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 15588, Republic of Korea
| |
Collapse
|
26
|
Redenšek Trampuž S, Vogrinc D, Goričar K, Dolžan V. Shared miRNA landscapes of COVID-19 and neurodegeneration confirm neuroinflammation as an important overlapping feature. Front Mol Neurosci 2023; 16:1123955. [PMID: 37008787 PMCID: PMC10064073 DOI: 10.3389/fnmol.2023.1123955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction Development and worsening of most common neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, have been associated with COVID-19 However, the mechanisms associated with neurological symptoms in COVID-19 patients and neurodegenerative sequelae are not clear. The interplay between gene expression and metabolite production in CNS is driven by miRNAs. These small non-coding molecules are dysregulated in most common neurodegenerative diseases and COVID-19. Methods We have performed a thorough literature screening and database mining to search for shared miRNA landscapes of SARS-CoV-2 infection and neurodegeneration. Differentially expressed miRNAs in COVID-19 patients were searched using PubMed, while differentially expressed miRNAs in patients with five most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis) were searched using the Human microRNA Disease Database. Target genes of the overlapping miRNAs, identified with the miRTarBase, were used for the pathway enrichment analysis performed with Kyoto Encyclopedia of Genes and Genomes and Reactome. Results In total, 98 common miRNAs were found. Additionally, two of them (hsa-miR-34a and hsa-miR-132) were highlighted as promising biomarkers of neurodegeneration, as they are dysregulated in all five most common neurodegenerative diseases and COVID-19. Additionally, hsa-miR-155 was upregulated in four COVID-19 studies and found to be dysregulated in neurodegeneration processes as well. Screening for miRNA targets identified 746 unique genes with strong evidence for interaction. Target enrichment analysis highlighted most significant KEGG and Reactome pathways being involved in signaling, cancer, transcription and infection. However, the more specific identified pathways confirmed neuroinflammation as being the most important shared feature. Discussion Our pathway based approach has identified overlapping miRNAs in COVID-19 and neurodegenerative diseases that may have a valuable potential for neurodegeneration prediction in COVID-19 patients. Additionally, identified miRNAs can be further explored as potential drug targets or agents to modify signaling in shared pathways. Graphical AbstractShared miRNA molecules among the five investigated neurodegenerative diseases and COVID-19 were identified. The two overlapping miRNAs, hsa-miR-34a and has-miR-132, present potential biomarkers of neurodegenerative sequelae after COVID-19. Furthermore, 98 common miRNAs between all five neurodegenerative diseases together and COVID-19 were identified. A KEGG and Reactome pathway enrichment analyses was performed on the list of shared miRNA target genes and finally top 20 pathways were evaluated for their potential for identification of new drug targets. A common feature of identified overlapping miRNAs and pathways is neuroinflammation. AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; COVID-19, coronavirus disease 2019; HD, Huntington's disease; KEGG, Kyoto Encyclopedia of Genes and Genomes; MS, multiple sclerosis; PD, Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
27
|
JNK Activation Correlates with Cognitive Impairment and Alteration of the Post-Synaptic Element in the 5xFAD AD Mouse Model. Cells 2023; 12:cells12060904. [PMID: 36980245 PMCID: PMC10047857 DOI: 10.3390/cells12060904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs) are a family of proteins that, once activated by stress stimuli, can alter neuronal functions and survival. The JNK cascade plays a crucial role in the post-synaptic neuronal compartment by altering its structural organization and leading, at worst, to an overall impairment of neuronal communication. Increasing evidence suggests that synaptic impairment is the first neurodegenerative event in Alzheimer’s disease (AD). To better elucidate this mechanism, we longitudinally studied 5xFAD mice at three selected time points representative of human AD symptom progression. We tested the mice cognitive performance by using the radial arm water maze (RAWM) in parallel with biochemical evaluations of post-synaptic enriched protein fraction and total cortical parenchyma. We found that 5xFAD mice presented a strong JNK activation at 3.5 months of age in the post-synaptic enriched protein fraction. This JNK activation correlates with a structural alteration of the post-synaptic density area and with memory impairment at this early stage of the disease that progressively declines to cause cell death. These findings pave the way for future studies on JNK as a key player in early neurodegeneration and as an important therapeutic target for the development of new compounds able to tackle synaptic impairment in the early phase of AD pathology.
Collapse
|
28
|
Muraleva NA, Kolosova NG. Alteration of the MEK1/2–ERK1/2 Signaling Pathway in the Retina Associated with Age and Development of AMD-Like Retinopathy. BIOCHEMISTRY (MOSCOW) 2023; 88:179-188. [PMID: 37072329 DOI: 10.1134/s0006297923020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Age-related macular degeneration (AMD) is a complex neurodegenerative disease and a major cause of irreversible visual impairment in patients in developed countries. Although age is the greatest risk factor in AMD, molecular mechanisms involved in AMD remain unknown. Growing evidence shows that dysregulation of MAPK signaling contributes to aging and neurodegenerative diseases; however, the information on the role of MAPK upregulation in these processes is controversial. ERK1 and ERK2 participate in the maintenance of proteostasis through the regulation of protein aggregation induced by the endoplasmic reticulum stress and other stress-mediated cell responses. To assess the contribution of alterations in the ERK1/2 signaling to the AMD development, we compared age-associated changes in the activity of ERK1/2 signaling pathway in the retina of Wistar rats (control) and OXYS rats that develop AMD-like retinopathy spontaneously. The activity of the ERK1/2 signaling increased during physiological aging in the retina of Wistar rats. The manifestation and progression of the AMD-like pathology in the retina of OXYS rats was accompanied by hyperphosphorylation of ERK1/2 and MEK1/2, the key kinases of the ERK1/2 signaling pathway. The progression of the AMD-like pathology was also associated with the ERK1/2-dependent tau protein hyperphosphorylation and increase in the ERK1/2-dependent phosphorylation of alpha B crystallin at Ser45 in the retina.
Collapse
Affiliation(s)
- Natalia A Muraleva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
29
|
Shuai W, Bu F, Zhu Y, Wu Y, Xiao H, Pan X, Zhang J, Sun Q, Wang G, Ouyang L. Discovery of Novel Indazole Chemotypes as Isoform-Selective JNK3 Inhibitors for the Treatment of Parkinson's Disease. J Med Chem 2023; 66:1273-1300. [PMID: 36649216 DOI: 10.1021/acs.jmedchem.2c01410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
c-Jun N-terminal kinases (JNKs) are involved in the pathogenesis of various diseases. In particular, JNK3 and not JNK1/2 is primarily expressed in the brain and plays a key role in mediating neurodegenerative diseases like Parkinson's disease (PD). Due to the sequence similarity of JNK isoforms, developing isoform-selective JNK3 inhibitors to evaluate their biological functions and therapeutic potential in PD has become a challenge. Herein, docking-based virtual screening and structure-activity relationship studies identified 25c with excellent inhibitory activity against JNK3 (IC50 = 85.21 nM) and exhibited an over 100-fold isoform selectivity for JNK3 over JNK1/2 and remarkable kinase selectivity. 25c showed neuroprotective effects on in vitro and in vivo PD models by selectively inhibiting JNK3. Meanwhile, 25c showed an ideal blood-brain barrier permeability and low toxicity. Overall, this study provided a valuable molecular tool for investigating the role of JNK3 in PD and a solid foundation for developing JNK3-targeted drugs in PD treatment.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yongya Wu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiaoli Pan
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Lai MC, Liu WY, Liou SS, Liu IM. Hispidin in the Medicinal Fungus Protects Dopaminergic Neurons from JNK Activation-Regulated Mitochondrial-Dependent Apoptosis in an MPP +-Induced In Vitro Model of Parkinson's Disease. Nutrients 2023; 15:nu15030549. [PMID: 36771255 PMCID: PMC9920671 DOI: 10.3390/nu15030549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Degenerative diseases of the brain include Parkinson's disease (PD), which is associated with moveable signs and is still incurable. Hispidin belongs to polyphenol and originates primarily from the medicinal fungi Inonotus and Phellinus, with distinct biological effects. In the study, MES23.5 cells were induced by 1-methyl-4-phenylpyridinium (MPP+) to build a cell model of PD in order to detect the protective effect of hispdin and to specify the underlying mechanism. Pretreatment of MES23.5 cells with 1 h of hispdin at appropriate concentrations, followed by incubation of 24 h with 2 μmol/L MPP+ to induce cell damage. MPP+ resulted in reactive oxygen species production that diminished cell viability and dopamine content. Mitochondrial dysfunction in MS23.5 cells exposed to MPP+ was observed, indicated by inhibition of activity in the mitochondrial respiratory chain complex I, the collapse of potential in mitochondrial transmembrane, and the liberation of mitochondrial cytochrome c. Enabling C-Jun N-terminal kinase (JNK), reducing Bcl-2/Bax, and enhancing caspase-9/caspase-3/PARP cleavage were also seen by MPP+ induction associated with increased DNA fragmentation. All of the events mentioned above associated with MPP+-mediated mitochondrial-dependent caspases cascades were attenuated under cells pretreatment with hispidin (20 µmol/L); similar results were obtained during cell pretreatment with pan-JNK inhibitor JNK-IN-8 (1 µmol/L) or JNK3 inhibitor SR3576 (25 µmol/L). The findings show that hispidin has neuroprotection against MPP+-induced mitochondrial dysfunction and cellular apoptosis and suggest that hispidin can be seen as an assist in preventing PD.
Collapse
Affiliation(s)
- Mei-Chou Lai
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan
| | - Wayne-Young Liu
- Department of Urology, Jen-Ai Hospital, Taichung 41265, Taiwan
- Center for Basic Medical Science, Collage of Health Science, Central Taiwan University of Science and Technology, Taichung City 406053, Taiwan
| | - Shorong-Shii Liou
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan
| | - I-Min Liu
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan
- Correspondence: ; Tel.: +886-8-7624002
| |
Collapse
|
31
|
Vitamin B12 Ameliorates the Pathological Phenotypes of Multiple Parkinson's Disease Models by Alleviating Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12010153. [PMID: 36671015 PMCID: PMC9854476 DOI: 10.3390/antiox12010153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra of the midbrain. The etiology of PD has yet to be elucidated, and the disease remains incurable. Increasing evidence suggests that oxidative stress is the key causative factor of PD. Due to their capacity to alleviate oxidative stress, antioxidants hold great potential for the treatment of PD. Vitamins are essential organic substances for maintaining the life of organisms. Vitamin deficiency is implicated in the pathogenesis of various diseases, such as PD. In the present study, we investigated whether administration of vitamin B12 (VB12) could ameliorate PD phenotypes in vitro and in vivo. Our results showed that VB12 significantly reduced the generation of reactive oxygen species (ROS) in the rotenone-induced SH-SY5Y cellular PD model. In a Parkin gene knockout C. elegans PD model, VB12 mitigated motor dysfunction. Moreover, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse PD model, VB12 also displayed protective effects, including the rescue of mitochondrial function, dopaminergic neuron loss, and movement disorder. In summary, our results suggest that vitamin supplementation may be a novel method for the intervention of PD, which is safer and more feasible than chemical drug treatment.
Collapse
|
32
|
Zhen RR, Qu YJ, Zhang LM, Gu C, Ding MR, Chen L, Peng X, Hu B, An HM. Exploring the potential anti-Alzheimer disease mechanisms of Alpiniae Oxyphyliae Fructus by network pharmacology study and molecular docking. Metab Brain Dis 2022; 38:933-944. [PMID: 36484971 DOI: 10.1007/s11011-022-01137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Alpiniae Oxyphyliae Fructus (AOF) (yizhi) is a frequently medicated Chinese herb for Alzheimer disease (AD) treatment. The present study investigated the components and potential mechanisms of AOF through network pharmacology analysis and molecular docking. The results showed that AOF contains at least 20 active ingredients and involves 184 target genes. A total of 301 AD-related genes were obtained from the DisGeNET, GeneCards, GEO, OMIM, and Alzheimer Disease: Genes databases. A total of 41 key targets were identified from the topology analysis of the AOF-AD target network. These key targets are involved in 105 signal pathways, such as the PI3K-Akt, HIF-1, and MAPK pathways, and can regulate gene transcription, cell death, cell proliferation, drug response, and protein phosphorylation. AOF's active ingredients, Chrysin, Isocyperol, Izalpinin, Linolenic acid, CHEMBL489541, Oxyphyllenone A, Oxyphyllenone B, and Oxyphyllol C, show high affinity to targets, including PPARG, ESR1, and AKT1. These findings provide a new basis for AOF application and anti-AD study.
Collapse
Affiliation(s)
- Rong-Rong Zhen
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China
| | - Yan-Jie Qu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China
| | - Li-Min Zhang
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China
| | - Chao Gu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China
| | - Min-Rui Ding
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China
| | - Lei Chen
- Institute of Traditional Chinese Medicine in Oncology, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China
| | - Xiao Peng
- Institute of Traditional Chinese Medicine in Oncology, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| | - Hong-Mei An
- Department of Science & Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
33
|
Sun W, Wen M, Liu M, Wang Q, Liu Q, Li L, Siebert HC, Loers G, Zhang R, Zhang N. Effect of β-hydroxybutyrate on behavioral alterations, molecular and morphological changes in CNS of multiple sclerosis mouse model. Front Aging Neurosci 2022; 14:1075161. [PMID: 36533180 PMCID: PMC9752847 DOI: 10.3389/fnagi.2022.1075161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of central nervous system (CNS). Aging is the most significant risk factor for the progression of MS. Dietary modulation (such as ketogenic diet) and caloric restriction, can increase ketone bodies, especially β-hydroxybutyrate (BHB). Increased BHB has been reported to prevent or improve age-related disease. The present studies were performed to understand the therapeutic effect and potential mechanisms of exogenous BHB in cuprizone (CPZ)-induced demyelinating model. In this study, a continuous 35 days CPZ mouse model with or without BHB was established. The changes of behavior function, pathological hallmarks of CPZ, and intracellular signal pathways in mice were detected by Open feld test, Morris water maze, RT-PCR, immuno-histochemistry, and western blot. The results showed that BHB treatment improved behavioral performance, prevented myelin loss, decreased the activation of astrocyte as well as microglia, and up-regulated the neurotrophin brain-derived neurotrophic factor in both the corpus callosum and hippocampus. Meanwhile, BHB treatment increased the number of MCT1+ cells and APC+ oligodendrocytes. Furthermore, the treatment decreased the expression of HDAC3, PARP1, AIF and TRPA1 which is related to oligodendrocyte (OL) apoptosis in the corpus callosum, accompanied by increased expression of TrkB. This leads to an increased density of doublecortin (DCX)+ neuronal precursor cells and mature NeuN+ neuronal cells in the hippocampus. As a result, BHB treatment effectively promotes the generation of PDGF-Ra+ (oligodendrocyte precursor cells, OPCs), Sox2+ cells and GFAP+ (astrocytes), and decreased the production of GFAP+ TRAP1+ cells, and Oligo2+ TRAP1+ cells in the corpus callosum of mouse brain. Thus, our results demonstrate that BHB treatment efficiently supports OPC differentiation and decreases the OLs apoptosis in CPZ-intoxicated mice, partly by down-regulating the expression of TRPA1 and PARP, which is associated with the inhibition of the p38-MAPK/JNK/JUN pathway and the activation of ERK1/2, PI3K/AKT/mTOR signaling, supporting BHB treatment adjunctive nutritional therapy for the treatment of chronic demyelinating diseases, such as multiple sclerosis (MS).
Collapse
Affiliation(s)
- Wei Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| | - Quiqin Liu
- Shandong Donkey Industry, Technology Collaborative Innovation Center, Liaocheng University, Liaocheng, China
| | - Lanjie Li
- Shandong Donkey Industry, Technology Collaborative Innovation Center, Liaocheng University, Liaocheng, China
| | - Hans-Christian Siebert
- Schauenburgerstr, RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Kiel University, Kiel, Germany
| | - Gabriele Loers
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
- Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
34
|
Tsai NW, Lin CC, Yeh TY, Chiu YA, Chiu HH, Huang HP, Hsieh ST. An induced pluripotent stem cell-based model identifies molecular targets of vincristine neurotoxicity. Dis Model Mech 2022; 15:dmm049471. [PMID: 36518084 PMCID: PMC10655812 DOI: 10.1242/dmm.049471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2023] Open
Abstract
To model peripheral nerve degeneration and investigate molecular mechanisms of neurodegeneration, we established a cell system of induced pluripotent stem cell (iPSC)-derived sensory neurons exposed to vincristine, a drug that frequently causes chemotherapy-induced peripheral neuropathy. Sensory neurons differentiated from iPSCs exhibit distinct neurochemical patterns according to the immunocytochemical phenotypes, and gene expression of peripherin (PRPH, hereafter referred to as Peri) and neurofilament heavy chain (NEFH, hereafter referred to as NF). The majority of iPSC-derived sensory neurons were PRPH positive/NEFH negative, i.e. Peri(+)/NF(-) neurons, whose somata were smaller than those of Peri(+)/NF(+) neurons. On exposure to vincristine, projections from the cell body of a neuron, i.e. neurites, were degenerated quicker than somata, the lethal concentration to kill 50% (LC50) of neurites being below the LC50 for somata, consistent with the clinical pattern of length-dependent neuropathy. We then examined the molecular expression in the MAP kinase signaling pathways of, extracellular signal-regulated kinases 1/2 (MAPK1/3, hereafter referred to as ERK), p38 mitogen-activated protein kinases (MAPK11/12/13/14, hereafter referred to as p38) and c-Jun N-terminal kinases (MAPK8/9/10, hereafter referred to as JNK). Regarding these three cascades, only phosphorylation of JNK was upregulated but not that of p38 or ERK1/2. Furthermore, vincristine-treatment resulted in impaired autophagy and reduced autophagic flux. Rapamycin-treatment reversed the effect of impaired autophagy and JNK activation. These results not only established a platform to study peripheral degeneration of human neurons but also provide molecular mechanisms for neurodegeneration with the potential for therapeutic targets.
Collapse
Affiliation(s)
- Neng-Wei Tsai
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Cheng-Chen Lin
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Ti-Yen Yeh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Yu-An Chiu
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsin-Hui Chiu
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsiang-Po Huang
- Department of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei 100, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
35
|
Wisessaowapak C, Worasuttayangkurn L, Maliphol K, Nakareangrit W, Cholpraipimolrat W, Nookabkaew S, Watcharasit P, Satayavivad J. The 28-day repeated arsenic exposure increases tau phosphorylation in the rat brain. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103974. [PMID: 36089238 DOI: 10.1016/j.etap.2022.103974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 05/10/2023]
Abstract
Herein, we examined whether prolonged arsenic exposure altered tau phosphorylation in the brain of Sprague Dawley rats expressing endogenous wild-type tau. The results showed that daily intraperitoneal injections of 2.5 mg/kg BW sodium arsenite over 28 days caused arsenic accumulation in the rat brain. Interestingly, we found an increase in tau phosphorylation at the Tau 1 region (189-207) and S202 in the hippocampus, S404 in the cerebral cortex, and S396 and S404 in the cerebellum of arsenic-treated rats. Additionally, arsenic increased active ERK1/2 phosphorylation at T202/Y204 in the hippocampus, cerebral cortex, and cerebellum. Meanwhile, we detected increasing active JNK phosphorylation at T183/Y185 in the hippocampus and cerebellum. Moreover, p35, a neuron-specific activator of CDK5, was also elevated in the cerebellum of arsenic-treated rats, suggesting that CDK5 activity may be increased by arsenic. These results suggested that arsenic may induce tau phosphorylation through the activation of tau kinases, ERK1/2, JNK, and CDK5. Together, the findings from this study demonstrated that prolonged arsenic exposure is implicated in neurodegeneration by promoting tau phosphorylation in the rat brain and points toward a possible prevention strategy against neurodegeneration induced by environmental arsenic exposure.
Collapse
Affiliation(s)
| | | | | | - Watanyoo Nakareangrit
- Translational Research Unit, Chulabhorn Research Institute, 54 KamphaengPhet6 Rd, Bangkok 10210 Thailand
| | | | - Sumontha Nookabkaew
- Laboratory of Pharmacology, Chulabhorn Research Institute, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| | - Piyajit Watcharasit
- Laboratory of Pharmacology, Chulabhorn Research Institute, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand; Chulabhorn Graduate Institute, 906 KamphaengPhet6 Rd, Bangkok, 10210 Thailand.
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand; Chulabhorn Graduate Institute, 906 KamphaengPhet6 Rd, Bangkok, 10210 Thailand
| |
Collapse
|
36
|
Borgonetti V, Biagi M, Galeotti N, Manetti F, Governa P. Investigation on the neuroprotective effect of a cannabidiol-enriched non-psychotropic Cannabis sativa L. extract in an in vitro model of excitotoxicity. Fitoterapia 2022; 163:105315. [PMID: 36179898 DOI: 10.1016/j.fitote.2022.105315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022]
Abstract
The purpose of this study was to evaluate the neuroprotective effect of a cannabidiol-enriched non-psychotropic Cannabis sativa L. extract (CSE) and its main constituents, cannabidiol and β-caryophyllene. An in vitro model of glutamate-induced neuronal excitotoxicity using SH-SY5Y cells was optimized. The impact of CSE on glutamate-impaired cell viability, brain-derived neurotrophic factor release, CB1 protein expression, and ERK levels was evaluated. The involvement of CB1 modulation was verified by the cotreatment with the CB1 antagonist AM4113. CSE was able to significantly protect SH-SY5Y from glutamate-impaired cell viability, and to counteract the changes in brain-derived neurotrophic factor levels, with a mechanism of action involving ERK modulation. Moreover, CSE completely reversed the reduction of CB1 receptor expression induced by glutamate, and the presence of the CB1 antagonist AM4113 reduced CSE effectiveness, suggesting that CBr play a role in the modulation of neuronal excitotoxicity. This work demonstrated the in vitro effectiveness of CSE as a neuroprotective agent, proposing the whole cannabis phytocomplex as a more effective strategy, compared to its main constituents alone, and suggested further investigations by using more complex cell models before moving to in vivo studies.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy.
| |
Collapse
|
37
|
Anjum J, Mitra S, Das R, Alam R, Mojumder A, Emran TB, Islam F, Rauf A, Hossain MJ, Aljohani ASM, Abdulmonem WA, Alsharif KF, Alzahrani KJ, Khan H. A renewed concept on the MAPK signaling pathway in cancers: Polyphenols as a choice of therapeutics. Pharmacol Res 2022; 184:106398. [PMID: 35988867 DOI: 10.1016/j.phrs.2022.106398] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 01/15/2023]
Abstract
Abnormalities in the mitogen-activated protein kinase (MAPK) signaling pathway are a key contributor to the carcinogenesis process and have therefore been implicated in several aspects of tumorigenesis, including cell differentiation, proliferation, invasion, angiogenesis, apoptosis, and metastasis. This pathway offers multiple molecular targets that may be modulated for anticancer activity and is of great interest for several malignancies. Polyphenols from various dietary sources have been observed to interfere with certain aspects of this pathway and consequently play a substantial role in the development and progression of cancer by suppressing cell growth, inactivating carcinogens, blocking angiogenesis, causing cell death, and changing immunity. A good number of polyphenolic compounds have shown promising outcomes in numerous pieces of research and are currently being investigated clinically to treat cancer patients. The current study concentrates on the role of the MAPK pathway in the development and metastasis of cancer, with particular emphasis on dietary polyphenolic compounds that influence the different MAPK sub-pathways to obtain an anticancer effect. This study aims to convey an overview of the various aspects of the MAPK pathway in cancer development and invasion, as well as a review of the advances achieved in the development of polyphenols to modulate the MAPK signaling pathway for better treatment of cancer.
Collapse
Affiliation(s)
- Juhaer Anjum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Roksana Alam
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anik Mojumder
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, KPK, Pakistan
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
38
|
Zhao J, Wang X, Huo Z, Chen Y, Liu J, Zhao Z, Meng F, Su Q, Bao W, Zhang L, Wen S, Wang X, Liu H, Zhou S. The Impact of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2022; 11:cells11132049. [PMID: 35805131 PMCID: PMC9265651 DOI: 10.3390/cells11132049] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and highly fatal neurodegenerative disease. Although the pathogenesis of ALS remains unclear, increasing evidence suggests that a key contributing factor is mitochondrial dysfunction. Mitochondria are organelles in eukaryotic cells responsible for bioenergy production, cellular metabolism, signal transduction, calcium homeostasis, and immune responses and the stability of their function plays a crucial role in neurons. A single disorder or defect in mitochondrial function can lead to pathological changes in cells, such as an impaired calcium buffer period, excessive generation of free radicals, increased mitochondrial membrane permeability, and oxidative stress (OS). Recent research has also shown that these mitochondrial dysfunctions are also associated with pathological changes in ALS and are believed to be commonly involved in the pathogenesis of the disease. This article reviews the latest research on mitochondrial dysfunction and its impact on the progression of ALS, with specific attention to the potential of novel therapeutic strategies targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiantao Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Xuemei Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Zijun Huo
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Yanchun Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Jinmeng Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China; (J.L.); (L.Z.)
| | - Zhenhan Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Fandi Meng
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Qi Su
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Weiwei Bao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Lingyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China; (J.L.); (L.Z.)
| | - Shuang Wen
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China;
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Huancai Liu
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China;
- Correspondence: (H.L.); or (S.Z.)
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (H.L.); or (S.Z.)
| |
Collapse
|
39
|
Hu C, Chen C, Xia Y, Chen J, Yang W, Wang L, Chen DD, Wu YZ, Fan Q, Jia XX, Xiao K, Shi Q, Chen ZB, Dong XP. Different Aberrant Changes of mGluR5 and Its Downstream Signaling Pathways in the Scrapie-Infected Cell Line and the Brains of Scrapie-Infected Experimental Rodents. Front Cell Dev Biol 2022; 10:844378. [PMID: 35646890 PMCID: PMC9133610 DOI: 10.3389/fcell.2022.844378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Metabotropic glutamate receptor subtype 5 (mGluR5) is a G-protein-coupled receptor found widely in the central nervous system. It has been involved in the development and progression of some neurodegenerative diseases, but its role in prion diseases is rarely described. In this study, the changes of mGluR5 and its downstream signaling pathways in prion-infected cell line SMB-S15 and the brains of scrapie-infected experimental rodents were evaluated by various methodologies. We found the levels of mGluR5 were significantly increased in a prion-infected cell line SMB-S15 and the cultured cells transiently express an abnormal form PrP (Cyto-PrP). Using immunoprecipitation tests and immunofluorescent assays (IFA), molecular interaction and morphological colocalization between PrP and mGluR5 were observed in the cultured cells. We identified that the (GPCRs)-IP3-IP3R-Ca2+ pathway was activated and the levels of the downstream kinases p38, ERK, and JNK were increased in SMB-S15 cells. After treated with mGluR5 antagonist (MTEP) or the removal of prion replication by resveratrol in SMB-S15 cells, the upregulations of mGluR5 and the downstream kinases were restored in a certain degree. Moreover, increased mGluR5 contributes to the cell damage in prion-infected cells. Contrarily, the levels of mGluR5 in the brains of several scrapie-infected rodent models were decreased at terminal stage. IFA of the brain sections of scrapie-infected rodents demonstrated that the signals of mGluR5 were preferentially colocalized with the NeuN-positive cells, accompanying with severe neuron losses in Nissl staining, which might be a reason for the decrease of mGluR5. Our data indicate the different aberrant alterations of mGluR5 and the downstream signaling pathways during prion infection in vivo and in vitro.
Collapse
Affiliation(s)
- Chao Hu
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Cao Chen, ; Xiao-Ping Dong,
| | - Ying Xia
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jia Chen
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Yang
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lin Wang
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dong-Dong Chen
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue-Zhang Wu
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qin Fan
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao-Xi Jia
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhi-Bao Chen
- College of Agricultural, Guangdong Ocean University, Zhanjiang, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- China Academy of Chinese Medical Sciences, Beijing, China
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai, China
- *Correspondence: Cao Chen, ; Xiao-Ping Dong,
| |
Collapse
|
40
|
Felix FB, Vago JP, Beltrami VA, Araújo JMD, Grespan R, Teixeira MM, Pinho V. Biochanin A as a modulator of the inflammatory response: an updated overview and therapeutic potential. Pharmacol Res 2022; 180:106246. [PMID: 35562014 DOI: 10.1016/j.phrs.2022.106246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
Uncontrolled inflammation and failure to resolve the inflammatory response are crucial factors involved in the progress of inflammatory diseases. Current therapeutic strategies aimed at controlling excessive inflammation are effective in some cases, though they may be accompanied by severe side effects, such as immunosuppression. Phytochemicals as a therapeutic alternative can have a fundamental impact on the different stages of inflammation and its resolution. Biochanin A (BCA) is an isoflavone known for its wide range of pharmacological properties, especially its marked anti-inflammatory effects. Recent studies have provided evidence of BCA's abilities to activate events essential for resolving inflammation. In this review, we summarize the most recent findings from pre-clinical studies of the pharmacological effects of BCA on the complex signaling network associated with the onset and resolution of inflammation and BCA's potential protective functionality in several models of inflammatory diseases, such as arthritis, pulmonary disease, neuroinflammation, and metabolic disease.
Collapse
Affiliation(s)
- Franciel Batista Felix
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Priscila Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vinícius Amorim Beltrami
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Renata Grespan
- Cell Migration Laboratory, Department of Physiology, Universidade Federal de Sergipe, São Cristovão, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
41
|
Antineuroinflammatory Effect of Amburana cearensis and Its Molecules Coumarin and Amburoside A by Inhibiting the MAPK Signaling Pathway in LPS-Activated BV-2 Microglial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6304087. [PMID: 35528510 PMCID: PMC9072078 DOI: 10.1155/2022/6304087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
Microglia plays an important role in the neuroinflammatory response, identified as one of the major factors in the development and progression of neurodegenerative diseases. Amburana cearensis and its bioactive compounds, including coumarin (CM), vanillic acid (VA), and amburoside A (AMB), exert antioxidant, anti-inflammatory, and neuroprotective activities, on 6-OHDA-induced neurotoxicity in rat mesencephalic cells determined by our group. The present study investigated the anti-inflammatory effect of the dry extract from A. cearensis (DEAC), CM, AMB, and VA on lipopolysaccharide- (LPS-) stimulated microglial cells and elucidated the possible molecular mechanism of action. The DEAC was characterized by HPLC-PDA (chemical markers: CM, AMB, and VA). The BV-2 microglial cell line was pretreated with increasing concentrations of DEAC, CM, AMB, or VA in the presence or absence of LPS to evaluate the toxicity and anti-inflammatory activity. The cytotoxicity of DEAC, CM, AMB, or VA on BV-2 cells was evaluated by the MTT test, the free radical scavenging activity of test drugs was investigated, and the nitric oxide (NO) production was determined using the Griess reagent, while cytokine levels were measured by ELISA. The expressions of toll-like receptor 4 (TLR-4), nuclear factor kappa B (NF-κB), MAPK members (JNK and ERK1/2), and iNOS were determined through Western blot analysis. DEAC, CM, AMB, or VA (5-100 μg/mL) did not induce any detectable cytotoxicity in BV-2 cells. All test drugs (100 μg/mL) showed free radical scavenging activity (hydroxyl and superoxide radicals); however, only DEAC, CM, and AMB (5-100 μg/mL) significantly reduced NO production. DEAC (100 μg/mL), as well as CM (50 and 100 μg/mL) and AMB (25 μg/mL), reduced at least 50% of NO produced and markedly decrease the production of TNF-α and IL-6 but they did not significantly affect IL-10 levels. Only DEAC (100 μg/mL) and AMB (25 μg/mL) reduced the expression of iNOS, and they did not affect arginase activity. DEAC (100 μg/mL) suppressed the activation of the MAPKs JNK and ERK1/2 in LPS-activated BV-2 cells but it did not suppress the expression of TLR-4 nor the phosphorylation of NF-κB. In conclusion, DEAC, CM, and AMB exerted anti-inflammatory activity in LPS-activated microglial cells as observed by the reduction in the production of inflammatory mediators and the expression of iNOS. We identified the MAPK signaling pathway as a probable mechanism of action to the anti-inflammatory effects observed.
Collapse
|
42
|
FBXO32 targets PHPT1 for ubiquitination to regulate the growth of EGFR mutant lung cancer. Cell Oncol (Dordr) 2022; 45:293-307. [PMID: 35411430 DOI: 10.1007/s13402-022-00669-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Phosphohistidine phosphatase 1 (PHPT1) is an oncogene that has been reported to participate in multiple tumorigenic processes. As yet, however, the role of PHPT1 in lung cancer development remains uncharacterized. METHODS RNA sequencing assay and 18 pairs of tumor and normal tissues from patients were analyzed to reveal the upregulation of PHPT1 in lung cancer, followed by confirming the biological function in vitro and in vivo. Next, Gene Set Enrichment Analysis, lung cancer samples, apoptosis assay, mass spectrometry experiments and western blotting were used to investigate the molecular mechanism underlying PHPT1 driven progression in epidermal growth factor receptor (EGFR)-mutant lung cancer. Finally, we performed cellular and animal experiments to explore the tumor suppressive function of F-box protein 32 (FBXO32). RESULTS We found that PHPT1 is overexpressed in lung cancer patients and correlates with a poor overall survival. In addition, we found that the expression of PHPT1 is elevated in EGFR-mutant lung cancer cells and primary patient samples. Inhibition of PHPT1 expression in EGFR mutant lung cancer cells significantly decreased their proliferation and clonogenicity, and suppressed their in vitro tumor growth. Mechanistic studies revealed that activation of the ERK/MAPK pathway is driven by PHPT1. PHPT1 is required for maintaining drug resistance to erlotinib in EGFR mutant lung cancer cells. We found that FBXO32 acts as an E3 ubiquitin ligase for PHPT1, and that knockdown of FBXO32 leads to PHPT1 accumulation, activation of the ERK/MAPK pathway and promotion of the proliferation, clonogenicity and growth of lung cancer cells. CONCLUSIONS Our findings indicate that PHPT1 may serve as a biomarker and therapeutic target for acquired erlotinib resistance in lung cancer patients carrying EGFR mutations.
Collapse
|
43
|
Causal biological network models for reactive astrogliosis: a systems approach to neuroinflammation. Sci Rep 2022; 12:4205. [PMID: 35273209 PMCID: PMC8913664 DOI: 10.1038/s41598-022-07651-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/15/2022] [Indexed: 11/22/2022] Open
Abstract
Astrocytes play a central role in the neuroimmune response by responding to CNS pathologies with diverse molecular and morphological changes during the process of reactive astrogliosis. Here, we used a computational biological network model and mathematical algorithms that allow the interpretation of high-throughput transcriptomic datasets in the context of known biology to study reactive astrogliosis. We gathered available mechanistic information from the literature into a comprehensive causal biological network (CBN) model of astrocyte reactivity. The CBN model was built in the Biological Expression Language, which is both human-readable and computable. We characterized the CBN with a network analysis of highly connected nodes and demonstrated that the CBN captures relevant astrocyte biology. Subsequently, we used the CBN and transcriptomic data to identify key molecular pathways driving the astrocyte phenotype in four CNS pathologies: samples from mouse models of lipopolysaccharide-induced endotoxemia, Alzheimer’s disease, and amyotrophic lateral sclerosis; and samples from multiple sclerosis patients. The astrocyte CBN provides a new tool to identify causal mechanisms and quantify astrogliosis based on transcriptomic data.
Collapse
|
44
|
Lim HS, Sohn E, Kim YJ, Kim BY, Kim JH, Jeong SJ. Ethanol Extract of Elaeagnus glabra f. oxyphylla Branches Alleviates the Inflammatory Response Through Suppression of Cyclin D3/Cyclin-Dependent Kinase 11p58 Coupled to Lipopolysaccharide-Activated BV-2 Microglia. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221075079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation plays a pivotal role in the pathogenesis of neurodegenerative diseases and is characterized by microglial dysregulation. Here, we explored the beneficial effects of a leaf extract of Elaeagnus glabra f. oxyphylla (EGFO), a native medicinal plant to Korea, South China, Japan, and Taiwan, on neuroinflammation using lipopolysaccharide (LPS)-stimulated BV-2 microglia. Levels of the inflammatory mediators were determined by enzyme-linked immunosorbent assays and reverse transcription–polymerase chain reaction. The phospho levels of mitogen-activated protein kinases, which are key kinase molecules in the inflammatory signaling pathway in microglia, were analyzed by Western blotting. Treatment with EGFO significantly suppressed the LPS-mediated induction of nitric oxide and prostaglandin E2. Consistently, EGFO treatment in LPS-stimulated BV-2 cells markedly reduced the inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) levels. The best concentration of EGFO that could reduce TNF-α and IL-6 was 100 μg/mL. EGFO relatively reduced the messenger RNA expression of TNF-α and IL-6 by 0.36 and 0.32-fold ratio, respectively, compared to LPS treatment. Moreover, EGFO markedly reduced the phospho levels of p38 and the c-jun N-terminal kinase. Furthermore, antibody microarray and immunoblotting data revealed that the pharmacological mechanisms driving the antineuroinflammatory action of EGFO involve prevention of the cyclin D3/cyclin-dependent kinase 11p58 (CDK11p58) interaction. In conclusion, our results demonstrate that EGFO alleviates the inflammatory response through the suppression of cyclin D3/CDK11p58 coupling in LPS-activated BV-2 microglia. We propose the potential of EGFO as a novel drug candidate for neurodegenerative diseases by targeting neuroinflammation.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Eunjin Sohn
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Yu Jin Kim
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Bu-Yeo Kim
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | | | - Soo-Jin Jeong
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| |
Collapse
|
45
|
Bottero V, Alrafati F, Santiago JA, Potashkin JA. Transcriptomic and Network Meta-Analysis of Frontotemporal Dementias. Front Mol Neurosci 2021; 14:747798. [PMID: 34720873 PMCID: PMC8554122 DOI: 10.3389/fnmol.2021.747798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD), also known as frontotemporal dementia (FTD), results in a progressive decline in executive function, leading to behavioral changes, speech problems, and movement disorders. FTD is the second most common cause of young-onset dementia affecting approximately 50–60,000 Americans. FTD exists in familial and sporadic forms, with GRN progranulin and C9orf72 mutations being the most common causes. In this study, we compared the sporadic and familial transcriptome within the cerebellum, frontal cortex, hippocampus, and Brodmann’s area 8 of patients with FTD to determine genes and pathways involved in the disease process. Most dysregulated genes expression occurred in the frontal cortex and Brodmann’s area 8 for genetic and sporadic forms of FTD, respectively. A meta-analysis revealed 50 genes and 95 genes are dysregulated in at least three brain regions in patients with familial mutations and sporadic FTD patients, respectively. Familial FTD genes centered on the Wnt signaling pathway, whereas genes associated with the sporadic form of FTD centered on MAPK signaling. The results reveal the similarities and differences between sporadic and familial FTD. In addition, valproic acid and additional therapeutic agents may be beneficial in treating patients with FTD.
Collapse
Affiliation(s)
- Virginie Bottero
- Center for Neurodegenerative Diseases and Therapeutics, Chicago Medical School, Discipline of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Fahed Alrafati
- Center for Neurodegenerative Diseases and Therapeutics, Chicago Medical School, Discipline of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | - Judith A Potashkin
- Center for Neurodegenerative Diseases and Therapeutics, Chicago Medical School, Discipline of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
46
|
Idebenone-Activating Autophagic Degradation of α-Synuclein via Inhibition of AKT-mTOR Pathway in a SH-SY5Y-A53T Model of Parkinson's Disease: A Network Pharmacological Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8548380. [PMID: 34567221 PMCID: PMC8463184 DOI: 10.1155/2021/8548380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022]
Abstract
Background Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, which currently lacks disease-modifying therapy to slow down its progression. Idebenone, a coenzyme Q10 (CQ10) analogue, is a well-known antioxidant and has been used to treat neurological disorders. However, the mechanism of Idebenone on PD has not been fully elucidated. This study aims to predict the potential targets of Idebenone and explore its therapeutic mechanism against PD. Method We obtained potential therapeutic targets through database prediction, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Next, we constructed and analyzed a protein-protein interaction network (PPI) and a drug-target-pathway-disease network. A molecular docking test was conducted to identify the interactions between Idebenone and potential targets. Lastly, a PD cell line of SH-SY5Y overexpressing mutant α-synuclein was used to validate the molecular mechanism. Result A total of 87 targets were identified based on network pharmacology. The enrichment analysis highlighted manipulation of MAP kinase activity and the PI3K-AKT signaling pathway as potential pharmacological targets for Idebenone against PD. Additionally, molecular docking showed that AKT and MAPK could bind tightly with Idebenone. In the cell model of PD, Idebenone activated autophagy and promoted α-synuclein degradation by suppressing the AKT/mTOR pathway. Pretreating cells with chloroquine (CQ) to block autophagic flux could diminish the pharmacological effect of Idebenone to clear α-synuclein. Conclusion This study demonstrated that Idebenone exerts its anti-PD effects by enhancing autophagy and clearance of α-synuclein, thus providing a theoretical and experimental basis for Idebenone therapy against PD.
Collapse
|
47
|
Hu Y, Zhang X, Lian F, Yang J, Xu X. Combination of Lutein and DHA Alleviate H 2O 2 Induced Cytotoxicity in PC12 Cells by Regulating the MAPK Pathway. J Nutr Sci Vitaminol (Tokyo) 2021; 67:234-242. [PMID: 34470998 DOI: 10.3177/jnsv.67.234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Docosahexaenoic acid (DHA) and lutein are important nutrients for brain health. Whether there were synergistic effects of DHA and lutein on the protection against neuronal cell damage induced by oxidative stress remained unclear. The present study was designed to investigate the synergistic effects of DHA and lutein against hydrogen peroxide (H2O2)-induced oxidative challenge in PC12 cells. PC12 cells were divided into different groups and received H2O2 (80 μM), lutein (20 μM)+H2O2 (80 μM), DHA (25 μM)+H2O2 (80 μM), and lutein (20 μM)+DHA (25 μM)+H2O2 (80 μM), respectively. The results indicated that pre-treatment of cells with lutein, DHA and DHA+lutein could significantly antagonize the H2O2-mediated growth inhibition and morphological changes in PC12 cells (p<0.05). Molecularlevel studies indicated that the DHA+lutein combination can significantly inhibit the mRNA expression of AMAD10 and BAX. Furthermore, Western blot analysis demonstrated that DHA+lutein synergistically inhibits the phosphorylation of JNK1/2. The results of the present study suggest that DHA and lutein in combination may be utilized as potent antioxidative compounds, with potential preventative or palliative effects on age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan Hu
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University
| | - Xu Zhang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University
| | - Fuzhi Lian
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University
| | - Jun Yang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University
| | - Xianrong Xu
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University
| |
Collapse
|
48
|
circRNA Regulates Dopaminergic Synapse, MAPK, and Long-term Depression Pathways in Huntington Disease. Mol Neurobiol 2021; 58:6222-6231. [PMID: 34476673 DOI: 10.1007/s12035-021-02536-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Huntington disease (HD) is the most common neurogenetic disorder caused by expansion of the CAG repeat in the HTT gene; nevertheless, the molecular bases of the disease are not fully understood. Non-coding RNAs have demonstrated to be involved in the physiopathology of HD. However, the role of circRNAs has not been investigated. The aim of this study was to identify the circRNAs with differential expression in a murine cell line model of HD and to identify the biological pathways regulated by the differentially expressed circRNAs. CircRNA expression was analyzed through a microarray, which specifically detects circular species of RNA. The expression patterns between a murine cell line expressing mutant Huntingtin and cells expressing wild-type Huntingtin were compared. We predicted the miRNAs with binding sites for the differentially expressed circRNAs and the corresponding target genes for those miRNAs. Using the target genes, we performed a function enrichment analysis. We identified 23 circRNAs differentially expressed, 19 downregulated and four upregulated. Most of the downregulated circRNAs derive from the Rere gene. The dopaminergic synapse, MAPK, and long-term depression pathways were significantly enriched. The three identified pathways have been previously associated with the physiopathology of HD. The understanding of the circRNA-miRNA-mRNA network involved in the molecular mechanisms driving HD can lead us to identify novel biomarkers and potential therapeutic targets. To the best of our knowledge, this is the first study analyzing circRNAs in a model of Huntington disease.
Collapse
|
49
|
Park HR, Yang EJ. Oxidative Stress as a Therapeutic Target in Amyotrophic Lateral Sclerosis: Opportunities and Limitations. Diagnostics (Basel) 2021; 11:diagnostics11091546. [PMID: 34573888 PMCID: PMC8465946 DOI: 10.3390/diagnostics11091546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/14/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) and Lou Gehrig’s disease, is characterized by a loss of the lower motor neurons in the spinal cord and the upper motor neurons in the cerebral cortex. Due to the complex and multifactorial nature of the various risk factors and mechanisms that are related to motor neuronal degeneration, the pathological mechanisms of ALS are not fully understood. Oxidative stress is one of the known causes of ALS pathogenesis. This has been observed in patients as well as in cellular and animal models, and is known to induce mitochondrial dysfunction and the loss of motor neurons. Numerous therapeutic agents have been developed to inhibit oxidative stress and neuroinflammation. In this review, we describe the role of oxidative stress in ALS pathogenesis, and discuss several anti-inflammatory and anti-oxidative agents as potential therapeutics for ALS. Although oxidative stress and antioxidant fields are meaningful approaches to delay disease progression and prolong the survival in ALS, it is necessary to investigate various animal models or humans with different subtypes of sporadic and familial ALS.
Collapse
|
50
|
He J, Liu T, Li Y, Mi X, Han D, Yang N, Chen L, Li Y, Hong J, Kuang C, Yuan Y, Cao Y, Han Y, Shi C, Li Z, Guo X. JNK inhibition alleviates delayed neurocognitive recovery after surgery by limiting microglia pyroptosis. Int Immunopharmacol 2021; 99:107962. [PMID: 34298396 DOI: 10.1016/j.intimp.2021.107962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/24/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Delayed neurocognitive recovery (dNCR) is a prevalent complication after surgery in older adults. Neuroinflammation plays a pivotal role in the pathogenesis of dNCR. Recently,compelling evidence suggests that theinvolvement of microglia pyroptosis in the regulation of neuroinflammation in neurologicaldiseases. Nevertheless, the exact role of microglia pyroptosis in dNCR remains elusive. In the study, in vitro and in vivo models of dNCR were used to examine the potential effects of the mitogen‑activated protein kinase signaling pathway on Nod-like receptor protein 3 (NLRP3) inflammasome-mediated microglia pyroptosis and cognitive deficits following surgery. In vivo, we observed surgery-induced upregulation of phosphorylated (p)-c-Jun N-terminal kinases (JNK) in microglia and subsequently NLRP3 inflammasome activation, pyroptosis, and inflammatory cytokines release in mice hippocampus. Interestingly, JNK inhibitor SP600125 significantly attenuated surgery-induced cognitive impairments through inhibiting pyroptosis, inflammatory responses, and reducing immunoreactivity of NLRP3 and gasdermin D N terminus (GSDMD-N) in hippocampal microglia. In vitro, NLRP3 inflammasome- and pyroptosis-associated proteins and immunoreactivity of NLRP3, GSDMD-N, and interleukin-1β were activated in BV2 microglial cells following lipopolysaccharide (LPS) stimulation. These effects were significantly suppressed in BV2 cells by SP600125 treatment. Furthermore, treatment with NLRP3 specific inhibitor, MCC950, attenuated microglia pyroptosis induced by LPS, but did not rescue LPS-induced increased expression of p-JNK. These results indicate that the JNK pathway is largely upstream of the NLRP3 inflammasome, which exerts a crucial regulatory impact on microglia pyroptosis and inflammatory responses, thus providing a promising avenue to prevent dNCR.
Collapse
Affiliation(s)
- Jindan He
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Lei Chen
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Jingshu Hong
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Chongshen Kuang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Yi Yuan
- Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yiyun Cao
- Department of Anesthesiology, Shanghai Sixth People's Hospital East Affiliated with Shanghai University of Medicine and Health Sciences, Shanghai 200233, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Chengmei Shi
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China.
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|