1
|
Liu N, Li Y, Luo G, Jiang M, Liu C, Zhang Y, Zhang L. SIRT6 suppresses colon cancer growth by inducing apoptosis and autophagy through transcriptionally down-regulating Survivin. Mitochondrion 2024; 78:101932. [PMID: 38986922 DOI: 10.1016/j.mito.2024.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
SIRT6, an evolutionarily conserved histone deacetylase, has been identified as a novel direct downstream target of Akt/FoxO3a and a tumor suppressor in colon cancer in our previous research. Nevertheless, the precise mechanisms through which SIRT6 hinders tumor development remain unclear. To ascertain whether SIRT6 directly impacts Survivin transcription, a ChIP assay was conducted using an anti-SIRT6 antibody to isolate DNA. YM155 was synthesized to explore Survivin's role in mitochondrial apoptosis, autophagy and tumor progression. Our investigation into the regulation of Survivin involved real-time fluorescence imaging in living cells, real-time PCR, immunohistochemistry, flow cytometry, and xenograft mouse assays. In this current study, we delved into the role of SIRT6 in colon cancer and established that activated SIRT6 triggers mitochondrial apoptosis by reducing Survivin expression. Subsequent examinations revealed that SIRT6 directly binds to the Survivin promoter, impeding its transcription. Notably, direct inhibition of Survivin significantly impeded colon cancer proliferation by inducing mitochondrial apoptosis and autophagy both in vitro and in vivo. More interestingly, Survivin inhibition reactivated the Akt/FoxO3a pathway and elevated SIRT6 levels, establishing a positive feedback loop. Our results identify Survivin as a novel downstream transcriptional target of SIRT6 that fosters tumor growth and holds promise as a prospective target for colon cancer therapy.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yanqiu Li
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Guang Luo
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Meimei Jiang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Chun Liu
- Department of Respirology & Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yingjie Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; School of Biomedical Sciences, Hunan University, Changsha, China
| | - Lingling Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Fiorentino F, Fabbrizi E, Mai A, Rotili D. Activation and inhibition of sirtuins: From bench to bedside. Med Res Rev 2024. [PMID: 39215785 DOI: 10.1002/med.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
The sirtuin family comprises seven NAD+-dependent enzymes which catalyze protein lysine deacylation and mono ADP-ribosylation. Sirtuins act as central regulators of genomic stability and gene expression and control key processes, including energetic metabolism, cell cycle, differentiation, apoptosis, and aging. As a result, all sirtuins play critical roles in cellular homeostasis and organism wellness, and their dysregulation has been linked to metabolic, cardiovascular, and neurological diseases. Furthermore, sirtuins have shown dichotomous roles in cancer, acting as context-dependent tumor suppressors or promoters. Given their central role in different cellular processes, sirtuins have attracted increasing research interest aimed at developing both activators and inhibitors. Indeed, sirtuin modulation may have therapeutic effects in many age-related diseases, including diabetes, cardiovascular and neurodegenerative disorders, and cancer. Moreover, isoform selective modulators may increase our knowledge of sirtuin biology and aid to develop better therapies. Through this review, we provide critical insights into sirtuin pharmacology and illustrate their enzymatic activities and biological functions. Furthermore, we outline the most relevant sirtuin modulators in terms of their modes of action, structure-activity relationships, pharmacological effects, and clinical applications.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Fang Z, Raza U, Song J, Lu J, Yao S, Liu X, Zhang W, Li S. Systemic aging fuels heart failure: Molecular mechanisms and therapeutic avenues. ESC Heart Fail 2024. [PMID: 39034866 DOI: 10.1002/ehf2.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Systemic aging influences various physiological processes and contributes to structural and functional decline in cardiac tissue. These alterations include an increased incidence of left ventricular hypertrophy, a decline in left ventricular diastolic function, left atrial dilation, atrial fibrillation, myocardial fibrosis and cardiac amyloidosis, elevating susceptibility to chronic heart failure (HF) in the elderly. Age-related cardiac dysfunction stems from prolonged exposure to genomic, epigenetic, oxidative, autophagic, inflammatory and regenerative stresses, along with the accumulation of senescent cells. Concurrently, age-related structural and functional changes in the vascular system, attributed to endothelial dysfunction, arterial stiffness, impaired angiogenesis, oxidative stress and inflammation, impose additional strain on the heart. Dysregulated mechanosignalling and impaired nitric oxide signalling play critical roles in the age-related vascular dysfunction associated with HF. Metabolic aging drives intricate shifts in glucose and lipid metabolism, leading to insulin resistance, mitochondrial dysfunction and lipid accumulation within cardiomyocytes. These alterations contribute to cardiac hypertrophy, fibrosis and impaired contractility, ultimately propelling HF. Systemic low-grade chronic inflammation, in conjunction with the senescence-associated secretory phenotype, aggravates cardiac dysfunction with age by promoting immune cell infiltration into the myocardium, fostering HF. This is further exacerbated by age-related comorbidities like coronary artery disease (CAD), atherosclerosis, hypertension, obesity, diabetes and chronic kidney disease (CKD). CAD and atherosclerosis induce myocardial ischaemia and adverse remodelling, while hypertension contributes to cardiac hypertrophy and fibrosis. Obesity-associated insulin resistance, inflammation and dyslipidaemia create a profibrotic cardiac environment, whereas diabetes-related metabolic disturbances further impair cardiac function. CKD-related fluid overload, electrolyte imbalances and uraemic toxins exacerbate HF through systemic inflammation and neurohormonal renin-angiotensin-aldosterone system (RAAS) activation. Recognizing aging as a modifiable process has opened avenues to target systemic aging in HF through both lifestyle interventions and therapeutics. Exercise, known for its antioxidant effects, can partly reverse pathological cardiac remodelling in the elderly by countering processes linked to age-related chronic HF, such as mitochondrial dysfunction, inflammation, senescence and declining cardiomyocyte regeneration. Dietary interventions such as plant-based and ketogenic diets, caloric restriction and macronutrient supplementation are instrumental in maintaining energy balance, reducing adiposity and addressing micronutrient and macronutrient imbalances associated with age-related HF. Therapeutic advancements targeting systemic aging in HF are underway. Key approaches include senomorphics and senolytics to limit senescence, antioxidants targeting mitochondrial stress, anti-inflammatory drugs like interleukin (IL)-1β inhibitors, metabolic rejuvenators such as nicotinamide riboside, resveratrol and sirtuin (SIRT) activators and autophagy enhancers like metformin and sodium-glucose cotransporter 2 (SGLT2) inhibitors, all of which offer potential for preserving cardiac function and alleviating the age-related HF burden.
Collapse
Affiliation(s)
- Zhuyubing Fang
- Cardiovascular Department of Internal Medicine, Karamay Hospital of People's Hospital of Xinjiang Uygur Autonomous Region, Karamay, Xinjiang Uygur Autonomous Region, China
| | - Umar Raza
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Jia Song
- Department of Medicine (Cardiovascular Research), Baylor College of Medicine, Houston, Texas, USA
| | - Junyan Lu
- Department of Cardiology, Zengcheng Branch of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiaohong Liu
- Cardiovascular Department of Internal Medicine, Karamay Hospital of People's Hospital of Xinjiang Uygur Autonomous Region, Karamay, Xinjiang Uygur Autonomous Region, China
| | - Wei Zhang
- Outpatient Clinic of Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shujuan Li
- Department of Pediatric Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Divya KP, Kanwar N, Anuranjana PV, Kumar G, Beegum F, George KT, Kumar N, Nandakumar K, Kanwal A. SIRT6 in Regulation of Mitochondrial Damage and Associated Cardiac Dysfunctions: A Possible Therapeutic Target for CVDs. Cardiovasc Toxicol 2024; 24:598-621. [PMID: 38689163 DOI: 10.1007/s12012-024-09858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular diseases (CVDs) can be described as a global health emergency imploring possible prevention strategies. Although the pathogenesis of CVDs has been extensively studied, the role of mitochondrial dysfunction in CVD development has yet to be investigated. Diabetic cardiomyopathy, ischemic-reperfusion injury, and heart failure are some of the CVDs resulting from mitochondrial dysfunction Recent evidence from the research states that any dysfunction of mitochondria has an impact on metabolic alteration, eventually causes the death of a healthy cell and therefore, progressively directing to the predisposition of disease. Cardiovascular research investigating the targets that both protect and treat mitochondrial damage will help reduce the risk and increase the quality of life of patients suffering from various CVDs. One such target, i.e., nuclear sirtuin SIRT6 is strongly associated with cardiac function. However, the link between mitochondrial dysfunction and SIRT6 concerning cardiovascular pathologies remains poorly understood. Although the Role of SIRT6 in skeletal muscles and cardiomyocytes through mitochondrial regulation has been well understood, its specific role in mitochondrial maintenance in cardiomyocytes is poorly determined. The review aims to explore the domain-specific function of SIRT6 in cardiomyocytes and is an effort to know how SIRT6, mitochondria, and CVDs are related.
Collapse
Affiliation(s)
- K P Divya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Navjot Kanwar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab, Technical University, Bathinda, Punjab, 151005, India
| | - P V Anuranjana
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Gautam Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- School of Pharmacy, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Krupa Thankam George
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology, National Institute of Pharmaceutical Educations and Research, Hajipur, Bihar, 844102, India
| | - K Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab, 151005, India.
| |
Collapse
|
5
|
Xu H, Guo H, Tang Z, Hao R, Wang S, Jin P. Follistatin-like 1 protects against doxorubicin-induced cardiotoxicity by preventing mitochondrial dysfunction through the SIRT6/Nrf2 signaling pathway. Cell Biol Int 2024; 48:795-807. [PMID: 38436106 DOI: 10.1002/cbin.12147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/11/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Mitochondrial dysfunction and myocardial remodeling have been reported to be the main underlying molecular mechanisms of doxorubicin-induced cardiotoxicity. SIRT6 is a nicotinamide adenine dinucleotide-dependent enzyme that plays a vital role in cardiac protection against various stresses. Moreover, previous studies have demonstrated that FSTL1 could alleviate doxorubicin-induced cardiotoxicity by inhibiting autophagy. The present study investigated the probable mechanisms of FSTL1 on doxorubicin-induced cardiotoxicity in vivo and in vitro. We confirmed that FSTL1 exerted a pivotal protective role on cardiac tissue in vivo and on doxorubicin-induced cell injury in vitro. Furthermore, FSTL1 can alleviate doxorubicin-induced mitochondrial dysfunction by inhibiting autophagy and apoptosis. Further studies demonstrated that FSTL1 can activate SIRT6 signaling by restoring the SIRT6 protein expression in doxorubicin-induced myocardial injury. SIRT6 activation elevated the protein expression of Nrf2 in doxorubicin-induced H9C2 injury. Treatment with the Nrf2 inhibitor ML385 partially antagonized the cardioprotective role of SIRT6 on doxorubicin-induced autophagy or apoptosis. These results suggested that the protective mechanism of FSTL1 on doxorubicin-induced cardiotoxicity may be related with the inhibition of autophagy and apoptosis, partly through the activation of SIRT6/Nrf2.
Collapse
Affiliation(s)
- Haijun Xu
- Department of Pediatrics, Yangling Demonstration Zone Hospital, Xi'an, China
| | - Hong Guo
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhigang Tang
- Department of Cardiovascular Surgery, Shang Luo Central Hospital, Shang Luo, China
| | - Ruijun Hao
- Department of Cardiovascular Surgery, Fu Gu People's Hospital, Yu Lin, China
| | - Shaowei Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Ping Jin
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
6
|
Xiong J, Lin W, Yuan C, Bian J, Diao Y, Xu X, Ni B, Zhang H, Shao Y. SIRT6-mediated Runx2 downregulation inhibits osteogenic differentiation of human aortic valve interstitial cells in calcific aortic valve disease. Eur J Pharmacol 2024; 968:176423. [PMID: 38365109 DOI: 10.1016/j.ejphar.2024.176423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Calcific aortic valve disease (CAVD) is a progressive cardiovascular disorder involving multiple pathogenesis. Effective pharmacological therapies are currently unavailable. Sirtuin6 (SIRT6) has been shown to protect against aortic valve calcification in CAVD. The exact regulatory mechanism of SIRT6 in osteoblastic differentiation remains to be determined, although it inhibits osteogenic differentiation of aortic valve interstitial cells. We demonstrated that SIRT6 was markedly downregulated in calcific human aortic valves. Mechanistically, SIRT6 suppressed osteogenic differentiation in human aortic valve interstitial cells (HAVICs), as confirmed by loss- and gain-of-function experiments. SIRT6 directly interacted with Runx2, decreased Runx2 acetylation levels, and facilitated Runx2 nuclear export to inhibit the osteoblastic phenotype transition of HAVICs. In addition, the AKT signaling pathway acted upstream of SIRT6. Together, these findings elucidate that SIRT6-mediated Runx2 downregulation inhibits aortic valve calcification and provide novel insights into therapeutic strategies for CAVD.
Collapse
Affiliation(s)
- Jiaqi Xiong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, No. 300, Nanjing, 210029, Jiangsu, China
| | - Wenfeng Lin
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, No. 300, Nanjing, 210029, Jiangsu, China
| | - Chunze Yuan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, No. 300, Nanjing, 210029, Jiangsu, China
| | - Jinhui Bian
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, No. 300, Nanjing, 210029, Jiangsu, China
| | - Yifei Diao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, No. 300, Nanjing, 210029, Jiangsu, China
| | - Xinyang Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, No. 300, Nanjing, 210029, Jiangsu, China
| | - Buqing Ni
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, No. 300, Nanjing, 210029, Jiangsu, China.
| | - Hui Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, No. 300, Nanjing, 210029, Jiangsu, China; Lab of Public Platform, Nanjing Medical University, Nanjing, China.
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, No. 300, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
7
|
Lombardo GE, Russo C, Maugeri A, Navarra M. Sirtuins as Players in the Signal Transduction of Citrus Flavonoids. Int J Mol Sci 2024; 25:1956. [PMID: 38396635 PMCID: PMC10889095 DOI: 10.3390/ijms25041956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Sirtuins (SIRTs) belong to the family of nicotine adenine dinucleotide (NAD+)-dependent class III histone deacetylases, which come into play in the regulation of epigenetic processes through the deacetylation of histones and other substrates. The human genome encodes for seven homologs (SIRT1-7), which are localized into the nucleus, cytoplasm, and mitochondria, with different enzymatic activities and regulatory mechanisms. Indeed, SIRTs are involved in different physio-pathological processes responsible for the onset of several human illnesses, such as cardiovascular and neurodegenerative diseases, obesity and diabetes, age-related disorders, and cancer. Nowadays, it is well-known that Citrus fruits, typical of the Mediterranean diet, are an important source of bioactive compounds, such as polyphenols. Among these, flavonoids are recognized as potential agents endowed with a wide range of beneficial properties, including antioxidant, anti-inflammatory, hypolipidemic, and antitumoral ones. On these bases, we offer a comprehensive overview on biological effects exerted by Citrus flavonoids via targeting SIRTs, which acted as modulator of several signaling pathways. According to the reported studies, Citrus flavonoids appear to be promising SIRT modulators in many different pathologies, a role which might be potentially evaluated in future therapies, along with encouraging the study of those SIRT members which still lack proper evidence on their support.
Collapse
Affiliation(s)
- Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| | - Alessandro Maugeri
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| |
Collapse
|
8
|
Cekici A, Sahinkaya S, Donmez MF, Turkmen E, Balci N, Toygar H. Sirtuin6 and Lipoxin A4 levels are decreased in severe periodontitis. Clin Oral Investig 2023; 27:7407-7415. [PMID: 37851128 DOI: 10.1007/s00784-023-05330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
OBJECTIVE Sirtuin6 plays an important role in the regulation of inflammation, homeostasis, and apoptosis, and it has anti-inflammatory effects on several diseases. Lipoxin A4 is a pro-resolving lipid mediator of inflammation and inhibits hypoxia-induced apoptosis and oxidative stress. Considering that Lipoxin A4 and Sirtuin6 have protective effects on inflammatory diseases, the aim of this study is to determine the possible roles of these molecules on periodontitis inflammation in saliva and serum and to reveal the relationship of these data with clinical periodontal parameters. MATERIAL AND METHODS A total of 20 stage III/grade B periodontitis and 20 periodontally healthy subjects were included in this cross-sectional study (all never smokers and systemically healthy). Clinical periodontal parameters (plaque index, probing pocket depth, bleeding on probing, clinical attachment loss) were recorded. Saliva and serum levels of Sirtuin6 and Lipoxin A4 were analyzed by enzyme-linked immunosorbent assay. RESULTS Serum Sirtuin6 and saliva Lipoxin A4 levels were significantly lower in the periodontitis group than the control group (respectively, p = 0.0098, p = 0.0008). There were negative correlations between all periodontal clinical parameters and saliva Lipoxin A4 level (p < 0.05) and between probing pocket depth, clinical attachment loss, and serum and saliva Sirtuin6 levels (respectively, r = - 0.465 and r = - 0.473, p < 0.05). CONCLUSIONS Decreased levels of serum Sirtuin6 and saliva Lipoxin A4 in periodontitis patients and their correlation with clinical periodontal parameters suggest that serum Sirtuin6 and saliva Lipoxin A4 may be related with periodontal inflammation. CLINICAL RELEVANCE Scientific rationale for the study: Sirtuin6 is one of seven members of the family of NAD + dependent protein that played an important role in the regulation of inflammation, energy metabolism, homeostasis, and apoptosis. Sirtuin6 is associated with the pathogenesis of several diseases. Lipoxin A4 is a lipid mediator that inhibits hypoxia-induced apoptosis and oxidative stress, and it has an active role in the resolution of periodontal inflammation. No studies that investigated the potential role Sirtuin6 and its relationship with inflammation resolution and apoptosis mechanisms in severe periodontitis patients. PRINCIPAL FINDINGS the serum Sirtuin6 and saliva Lipoxin A4 levels were significantly lower and negatively correlated with clinical periodontal parameters in the patients with periodontitis than the healthy controls. PRACTICAL IMPLICATIONS this study shows that serum Sirtuin6 and saliva Lipoxin A4 may be candidate biomarkers related with periodontal inflammation and estimating to periodontal status. CLINICAL TRIAL REGISTRATION NCT05417061.
Collapse
Affiliation(s)
- Ali Cekici
- Department of Periodontology, Faculty of Dentistry, Istanbul University, Vezneciler, Fatih-Istanbul, Turkey.
| | - Selin Sahinkaya
- Department of Periodontology Faculty of Dentistry, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - M Fatih Donmez
- Department of Periodontology Faculty of Dentistry, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Emrah Turkmen
- Department of Periodontology Faculty of Dentistry, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Nur Balci
- Department of Periodontology Faculty of Dentistry, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Hilal Toygar
- Department of Periodontology Faculty of Dentistry, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
9
|
Yang K, Hou R, Zhao J, Wang X, Wei J, Pan X, Zhu X. Lifestyle effects on aging and CVD: A spotlight on the nutrient-sensing network. Ageing Res Rev 2023; 92:102121. [PMID: 37944707 DOI: 10.1016/j.arr.2023.102121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/12/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Aging is widespread worldwide and a significant risk factor for cardiovascular disease (CVD). Mechanisms underlying aging have attracted considerable attention in recent years. Remarkably, aging and CVD overlap in numerous ways, with deregulated nutrient sensing as a common mechanism and lifestyle as a communal modifier. Interestingly, lifestyle triggers or suppresses multiple nutrient-related signaling pathways. In this review, we first present the composition of the nutrient-sensing network (NSN) and its metabolic impact on aging and CVD. Secondly, we review how risk factors closely associated with CVD, including adverse life states such as sedentary behavior, sleep disorders, high-fat diet, and psychosocial stress, contribute to aging and CVD, with a focus on the bridging role of the NSN. Finally, we focus on the positive effects of beneficial dietary interventions, specifically dietary restriction and the Mediterranean diet, on the regulation of nutrient metabolism and the delayed effects of aging and CVD that depend on the balance of the NSN. In summary, we expound on the interaction between lifestyle, NSN, aging, and CVD.
Collapse
Affiliation(s)
- Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Rongyao Hou
- Department of Neurology, The Affiliated Hiser Hospital of Qingdao University, Qingdao 266000, China
| | - Jie Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
10
|
Wu S, Zhang J, Peng C, Ma Y, Tian X. SIRT6 mediated histone H3K9ac deacetylation involves myocardial remodelling through regulating myocardial energy metabolism in TAC mice. J Cell Mol Med 2023; 27:3451-3464. [PMID: 37603612 PMCID: PMC10660608 DOI: 10.1111/jcmm.17915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Pathological myocardial remodelling is the initial factor of chronic heart failure (CHF) and is induced by multiple factors. We previously demonstrated that histone acetylation is involved in CHF in transverse aortic constriction (TAC) mice, a model for pressure overload-induced heart failure. In this study, we investigated whether the histone deacetylase Sirtuin 6 (SIRT6), which mediates deacetylation of histone 3 acetylated at lysine 9 (H3K9ac), is involved pathological myocardial remodelling by regulating myocardial energy metabolism and explored the underlying mechanisms. We generated a TAC mouse model by partial thoracic aortic banding. TAC mice were injected with the SIRT6 agonist MDL-800 at a dose of 65 mg/kg for 8 weeks. At 4, 8 and 12 weeks after TAC, the level of H3K9ac increased gradually, while the expression of SIRT6 and vascular endothelial growth factor A (VEGFA) decreased gradually. MDL-800 reversed the effects of SIRT6 on H3K9ac in TAC mice and promoted the expression of VEGFA in the hearts of TAC mice. MDL-800 also attenuated mitochondria damage and improved mitochondrial respiratory function through upregulating SIRT6 in the hearts of TAC mice. These results revealed a novel mechanism in which SIRT6-mediated H3K9ac level is involved pathological myocardial remodelling in TAC mice through regulating myocardial energy metabolism. These findings may assist in the development of novel methods for preventing and treating pathological myocardial remodelling.
Collapse
Affiliation(s)
- Shuqi Wu
- Department of Pediatrics, Guizhou Children's HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jiaojiao Zhang
- Department of Pediatrics, Guizhou Children's HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Chang Peng
- Department of Pediatrics, Guizhou Children's HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yixiang Ma
- Department of Pediatrics, Guizhou Children's HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xiaochun Tian
- Department of Pediatrics, Guizhou Children's HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
11
|
Casper E. The crosstalk between Nrf2 and NF-κB pathways in coronary artery disease: Can it be regulated by SIRT6? Life Sci 2023; 330:122007. [PMID: 37544377 DOI: 10.1016/j.lfs.2023.122007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Oxidative stress and inflammation are major mechanisms responsible for the progression of CAD. Nuclear transcription factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that modulates the cellular redox status. Nrf2 upregulation increases the expression of antioxidant genes, decreases the expression of Nuclear factor-kappa B (NF-kB), and increases free radical metabolism. Activated NF-kB increases the production of inflammatory cytokines causing endothelial dysfunction. The two pathways of Nrf2 and NF-kB can regulate the expression of each other. Foremost, the Nrf2 pathway can decrease the level of active NF-κB by increasing the level of antioxidants and cytoprotective enzymes. Furthermore, the Nrf2 pathway prevents IκB-α degradation, an inhibitor of NF-kB, and thus inhibits NF-κB mediated transcription. Also, NF-kB transcription inhibits Nrf2 activation by reducing the antioxidant response element (ARE) transcription. Sirtuin 6 (SIRT6) is a member of the Sirtuins family that was found to protect against cardiovascular diseases. SIRT6 can suppress the production of Reactive oxygen species (ROS) through deacetylation of NRF2 which results in NRF2 activation. Furthermore, SIRT6 can inhibit the inflammatory process through the downregulation of NF-kB transcription. Therefore, targeting sirtuins could be a therapeutic strategy to treat CAD. This review describes the potential role of SIRT6 in regulating the crosstalk between NRF2 and NF-kB signaling pathways in CAD.
Collapse
Affiliation(s)
- Eman Casper
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
12
|
Abstract
A high hematocrit (HCT) level is strongly associated with the risk of cardiovascular disease. For early diagnosis of cardiovascular disease, it is vital to regularly measure the HCT, which is typically achieved by centrifuging a blood sample to measure the percentage of red blood cells. However, the centrifugal modalities are usually bulky, expensive, and require a stable electric input, which restrict the availability. This research develops a semi-automatic and portable centrifugal device for HCT measurement. This torque-actuated semi-automatic centrifuge, which we call the tFuge, is inspired by a music box, allowing different operators to generate the same rhythm. It is electricity-free and can be controlled based on a constant torque mechanism. Repeatable test results can be received from among different users regardless of their age, sex, and activity. With the assistance of the Boycott effect on the tFuge, we proved that the HCT level is in high linearity to the length of the sedimentation of the blood cells in a tube (R2 = 0.99, sample HCT range 10-60%). The tFuge takes less than 4 min and requires no more than 10 μL of blood that can be obtained by a less-invasive finger prick to complete the testing procedure. Calibrated gradient numbers are printed onto the rotation disc for instant HCT results that can be read by the naked eye. We expect this proposed point-of-care testing device possesses the potential to replace the microhematocrit centrifuge in the regions with limited resources.
Collapse
Affiliation(s)
- You-Mao Liao
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Ping-Yeh Chiu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Yuh-Shiuan Chien
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
- Graduate School of Advanced Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
13
|
Li Y, Ma Y, Gao L, Wang T, Zhuang Y, Zhang Y, Zheng L, Liu X. Upregulation of Microglial Sirt6 and Inhibition of Microglial Activation by Vitamin D3 in Lipopolysaccharide-stimulated Mice and BV-2 Cells. Neuroscience 2023; 526:85-96. [PMID: 37352968 DOI: 10.1016/j.neuroscience.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Vitamin D3 may suppress microglial activation and neuroinflammation, which play a central role in the pathophysiology of many neurological disorders. Sirt6 can remove histone 3 lysine 9 acetylation (H3K9ac) to repress expression of pathological genes and produce anti-inflammatory effects. However, whether vitamin D3 upregulates microglial Sirt6 to exert its protective effects against microglial activation and neuroinflammation is unclear. The effects of lower, normal, and higher dosages (1, 10 and 100 μg/kg/day) of vitamin D3 on behavioral and neuromorphological changes, brain inflammatory factors, Sirt6 and H3K9ac levels, and microglial Sirt6 distribution in hippocampus were evaluated in lipopolysaccharide (LPS)-stimulated mice. In addition, the effects of vitamin D3 on inflammatory factors, reactive oxygen species, Sirt6, and H3K9ac were confirmed in LPS-stimulated BV-2 cells. We verified that vitamin D3 ameliorated the impaired sociability of LPS-stimulated mice by three-chamber test. In addition, vitamin D3 upregulated brain Sirt6 generation, reduced H3K9ac levels and inhibited generation of brain inflammatory factors. Moreover, vitamin D3 promoted microglial Sirt6 distribution and attenuated microglia displaying an activated morphology in the hippocampus of LPS-stimulated mice. Similarly, vitamin D3 upregulated Sirt6 generation and intensity, reduced H3K9ac levels, and inhibited the inflammatory activation of LPS-stimulated BV-2 cells. In conclusion, vitamin D3 may upregulate microglial Sirt6 to reduce H3K9ac and inhibit microglial activation, thereby antagonizing neuroinflammation.
Collapse
Affiliation(s)
- Yanning Li
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China; Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China.
| | - Yujie Ma
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Lijie Gao
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| | - Ting Wang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Yuchen Zhuang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Yuping Zhang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Long Zheng
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Xifu Liu
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China.
| |
Collapse
|
14
|
Wu T, Qu Y, Xu S, Wang Y, Liu X, Ma D. SIRT6: A potential therapeutic target for diabetic cardiomyopathy. FASEB J 2023; 37:e23099. [PMID: 37462453 DOI: 10.1096/fj.202301012r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
The abnormal lipid metabolism in diabetic cardiomyopathy can cause myocardial mitochondrial dysfunction, lipotoxicity, abnormal death of myocardial cells, and myocardial remodeling. Mitochondrial homeostasis and normal lipid metabolism can effectively slow down the development of diabetic cardiomyopathy. Recent studies have shown that SIRT6 may play an important role in the pathological changes of diabetic cardiomyopathy such as myocardial cell death, myocardial hypertrophy, and myocardial fibrosis by regulating mitochondrial oxidative stress and glucose and lipid metabolism. Therefore, understanding the function of SIRT6 and its role in the pathogenesis of diabetic cardiomyopathy is of great significance for exploring and developing new targets and drugs for the treatment of diabetic cardiomyopathy. This article reviews the latest findings of SIRT6 in the pathogenesis of diabetic cardiomyopathy, focusing on the regulation of mitochondria and lipid metabolism by SIRT6 to explore potential clinical treatments.
Collapse
Affiliation(s)
- Tao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiwei Qu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengjie Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Xue Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dufang Ma
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
15
|
Wu K, Wang Y, Liu R, Wang H, Rui T. The role of mammalian Sirtuin 6 in cardiovascular diseases and diabetes mellitus. Front Physiol 2023; 14:1207133. [PMID: 37497437 PMCID: PMC10366693 DOI: 10.3389/fphys.2023.1207133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Cardiovascular diseases are severe diseases posing threat to human health because of their high morbidity and mortality worldwide. The incidence of diabetes mellitus is also increasing rapidly. Various signaling molecules are involved in the pathogenesis of cardiovascular diseases and diabetes. Sirtuin 6 (Sirt6), which is a class III histone deacetylase, has attracted numerous attentions since its discovery. Sirt6 enjoys a unique structure, important biological functions, and is involved in multiple cellular processes such as stress response, mitochondrial biogenesis, transcription, insulin resistance, inflammatory response, chromatin silencing, and apoptosis. Sirt6 also plays significant roles in regulating several cardiovascular diseases including atherosclerosis, coronary heart disease, as well as cardiac remodeling, bringing Sirt6 into the focus of clinical interests. In this review, we examine the recent advances in understanding the mechanistic working through which Sirt6 alters the course of lethal cardiovascular diseases and diabetes mellitus.
Collapse
|
16
|
Jin Z, Wang B, Ren L, Yang J, Zheng Z, Yao F, Ding R, Wang J, He J, Wang W, Nan G, Lin R. 20-Hydroxyecdysone inhibits inflammation via SIRT6-mediated NF-κB signaling in endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119460. [PMID: 36958525 DOI: 10.1016/j.bbamcr.2023.119460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
20-Hydroxyecdysone (20E) is known to have numerous pharmacological activities and can be used to treat diabetes and cardiovascular diseases. However, the protective effects of 20E against endothelial dysfunction and its targets remain unclear. In the present study, we revealed that 20E treatment could modulate the release of the endothelium-derived vasomotor factors NO, PGI2 and ET-1 and suppress the expression of ACE in TNF-α-induced 3D-cultured HUVECs. In addition, 20E suppressed the expression of CD40 and promoted the expression of SIRT6 in TNF-α-induced 3D-cultured HUVECs. The cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) and molecular docking results demonstrated that 20E binding increased SIRT6 stability, indicating that 20E directly bound to SIRT6 in HUVECs. Further investigation of the underlying mechanism showed that 20E could upregulate SIRT6 levels and that SIRT6 knockdown abolished the regulatory effect of 20E on CD40 in TNF-α-induced HUVECs, while SIRT6 overexpression further improved the effect of 20E. Moreover, we found that 20E could reduce the acetylation of NF-κB p65 (K310) through SIRT6, but the catalytic inactive mutant SIRT6 (H133Y) did not promote the deacetylation of NF-κB p65, suggesting that the inhibitory effect of 20E on NF-κB p65 was dependent on SIRT6 deacetylase activity. Additionally, our results indicated that 20E inhibited NF-κB via SIRT6, and the expression of CD40 was increased in HUVECs treated with SIRT6 siRNA and NF-κB inhibitor. In conclusion, the present study demonstrates that 20E exerts its effect through SIRT6-mediated deacetylation of NF-κB p65 (K310) to inhibit CD40 expression in ECs, and 20E may have therapeutic potential for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Zhen Jin
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, PR China
| | - Bo Wang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, PR China
| | - Lingxuan Ren
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, PR China
| | - Jianjun Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, PR China
| | - Zihan Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, PR China
| | - Feng Yao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, PR China
| | - Rongcheng Ding
- Xinjiang Rongcheng Hake Pharmaceutical Co. Ltd, Altay region 836500, Xinjiang, PR China
| | - Jianjiang Wang
- Xinjiang Rongcheng Hake Pharmaceutical Co. Ltd, Altay region 836500, Xinjiang, PR China
| | - Jianyu He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, PR China
| | - Weirong Wang
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Guanjun Nan
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, PR China.
| | - Rong Lin
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
17
|
Zhu M, Yang X, Huang Y, Wang Z, Xiong Z. Serum SIRT6 Levels Are Associated with Frailty in Older Adults. J Nutr Health Aging 2023; 27:719-725. [PMID: 37754211 DOI: 10.1007/s12603-023-1969-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/23/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVES Frailty is one of the major health problems facing aging societies worldwide. We investigated the association between serum SIRT6 and frailty in older adults. DESIGN Cross-sectional analysis of associations of serum SIRT6 and frailty in older people. SETTING Enrolled community-dwelling and hospital outpatient clinic adults older than 65 years old in Wuhan City, Hubei Province, China. PARTICIPANTS A total of 540 community-dwelling older adults (age ≥ 65 years) in Wuhan were included in the study. MEASURES We used Frailty Phenotype criteria for classifying participants based on their frailty status. Serum SIRT6 was measured using an ELISA kit. RESULTS A total of 540 older adults were included in this cross-sectional study. Serum SIRT6 was lower in the slowness group (7.23±1.81 vs 5.89±1.74, p<0.001), weakness group (6.87±1.88 vs 5.68±1.64, p<0.001), and exhaustion group (6.73±1.90 vs 5.88±1.74, p<0.001) compare with the normal group. ROC curves were used to assess the efficiency of SIRT6 in predicting frailty in older adults. The AUC for SIRT6 was 0.792 (95% CI: 0.7514 to 0.8325), with the highest sensitivity of 68.0% and the specificity of 91.9%, and the optimal critical value of 4.65ng/ml according to Youden's index. Multivariate logistic regression analysis showed that serum SIRT6 level was independently associated with frailty in older people. CONCLUSION In conclusion, serum SIRT6 was decreased in frailty compared with robust older adults. A decreased serum SIRT6 was independently associated with an increased risk of frailty. SIRT6 may be a potential target for the treatment of patients with frailty.
Collapse
Affiliation(s)
- M Zhu
- Zhifan Xiong, Division of Gastroenterology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Science, Wuhan 430077, Hubei, China,
| | | | | | | | | |
Collapse
|
18
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 263] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Abstract
BACKGROUND We aimed to evaluate the correlation between serum sirtuin 6 (sirt6) level and clinicopathological characteristics and prognosis of gastric cancer (GC) patients. METHODS The serum sirt6 levels of subjects (135 cases of GC, 68 cases of atrophic gastritis, 60 cases of healthy controls) were analyzed by enzyme-linked immunosorbent assay. The predictive and prognostic values of sirt6 serum level for GC were determined by performing receiver operating characteristic curve (ROC), Kaplan-Meier analysis, as well as univariate and multivariate Cox regression, respectively. RESULTS GC patients showed lower sirt6 serum levels than that of atrophic gastritis patients and healthy control. Taking the healthy control as a reference, the area under the ROC curve (AUC) of sirt6 serum level for diagnosing GC was 0.955 with a sensitivity of 91.85% and a specificity of 90.0%. Based on ROC analysis using atrophic gastritis as the state variable, serum sirt6 had a high diagnostic efficiency for GC (AUC = 0.754). Serum sirt6 was related to the clinicopathological features (tumor size, Lauren's classification, tumor node metastasis staging, lymph node metastasis) and overall survival (log-rank χ2 = 12.22, P < .001). The AUC of serum sirt6 predicting death in GC patients was 0.731. At the optimal cutoff value (16.83 ng/mL), the sensitivity and specificity of sirt6 were 59.57% and 79.55%, respectively. Moreover, lower sirt6 level as independent risk factor was revealed to affect prognosis of GC patients (P = .018). CONCLUSION Serum sirt6 level was positively associated with the tumor stage and metastasis conditions, which could be served as diagnostic and predictive biomarkers in GC.
Collapse
Affiliation(s)
- Danyang Li
- Department of Gastrointestinal Surgery, Xianyang Central Hospital, Xianyang, Shaanxi, China
| | - Cheng Cao
- Department of Elderly Medical, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
- * Correspondence: Cheng Cao, Department of Elderly Medical, Xi’an International Medical Center Hospital, Xi’an, NO.777, Xitai Road High Tech Zone, Shaanxi 710100, China (e-mail: )
| |
Collapse
|
20
|
SIRT6 Prevents Glucocorticoid-Induced Osteonecrosis of the Femoral Head in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6360133. [PMID: 36275897 PMCID: PMC9584736 DOI: 10.1155/2022/6360133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022]
Abstract
Objective Glucocorticoid-induced osteonecrosis of the femoral head is one of the most common causes of nontraumatic osteonecrosis of the femoral head, but its exact pathogenesis remains unclear. The aim of this study was to investigate the role of SIRT6 in the maintenance of bone tissue morphology and structure, intravascular lipid metabolism, and its potential molecular mechanism in glucocorticoid-induced osteonecrosis of the femoral head. Methods SIRT6 adenovirus was transfected into GIONFH in rats. The microstructure of rat bone was observed by micro-CT and histological staining, and the expression of bone formation-related proteins and angiogenesis-related factors was determined through western blot and immunohistochemistry. Alkaline phosphatase activity, alizarin red staining, and the expression levels of Runx2 and osteocalcin were used to evaluate the osteogenic potential. And in vitro tube formation assay and immunofluorescence were used to detect the ability of endothelial cell angiogenesis. Results Dexamethasone significantly inhibited osteoblast differentiation, affected bone formation, and destroyed microvessel formation, increased the intracellular Fe2+ and ROS levels and induced the occurrence of ferroptosis. SIRT6 can inhibit ferroptosis and restore the ability of bone formation and angiogenesis. Conclusion SIRT6 can inhibit the occurrence of ferroptosis, reduce the damage of vascular endothelium, and promote osteogenic differentiation, so as to prevent the occurrence of osteonecrosis of the femoral head.
Collapse
|
21
|
Sirt6 inhibits vascular endothelial cell pyroptosis by regulation of the Lin28b/let-7 pathway in atherosclerosis. Int Immunopharmacol 2022; 110:109056. [DOI: 10.1016/j.intimp.2022.109056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
|
22
|
Dubois-Deruy E, El Masri Y, Turkieh A, Amouyel P, Pinet F, Annicotte JS. Cardiac Acetylation in Metabolic Diseases. Biomedicines 2022; 10:biomedicines10081834. [PMID: 36009379 PMCID: PMC9405459 DOI: 10.3390/biomedicines10081834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Lysine acetylation is a highly conserved mechanism that affects several biological processes such as cell growth, metabolism, enzymatic activity, subcellular localization of proteins, gene transcription or chromatin structure. This post-translational modification, mainly regulated by lysine acetyltransferase (KAT) and lysine deacetylase (KDAC) enzymes, can occur on histone or non-histone proteins. Several studies have demonstrated that dysregulated acetylation is involved in cardiac dysfunction, associated with metabolic disorder or heart failure. Since the prevalence of obesity, type 2 diabetes or heart failure rises and represents a major cause of cardiovascular morbidity and mortality worldwide, cardiac acetylation may constitute a crucial pathway that could contribute to disease development. In this review, we summarize the mechanisms involved in the regulation of cardiac acetylation and its roles in physiological conditions. In addition, we highlight the effects of cardiac acetylation in physiopathology, with a focus on obesity, type 2 diabetes and heart failure. This review sheds light on the major role of acetylation in cardiovascular diseases and emphasizes KATs and KDACs as potential therapeutic targets for heart failure.
Collapse
|
23
|
Liu LB, Huang SH, Qiu HL, Cen XF, Guo YY, Li D, Ma YL, Xu M, Tang QZ. Limonin stabilises SIRT6 by activating USP10 in cardiac hypertrophy. Br J Pharmacol 2022; 179:4516-4533. [PMID: 35727596 DOI: 10.1111/bph.15899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Limonin, a natural tetracyclic triterpenoid extract, exerts extensive pharmacological effects; however, its role in cardiac hypertrophy remains to be elucidated. We investigated the beneficial effects of limonin on cardiac hypertrophy and explored the potential mechanisms. EXPERIMENTAL APPROACH C57/BL6 male mice were subjected to aortic banding (AB) surgery and neonatal rat cardiac myocytes (NRCMs) were stimulated with phenylephrine (PE) to evaluate the effects of limonin on cardiac hypertrophy. KEY RESULTS Limonin markedly improved the cardiac function and heart weight in AB operation mice. In addition, limonin-treated mice and NRCMs produced fewer cardiac hypertrophy markers than those treated with the vehicle in hypertrophic groups. Sustained AB- or PE-stimulation impaired cardiac sirtuin 6 (SIRT6) protein levels, which were partially rescued by limonin and subsequently enhanced the activity of PPARα, and Sirt6 siRNA inhibited the anti-hypertrophic effects of limonin in vitro. Interestingly, limonin did not influence Sirt6 mRNA levels, but controlled its ubiquitin levels. Thus, the protein biosynthesis inhibitor, cycloheximide (CHX), and proteasome inhibitor, MG-132, were used to determine SIRT6 protein expression levels. Under PE stimulation, limonin increased SIRT6 protein levels in the presence of CHX, but it didn't influence SIRT6 expression in the presence of MG-132, suggesting that limonin promotes SIRT6 abundance by inhibiting its ubiquitination degradation. Furthermore, limonin inhibited the degradation of SIRT6 by activating ubiquitin-specific peptidase (Cuspidi et al.)-10, while USP10 siRNA abrogated the beneficial effects of limonin. CONCLUSION AND IMPLICATIONS Limonin mediates the ubiquitination and degradation of SIRT6 by activating USP10, providing an attractive therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Li-Bo Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Si-Hui Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Xian-Feng Cen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Ying-Ying Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Dan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Yu-Lan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| |
Collapse
|
24
|
Casper E. The potential role of SIRT6 in regulating the crosstalk between Nrf2 and NF-κB pathways in cardiovascular diseases. Pharmacol Res 2022; 182:106300. [PMID: 35690328 DOI: 10.1016/j.phrs.2022.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Eman Casper
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
25
|
SIRT6 mediates MRTF-A deacetylation in vascular endothelial cells to antagonize oxLDL-induced ICAM-1 transcription. Cell Death Dis 2022; 8:96. [PMID: 35246513 PMCID: PMC8897425 DOI: 10.1038/s41420-022-00903-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/10/2022] [Accepted: 02/03/2022] [Indexed: 01/01/2023]
Abstract
Oxidized low-density lipoprotein (oxLDL), a known risk factor for atherosclerosis, activates the transcription of adhesion molecules (ICAM-1) in endothelial cells. We previously showed that myocardin-related transcription factor A (MRTF-A) mediates oxLDL-induced ICAM-1 transcription. Here we confirm that ICAM-1 transactivation paralleled dynamic alterations in MRTF-A acetylation. Since treatment with the antioxidant NAC dampened MRTF-A acetylation, MRTF-A acetylation appeared to be sensitive to cellular redox status. Of interest, silencing of SIRT6, a lysine deacetylase, restored MRTF-A acetylation despite the addition of NAC. SIRT6 directly interacted with MRTF-A to modulate MRTF-A acetylation. Deacetylation of MRTF-A by SIRT6 led to its nuclear expulsion thus dampening MRTF-A occupancy on the ICAM-1 promoter. Moreover, SIRT6 expression was downregulated with oxLDL stimulation likely owing to promoter hypermethylation in endothelial cells. DNA methyltransferase 1 (DNMT1) was recruited to the SIRT6 promoter and mediated SIRT6 repression. The ability of DNMT1 to repress SIRT6 promoter partly was dependent on ROS-sensitive serine 154 phosphorylation. In conclusion, our data unveil a novel DNMT1-SIRT6 axis that contributes to the regulation of MRTF-A acetylation and ICAM-1 transactivation in endothelial cells.
Collapse
|
26
|
Association of Sirtuin Gene Polymorphisms with Susceptibility to Coronary Artery Disease in a North Chinese Population. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4294008. [PMID: 35224092 PMCID: PMC8881115 DOI: 10.1155/2022/4294008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/31/2021] [Accepted: 01/15/2022] [Indexed: 12/17/2022]
Abstract
Aims Coronary artery disease (CAD) represents the leading cause of death worldwide. Accumulating evidence also suggests that sirtuins (SIRTS) have been associated with CAD. The present study was aimed at investigating the association between 12 gene polymorphisms for SIRTs and the development of CAD in a Chinese population. Materials and Methods 12 SNPs (rs12778366 (T > C), rs3758391 (T > C), rs3740051 (A > G), rs4746720 (C > T), rs7895833 (G > A), rs932658 (A > C) for SIRT1, rs2015 (G > T) for SIRT2, rs28365927 (G > A), rs11246020 (C > T) for SIRT3, rs350844 (G > A), rs350846 (G > C), and rs107251 (C > T) for SIRT6) were selected and assessed in a cohort of 509 CAD patients and 552 matched healthy controls for this study. Genomic DNA from whole blood was extracted, and the SNPs were assessed using MassARRAY method. Results TT genotype for rs3758391 and GG genotype for rs7895833 of SIRT1 were at higher risk of CAD, whereas the CC genotype for rs4746720 of SIRT1 was associated with a significantly decreased risk of CAD. The A allele of the rs28365927 of SIRT3 showed a significant decreased risk association with CAD patient group (P = 0.014). Significant difference in genotypes rs350844 (G > A) (P = 0.004), rs350846 (G > C) (P = 0.002), and rs107251 (C > T) (P ≤ 0.01) for SIRT6 was also found between the CAD patients and the healthy controls. Haplotype CTA significantly increased the risk of CAD (P = 0.000118, OR = 1.497, 95%CI = 1.218–1.840), while haplotype GCG significantly decreases the risk of CAD (P = 0.000414, OR = 1.131, 95%CI = 0.791–1.619). Conclusions The SNP rs28365927 in the SIRT3 gene and SNP rs350844, rs350846, and rs107251 in the SIRT6 gene present significant associations with CAD in a north Chinese population. Haplotype CTA and GCG generated by rs350846/rs107251/rs350844 in the SIRT6 might also increase and decrease the risk of CAD, respectively.
Collapse
|
27
|
Zhang Q, Chen Y, Ni D, Huang Z, Wei J, Feng L, Su JC, Wei Y, Ning S, Yang X, Zhao M, Qiu Y, Song K, Yu Z, Xu J, Li X, Lin H, Lu S, Zhang J. Targeting a cryptic allosteric site of SIRT6 with small-molecule inhibitors that inhibit the migration of pancreatic cancer cells. Acta Pharm Sin B 2022; 12:876-889. [PMID: 35256952 PMCID: PMC8897208 DOI: 10.1016/j.apsb.2021.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
SIRT6 belongs to the conserved NAD+-dependent deacetylase superfamily and mediates multiple biological and pathological processes. Targeting SIRT6 by allosteric modulators represents a novel direction for therapeutics, which can overcome the selectivity problem caused by the structural similarity of orthosteric sites among deacetylases. Here, developing a reversed allosteric strategy AlloReverse, we identified a cryptic allosteric site, Pocket Z, which was only induced by the bi-directional allosteric signal triggered upon orthosteric binding of NAD+. Based on Pocket Z, we discovered an SIRT6 allosteric inhibitor named JYQ-42. JYQ-42 selectively targets SIRT6 among other histone deacetylases and effectively inhibits SIRT6 deacetylation, with an IC50 of 2.33 μmol/L. JYQ-42 significantly suppresses SIRT6-mediated cancer cell migration and pro-inflammatory cytokine production. JYQ-42, to our knowledge, is the most potent and selective allosteric SIRT6 inhibitor. This study provides a novel strategy for allosteric drug design and will help in the challenging development of therapeutic agents that can selectively bind SIRT6.
Collapse
Key Words
- ADPr, ADP-ribose
- Allosteric inhibitor
- BSA, bull serum albumin
- CCK-8, Cell Counting Kit-8
- Cell migration
- Cytokine production
- DMSO, dimethyl sulfoxide
- FBS, fetal bovine serum
- FDL, Fluor de Lys
- H3K18, histone 3 lysine 18
- H3K56, histone 3 lysine 56
- H3K9, histone 3 lysine 9
- HDAC, histone deacetylase
- HPLC, high-performance liquid chromatography
- IC50, half-maximum inhibitory concentration
- IPTG, isopropyl-β-d-thiogalactoside
- MD, molecular dynamics
- Molecular dynamics simulations
- NAD+, nicotinamide adenine dinucleotide
- NAM, nicotinamide
- PBS, phosphate buffer saline
- PMA, phorbol 12-myristate 13-acetate
- PMSF, phenylmethanesulfonyl fluoride
- Pancreatic cancer
- RMSD, root-mean-square deviation
- RT-qPCR, real-time quantitative PCR
- Reversed allostery
- SDS-PAGE, SDS-polyacrylamide gel electrophoresis
- SIRT6
- SIRT6, sirtuin 6
Collapse
|
28
|
Singh-Mallah G, Kawamura T, Ardalan M, Chumak T, Svedin P, Arthur PG, James C, Hagberg H, Sandberg M, Mallard C. N-Acetyl Cysteine Restores Sirtuin-6 and Decreases HMGB1 Release Following Lipopolysaccharide-Sensitized Hypoxic-Ischemic Brain Injury in Neonatal Mice. Front Cell Neurosci 2021; 15:743093. [PMID: 34867200 PMCID: PMC8634142 DOI: 10.3389/fncel.2021.743093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammation and neonatal hypoxia-ischemia (HI) are important etiological factors of perinatal brain injury. However, underlying mechanisms remain unclear. Sirtuins are a family of nicotinamide adenine dinucleotide (NAD)+-dependent histone deacetylases. Sirtuin-6 is thought to regulate inflammatory and oxidative pathways, such as the extracellular release of the alarmin high mobility group box-1 (HMGB1). The expression and role of sirtuin-6 in neonatal brain injury are unknown. In a well-established model of neonatal brain injury, which encompasses inflammation (lipopolysaccharide, LPS) and hypoxia-ischemia (LPS+HI), we investigated the protein expression of sirtuin-6 and HMGB1, as well as thiol oxidation. Furthermore, we assessed the effect of the antioxidant N-acetyl cysteine (NAC) on sirtuin-6 expression, nuclear to cytoplasmic translocation, and release of HMGB1 in the brain and blood thiol oxidation after LPS+HI. We demonstrate reduced expression of sirtuin-6 and increased release of HMGB1 in injured hippocampus after LPS+HI. NAC treatment restored sirtuin-6 protein levels, which was associated with reduced extracellular HMGB1 release and reduced thiol oxidation in the blood. The study suggests that early reduction in sirtuin-6 is associated with HMGB1 release, which may contribute to neonatal brain injury, and that antioxidant treatment is beneficial for the alleviation of these injurious mechanisms.
Collapse
Affiliation(s)
- Gagandeep Singh-Mallah
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Takuya Kawamura
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Maryam Ardalan
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Tetyana Chumak
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Svedin
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Peter G Arthur
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - Christopher James
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Jalgaonkar MP, Parmar UM, Kulkarni YA, Oza MJ. SIRT1-FOXOs activity regulates diabetic complications. Pharmacol Res 2021; 175:106014. [PMID: 34856334 DOI: 10.1016/j.phrs.2021.106014] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023]
Abstract
The prevalence of diabetes is continuously increasing in the recent decades. Persistent hyperglycemia, hyperinsulinemia and the subsequent oxidative stress result in diabetic complications, primarily categorized as microvascular (nephropathy, retinopathy and neuropathy) and macrovascular (cardiomyopathy) complications. The complications are prevalent in both type 1 and type 2 diabetic patients. Polyol pathway, elevated AGE production, PKC activation and hexosamine pathway are indeed the critical pathways involved in the progression of diabetic complications. Silent information regulator 2 or SIR2 or more commonly known as sirtuins are NAD+ dependent histone deacetylase. SIRT1, a member of the sirtuin family has been extensively studied for its role in lifespan extension and needs to be explored for its beneficial effects in diabetic complications. Moreover, it is also known to regulate the activity of other proteins and transcription factors. One such substrate of SIRT1 is FOXOs transcription factor which has gained much attention as the mediator of various cellular processes such as cell cycle arrest and proliferation, DNA repair and metabolism. It has been reported that SIRT1 regulates the activity of FOXOs, whereas few recent advances also suggest a role FOXOs in governing the activity of SIRT1, which permits for a crosstalk between SIRT1 and FOXOs. Therefore, the focus of the present review is to describe and explore the interaction between SIRT1 and FOXOs, predominantly FOXO1 and FOXO3 and to understand the underlying mechanism of SIRT1-FOXOs in controlling and alleviating diabetic complications. Thus, this crosstalk suggests that SIRT1 and FOXOs may serve as potential therapeutic targets in treating diabetic complications.
Collapse
Affiliation(s)
- Manjiri P Jalgaonkar
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Urvi M Parmar
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Manisha J Oza
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
30
|
Wu S, Lan J, Li L, Wang X, Tong M, Fu L, Zhang Y, Xu J, Chen X, Chen H, Li R, Wu Y, Xin J, Yan X, Li H, Xue K, Li X, Zhuo C, Jiang W. Sirt6 protects cardiomyocytes against doxorubicin-induced cardiotoxicity by inhibiting P53/Fas-dependent cell death and augmenting endogenous antioxidant defense mechanisms. Cell Biol Toxicol 2021; 39:237-258. [PMID: 34713381 DOI: 10.1007/s10565-021-09649-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023]
Abstract
Sirt6, a class III NAD+-dependent deacetylase of the sirtuin family, is a highly specific H3 deacetylase and plays important roles in regulating cellular growth and death. The induction of oxidative stress and death is the critical mechanism involved in cardiomyocyte injury and cardiac dysfunction in doxorubicin-induced cardiotoxicity, but the regulatory role of Sirt6 in the fate of DOX-impaired cardiomyocytes is poorly understood. In the present study, we exposed Sirt6 heterozygous (Sirt6+/-) mice and their littermates as well as cultured neonatal rat cardiomyocytes to DOX, then investigated the role of Sirt6 in mitigating oxidative stress and cardiac injury in the DOX-treated myocardium. Sirt6 partial knockout or silencing worsened cardiac damage, remodeling, and oxidative stress injury in mice or cultured cardiomyocytes with DOX challenge. Cardiomyocytes infected with adenoviral constructs encoding Sirt6 showed reversal of this DOX-induced damage. Intriguingly, Sirt6 reduced oxidative stress injury by upregulating endogenous antioxidant levels, interacted with oxidative stress-stirred p53, and acted as a co-repressor of p53 in nuclei. Sirt6 was recruited by p53 to the promoter regions of the target genes Fas and FasL and further suppressed p53 transcription activity by reducing histone acetylation. Sirt6 inhibited Fas/FasL signaling and attenuated both Fas-FADD-caspase-8 apoptotic and Fas-RIP3 necrotic pathways. These results indicate that Sirt6 protects the heart against DOX-induced cardiotoxicity by upregulating endogenous antioxidants, as well as suppressing oxidative stress and cell death signaling pathways dependent on ROS-stirred p53 transcriptional activation, thus reducing Fas-FasL-mediated apoptosis and necrosis. •Sirt6 is significantly decreased in DOX-insulted mouse hearts and cardiomyocytes. •Sirt6 attenuates DOX-induced cardiac atrophy, dysfunction and oxidative stress. • Sirt6 reduces oxidative stress injury by upregulating endogenous antioxidants. • Sirt6 interacts with p53 as a co-repressor to suppress p53 transcriptional regulation and inhibits Fas-FasL-mediated apoptosis and necrosis downstream of p53.
Collapse
Affiliation(s)
- Sisi Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.,Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jie Lan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lingyu Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiaoxiao Wang
- Cancer Hospital, Chongqing University, Chongqing, China.,Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Mingming Tong
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Li Fu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanjing Zhang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jiayi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuemei Chen
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Hongying Chen
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ruli Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yao Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Juanjuan Xin
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Yan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - He Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kunyue Xue
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xue Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Caili Zhuo
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
31
|
Chen L, Wang G, He J, Yang X, Zheng Z, Deng Y, Liu Y, Chen D, Lin R, Wang W. SIRT6 inhibits endothelial-to-mesenchymal transition through attenuating the vascular endothelial inflammatory response. Int Immunopharmacol 2021; 101:108240. [PMID: 34666304 DOI: 10.1016/j.intimp.2021.108240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/26/2021] [Accepted: 10/06/2021] [Indexed: 11/15/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a process of transdifferentiation in which endothelial cells gradually adopt the phenotypic characteristics of mesenchymal cells. Emerging studies demonstrate the importance of EndMT in endothelial dysfunction during inflammation. Sirtuin 6 (SIRT6), a member of the mammalian NAD+-dependent deacetylase sirtuin family, plays a critical role in cardiovascular diseases by regulating the inflammatory response. However, little is known about the effect of SIRT6 on EndMT during vascular inflammation. Therefore, we aimed to investigate the effect of SIRT6 on EndMT in endothelium-specific SIRT6 knockout (ecSIRT6-/-) mice and human umbilical vein endothelial cells (HUVECs) stimulated with inflammatory cytokines. First, we found that TNF-α and IL-1β co-treatment induced EndMT and down-regulated SIRT6 expression in HUVECs. Adenovirus-mediated SIRT6 overexpression suppressed inflammation-induced EndMT in HUVECs. In contrast, SIRT6 knockdown further promoted EndMT. Our findings also revealed that SIRT6 attenuated the inflammatory response of HUVECs. Additionally, vascular inflammation was induced by carotid artery ligation in ecSIRT6-/- mice. Results showed that the intima of ligated carotid arteries in ecSIRT6-/- mice was significantly thickened compared to that in ecSIRT6+/+ ligated mice. Moreover, endothelium-specific SIRT6 knockout promoted EndMT and increased the expression of proinflammatory cytokines in the carotid arteries of mice. These results suggest that SIRT6 inhibits EndMT through attenuating the vascular endothelial inflammatory response. These findings may have significance for reducing the occurrence of EndMT and ameliorating certain aspects of vascular inflammation.
Collapse
Affiliation(s)
- Lifang Chen
- Department of Medical Laboratory Animal Science, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Guan Wang
- Department of Pharmacology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jianyu He
- Department of Pharmacology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zihan Zheng
- Department of Pharmacology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ying Deng
- Department of Pharmacology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yizhen Liu
- Department of Pharmacology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Danli Chen
- Department of Pharmacology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Rong Lin
- Department of Pharmacology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Weirong Wang
- Department of Medical Laboratory Animal Science, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
32
|
Tian C, Gao L, Zucker IH. Regulation of Nrf2 signaling pathway in heart failure: Role of extracellular vesicles and non-coding RNAs. Free Radic Biol Med 2021; 167:218-231. [PMID: 33741451 PMCID: PMC8096694 DOI: 10.1016/j.freeradbiomed.2021.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
The balance between pro- and antioxidant molecules has been established as an important driving force in the pathogenesis of cardiovascular disease. Chronic heart failure is associated with oxidative stress in the myocardium and globally. Redox balance in the heart and brain is controlled, in part, by antioxidant proteins regulated by the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which is reduced in the heart failure state. Nrf2 can, in turn, be regulated by a variety of mechanisms including circulating microRNAs (miRNAs) encapsulated in extracellular vesicles (EVs) derived from multiple cell types in the heart. Here, we review the role of the Nrf2 and antioxidant enzyme signaling pathway in mediating redox balance in the myocardium and the brain in the heart failure state. This review focuses on Nrf2 and antioxidant protein regulation in the heart and brain by miRNA-enriched EVs in the setting of heart failure. We discuss EV-mediated intra- and inter-organ communications especially, communication between the heart and brain via an EV pathway that mediates cardiac function and sympatho-excitation in heart failure. Importantly, we speculate how engineered EVs with specific miRNAs or antagomirs may be used in a therapeutic manner in heart failure.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|