1
|
Xia C, Zhou M, Dong X, Zhao Y, Jiang M, Zhu G, Zhang Z. Ginkgo biloba extract inhibits hippocampal neuronal injury caused by mitochondrial oxidative stress in a rat model of Alzheimer's disease. PLoS One 2024; 19:e0307735. [PMID: 39106233 DOI: 10.1371/journal.pone.0307735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 07/09/2024] [Indexed: 08/09/2024] Open
Abstract
Ginkgo biloba extracts (GBE) have been shown to effectively improve cognitive function in patients with Alzheimer's disease (AD). One potential therapeutic strategy for AD is to prevent loss of adult hippocampal neurons. While recent studies have reported that GBE protects against oxidative stress in neurons, the underlying mechanisms remain unclear. In this study, an AD-like rat model was established via bidirectional injection of amyloid beta 25-35 (Aβ25-35; 20 μg) in the hippocampal CA1 region. Learning and memory abilities of experimental rats were AD assessed in response to oral administration of 7.5 g/L or 15 g/L Ginkgo biloba extract 50 (GBE50) solution and the peroxidation phenomenon of hippocampal mitochondria determined via analysis of mitochondrial H2O2 and several related enzymes. Levels of the oxidative stress-related signaling factor cytochrome C (Cyto C), apoptosis-related proteins (Bax, Bcl-2 and caspase-3) and caspase-activated DNase (CAD) were further detected via western blot. 8-Hydroxydeoxyguanosine (8-OHdG), the major product of DNA oxidative stress, was evaluated to analyze DNA status. Our results showed elevated H2O2 levels and monoamine oxidase (MAO) activity, and conversely, a decrease in the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the hippocampus of AD rats. Administration of GBE50 regulated the activities of these three enzymes and induced a decrease in H2O2. GBE50 exerted regulatory effects on abnormally expressed apoptotic proteins in the AD rat hippocampus, enhancing the expression of Bcl-2, inhibiting release of Cyto C from mitochondria, and suppressing the level of caspase-3 (excluding cleaved caspase-3). Furthermore, GBE50 inhibited DNA damage by lowering the generation of 8-OHdG rather than influencing expression of CAD. The collective findings support a protective role of GBE50 in hippocampal neurons of AD-like animals against mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Chenyi Xia
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianwen Dong
- Department of Children Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meifang Jiang
- SPH XingLing Sci. & Tech. Pharmaceutical Co., Ltd., Shanghai, China
| | - Guoqin Zhu
- SPH XingLing Sci. & Tech. Pharmaceutical Co., Ltd., Shanghai, China
| | - Zhixiong Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Zhang X, Zhou H, Liu H, Xu P. Role of Oxidative Stress in the Occurrence and Development of Cognitive Dysfunction in Patients with Obstructive Sleep Apnea Syndrome. Mol Neurobiol 2024; 61:5083-5101. [PMID: 38159196 DOI: 10.1007/s12035-023-03899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Obstructive sleep apnea syndrome (OSAS) causes recurrent apnea and intermittent hypoxia at night, leading to several complications such as cognitive dysfunction. However, the molecular mechanisms underlying cognitive dysfunction in OSAS are unclear, and oxidative stress mediated by intermittent hypoxia is an important mechanism. In addition, the improvement of cognitive dysfunction in patients with OSAS varies by different treatment regimens; among them, continuous positive airway pressure therapy (CPAP) is mostly recognized for improving cognitive dysfunction. In this review, we discuss the potential mechanisms of oxidative stress in OSAS, the common factors of affecting oxidative stress and the Links between oxidative stress and inflammation in OSAS, focusing on the potential links between oxidative stress and cognitive dysfunction in OSAS and the potential therapies for neurocognitive dysfunction in patients with OSAS mediated by oxidative stress. Therefore, further analysis on the relationship between oxidative stress and cognitive dysfunction in patients with OSAS will help to clarify the etiology and discover new treatment options, which will be of great significance for early clinical intervention.
Collapse
Affiliation(s)
- XiaoPing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - HaiJun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Sun L, Apweiler M, Tirkey A, Klett D, Normann C, Dietz GPH, Lehner MD, Fiebich BL. Anti-Neuroinflammatory Effects of Ginkgo biloba Extract EGb 761 in LPS-Activated BV2 Microglial Cells. Int J Mol Sci 2024; 25:8108. [PMID: 39125680 PMCID: PMC11312056 DOI: 10.3390/ijms25158108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Inflammatory processes in the brain can exert important neuroprotective functions. However, in neurological and psychiatric disorders, it is often detrimental due to chronic microglial over-activation and the dysregulation of cytokines and chemokines. Growing evidence indicates the emerging yet prominent pathophysiological role of neuroinflammation in the development and progression of these disorders. Despite recent advances, there is still a pressing need for effective therapies, and targeting neuroinflammation is a promising approach. Therefore, in this study, we investigated the anti-neuroinflammatory potential of a marketed and quantified proprietary herbal extract of Ginkgo biloba leaves called EGb 761 (10-500 µg/mL) in BV2 microglial cells stimulated by LPS (10 ng/mL). Our results demonstrate significant inhibition of LPS-induced expression and release of cytokines tumor necrosis factor-α (TNF-α) and Interleukin 6 (IL-6) and chemokines C-X-C motif chemokine ligand 2 (CXCL2), CXCL10, c-c motif chemokine ligand 2 (CCL2) and CCL3 in BV2 microglial cells. The observed effects are possibly mediated by the mitogen-activated protein kinases (MAPK), p38 MAPK and ERK1/2, as well as the protein kinase C (PKC) and the nuclear factor (NF)-κB signaling cascades. The findings of this in vitro study highlight the anti-inflammatory properties of EGb 761 and its therapeutic potential, making it an emerging candidate for the treatment of neuroinflammatory diseases and warranting further research in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Lu Sun
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (L.S.); (M.A.); (A.T.); (D.K.)
| | - Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (L.S.); (M.A.); (A.T.); (D.K.)
| | - Ashwini Tirkey
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (L.S.); (M.A.); (A.T.); (D.K.)
| | - Dominik Klett
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (L.S.); (M.A.); (A.T.); (D.K.)
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Gunnar P. H. Dietz
- Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany;
| | - Martin D. Lehner
- Dr. Willmar Schwabe GmbH & Co. KG, Willmar-Schwabe-Straße 4, 76227 Karlsruhe, Germany;
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (L.S.); (M.A.); (A.T.); (D.K.)
| |
Collapse
|
4
|
Liu Q, Wang J, Gu Z, Ouyang T, Gao H, Kan H, Yang Y. Comprehensive Exploration of the Neuroprotective Mechanisms of Ginkgo biloba Leaves in Treating Neurological Disorders. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1053-1086. [PMID: 38904550 DOI: 10.1142/s0192415x24500435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Neurological disorders (NDs) are diseases that seriously affect the health of individuals worldwide, potentially leading to a significant reduction in the quality of life for patients and their families. Herbal medicines have been widely used in the treatment of NDs due to their multi-target and multi-pathway features. Ginkgo biloba leaves (GBLs), one of the most popular herbal medicines in the world, have been demonstrated to present therapeutic effects on NDs. However, the pharmacological mechanisms of GBLs in the treatment of neurological disorders have not been systematically summarized. This study aimed to summarize the molecular mechanism of GBLs in treating NDs from the cell models, animal models, and clinical trials of studies. Four databases, i.e., PubMed, Google Scholar, CNKI, and Web of Science were searched using the following keywords: "Ginkgo biloba", "Ginkgo biloba extract", "Ginkgo biloba leaves", "Ginkgo biloba leaves extract", "Neurological disorders", "Neurological diseases", and "Neurodegenerative diseases". All items meeting the inclusion criteria on the treatment of NDs with GBLs were extracted and summarized. Additionally, PRISMA 2020 was performed to independently evaluate the screening methods. Out of 1385 records in the database, 52 were screened in relation to the function of GBLs in the treatment of NDs; of these 52 records, 39 were preclinical trials and 13 were clinical studies. Analysis of pharmacological studies revealed that GBLs can improve memory, cognition, behavior, and psychopathology of NDs and that the most frequently associated GBLs are depression, followed by Alzheimer's disease, stroke, Huntington's disease, and Parkinson's disease. Additionally, the clinical studies of depression, AD, and stroke are the most common, and most of the remaining ND data are available from in vitro or in vivo animal studies. Moreover, the possible mechanisms of GBLs in treating NDs are mainly through free radical scavenging, anti-oxidant activity, anti-inflammatory response, mitochondrial protection, neurotransmitter regulation, and antagonism of PAF. This is the first paper to systematically and comprehensively investigate the pharmacological effects and neuroprotective mechanisms of GBLs in the treatment of NDs thus far. All findings contribute to a better understanding of the efficacy and complexity of GBLs in treating NDs, which is of great significance for the further clinical application of this herbal medicine.
Collapse
Affiliation(s)
- Qiwei Liu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Zongyun Gu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Ting Ouyang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Honglei Gao
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Hongxing Kan
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
- Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, P. R. China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| |
Collapse
|
5
|
Wasef AK, Wahdan SA, Saeed NM, El-Demerdash E. Effects of aged garlic and ginkgo biloba extracts on the pharmacokinetics of sofosbuvir in rats. Biopharm Drug Dispos 2022; 43:152-162. [PMID: 35975782 DOI: 10.1002/bdd.2326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 06/15/2022] [Indexed: 11/07/2022]
Abstract
Sofosbuvir is a direct acting antiviral (DAA) approved for the treatment of hepatitis C virus (HCV). Sofosbuvir is a substrate of P-glycoprotein (P-gp). For this reason, inhibitors, or inducers of intestinal P-gp may alter plasma concentration of sofosbuvir and increase or decrease its efficacy causing a significant change in its pharmacokinetic parameters. The purpose of study was to evaluate the pharmacokinetic interaction between either aged garlic or ginkgo biloba extracts with sofosbuvir through targeting P-gp as well as the possible toxicities in rats. Rats were divided into four groups and treated for 14 days with saline, verapamil (15 mg/kg, PO), aged garlic extract (120 mg/kg, PO) or ginkgo biloba extract (25 mg/kg, PO) followed by a single oral dose of sofosbuvir (40 mg/kg). Validated LC-MS/MS was used to determine sofosbuvir and its metabolite GS-331007 in rat plasma. Aged garlic extract caused a significant decrease of sofosbuvir AUC(0-t) by 36% while ginkgo biloba extract caused a significant increase of sofosbuvir AUC(0-t) by 11%. Ginkgo biloba extract exhibited significant increase of sofosbuvir t1/2 by 60%, while aged garlic extract significantly increased sofosbuvir clearance by 63%. The pharmacokinetic parameters of GS-331007 were not affected. The inhibitory action of ginkgo biloba on P-gp and the subsequent increase in sofosbuvir plasma concentration did not show a significant risk of renal or hepatic toxicity. Conversely, although aged garlic extracts increased intestinal P-gp expression, they did not alter Cmax and Tmax of sofosbuvir and did not induce significant hepatic or renal toxicities. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Abanoub K Wasef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University (Kantara campus), Ismailia, Egypt
| | - Sara A Wahdan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Noha M Saeed
- Pharmacology and Toxicology department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
García-Alberca JM, Mendoza S, Gris E. Benefits of Treatment with Ginkgo Biloba Extract EGb 761 Alone or Combined with Acetylcholinesterase Inhibitors in Vascular Dementia. Clin Drug Investig 2022; 42:391-402. [PMID: 35349093 PMCID: PMC9106639 DOI: 10.1007/s40261-022-01136-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Vascular dementia (VaD) is the most severe manifestation of cognitive impairment caused by cerebrovascular disease. There are currently no specific drug treatments approved for VaD, with cholinesterase inhibitors (AChEI) being frequently used in VaD. However, the benefits they provide are small and short-lived. The standardized extract of Ginkgo biloba EGb 761 has demonstrated protective properties against neuronal and vascular damage and has been used as a pharmacological treatment for VaD. OBJECTIVES This study aims to study the efficacy of EGb 761 alone and in combination with AChEI in a real-life setting. We carried out a retrospective analysis of data over a 12-month period in a sample of people suffering from VaD. METHODS We retrospectively identified 77 patients with a diagnosis of VaD who had received treatment with any of the following drugs: Ginkgo biloba extract EGb 761 (240 mg daily), donepezil (10 mg daily), galantamine (16 or 24 mg daily), or rivastigmine patch (9.5 or 13.3 mg daily). Subjects were divided into three groups according to the treatment they had received: EGb 761 alone (n = 25), AChEI alone (n = 26), and EGb 761+AChEI (n = 26). Cognitive functioning was assessed by Mini-Mental State Examination (MMSE), Rey Auditory Verbal Learning Test (RAVLT), Symbol Digit Modalities Test (SDMT), Boston Naming Test (BNT), Trail Making Test forms A (TMTA) and B (TMTB), Letter (LFT) and Category Fluency Test (CFT); neuropsychiatric symptoms were assessed by the Neuropsychiatric Inventory (NPI); functional capacity was assessed by Interview for Deterioration in Daily Living (IDDD). RESULTS A statistically significant improvement was observed in the EGb 761 group versus the AChEI group at 12 months' follow-up in CFT (+1.74, p < 0.001), TMTA (-17.91, p = 0.031) and NPI (-5.89, p < 0.001). With regard to the combined treatment, a statistically significant improvement was shown in the EGb 761 plus AChEI treatment group versus AChEI group at the 12-month follow-up in MMSE (+2.0, p = 0.001), RAVLT (+2.23, p = 0.007), CFT (+1.15, p = 0.013), TMTA (-19.92, p = 0.012), TMTB (-46.50, p < 0.001) and NPI (-6.77, p < 0.001). In the same line, a statistically significant improvement was observed in the EGb 761 plus AChEI treatment group versus EGb 761 at 12-month follow-up regarding MMSE (+2.11, p = 0.001), RAVLT (+2.35, p = 0.004) and TMTB (-25.25, p = 0.015). CONCLUSION After 12 months of treatment EGb 761 alone or combined with AChEI showed cognitive and behavioral benefits in patients suffering from VaD. This study thus provides additional real-world evidence for the combined use of EGb 761 and anti-dementia drugs in VaD patients.
Collapse
Affiliation(s)
- José María García-Alberca
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), C/ Álamos, 17, 29102 Málaga, Spain
| | - Silvia Mendoza
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), C/ Álamos, 17, 29102 Málaga, Spain
| | - Esther Gris
- Alzheimer Research Center and Memory Clinic, Instituto Andaluz de Neurociencia (IANEC), C/ Álamos, 17, 29102 Málaga, Spain
| |
Collapse
|
7
|
Villegas C, Perez R, Petiz LL, Glaser T, Ulrich H, Paz C. Ginkgolides and Huperzine A for complementary treatment of Alzheimer's disease. IUBMB Life 2022; 74:763-779. [PMID: 35384262 DOI: 10.1002/iub.2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by gradual deterioration of cognitive function, memory, and inability to perform daily, social, or occupational activities. Its etiology is associated with the accumulation of β-amyloid peptides, phosphorylated tau protein, and neuroinflammatory and oxidative processes in the brain. Currently, there is no successful pharmacological treatment for AD. The few approved drugs are mainly aimed at treating the symptoms; however, due to the increasing discovery of etiopathological factors, there are great efforts to find new multifunctional molecules to slow down the course of this neurodegenerative disease. The commercial Ginkgo biloba formulation EGb 761® and Huperzine A, an alkaloid present in the plant Huperzia serrata, have shown in clinical trials to possess cholinergic and neuroprotective activities, including improvement in cognition, activities of daily living, and neuropsychiatric symptoms in AD patients. The purpose of this review is to expose the positive results of intervention with EGb 761® and Huperzine in patients with mild to moderate AD in the last 10 years, highlighting the pharmacological functions that justify their use in AD therapy.
Collapse
Affiliation(s)
- Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco, Chile
| | - Rebeca Perez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco, Chile
| | - Lyvia Lintzmaier Petiz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Talita Glaser
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
8
|
Moch Rizal D, Septiyorini N. Molecular Action of Herbal Medicine in Physiology of Erection and its Dysfunction. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224902002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Erection is a physiological process that involves vascular, hormonal, and nervous factors. Erectile dysfunction is one of the male sexual problems that occur globally and is reported to affect men's quality of life. Herbal plants have been widely used for disease treatment, including the problem of erectile dysfunction. This paper aims to review the molecular potential of various plants in the physiology of erection and to treat erectile dysfunction. The literature search was carried out through the Pubmed and Google Scholar databases regarding the molecular mechanisms of herbal plants and their potential involvement in the physiology of erection and overcoming erectile dysfunction. This paper focuses on six herbal plants: Panax ginseng, Ginkgo biloba, Epimedium, Black pepper, Tribulus terrestris, and Eurycoma longifolia. The six herbal plants have involvement in the erection process and have molecular potential in the treatment of erectile problems
Collapse
|
9
|
Wang X, Cui L, Ji X. Cognitive impairment caused by hypoxia: from clinical evidences to molecular mechanisms. Metab Brain Dis 2022; 37:51-66. [PMID: 34618295 DOI: 10.1007/s11011-021-00796-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022]
Abstract
Hypoxia is a state of reduced oxygen supply and excessive oxygen consumption. According to the duration of hypoxic period, it can be classified as acute and chronic hypoxia. Both acute and chronic hypoxia could induce abundant neurological deficits. Although there have been significant advances in the pathophysiological injuries, few studies have focused on the cognitive dysfunction. In this review, we focused on the clinical evidences and molecular mechanisms of cognitive impairment under acute and chronic hypoxia. Hypoxia can impair several cognitive domains such as attention, learning and memory, procession speed and executive function, which are similar in acute and chronic hypoxia. The severity of cognitive deficit correlates with the duration and degree of hypoxia. Recovery can be achieved after acute hypoxia, while sequelae or even dementia can be observed after chronic hypoxia, perhaps due to the different molecular mechanisms. Cardiopulmonary compensatory response, glycolysis, oxidative stress, calcium overload, adenosine, mitochondrial disruption, inflammation and excitotoxicity contribute to the molecular mechanisms of cognitive deficit after acute hypoxia. During the chronic stage of hypoxia, different adaptive responses, impaired neurovascular coupling, apoptosis, transcription factors-mediated inflammation, as well as Aβ accumulation and tau phosphorylation account for the neurocognitive deficit. Moreover, brain structural changes with hippocampus and cortex atrophy, ventricle enlargement, senile plaque and neurofibrillary tangle deposition can be observed under chronic hypoxia rather than acute hypoxia.
Collapse
Affiliation(s)
- Xiaoyin Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Lili Cui
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, No 45, Changchun Street, Beijing, 100053, Xicheng District, China.
| |
Collapse
|
10
|
Kushwah N, Jain V, Kadam M, Kumar R, Dheer A, Prasad D, Kumar B, Khan N. Ginkgo biloba L. Prevents Hypobaric Hypoxia-Induced Spatial Memory Deficit Through Small Conductance Calcium-Activated Potassium Channel Inhibition: The Role of ERK/CaMKII/CREB Signaling. Front Pharmacol 2021; 12:669701. [PMID: 34326768 PMCID: PMC8313424 DOI: 10.3389/fphar.2021.669701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
Hypobaric hypoxia (HH) is a stressful condition, which is more common at high altitudes and can impair cognitive functions. Ginkgo biloba L. leaf extract (GBE) is widely used as herbal medicine against different disorders. Its ability to improve cognitive functions, reduce oxidative stress, and promote cell survival makes it a putative therapeutic candidate against HH. The present study has been designed to explore the effect of GBE on HH-induced neurodegeneration and memory impairment as well as possible signaling mechanisms involved. 220–250 gm (approximately 6- to 8-week-old) Sprague Dawley rats were randomly divided into different groups. GBE was orally administered to respective groups at a dose of 100 mg/kg/day throughout the HH exposure, i.e., 14 days. Memory testing was performed followed by hippocampus isolation for further processing of different molecular and morphological parameters related to cognition. The results indicated that GBE ameliorates HH-induced memory impairment and oxidative damage and reduces apoptosis. Moreover, GBE modulates the activity of the small conductance calcium-activated potassium channels, which further reduces glutamate excitotoxicity and apoptosis. The exploration of the downstream signaling pathway demonstrated that GBE administration prevents HH-induced small conductance calcium-activated potassium channel activation, and that initiates pro-survival machinery by activating extracellular signal–regulated kinase (ERK)/calmodulin-dependent protein kinase II (CaMKII) and the cAMP response element–binding protein (CREB) signaling pathway. In summary, the current study demonstrates the beneficial effect of GBE on conditions like HH and provides various therapeutic targets involved in the mechanism of action of GBE-mediated neuroprotection.
Collapse
Affiliation(s)
- Neetu Kushwah
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Vishal Jain
- Department of Neurophysiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Manisha Kadam
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Rahul Kumar
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Aastha Dheer
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Dipti Prasad
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Bhuvnesh Kumar
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India.,Department of Neurophysiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Nilofar Khan
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| |
Collapse
|
11
|
Marazziti D, Avella MT, Ivaldi T, Palermo S, Massa L, Vecchia AD, Basile L, Mucci F. Neuroenhancement: State of the Art and Future Perspectives. CLINICAL NEUROPSYCHIATRY 2021; 18:137-169. [PMID: 34909030 PMCID: PMC8629054 DOI: 10.36131/cnfioritieditore20210303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pharmacological neuroenhancement refers to the non-medical use of prescription drugs, alcohol, illegal drugs, or the so-called soft enhancers for the purpose of improving cognition, mood, pro-social behavior, or work and academic performance. This phenomenon is undoubtedly more frequent than previously supposed especially amongst university students. The aim of the present paper was to carefully review and comment on the available literature on neuroenhancement, according to Prisma guidelines. The results showed a great use of all prescribed drugs (benzodiazepines, antidepressants, antipsychotics, nootropic compounds, and especially stimulants) as neuroenhancers amongst healthy subjects, although probably the real prevalence is underestimated. The use of illicit drugs and soft enhancers is similarly quite common. Data on the improvement of cognition by other compounds, such as oxytocin and pheromones, or non-pharmacological techniques, specifically deep brain stimulation and transcranial magnetic stimulation, are still limited. In any case, if it is true that human beings are embedded by the desire to overcome the limits of their intrinsic nature, neuroenhancement practices put into question the concept of authenticity. Therefore, the problem appears quite complex and requires to be deepened and analyzed with no prejudice, although within an ethical conceptual frame.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
- Unicamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Maria Teresa Avella
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Tea Ivaldi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Lucia Massa
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Alessandra Della Vecchia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Lucia Basile
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Federico Mucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| |
Collapse
|
12
|
Wang J, Chen X, Bai W, Wang Z, Xiao W, Zhu J. Study on Mechanism of Ginkgo biloba L. Leaves for the Treatment of Neurodegenerative Diseases Based on Network Pharmacology. Neurochem Res 2021; 46:1881-1894. [PMID: 33988813 DOI: 10.1007/s11064-021-03315-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 01/20/2023]
Abstract
Ginkgo biloba L. leaves (GBLs), as widely used plant extract sources, significantly improve cognitive, learning and memory function in patients with dementia. However, few studies have been conducted on the specific mechanism of Neurodegenerative diseases (NDs). In this study, network pharmacology was employed to elucidate potential mechanism of GBLs in the treatment of NDs. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to obtain the chemical components in accordance with the screening principles of oral availability and drug-like property. Potential targets of GBLs were integrated with disease targets, and intersection targets were exactly the potential action targets of GBLs for treating NDs; these key targets were enriched and analyzed by the protein protein interaction (PPI) analysis and molecular docking verification. Key genes were ultimately used to find the biological pathway and explain the therapeutic mechanism by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Twenty-seven active components of GBLs may affect biological processes such as oxidative reactions and activate transcription factor activities. These components may also affect 120 metabolic pathways, such as the PI3K/AKT pathway, by regulating 147 targets, including AKT1, ALB, HSP90AA1, PTGS2, MMP9, EGFR and APP. By using the software iGEMDOCK, the main target proteins were found to bind well to the main active components of GBLs. GBLs have the characteristics of multi-component and multi-target synergistic effect on the treatment of NDs, which preliminarily predicted its possible molecular mechanism of action, and provided the basis for the follow-up study.
Collapse
Affiliation(s)
- Jing Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, Liaoning, People's Republic of China.,Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, 116034, Liaoning, People's Republic of China.,Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222000, Jiangsu, People's Republic of China.,State Key Laboratory of Pharmaceutical New-tech for Chinese Medicine, Lianyungang, 222000, Jiangsu, People's Republic of China
| | - Xialin Chen
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222000, Jiangsu, People's Republic of China.,State Key Laboratory of Pharmaceutical New-tech for Chinese Medicine, Lianyungang, 222000, Jiangsu, People's Republic of China
| | - Weirong Bai
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222000, Jiangsu, People's Republic of China.,State Key Laboratory of Pharmaceutical New-tech for Chinese Medicine, Lianyungang, 222000, Jiangsu, People's Republic of China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222000, Jiangsu, People's Republic of China.,State Key Laboratory of Pharmaceutical New-tech for Chinese Medicine, Lianyungang, 222000, Jiangsu, People's Republic of China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222000, Jiangsu, People's Republic of China. .,State Key Laboratory of Pharmaceutical New-tech for Chinese Medicine, Lianyungang, 222000, Jiangsu, People's Republic of China.
| | - Jingbo Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, Liaoning, People's Republic of China. .,Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, 116034, Liaoning, People's Republic of China.
| |
Collapse
|
13
|
Ding X, Zhang A, Li C, Ma L, Tang S, Wang Q, Yang G, Li J. The role of H3K9me2-regulated base excision repair genes in the repair of DNA damage induced by arsenic in HaCaT cells and the effects of Ginkgo biloba extract intervention. ENVIRONMENTAL TOXICOLOGY 2021; 36:850-860. [PMID: 33378118 DOI: 10.1002/tox.23088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Arsenic is an established human carcinogen that can induce DNA damage; however, the precise mechanism remains unknown. Histone modification is of great significance in chemical toxicity and carcinogenesis. To investigate the role of histone H3K9me2 in arsenic-induced DNA damage, HaCaT cells were exposed to sodium arsenite in this study, and the results showed that the enrichment level of H3K9me2 at the N-methylated purine-DNA-glycosylase (MPG), X-ray repair cross-complementary gene 1 (XRCC1), and polyadenylate diphosphate ribose polymerase-1 (PARP1) promoter regions of base-excision repair (BER) genes was increased, which inhibited the expression of these BER genes, thereby inhibiting the repair of DNA damage and aggravating the DNA damage. Furthermore, the molecular mechanism by which H3K9me2 participates in the BER repair of arsenic-induced DNA damage was verified based on functional loss and gain experiments. In addition, Ginkgo biloba extract can upregulate the expression of MPG, XRCC1, and PARP1 and ameliorate cell DNA damage by reducing the enrichment of H3K9me2 at repair gene promoter regions.
Collapse
Affiliation(s)
- Xuejiao Ding
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
- The First Affiliated Hospital of Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Anliu Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
- Guiyang Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Changzhe Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Lu Ma
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Shunfang Tang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Qi Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Guanghong Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jun Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
14
|
A preclinical randomized controlled study of ischemia treated with Ginkgo biloba extracts: Are complex components beneficial for treating acute stroke? Curr Res Transl Med 2020; 68:197-203. [PMID: 32814684 DOI: 10.1016/j.retram.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/02/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
The rigorous design of preclinical experimental studies of candidate neuroprotectants for the treatment of acute ischemic stroke is crucial for the success of subsequent randomized clinical trials. The efficacy of Ginkgo biloba extracts (GBEs) in complex mixtures for the treatment of acute ischemic stroke remains unclear. In this preclinical randomized controlled trail (pRCT), the effects of a novel (n)GBE containing pinitol versus traditional (t)GBE without pinitol were evaluated on the mouse models of acute transient and permanent stroke, separately. The sample size, an important aspect of study design, was calculated based on our experimental data. Mice with ischemia that were induced by transient middle cerebral artery occlusion (tMCAO) or permanent distal middle cerebral artery occlusion (pdMCAO), were treated with vehicle, nGBE, tGBE, or pinitol alone by tail-vein injection. Our results showed that nGBE significantly reduced infarct size in mice with tMCAO compared with vehicle-treated control mice. Both nGBE and tGBE significantly reduced infarct size in mice with pdMCAO compared with the vehicle-treated controls. None of the three treatments rescued weight loss or prevented the neurological deficits in either the tMCAO- or pdMCAO-model mice. These findings suggest that nGBE, which includes all of the components of tGBE and pinitol, is neuroprotective in two ischemic stroke models. Additional studies of complex GBE mixtures for stroke treatment compared to single component medications are undergoing evaluation.
Collapse
|
15
|
Chong PZ, Ng HY, Tai JT, Lee SWH. Efficacy and Safety of Ginkgo biloba in Patients with Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:513-534. [PMID: 32349519 DOI: 10.1142/s0192415x20500263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ginkgo biloba and its extract have been suggested to have a neuroprotective role in patients with acute ischemic stroke. We aimed to examine the efficacy and safety of Ginkgo biloba use in patients with acute ischemic stroke. We searched seven databases for randomized controlled studies examining the use of Ginkgo biloba in patients with acute ischemic stroke. Relevant studies were retrieved, screened, and data were extracted independently by two reviewers. Random effects meta-analyses were performed to evaluate the efficacy and safety outcomes of Ginkgo biloba. We subsequently assessed the certainty of evidence using the GRADE (Grading of Recommendation Assessment, Development and Evaluation) methodology. We found 12 randomized controlled studies enrolling 1466 patients. Pooled results suggest that Ginkgo biloba use was associated with an improvement in neurological function among individuals with AIS with a reduction of 2.87 points on the National Institute of Health Stroke Scale score (95% CI: -4.01--1.74, p<0.001). Ginkgo biloba use was also associated with an improvement in activities of daily living and functional outcome (Mean Difference: 9.52; 4.66-14.33, p<0.001). Subgroup analysis suggest that the impact was larger when using an injectable formulation of Ginkgo biloba compared to the oral formulation. There was no apparent impact of Ginkgo biloba use on all-cause mortality (Risk ratio (RR): 1.21; 0.29-5.09, p=0.80) or cerebrovascular bleeding (RR: 0.82; 0.43-1.57, p=0.55). There was limited evidence on to support the use of gingko biloba in terms of improving quality of life and other stroke events. As such, more studies are needed before it can be recommended for routine use in improving neurological and cognitive function in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Phui Zee Chong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Selangor, Malaysia
| | - Huey Ying Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Selangor, Malaysia
| | - Jing Tong Tai
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Selangor, Malaysia
| | - Shaun Wen Huey Lee
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Selangor, Malaysia.,School of Pharmacy, Taylor's University Lakeside Campus, Jalan Taylor's, 47500 Selangor, Malaysia
| |
Collapse
|
16
|
Oliveira D, Latimer C, Parpot P, Gill CIR, Oliveira R. Antioxidant and antigenotoxic activities of Ginkgo biloba L. leaf extract are retained after in vitro gastrointestinal digestive conditions. Eur J Nutr 2019; 59:465-476. [PMID: 30721412 DOI: 10.1007/s00394-019-01915-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/25/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE The recognized biological properties of Ginkgo biloba extracts potentiate their utilization as an ingredient for functional foods. However, the digestive conditions can affect the chemical composition of the extracts and consequently their biological properties, which can lead to food safety problems. Thus, the impact of in vitro-simulated upper gastrointestinal tract digestion on the chemical composition and bioactivity of Ginkgo biloba leaf extract (GBE) was evaluated. METHODS Physicochemical conditions of human digestion were simulated in vitro, and its impact on the chemical composition of GBE was investigated by electrospray ionization-mass spectrometry. The persistence of bioactivity was investigated by subjecting GBE and the in vitro digested extract (DGBE) to the same methodology. Antioxidant properties were assessed using 2',7'-dichlorofluorescein diacetate to measure the intracellular oxidation of Schizosaccharomyces pombe cells pre-incubated with GBE or DGBE and exposed to H2O2. Antigenotoxicity was tested by comet assay in HT-29 colon cancer cells pre-incubated with GBE or DGBE and challenged with H2O2. RESULTS The chemical analysis revealed a considerable change in chemical composition upon digestion. Pre-incubation with GBE or DGBE attenuated the H2O2-imposed intracellular oxidation in wild-type S. pombe cells, unlike the oxidative stress response-affected mutants sty1 and pap1, and decreased H2O2-induced DNA damage in HT-29 cells. The extracts did not induce toxicity in these eukaryotic models. CONCLUSION The chemical composition of GBE was affected by in vitro digestion, but the antioxidant and antigenotoxic activities persisted. Therefore, G. biloba extract may be suitable for use as food additive and contribute to a healthy colon.
Collapse
Affiliation(s)
- Daniela Oliveira
- Department of Biology, Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Cheryl Latimer
- Nutrition Innovation Centre for Food and Health, Centre for Molecular Biosciences, University of Ulster, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Pier Parpot
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health, Centre for Molecular Biosciences, University of Ulster, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Rui Oliveira
- Department of Biology, Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
17
|
Iwamoto K, Kawamoto H, Takeshita F, Matsumura S, Ayaki I, Moriyama T, Zaima N. Mixing Ginkgo biloba Extract with Sesame Extract and Turmeric Oil Increases Bioavailability of Ginkgolide A in Mice Brain. J Oleo Sci 2019; 68:923-930. [DOI: 10.5650/jos.ess19135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kazuko Iwamoto
- Department of Applied Biological Chemistry, Department of Nutritional and Health Sciences, Faculty of Health Sciences, Osaka Aoyama University
| | | | | | | | - Ikuto Ayaki
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University
- Agricultural Technology and Innovation Research Institute, Kindai University
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University
- Agricultural Technology and Innovation Research Institute, Kindai University
| |
Collapse
|
18
|
Lyu M, Cui Y, Zhao T, Ning Z, Ren J, Jin X, Fan G, Zhu Y. Tnfrsf12a-Mediated Atherosclerosis Signaling and Inflammatory Response as a Common Protection Mechanism of Shuxuening Injection Against Both Myocardial and Cerebral Ischemia-Reperfusion Injuries. Front Pharmacol 2018; 9:312. [PMID: 29681850 PMCID: PMC5897438 DOI: 10.3389/fphar.2018.00312] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Shuxuening injection (SXNI) is a widely prescribed herbal medicine of Ginkgo biloba extract (EGB) for cerebral and cardiovascular diseases in China. However, its curative effects on ischemic stroke and heart diseases and the underlying mechanisms remain unknown. Taking an integrated approach of RNA-seq and network pharmacology analysis, we compared transcriptome profiles of brain and heart ischemia reperfusion injury in C57BL/6J mice to identify common and differential target genes by SXNI. Models for myocardial ischemia reperfusion injury (MIRI) by ligating left anterior descending coronary artery (LAD) for 30 min ischemia and 24 h reperfusion and cerebral ischemia reperfusion injury (CIRI) by middle cerebral artery occlusion (MCAO) for 90 min ischemia and 24 h reperfusion were employed to identify the common mechanisms of SXNI on both cerebral and myocardial ischemia reperfusion. In the CIRI model, ischemic infarct volume was markedly decreased after pre-treatment with SXNI at 0.5, 2.5, and 12.5 mL/kg. In the MIRI model, pre-treatment with SXNI at 2.5 and 12.5 mL/kg improved cardiac function and coronary blood flow and decreased myocardial infarction area. Besides, SXNI at 2.5 mL/kg also markedly reduced the levels of LDH, AST, CK-MB, and CK in serum. RNA-seq analysis identified 329 differentially expressed genes (DEGs) in brain and 94 DEGs in heart after SXNI treatment in CIRI or MIRI models, respectively. Core analysis by Ingenuity Pathway Analysis (IPA) revealed that atherosclerosis signaling and inflammatory response were top-ranked in the target profiles for both CIRI and MIRI after pre-treatment with SXNI. Specifically, Tnfrsf12a was recognized as an important common target, and was regulated by SXNI in CIRI and MIRI. In conclusion, our study showed that SXNI effectively protects brain and heart from I/R injuries via a common Tnfrsf12a-mediated pathway involving atherosclerosis signaling and inflammatory response. It provides a novel knowledge of active ingredients of Ginkgo biloba on cardio-cerebral vascular diseases in future clinical application.
Collapse
Affiliation(s)
- Ming Lyu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ying Cui
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Tiechan Zhao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zhaochen Ning
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jie Ren
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xingpiao Jin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
19
|
Li S, Zhang X, Fang Q, Zhou J, Zhang M, Wang H, Chen Y, Xu B, Wu Y, Qian L, Xu Y. Ginkgo biloba extract improved cognitive and neurological functions of acute ischaemic stroke: a randomised controlled trial. Stroke Vasc Neurol 2017; 2:189-197. [PMID: 29507779 PMCID: PMC5829919 DOI: 10.1136/svn-2017-000104] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 11/04/2022] Open
Abstract
Purpose To evaluate the efficacy and safety of Ginkgo biloba extract (GBE) in acute ischaemic stroke and its impact on the recurrence of vascular events. Methods We conducted a multicentre, prospective, randomised, open label, blinded, controlled clinical trial enrollingpatients with an onset of acute stroke within 7 days from five hospitals in China Jiangsu Province. Participants were assigned to the GBE group (450 mg GBE with 100 mg aspirin daily) or the control group (100 mg aspirin daily) for 6 months. The primary outcome was the decline in the Montreal Cognitive Assessment score at 6 months. Secondary outcomes were other neuropsychological tests of cognitive and neurological function, the the incidence of adverse events and vascular events. Results 348 patients were enrolled: 179 in the GBE group and 169 in the control group. With 18 patients lost to follow-up, the dropout rate was 5.17%. Admission data between two groups were similar, but in the GBE group there was a marked slow down in the decline in the Montreal Cognitive Assessment scores (-2.77±0.21 vs -1.99±0.23, P=0.0116 (30 days); -3.34±0.24 vs -2.48±0.26, P=0.0165 (90 days); -4.00±0.26 vs -2.71±0.26, P=0.0004 (180 days)) compared with controls. The National Institutes of Health Stroke Scale scores at 12 and 30 days, the modified Rankin Scale scores for independent rate at 30, 90 and 180 days, and the Barthel Index scores at 30, 90 and 180 days in the GBE group were significantly improved compared with controls. Improvements were also observedin GBE groups for Mini-Metal State Examination scores of 30, 90 and 180 days, Webster's digit symbol test scores at 30 days and Executive Dysfunction Index scores at 30 and 180 days. No significant differences were seen in the incidence of adverse events or vascular events. Conclusions We conclude that GBE in combination with aspirin treatment alleviated cognitive and neurological deficits after acute ischaemic stroke without increasing the incidence of vascular events. Trial registration number ChiCTR-TRC-12002688.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Nanjing Clinic Medicine Centre for Neurological and Psychiatric Diseases, Nanjing, China
| | - Xinjiang Zhang
- Department of Neurology, Yangzhou No 1 People's Hospital, Yangzhou, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Junshan Zhou
- Department of Neurology, The Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing, China
| | - Meijuan Zhang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Nanjing Clinic Medicine Centre for Neurological and Psychiatric Diseases, Nanjing, China
| | - Hui Wang
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Nanjing Clinic Medicine Centre for Neurological and Psychiatric Diseases, Nanjing, China
| | - Biyun Xu
- Departments of Analysis, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yanfeng Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lai Qian
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Nanjing Clinic Medicine Centre for Neurological and Psychiatric Diseases, Nanjing, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Nanjing Clinic Medicine Centre for Neurological and Psychiatric Diseases, Nanjing, China
| |
Collapse
|
20
|
Zuo W, Yan F, Zhang B, Li J, Mei D. Advances in the Studies of Ginkgo Biloba Leaves Extract on Aging-Related Diseases. Aging Dis 2017; 8:812-826. [PMID: 29344418 PMCID: PMC5758353 DOI: 10.14336/ad.2017.0615] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/15/2017] [Indexed: 12/17/2022] Open
Abstract
The prevalence of degenerative disorders in public health has promoted in-depth investigations of the underlying pathogenesis and the development of new treatment drugs. Ginkgo biloba leaves extract (EGb) is obtained from Ginkgo biloba leaves and has been used for thousands of years. In recent decades, both basic and clinical studies have established the effects of EGb. It is widely used in various degenerative diseases such as cerebrovascular disease, Alzheimer's disease, macroangiopathy and more. Here, we reviewed several pharmacological mechanisms of EGb, including its antioxidant properties, prevention of mitochondrial dysfunctions, and effect on apoptosis. We also described some clinical applications of EGb, such as its effect on neuro and cardiovascular protection, and anticancer properties. The above biological functions of EGb are mainly focused on aging-related disorders, but its effect on other diseases remains unclear. Thus, through this review, we aim to encourage further studies on EGb and discover more potential applications.
Collapse
Affiliation(s)
- Wei Zuo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Feng Yan
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Bo Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiantao Li
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Mei
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Ginkgo biloba extract EGb761 attenuates brain death-induced renal injury by inhibiting pro-inflammatory cytokines and the SAPK and JAK-STAT signalings. Sci Rep 2017; 7:45192. [PMID: 28332628 PMCID: PMC5362910 DOI: 10.1038/srep45192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
This study aimed to investigate the protective effects of EGb761, a Ginkgo Biloba extract, against brain death-induced kidney injury. Sixty male Sprague Dawley rats were randomly divided into six groups: sham, brain-death (BD), BD + EGb b48h (48 hours before BD), BD + EGb 2 h (2 hours after BD), BD + EGb 1 h, and BD + EGb 0.5 h. Six hours after BD, serum sample and kidney tissues were collected for analyses. The levels of blood urea nitrogen (BUN) and serum creatinine significantly elevated in the BD group than in sham group. In all the EGb761-treated BD animals except for the BD + Gb 2 h group, the levels of BUN and serum creatinine significantly reduced (all P < 0.01). EGb761 attenuated tubular injury and lowered the histological score. In addition, the longer duration of drug treatment was, the better protective efficacy could be observed. EGb761 significantly reduced IL-1β, IL-6, TNF-α, MCP-1, IP-10 mRNA expression and macrophage infiltration in the kidney. EGb761 treatment at 48 hour before brain death significantly attenuate the levels of p-JNK-MAPK, p-p38-MAPK, and p-STAT3 proteins (all P < 0.05, compared to BD group). In summary, our data showed that EGb761 treatment protected donor kidney from BD-induced damages by blocking SAPK and JAK-STAT signalings. Early administration of EGb761 can provide better protective efficacy.
Collapse
|
22
|
Demarin V, Bašić Kes V, Trkanjec Z, Budišić M, Bošnjak Pašić M, Črnac P, Budinčević H. Efficacy and safety of Ginkgo biloba standardized extract in the treatment of vascular cognitive impairment: a randomized, double-blind, placebo-controlled clinical trial. Neuropsychiatr Dis Treat 2017; 13:483-490. [PMID: 28243101 PMCID: PMC5317341 DOI: 10.2147/ndt.s120790] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES The aim of this randomized, double-blind, placebo-controlled trial was to determine the efficacy and safety of Ginkgo biloba extract in patients diagnosed with vascular cognitive impairment (VCI). METHODS A total of 90 patients (aged 67.1±8.0 years; 59 women) were randomly allocated (1:1:1) to receive G. biloba 120 mg, G. biloba 60 mg, or placebo during a 6-month period. Assessment was made for efficacy indicators, including neuropsychological tests scores (Sandoz Clinical Assessment Geriatric Scale, Folstein Mini-Mental State Examination, Mattis Dementia Rating Scale, and Clinical Global Impression) and transcranial Doppler ultrasound findings. Safety indicators included laboratory findings, reported adverse reactions, and clinical examination. RESULTS At the end of 6-month study period, G. biloba 120 and 60 mg showed a statistically significant positive effect in comparison with placebo only on the Clinical Global Impression score (2.6±0.8 vs 3.1±0.7 vs 2.8±0.7, respectively; P=0.038). The Clinical Global Impression score showed a significant deterioration from the baseline values in the placebo group (-0.3±0.5; P=0.021) as opposed to G. biloba groups. No significant differences were found in the transcranial Doppler ultrasound findings. Adverse reactions were significantly more common and serious in the placebo group (16 subjects) than in either of the two G. biloba extract groups (eight and nine subjects, respectively), whereas laboratory findings and clinical examinations revealed no differences between the groups receiving G. biloba extract and placebo. CONCLUSION According to our results, G. biloba seemed to slow down the cognitive deterioration in patients with VCI, but the effect was shown in only one of the four neuropsychological tests administered. However, because of this mild effect in combination with a few adverse reactions, we cannot say that it is ineffective or unsafe either. Further studies are still needed to provide unambiguous evidence on the efficacy and safety of G. biloba extract.
Collapse
Affiliation(s)
- Vida Demarin
- Department of Neurology, University Hospital Center “Sestre Milosrdnice”
- International Institute for Brain Health
| | - Vanja Bašić Kes
- Department of Neurology, University Hospital Center “Sestre Milosrdnice”
| | - Zlatko Trkanjec
- Department of Neurology, University Hospital Center “Sestre Milosrdnice”
| | - Mislav Budišić
- Department of Neurology, University Hospital Center “Sestre Milosrdnice”
| | - Marija Bošnjak Pašić
- Department of Neurology, University Hospital Center Zagreb, Zagreb
- Department of Neurology, School of Medicine, University Josip Juraj Strossmayer, Osijek
| | - Petra Črnac
- Department of Neurology, Stroke and Intensive Care Unit, University Hospital “Sveti Duh”, Zagreb, Croatia
| | - Hrvoje Budinčević
- Department of Neurology, School of Medicine, University Josip Juraj Strossmayer, Osijek
- Department of Neurology, Stroke and Intensive Care Unit, University Hospital “Sveti Duh”, Zagreb, Croatia
| |
Collapse
|
23
|
Natural products against Alzheimer's disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2016; 35:178-216. [PMID: 28043897 DOI: 10.1016/j.biotechadv.2016.12.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a severe, chronic and progressive neurodegenerative disease associated with memory and cognition impairment ultimately leading to death. It is the commonest reason of dementia in elderly populations mostly affecting beyond the age of 65. The pathogenesis is indicated by accumulation of the amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) in brain tissues and hyperphosphorylation of tau protein in neurons. The main cause is considered to be the formation of reactive oxygen species (ROS) due to oxidative stress. The current treatment provides only symptomatic relief by offering temporary palliative therapy which declines the rate of cognitive impairment associated with AD. Inhibition of the enzyme acetylcholinesterase (AChE) is considered as one of the major therapeutic strategies offering only symptomatic relief and moderate disease-modifying effect. Other non-cholinergic therapeutic approaches include antioxidant and vitamin therapy, stem cell therapy, hormonal therapy, use of antihypertensive or lipid-lowering medications and selective phosphodiesterase (PDE) inhibitors, inhibition of β-secretase and γ-secretase and Aβ aggregation, inhibition of tau hyperphosphorylation and intracellular NFT, use of nonsteroidal anti-inflammatory drugs (NSAIDs), transition metal chelators, insulin resistance drugs, etanercept, brain-derived neurotrophic factor (BDNF) etc. Medicinal plants have been reported for possible anti-AD activity in a number of preclinical and clinical trials. Ethnobotany, being popular in China and in the Far East and possibly less emphasized in Europe, plays a substantial role in the discovery of anti-AD agents from botanicals. Chinese Material Medica (CMM) involving Chinese medicinal plants has been used traditionally in China in the treatment of AD. Ayurveda has already provided numerous lead compounds in drug discovery and many of these are also undergoing clinical investigations. A number of medicinal plants either in their crude forms or as isolated compounds have exhibited to reduce the pathological features associated with AD. In this present review, an attempt has been made to elucidate the molecular mode of action of various plant extracts, phytochemicals and traditional herbal formulations investigated against AD as reported in various preclinical and clinical tests. Herbal synergism often found in polyherbal formulations were found effective to combat disease heterogeneity as found in complex pathogenesis of AD. Finally a note has been added to describe biotechnological improvement, genetic and genomic resources and mathematical and statistical techniques for empirical model building associated with anti-AD plant secondary metabolites and their source botanicals.
Collapse
|
24
|
Luo J, Zhong Y, Huang S, Li L, Zhang C, Zou X. Ginkgolide B enhances the differentiation of preosteoblastic MC3T3-E1 cells through VEGF: Involvement of the p38 MAPK signaling pathway. Mol Med Rep 2016; 14:4787-4794. [PMID: 27748928 DOI: 10.3892/mmr.2016.5829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/29/2016] [Indexed: 11/06/2022] Open
Abstract
Ginkgolide B (GB) is one of the ginkgolides isolated from the leaves of the Ginkgo biloba tree. Our previous study indicated that GB promotes the proliferation, migration and adhesion of endothelial progenitor cells, and the induction of angiogenesis through vascular endothelial factor (VEGF). In the present study, the effects of GB on the differentiation of MC3T3‑E1 cells and the signaling pathway involved were investigated in vitro. The MC3T3‑E1 cell viability activities were assessed using an MTS assay. Measurements of alkaline phosphatase activity and Alizarin Red staining were used to identify osteoblastic differentiation of the MC3T3‑E1 cells. The mRNA and secretion levels of VEGF were detected using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis and enzyme-linked immunosorbent assays, respectively. The protein expression levels of phosphorylation‑associated markers were detected using western blot analysis and associated gene expression was determined using RT‑qPCR analysis. It was found that GB significantly promoted alkaline phosphatase activity and osteoblastic mineralization in the MC3T3‑E1 cells. In addition, the mRNA expression and secretion levels of VEGF in the MC3T3‑E1 cells were significantly increased in MC3T3‑E1 cells treated with GB. SB203580, a specific inhibitor of p38 mitogen‑activated protein (MAP) kinase, markedly suppressed the GB‑induced p38 kinase phosphorylation and GB‑induced synthesis of VEGF. PD98059, an inhibitor of the upstream kinase, which activates p44/p42 MAP kinase, had minimal effect on the GB‑induced phosphorylation of p44/p42 MAP kinase or the GB‑induced synthesis of VEGF. Taken together, these results indicated that GB promoted osteoblastic differentiation of the MC3T3‑E1 cells through VEGF, and that the p38, but not the p44/p42 MAP kinase signaling pathway, was involved in the GB‑induced synthesis of VEGF.
Collapse
Affiliation(s)
- Jiaquan Luo
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yu Zhong
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Sheng Huang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Liangping Li
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chi Zhang
- Department of Pharmacology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
25
|
Protective effect of resveratrol against chronic intermittent hypoxia-induced spatial memory deficits, hippocampal oxidative DNA damage and increased p47Phox NADPH oxidase expression in young rats. Behav Brain Res 2016; 305:65-75. [DOI: 10.1016/j.bbr.2016.02.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 12/26/2022]
|
26
|
Navarrete-Opazo A, Alcayaga J, Testa D, Quinteros AL. Intermittent Hypoxia Does not Elicit Memory Impairment in Spinal Cord Injury Patients. Arch Clin Neuropsychol 2016; 31:332-42. [PMID: 27084733 DOI: 10.1093/arclin/acw012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2016] [Indexed: 12/14/2022] Open
Abstract
There is a critical need for new therapeutic strategies to restore motor function in patients with spinal cord injuries (SCIs), without unwanted effects. Intermittent hypoxia (IH) induces plasticity in spared synaptic pathways to motor neurons below the level of injury, which can be harnessed to elicit motor recovery in incomplete SCI patients. However, there is conflicting evidence regarding the effects of IH on memory function. The aim of this study was to assess episodic verbal and visual memory function with the Complutense verbal learning test (TAVEC) and the Rey-Osterrieth Complex Figure Test (ROCF), respectively, before and after a 4-week protocol of repetitive IH combined with body weight-supported treadmill training (BWSTT) in incomplete ASIA C and D SCI subjects. Subjects received either IH (cycling 9%/21% FiO2 every 1.5 min, 15 cycles per day) or continued normoxia (Nx, 21% FiO2) combined with 45 min of BWSTT for 5 consecutive days, followed by 3 times per week IH and BWSTT for 3 additional weeks. ROCF Z scores between IH plus BWSTT and Nx plus BWSTT were not significantly different (p = .43). Compared with baseline, IH and BWSTT group showed a significantly greater (p < .05) verbal memory performance for immediate, short-term, and long-term recall; however, it was not different from Nx plus BWSTT group in all verbal memory components (p > .05). Our results suggest that a 4-week protocol of moderate IH does not elicit visual or verbal memory impairment. Thus, repetitive IH may be a safe therapeutic approach to incomplete spinal cord injury patients, without deleterious cognitive effects.
Collapse
Affiliation(s)
| | - Julio Alcayaga
- Biology Department, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
27
|
Lam CS, Tipoe GL, So KF, Fung ML. Neuroprotective mechanism of Lycium barbarum polysaccharides against hippocampal-dependent spatial memory deficits in a rat model of obstructive sleep apnea. PLoS One 2015; 10:e0117990. [PMID: 25714473 PMCID: PMC4340928 DOI: 10.1371/journal.pone.0117990] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 01/03/2015] [Indexed: 01/01/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) is a hallmark of obstructive sleep apnea (OSA), which induces hippocampal injuries mediated by oxidative stress. This study aims to examine the neuroprotective mechanism of Lycium barbarum polysaccharides (LBP) against CIH-induced spatial memory deficits. Adult Sprague–Dawley rats were exposed to hypoxic treatment resembling a severe OSA condition for a week. The animals were orally fed with LBP solution (1mg/kg) daily 2 hours prior to hypoxia or in air for the control. The effect of LBP on the spatial memory and levels of oxidative stress, inflammation, endoplasmic reticulum (ER) stress, apoptosis and neurogenesis in the hippocampus was examined. There was a significant deficit in the spatial memory and an elevated level of malondialdehyde with a decreased expression of antioxidant enzymes (SOD, GPx-1) in the hypoxic group when compared with the normoxic control. In addition, redox-sensitive nuclear factor kappa B (NFКB) canonical pathway was activated with a translocation of NFКB members (p65, p50) and increased expression levels of NFКB-dependent inflammatory cytokines and mediator (TNFα, IL-1β, COX-2); also, a significantly elevated level of ER stress (GRP78/Bip, PERK, CHOP) and autophagic flux in the hypoxic group, leading to neuronal apoptosis in hippocampal subfields (DG, CA1, CA3). Remarkably, LBP administration normalized the elevated level of oxidative stress, neuroinflammation, ER stress, autophagic flux and apoptosis induced by hypoxia. Moreover, LBP significantly mitigated both the caspase-dependent intrinsic (Bax, Bcl2, cytochrome C, cleaved caspase-3) and extrinsic (FADD, cleaved caspase-8, Bid) signaling apoptotic cascades. Furthermore, LBP administration prevented the spatial memory deficit and enhanced the hippocampal neurogenesis induced by hypoxia. Our results suggest that LBP is neuroprotective against CIH-induced hippocampal-dependent spatial memory deficits by promoting hippocampal neurogenesis and negatively modulating the apoptotic signaling cascades activated by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Chun-Sing Lam
- Department of Physiology, University of Hong Kong, Hong Kong, PR China
| | - George Lim Tipoe
- Department of Anatomy, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Kwok-Fai So
- Department of Anatomy, University of Hong Kong, Hong Kong, PR China
- Department of Ophthalmology, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China
- Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Man-Lung Fung
- Department of Physiology, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
- * E-mail:
| |
Collapse
|
28
|
Abstract
Geriatrics is a medical practice that addresses the complex needs of older patients and emphasizes maintaining functional independence even in the presence of chronic disease. Treatment of geriatric patients requires a different strategy and is very complex. Geriatric medicines aim to promote health by preventing and treating diseases and disabilities in older adults. Development of effective dietary interventions for promoting healthy aging is an active but challenging area of research because aging is associated with an increased risk of chronic disease, disability, and death. Aging populations are a global phenomenon. The most widespread conditions affecting older people are hypertension, congestive heart failure, dementia, osteoporosis, breathing problems, cataract, and diabetes to name a few. Decreased immunity is also partially responsible for the increased morbidity and mortality resulting from infectious agents in the elderly. Nutritional status is one of the chief variables that explains differences in both the incidence and pathology of infection. Elderly people are at increased risk for micronutrient deficiencies due to a variety of factors including social, physical, economic, and emotional obstacles to eating. Thus there is an urgent need to shift priorities to increase our attention on ways to prevent chronic illnesses associated with aging. Individually, people must put increased efforts into establishing healthy lifestyle practices, including consuming a more healthful diet. The present review thus focuses on the phytochemicals of nutraceutical importance for the geriatric population.
Collapse
Affiliation(s)
- Charu Gupta
- Amity Institute for Herbal Research & Studies, Amity University UP, Noida, India
| | | |
Collapse
|
29
|
Sun G, Li L, Li Y, Song A. Study on the digitized and quantified evaluating method for super information characteristics of herbal preparation by infrared spectrum fingerprints. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:98. [PMID: 25405152 DOI: 10.3978/j.issn.2305-5839.2014.09.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 09/01/2014] [Indexed: 11/14/2022]
Abstract
This paper aims to establish the infrared spectrum fingerprint (IRFP) in the absorbing region of 4,000-400 cm(-1) and its first derivative infrared spectrum fingerprints (d-IRFP) of ginkgo tablet (GT). And set up theories of the digitized and quantified evaluating method for super information characteristics by IRFPs of traditional Chinese medicine (TCM) which consists of the IRFP index, information index, fluctuation index, information fluctuation index and the quantified infrared fingerprint method (QIFM). Direct tabletting method was applied during the data collection of the IRFPs of 14 batches of GTs by Fourier transform infrared spectrometer. In terms of the digitized features, QIFM and similarity analysis of d-IRFP, sample S4 and S7 were evaluated as suspected outliers while the qualities of S1, S2, S6 and S12 were less well and the rests were relatively good. The assessing approach makes the expression and processing of superposed information in IRFP of TCM digitized simple and effective. What's more, an approach which can test total chemical contents in the complex system of TCM rapidly, simply and accurately was achieved by the application of QIFM based on IR technique. Finally, the quantitative and digitized infrared fingerprinting method was established as a novel approach to evaluate the quality of TCM.
Collapse
Affiliation(s)
- Guoxiang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lifeng Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanfei Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aihua Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
30
|
Sun G, Li L, Liu Z, Li Y. Study on the digitized and quantified evaluating method for the super information cluster of traditional Chinese medicine ultraviolet spectral fingerprints. ANNALS OF TRANSLATIONAL MEDICINE 2014; 1:30. [PMID: 25332974 DOI: 10.3978/j.issn.2305-5839.2013.07.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/15/2013] [Indexed: 11/14/2022]
Abstract
The theories of ultraviolet spectral fingerprint (UVFP) index, information index, fluctuation index, information fluctuation index combined with the quantified UV fingerprint method (QUFM) had been established and put into practice in the Ginkgo Tablets (GT) quality evaluation. The flowing injection analysis (FIA) coupled with a diode array detector was applied as a novel method to obtain the UVFP in the region of 190-400 nm at which the absorption can reflect all the information of the chemical constituents contained π→π*, n→π* and n→σ* transition. The result showed that all batches were qualified (Grade ≤3) except S8 for its too high contents. It was proved that this method made the expression of superposed information in UVFP of traditional Chinese medicine (TCM) digitized and simple. What's more, an approach which can test the total chemical content with the chromophoric characteristics in the complex system of TCM rapidly, simply and accurately was achieved by the application of QUFM. In one word, it made the exploration of the general characteristic information of the molecular absorption complex TCM in the ultraviolet regions feasible and possible.
Collapse
Affiliation(s)
- Guoxiang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Lifeng Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Zhongbo Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yanfei Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
31
|
Treatment of Vertigo: A Randomized, Double-Blind Trial Comparing Efficacy and Safety of Ginkgo biloba Extract EGb 761 and Betahistine. Int J Otolaryngol 2014; 2014:682439. [PMID: 25057270 PMCID: PMC4099171 DOI: 10.1155/2014/682439] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/30/2014] [Indexed: 12/19/2022] Open
Abstract
A multicenter clinical trial was performed to compare the efficacy and safety of Ginkgo biloba extract EGb 761 and betahistine at recommended doses in patients with vertigo. One hundred and sixty patients (mean age 58 years) were randomly assigned to double-blind treatment with EGb 761 (240 mg per day) or betahistine (32 mg per day) for 12 weeks. An 11-point numeric analogue scale, the Vertigo Symptom Scale—short form, the Clinical Global Impression Scales and the Sheehan Disability Scale were used as outcome measures. Both treatment groups were comparable at baseline and improved in all outcome measures during the course of treatment. There was no significant intergroup difference with regard to changes in any outcome measure. Numerically, improvements of patients receiving EGb 761 were slightly more pronounced on all scales. Clinical global impression was rated “very much improved” or “much improved” in 79% of patients treated with EGb 761 and in 70% receiving betahistine. With 27 adverse events in 19 patients, EGb 761 showed better tolerability than betahistine with 39 adverse events in 31 patients. In conclusion, the two drugs were similarly effective in the treatment of vertigo, but EGb 761 was better tolerated. This trial is registered with controlled-trials.com ISRCTN02262139.
Collapse
|
32
|
Long-term moderate dose exogenous erythropoietin treatment protects from intermittent hypoxia-induced spatial learning deficits and hippocampal oxidative stress in young rats. Neurochem Res 2013; 39:161-71. [PMID: 24248862 DOI: 10.1007/s11064-013-1201-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/07/2013] [Accepted: 11/13/2013] [Indexed: 01/09/2023]
Abstract
Exposure to intermittent hypoxia (IH) is associated with cognitive impairments and oxidative stress in brain regions involved in learning and memory. In earlier studies, erythropoietin (EPO) showed a neuroprotective effect in large doses. The aim of the present study was to explore the effect of smaller doses of EPO, such as those used in the treatment of anemia, on IH-induced cognitive deficits and hippocampal oxidative stress in young rats. The effect of concurrent EPO treatment (500 and 1,000 IU/kg/day ip) on spatial learning and memory deficits induced by long-term exposure to IH for 6 weeks was tested using the Morris water maze (MWM) test and the elevated plus maze (EPM) test. Moreover, the effect on hippocampal glutamate and oxidative stress were assessed. Exposure to IH induced a significant impairment of spatial learning and cognition of animals in both MWM and EPM performance parameters. Moreover, hippocampal glutamate and thiobarbituric acid reactive substances (TBARS) increased while antioxidant defenses (GSH and GSH-Px) decreased. EPO in the tested doses significantly reduced the IH-induced spatial learning deficits in both MWM and EPM tests and dose-dependently antagonized the effects of IH on hippocampal glutamate, TBARS, GSH levels, and GSH-Px activity. Treatment with EPO in moderate doses that used for anemia, concurrently with IH exposure can antagonize IH-induced spatial learning deficits and protect hippocampal neurons from IH-induced lipid peroxidation and oxidative stress-induced damage in young rats, possibly through multiple mechanisms involving a potential antioxidative effect.
Collapse
|
33
|
Guha S, Cao M, Kane RM, Savino AM, Zou S, Dong Y. The longevity effect of cranberry extract in Caenorhabditis elegans is modulated by daf-16 and osr-1. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1559-74. [PMID: 22864793 PMCID: PMC3776105 DOI: 10.1007/s11357-012-9459-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/11/2012] [Indexed: 05/22/2023]
Abstract
Nutraceuticals are known to have numerous health and disease preventing properties. Recent studies suggest that extracts containing cranberry may have anti-aging benefits. However, little is known about whether and how cranberry by itself promotes longevity and healthspan in any organism. Here we examined the effect of a cranberry only extract on lifespan and healthspan in Caenorhabditis elegans. Supplementation of the diet with cranberry extract (CBE) increased the lifespan in C. elegans in a concentration-dependent manner. Cranberry also increased tolerance of C. elegans to heat shock, but not to oxidative stress or ultraviolet irradiation. In addition, we tested the effect of cranberry on brood size and motility and found that cranberry did not influence these behaviors. Our mechanistic studies indicated that lifespan extension induced by CBE requires the insulin/IGF signaling pathway and DAF-16. We also found that cranberry promotes longevity through osmotic stress resistant-1 (OSR-1) and one of its downstream effectors, UNC-43, but not through SEK-1, a component of the p38 MAP kinase pathway. However, SIR-2.1 and JNK signaling pathways are not required for cranberry to promote longevity. Our findings suggest that cranberry supplementation confers increased longevity and stress resistance in C. elegans through pathways modulated by daf-16 and osr-1. This study reveals the anti-aging property of widely consumed cranberry and elucidates the underpinning mechanisms.
Collapse
Affiliation(s)
- Sujay Guha
- />Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
| | - Min Cao
- />Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
- />Institute for Engaged Aging, Clemson University, Clemson, SC 29634 USA
| | - Ryan M. Kane
- />Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
| | - Anthony M. Savino
- />Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
| | - Sige Zou
- />Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, MD 21224 USA
| | - Yuqing Dong
- />Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
- />Institute for Engaged Aging, Clemson University, Clemson, SC 29634 USA
- />Clemson University, 132 Long Hall, Clemson, SC 29634 USA
| |
Collapse
|
34
|
Nutraceutical interventions for promoting healthy aging in invertebrate models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:718491. [PMID: 22991584 PMCID: PMC3444043 DOI: 10.1155/2012/718491] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 01/11/2023]
Abstract
Aging is a complex and inevitable biological process that is associated with numerous chronically debilitating health effects. Development of effective interventions for promoting healthy aging is an active but challenging area of research. Mechanistic studies in various model organisms, noticeably two invertebrates, Caenorhabditis elegans and Drosophila melanogaster, have identified many genes and pathways as well as dietary interventions that modulate lifespan and healthspan. These studies have shed light on some of the mechanisms involved in aging processes and provide valuable guidance for developing efficacious aging interventions. Nutraceuticals made from various plants contain a significant amount of phytochemicals with diverse biological activities. Phytochemicals can modulate many signaling pathways that exert numerous health benefits, such as reducing cancer incidence and inflammation, and promoting healthy aging. In this paper, we outline the current progress in aging intervention studies using nutraceuticals from an evolutionary perspective in invertebrate models.
Collapse
|
35
|
Miano S, Parisi P, Villa MP. The sleep phenotypes of attention deficit hyperactivity disorder: the role of arousal during sleep and implications for treatment. Med Hypotheses 2012; 79:147-53. [PMID: 22608760 DOI: 10.1016/j.mehy.2012.04.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/22/2012] [Accepted: 04/16/2012] [Indexed: 01/01/2023]
Abstract
About 25-50% of children and adolescents with attention-deficit hyperactivity disorder (ADHD) experience sleep problems. An appropriate assessment and treatment of such problems might improve the quality of life in such patients and reduce both the severity of ADHD and the impairment it causes. According to data in the literature and to the overall complexity of the interaction between ADHD and sleep, five sleep phenotypes may be identified in ADHD: (i) a sleep phenotype characterized mainly by a hypo-arousal state, resembling narcolepsy, which may be considered a "primary" form of ADHD (i.e. without the interference of other sleep disorders); (ii) a phenotype associated with delayed sleep onset latency and with a higher risk of bipolar disorder; (iii) a phenotype associated with sleep disordered breathing (SDB); (iv) another phenotype related to restless legs syndrome (RLS) and/or periodic limb movements; (v) lastly, a phenotype related to epilepsy/or EEG interictal discharges. Each sleep phenotype is characterized by peculiar sleep alterations expressed by either an increased or decreased level of arousal during sleep that have important treatment implications. Treatment with stimulants is recommended above all in the primary form of ADHD, whereas treatment of the main sleep disorders or of co-morbidities (i.e. bipolar disorders and epilepsy) is preferred in the other sleep phenotypes. All the sleep phenotypes, except the primary form of ADHD and those related to focal benign epilepsy or focal EEG discharges, are associated with an increased level of arousal during sleep. Recent studies have demonstrated that both an increase and a decrease in arousal are ascribable to executive dysfunctions controlled by prefrontal cortical regions (the main cortical areas implicated in the pathogenesis of ADHD), and that the arousal system, which may be hyperactivated or hypoactivated depending on the form of ADHD/sleep phenotype.
Collapse
Affiliation(s)
- Silvia Miano
- Neuroscience, Mental Health and Sense Organs Department, Chair of Pediatrics, Sleep Disorder Centre, La Sapienza University, II Faculty, Medicine, Rome, Italy.
| | | | | |
Collapse
|