1
|
Ma FF, Ma RH, Thakur K, Zhang JG, Cao H, Wei ZJ, Simal-Gandara J. miRNA omics reveal neferine induces apoptosis through Ca 2+mediated endoplasmic reticulum stress pathway in human endometrial cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155988. [PMID: 39226708 DOI: 10.1016/j.phymed.2024.155988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/10/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Endometrial cancer (EC) as one of the most prevalent malignancies in the female reproductive system, usually has a poor diagnosis and unfavorable health effects. Neferine (Nef), derived from the edible and medicinal lotus seed, has been known for its functional activity; however, its anti-cancer mechanism for EC remains elusive. PURPOSE We explored the potential anti-cancer effects and underlying molecular mechanisms of Nef on EC. METHODS The cytotoxicity was tested using MTT, and the cell cycle, apoptosis, Ca2+ levels, and the mitochondrial membrane potential (MMP) were observed through flow cytometry. After Nef treatment, differences in miRNA expression were identified using miRNA-seq data. Furthermore, western blot and immunohistochemistry (IHC) were employed to identify the proteins associated with apoptosis in both mice and cells. RESULTS Nef treatment led to Ishikawa cell apoptosis and blocked cell proliferation in the G2/M phase. In total, 101 significantly different miRNA (p 〈 0.05 and |logFC| 〉 1) were obtained and subjected to GO and KEGG enrichment analysis, which revealed the Ca2+ and PI3K/AKT signaling pathways pertaining to apoptosis. Nef treatment significantly changed intracellular Ca2+ levels and MMP, activating the endoplasmic reticulum stress (ERS) pathway and the expression of key proteins in the mitochondrial pathway. In addition, Nef also inhibited the expression of key proteins in the PI3K/AKT pathway, causing cell apoptosis. Moreover, in mouse tumor tissues, the expression of CHOP, Bcl-2, Caspase 3, Cyto-c, and p-AKT was also consistent with the results in vitro. CONCLUSION Nef could block the cell cycle and induce the activation of the mitochondrial apoptotic pathway involving the Ca2+-mediated ERS pathway and the PI3K/AKT pathway, thereby inducing apoptosis in EC cells, confirming the potential role of Nef in the prevention and treatment of EC.
Collapse
Affiliation(s)
- Fei-Fei Ma
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, University of Vigo, Vigo, 36310, Spain; School of Food Engineering, Anhui Science and Technology University, Chuzhou, 233100, PR China.
| | - Run-Hui Ma
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, University of Vigo, Vigo, 36310, Spain; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, 750021, PR China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, 750021, PR China.
| | - Hui Cao
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, University of Vigo, Vigo, 36310, Spain.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, 750021, PR China.
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, University of Vigo, Vigo, 36310, Spain.
| |
Collapse
|
2
|
Sahu B, Sahu M, Sahu M, Yadav M, Sahu R, Sahu C. An Updated Review on Nelumbo Nucifera Gaertn: Chemical Composition, Nutritional Value and Pharmacological Activities. Chem Biodivers 2024; 21:e202301493. [PMID: 38327030 DOI: 10.1002/cbdv.202301493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Nelumbo nucifera Gaertn is a recognised herbal plant in ancient medical sciences. Each portion of the plant leaf, flower, seed and rhizome is utilised for nutritional and medicinal purposes. The chemical compositions like phenol, alkaloids, glycoside, terpenoids and steroids have been isolated. The plant contains various nutritional values like lipids, proteins, amino acids, minerals, carbohydrates, and fatty acids. Traditional medicine confirms that the phytochemicals of plants give significant benefits to the treatment of various diseases such as leukoderma, smallpox, dysentery, haematemesis, coughing, haemorrhage, metrorrhagia, haematuria, fever, hyperlipidaemia, cholera, hepatopathy and hyperdipsia. To verify the traditional claims, researchers have conducted scientific biological in vivo and in vitro screenings, which have exhibited that the plant keeps various notable pharmacological activities such as anticancer, hepatoprotective, antioxidant, antiviral, hypolipidemic, anti-obesity, antipyretic, hypoglycaemic, antifungal, anti-inflammatory and antibacterial activities. This review, summaries the nutritional composition, chemical constituents and biological activities substantiated by the researchers done in vivo and in vitro.
Collapse
Affiliation(s)
- Bhaskar Sahu
- Columbia College of Pharmacy, Raipur, Chhattisgarh, 492001, India
| | - Mahendra Sahu
- Columbia College of Pharmacy, Raipur, Chhattisgarh, 492001, India
| | - Mukesh Sahu
- Columbia College of Pharmacy, Raipur, Chhattisgarh, 492001, India
| | - Megha Yadav
- Columbia College of Pharmacy, Raipur, Chhattisgarh, 492001, India
| | - Rakesh Sahu
- Sanjivani Institute of Pharmacy, Bilaspur, Chhattisgarh, 497101, India
| | - Chandana Sahu
- Columbia College of Nursing, Raipur, Chhattisgarh, 492001, India
| |
Collapse
|
3
|
Zhang X, Li J, Cao C, Liu Z, Chen Q, Gu Z, Wang W, Fang D, Ge Q, Ding L, Pang C, Wang X. Nrf2 activation by neferine mitigates microglial neuroinflammation after subarachnoid hemorrhage through inhibiting TAK1-NF-κB signaling. Int Immunopharmacol 2024; 130:111693. [PMID: 38428144 DOI: 10.1016/j.intimp.2024.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
Oxidative stress and neuroinflammation are two major causes leading to early brain injury after subarachnoid hemorrhage (SAH). Nuclear factor E2-related factor 2 (Nrf2) is a critical transcription factor that contributes to antioxidant responses. Additionally, Nrf2 could inhibit transforming growth factor beta-activated kinase 1 (TAK1), which plays a vital role in microglial activation-mediated neuroinflammation. Neferine (NE) exhibits considerable protective effects in diverse disease models. However, the detailed effect and mechanism of NE on SAH remain unknown. Our data showed that NE treatment significantly reduced behavior and cognitive impairment, and brain edema in the early period after SAH. In addition, NE mitigated SAH-induced oxidative damage, neuroinflammation, and neural death. Moreover, NE inhibited M1 microglial polarization and enhanced M2 phenotype microglia both in vivo and in vitro. Further investigations revealed that NE enhanced the Nrf2-antioxidant response element (ARE) signaling pathway and suppressed TAK1-NF-κB signaling. In contrast, depletion of Nrf2 by ML385 suppressed Nrf2-ARE signaling, induced TAK1-NF-κB activation, and further promoted M1 microglial polarization. Additionally, ML385 abated the neuroprotective effects of NE against SAH. Notably, LPS also aggravated TAK1-NF-κB activation and reversed the beneficial effects of NE after SAH. In summary, NE provides protection after SAH by inhibiting oxidative stress and modulating microglial polarization through Nrf2 activation and TAK1-NF-κB suppression.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Jun Li
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Changchun Cao
- Department of Pharmacy, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Zhichao Liu
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Qiushi Chen
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Zhijiang Gu
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Weijie Wang
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Dazhao Fang
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - QianQian Ge
- Department of Gynecology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China
| | - Lianshu Ding
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China.
| | - Cong Pang
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China.
| | - Xiaodong Wang
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe Road West, Huaian, Jiangsu 223300, China.
| |
Collapse
|
4
|
Sharma AN, Dewangan HK, Upadhyay PK. Comprehensive Review on Herbal Medicine: Emphasis on Current Therapy and Role of Phytoconstituents for Cancer Treatment. Chem Biodivers 2024; 21:e202301468. [PMID: 38206170 DOI: 10.1002/cbdv.202301468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Cancer poses a significant public health challenge in both developed and developing nations, with a rising global incidence of patients facing the threat of death due to abnormal cell proliferation. AIM Review explores the utilization of different parts of herbal medicinal plants and their active pharmaceutical constituents in the prevention and treatment of various types of cancer. METHODOLOGY Various anticancer medicinal plants have been identified, demonstrating their therapeutic effects by inhibiting cancer-stimulating enzymes and hormones, activating DNA repair processes, boosting the synthesis of protective stimulants, reducing the formation of free radicals, and enhancing individual immunity. Data for this study were gathered from diverse online bibliographic and databases, including Google, Google Scholar, Mendeley, Springer Link, Research Gate, and PubMed. RESULT Herbal drugs have a huge contribution to the inhibition of the progression of cancer.A large volume of clinical studies has reported the beneficial effects of herbal medicines on the survival, immune modulation, and quality of life (QOL) of cancer patients, when these herbal medicines are used in combination with conventional therapeutics. CONCLUSION The latest medicines for the clinical purpose (Above 50 %) are derived from herbal products. Furthermore, combination of these herbs with nanotechnology shows promise in treating specific carcinomas.
Collapse
Affiliation(s)
- Alok Nath Sharma
- Institute of Pharmaceutical Research(IPR), GLA University, NH-2 Mathura Delhi Road, P.O.-Chaumuhan, Mathura, 281406 (U.P.), India
- Faculty of Pharmacy, Raja Balwant Singh Engineering Technical Campus, Bichpuri, Agra, 283102
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Panjab, NH-95 Mohali Ludhiana Road
| | - Prabhat Kumar Upadhyay
- Institute of Pharmaceutical Research(IPR), GLA University, NH-2 Mathura Delhi Road, P.O.-Chaumuhan, Mathura, 281406 (U.P.), India
| |
Collapse
|
5
|
Wang X, Wei Z, Hu P, Xia W, Liao Z, Assani I, Yang G, Pan Y. Optimization of Neferine Purification Based on Response Surface Methodology and Its Anti-Metastasis Mechanism on HepG2 Cells. Molecules 2023; 28:5086. [PMID: 37446748 DOI: 10.3390/molecules28135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Liver cancer continues to be a focus of scientific research due to its low five-year survival rate. One of its main core issues is the high metastasis of cells, for which there is no effective treatment. Neferine was originally isolated from Plumula nelumbinis and demonstrated to have a good antitumor effect. In order to extract high-purity Neferine in a more efficient and environmentally friendly manner, response surface methodology (RSM) was used to optimize the isolation and purification procedures in this study. The extract conditions of a 7:3 ratio for the eluent of dichloromethane: methanol, 1:60 for the mass ratio of the extract amount: silica gel, and 3 mL/min of the elution flow rate were shown to be the optimal conditions. These conditions resulted in the highest yield of 6.13 mg per 66.60 mg of starting material, with productivity of 8.76% and purity of 87.04%. Compared with the previous methods, this method can prepare Neferine in large quantities more quickly. We subsequently evaluated the antitumor activity of the purified Neferine against HepG2 hepatic cancer cells. The purified Neferine was found to inhibit the proliferation of HepG2 cells through the CCK-8 assay, with an IC50 of 33.80 μM in 24 h, 29.47 μM in 48 h, 24.35 μM in 72 h and 2.78 μM in 96 h of treatment. Neferine at a concentration of 3 μM could significantly inhibit the migration and invasion abilities of the HepG2 cells in vitro. We also explored the mechanism of action of Neferine via Western blot. We showed that Neferine could reduce RhoA expression by effectively inhibiting the phosphorylation of MYPT1, thereby effectively exerting anti-metastasis activity against HepG2 cells. Thus, we have optimized the isolation procedures for highly pure Neferine by response surface methodology (RSM) in this study, and purified Neferine is shown to play an essential role in the anti-metastasis process of liver cancer cells. The Neferine purification procedure may make a wide contribution to the follow-up development of other anti-metastasis lead compounds.
Collapse
Affiliation(s)
- Xinzhu Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Zhenhuan Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Weibo Xia
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Zhixin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Israa Assani
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Guangming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
6
|
Basu A, Namporn T, Ruenraroengsak P. Critical Review in Designing Plant-Based Anticancer Nanoparticles against Hepatocellular Carcinoma. Pharmaceutics 2023; 15:1611. [PMID: 37376061 DOI: 10.3390/pharmaceutics15061611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC), accounting for 85% of liver cancer cases, continues to be the third leading cause of cancer-related deaths worldwide. Although various forms of chemotherapy and immunotherapy have been investigated in clinics, patients continue to suffer from high toxicity and undesirable side effects. Medicinal plants contain novel critical bioactives that can target multimodal oncogenic pathways; however, their clinical translation is often challenged due to poor aqueous solubility, low cellular uptake, and poor bioavailability. Nanoparticle-based drug delivery presents great opportunities in HCC therapy by increasing selectivity and transferring sufficient doses of bioactives to tumor areas with minimal damage to adjacent healthy cells. In fact, many phytochemicals encapsulated in FDA-approved nanocarriers have demonstrated the ability to modulate the tumor microenvironment. In this review, information about the mechanisms of promising plant bioactives against HCC is discussed and compared. Their benefits and risks as future nanotherapeutics are underscored. Nanocarriers that have been employed to encapsulate both pure bioactives and crude extracts for application in various HCC models are examined and compared. Finally, the current limitations in nanocarrier design, challenges related to the HCC microenvironment, and future opportunities are also discussed for the clinical translation of plant-based nanomedicines from bench to bedside.
Collapse
Affiliation(s)
- Aalok Basu
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| | - Thanaphon Namporn
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| | - Pakatip Ruenraroengsak
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| |
Collapse
|
7
|
Yu Y, Liu Y, Dong G, Jiang J, Leng L, Liu X, Zhang J, Liu A, Chen S. Functional characterization and key residues engineering of a regiopromiscuity O-methyltransferase involved in benzylisoquinoline alkaloid biosynthesis in Nelumbo nucifera. HORTICULTURE RESEARCH 2023; 10:uhac276. [PMID: 36789257 PMCID: PMC9923211 DOI: 10.1093/hr/uhac276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/09/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
Lotus (Nelumbo nucifera), an ancient aquatic plant, possesses a unique pharmacological activity that is primarily contributed by benzylisoquinoline alkaloids (BIAs). However, only few genes and enzymes involved in BIA biosynthesis in N. nucifera have been isolated and characterized. In the present study we identified the regiopromiscuity of an O-methyltransferase, designated NnOMT6, isolated from N. nucifera; NnOMT6 was found to catalyze the methylation of monobenzylisoquinoline 6-O/7-O, aporphine skeleton 6-O, phenylpropanoid 3-O, and protoberberine 2-O. We further probed the key residues affecting NnOMT6 activity via molecular docking and molecular dynamics simulation. Verification using site-directed mutagenesis revealed that residues D316, N130, L135, N176A, D269, and E328 were critical for BIA O-methyltransferase activities; furthermore, N323A, a mutant of NnOMT6, demonstrated a substantial increase in catalytic efficiency for BIAs and a broader acceptor scope compared with wild-type NnOMT6. To the best of our knowledge, this is the first study to report the O-methyltransferase activity of an aporphine skeleton without benzyl moiety substitutions in N. nucifera. The study findings provide biocatalysts for the semisynthesis of related medical compounds and give insights into protein engineering to strengthen O-methyltransferase activity in plants.
Collapse
Affiliation(s)
- Yuetong Yu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Yan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | | | - JinZhu Jiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Liang Leng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - XianJu Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Jun Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - An Liu
- Corresponding author. E-mail: ;
| | | |
Collapse
|
8
|
Prommee N, Itharat A, Thongdeeying P, Makchuchit S, Pipatrattanaseree W, Tasanarong A, Ooraikul B, Davies NM. Exploring in vitro anti-proliferative and anti-inflammatory activities of Prasachandaeng remedy, and its bioactive compounds. BMC Complement Med Ther 2022; 22:217. [PMID: 35953870 PMCID: PMC9373486 DOI: 10.1186/s12906-022-03678-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background Prasachandaeng (PSD) remedy has been empirically used in Thai traditional medicine to treat fever in bile duct and liver and cancer patients through Thai folk doctors. However, there have been no scientific reports on the bioactive compounds and bioactivities related to inflammation-associated carcinogenesis or cytotoxicity against cancer cell lines. In this study, we investigated the chemical content of the remedy, and evaluated its cytotoxic activity against two cancer cell lines in comparison with a non-cancerous cell line and determined tumor necrosis factor-alpha (TNF-α) production in a murine macrophage cell line (RAW 264.7) to evaluate anti-inflammatory activity. A novel HPLC method was used for quality control of its chemical content. Methods Pure compounds from the EtOH extract of D. cochinchinensis were isolated using bioassay-guided fractionation and chemical content of the PSD remedy was determined using HPLC. The cytotoxic activity against the hepatocarcinoma cell line (HepG2) and cholangiocarcinoma cell line (KKU-M156), in comparison with non-cancerous cell line (HaCaT), were investigated using antiproliferative assay (SRB). The anti-inflammatory activity measured by TNF-α production in RAW 264.7 was determined using ELISA. Results All crude extracts and isolated compounds exhibited significant differences from vincristine sulfate (****p < 0.0001) in their cytotoxic activity against HepG2, KKU-M156, and HaCaT. The PSD remedy exhibited cytotoxic activity against HepG2 and KKU-M156 with IC50 values of 10.45 ± 1.98 (SI = 5.3) and 4.53 ± 0.74 (SI = 12.2) µg/mL, respectively. Some constituents from C. sappan, D. cochinchinensis, M. siamensis, and M. fragrans also exhibited cytotoxic activity against HepG2 and KKU-M156, with IC50 values less than 10 µg/mL. The isolated compounds, i.e., Loureirin B (1), 4-Hydroxy-2,4’-dimethoxydihydrochalcone (2), and Eucomol (3) exhibited moderate cytotoxicity against two cancer cell lines. None of the crude extracts and isolated compounds showed cytotoxicity against HaCaT. D. cochinchinensis and PSD remedy exhibited higher anti-inflammatory activity measured as TNF-α production than acetaminophen. Conclusion The findings provide evidence of bioactivity for EtOH extracts of PSD remedy and the isolated compounds of D. Cochinchinensis. The results consistent the use clinical activity and use of PSD remedy as a antipyretic treatment for liver and bile duct cancer patients by Thai traditional practitioners.
Collapse
|
9
|
Punia Bangar S, Dunno K, Kumar M, Mostafa H, Maqsood S. A comprehensive review on lotus seeds (Nelumbo nucifera Gaertn.): Nutritional composition, health-related bioactive properties, and industrial applications. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
10
|
Bishayee A, Patel PA, Sharma P, Thoutireddy S, Das N. Lotus (Nelumbo nucifera Gaertn.) and Its Bioactive Phytocopounds: A Tribute to Cancer Prevention and Intervention. Cancers (Basel) 2022; 14:cancers14030529. [PMID: 35158798 PMCID: PMC8833568 DOI: 10.3390/cancers14030529] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The plant Nelumbo nucifera (Gaertn.), commonly known as lotus, sacred lotus, Indian lotus, water lily, or Chinese water lily, is an aquatic perennial crop belonging to the family of Nelumbonaceae. N. nucifera has traditionally been used as an herbal medicine and functional food in many parts of Asia. It has been found that different parts of this plant consist of various bioactive phytocompounds. Within the past few decades, N. nucifera and its phytochemicals have been subjected to intense cancer research. In this review, we critically evaluate the potential of N. nucifera phytoconstituents in cancer prevention and therapy with related mechanisms of action. Abstract Cancer is one of the major leading causes of death worldwide. Accumulating evidence suggests a strong relationship between specific dietary habits and cancer development. In recent years, a food-based approach for cancer prevention and intervention has been gaining tremendous attention. Among diverse dietary and medicinal plants, lotus (Nelumbo nucifera Gaertn., family Nymphaeaceae), also known as Indian lotus, sacred lotus or Chinese water lily, has the ability to effectively combat this disease. Various parts of N. nucifera have been utilized as a vegetable as well as an herbal medicine for more than 2000 years in the Asian continent. The rhizome and seeds of N. nucifera represent the main edible parts. Different parts of N. nucifera have been traditionally used to manage different disorders, such as fever, inflammation, insomnia, nervous disorders, epilepsy, hypertension, cardiovascular diseases, obesity, and hyperlipidemia. It is believed that numerous bioactive components, including alkaloids, polyphenols, terpenoids, steroids, and glycosides, are responsible for its various biological and pharmacological activities, such as antioxidant, anti-inflammatory, immune-modulatory, antiviral, hepatoprotective, cardioprotective, and hypoglycemic activities. Nevertheless, there is no comprehensive review with an exclusive focus on the anticancer attributes of diverse phytochemicals from different parts of N. nucifera. In this review, we have analyzed the effects of N. nucifera extracts, fractions and pure compounds on various organ-specific cancer cells and tumor models to understand the cancer-preventive and therapeutic potential and underlying cellular and molecular mechanisms of action of this interesting medicinal and dietary plant. In addition, the bioavailability, pharmacokinetics, and possible toxicity of N. nucifera-derived phytochemicals, as well as current limitations, challenges and future research directions, are also presented.
Collapse
Affiliation(s)
- Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
- Correspondence: or
| | - Palak A. Patel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Priya Sharma
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Shivani Thoutireddy
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799155, Tripura, India;
| |
Collapse
|
11
|
Neferine increases sensitivities to multiple anticancer drugs via downregulation of Bcl-2 expression in renal cancer cells. Genes Genomics 2022; 44:165-173. [PMID: 35034280 DOI: 10.1007/s13258-021-01201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Neferine is the major alkaloid extracted from a seed embryo of Nelumbo nucifera and shows cytotoxic effects in various human cancer cells. However, no detailed studies have been reported on its antitumor efficacy of a combinational treatment in human renal cancer cells. OBJECTIVE This study evaluated the antitumor effects of a combination therapy of neferine and various drugs on renal cancer Caki-1 cells. METHODS Flow cytometry analysis was performed to evaluate the cell cycle analysis and apoptosis, respectively. Western blotting and reverse transcription polymerase chain reaction were performed to analyze the effect of neferine on the expression of apoptosis-related genes in Caki-1 cells. In addition, reactive oxygen species (ROS) generation was evaluated using flow cytometry. RESULTS Treatment with neferine dose-dependently induces apoptosis and Bcl-2 downregulation in Caki-1 cells. In addition, neferine triggers cell cycle arrest at the G2/M phase in Caki-1 cells. The neferine-induced apoptosis was mediated by ROS generation, and neferine-facilitated Bcl-2 downregulation was regulated at the transcriptional level through the suppression of p65 expression, resulting in inactivation of the NF-κB pathway in Caki-1 cells. The ROS scavenger, N-acetyl-l-cysteine (NAC), intensely reversed the effects of neferine on apoptosis and Bcl-2 downregulation. We determined that neferine markedly potentiates the antitumor effects of multiple anticancer drugs (cisplatin, silybin, and thapsigargin), and those effects can be reversed by Bcl-2 overexpression or NAC pretreatment in Caki-1 cells. CONCLUSION These results suggest that neferine can increase chemosensitivities to anticancer drugs via downregulation of Bcl-2 expression through ROS-dependent suppression of the NF-κB signaling pathway in human renal cancer cells.
Collapse
|
12
|
Li X, Miao S, Li F, Ye F, Yue G, Lu R, Shen H, Ye Y. Cellular Calcium Signals in Cancer Chemoprevention and Chemotherapy by Phytochemicals. Nutr Cancer 2022; 74:2671-2685. [PMID: 35876249 DOI: 10.1080/01635581.2021.2020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xue Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuhan Miao
- Department of Health Care, Zhenjiang Fourth Peoples Hospital, Zhenjiang, China
| | - Feng Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Ye
- Department of Clinical Laboratory Center, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guang Yue
- Department of Internal Medicine, The Third Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Center for Experimental Research, Affiliated Kunshan Hospital, Jiangsu University, Kunshan, Suzhou, China
| | - Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Kittakoop P, Darshana D, Sangsuwan R, Mahidol C. Alkaloids and Alkaloid-Like Compounds are Potential Scaffolds of Antiviral Agents against SARS-CoV-2 (COVID-19) Virus. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Rodriguez S, Skeet K, Mehmetoglu-Gurbuz T, Goldfarb M, Karri S, Rocha J, Shahinian M, Yazadi A, Poudel S, Subramani R. Phytochemicals as an Alternative or Integrative Option, in Conjunction with Conventional Treatments for Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13225753. [PMID: 34830907 PMCID: PMC8616323 DOI: 10.3390/cancers13225753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is globally ranked as the sixth most diagnosed cancer, and the second most deadly cancer. To worsen matters, there are only limited therapeutic options currently available; therefore, it is necessary to find a reservoir from which new HCC treatments may be acquired. The field of phytomedicine may be the solution to this problem, as it offers an abundance of plant-derived molecules, which show capabilities of being effective against HCC proliferation, invasion, migration, and metastasis. In our review, we collect and analyze current evidence regarding these promising phytochemical effects on HCC, and delve into their potential as future chemotherapies. Additionally, information on the signaling behind these numerous phytochemicals is provided, in an attempt to understand their mechanisms. This review makes accessible the current body of knowledge pertaining to phytochemicals as HCC treatments, in order to serve as a reference and inspiration for further research into this subject. Abstract Hepatocellular carcinoma (HCC) is the most abundant form of liver cancer. It accounts for 75–85% of liver cancer cases and, though it ranks globally as the sixth most common cancer, it ranks second in cancer-related mortality. Deaths from HCC are usually due to metastatic spread of the cancer. Unfortunately, there are many challenges and limitations with the latest HCC therapies and medications, making it difficult for patients to receive life-prolonging care. As there is clearly a high demand for alternative therapy options for HCC, it is prudent to turn to plants for the solution, as their phytochemicals have long been used and revered for their many medicinal purposes. This review explores the promising phytochemical compounds identified from pre-clinical and clinical trials being used either independently or in conjunction with already existing cancer therapy treatments. The phytochemicals discussed in this review were classified into several categories: lipids, polyphenols, alkaloids, polysaccharides, whole extracts, and phytochemical combinations. Almost 80% of the compounds failed to progress into clinical studies due to lack of information regarding the toxicity to normal cells and bioavailability. Although large obstacles remain, phytochemicals can be used either as an alternative or integrative therapy in conjunction with existing HCC chemotherapies. In conclusion, phytochemicals have great potential as treatment options for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sheryl Rodriguez
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Kristy Skeet
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Tugba Mehmetoglu-Gurbuz
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Madeline Goldfarb
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.G.); (S.K.)
| | - Shri Karri
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.G.); (S.K.)
| | - Jackelyn Rocha
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Mark Shahinian
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Abdallah Yazadi
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Seeta Poudel
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
- Correspondence: ; Tel.: +1-915-215-6851
| |
Collapse
|
15
|
Roles of Therapeutic Bioactive Compounds in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9068850. [PMID: 34754365 PMCID: PMC8572616 DOI: 10.1155/2021/9068850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is due to poor prognosis and lack of availability of effective treatment. Novel therapeutic strategies will be the fine tuning of intracellular ROS signaling to effectively deprive cells of ROS-induced tumor-promoting events. This review discusses the generation of ROS, the major signaling their modulation in therapeutics. We explore some of the major pathways involved in HCC, which include the VEGF, MAPK/ERK, mTOR, FGF, and Ser/Thr kinase pathways. In this review, we study cornerstone on natural bioactive compounds with their effect on hepatocarcinomas. Furthermore, we focus on oxidative stress and FDA-approved signaling pathway inhibitors, along with chemotherapy and radiotherapy enhancers which with early evidence of success. While more in vivo testing is required to confirm the findings presented here, our findings will aid future nonclinical, preclinical, and clinical studies with these compounds, as well as inspire medicinal chemistry scientists to conduct appropriate research on this promising natural compound and their derivatives.
Collapse
|
16
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
17
|
Arooj M, Imran S, Inam‐ur‐Raheem M, Rajoka MSR, Sameen A, Siddique R, Sahar A, Tariq S, Riaz A, Hussain A, Siddeeg A, Aadil RM. Lotus seeds ( Nelumbinis semen) as an emerging therapeutic seed: A comprehensive review. Food Sci Nutr 2021; 9:3971-3987. [PMID: 34262752 PMCID: PMC8269573 DOI: 10.1002/fsn3.2313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
Nelumbinis semen is commonly known as lotus seeds that have been used as a vegetable, functional food, and medicine for 7,000 years. These are low caloric, a rich source of multiple nutrients and bioactive constituents, which make it a unique therapeutic food. N. semen plays an important part in the physiological functions of the body. Nowadays, people are more conscious about their health and desire to treat disease naturally with minimal side effects. So, functional foods are getting popularity due to a wide range of essential constituents, which are associated to decrease the risk of chronic diseases. These bioactive compounds from seeds are involved in anti-adipogenic, antioxidant, antitumor, cardiovascular, hepato-protective, anti-inflammatory, anti-fertility, anti-microbial, anti-viral, hypoglycemic, etc. Moreover, the relationship between functional compounds along with their mechanism of action in the body, their extraction from the seeds for further research would be of great interest.
Collapse
Affiliation(s)
- Muzalfa Arooj
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Saira Imran
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Muhammad Inam‐ur‐Raheem
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | | | - Aysha Sameen
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Rabia Siddique
- Department of ChemistryGovernment College UniversityFaisalabadPakistan
| | - Amna Sahar
- Department of Food EngineeringUniversity of AgricultureFaisalabadPakistan
| | - Shiza Tariq
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Ayesha Riaz
- Institute of Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Abid Hussain
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Azhari Siddeeg
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity of GeziraWad MedaniSudan
| | - Rana Muhammad Aadil
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| |
Collapse
|
18
|
Hu L, Wang Y, Shu C, Yu J, Chen Y, Li Y, Tao R, Yang H, Dou L. Pharmacokinetics, bioavailability and metabolism of neferine in rat by LC-MS/MS and LC-HRMS. Biomed Chromatogr 2021; 35:e5193. [PMID: 34128252 DOI: 10.1002/bmc.5193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022]
Abstract
In this study, a simple and sensitive analytical method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated for the determination of neferine in rat plasma. After acetonitrile-mediated protein precipitation, the samples were separated on an Acquity BEH C18 column (2.1 × 50 mm, 1.7 μm) maintained at 40°C. The mobile phase comprising 0.1% formic acid in water and acetonitrile was delivered at a flow rate of 0.4 ml/min. The mass detection was conducted using multiple reaction monitoring mode with ion transitions at 625.4 > 206.3 and m/z 622.9 > 380.9 for neferine and internal standard, respectively. The assay was demonstrated to be linear over the concentration range of 0.5-1,000 ng/ml, with correlation coefficient >0.999 (r > 0.999). The validated method was further applied to the pharmacokinetic study of neferine in rat plasma. In addition, the metabolism of neferine was investigated using high-resolution mass spectrometry. A total of six metabolites from rat liver microsomes and plasma were detected and their structures were identified according to their fragment ions. The proposed metabolic pathways of neferine were demethylation, dealkylation, dehydrogenation and glucuronidation.
Collapse
Affiliation(s)
- Lin Hu
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, Hubei Province, China
| | - Yu Wang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Shu
- Department of Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Jingjing Yu
- Department of Hepatic Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yueyue Chen
- Department of Hepatic Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yali Li
- Department of Hepatic Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ran Tao
- Department of Hepatic Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Huiyuan Yang
- Department of Hepatic Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Lei Dou
- Department of Gerontology and Department of Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
19
|
de Seabra Rodrigues Dias IR, Lo HH, Zhang K, Law BYK, Nasim AA, Chung SK, Wong VKW, Liu L. Potential therapeutic compounds from traditional Chinese medicine targeting endoplasmic reticulum stress to alleviate rheumatoid arthritis. Pharmacol Res 2021; 170:105696. [PMID: 34052360 DOI: 10.1016/j.phrs.2021.105696] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease which affects about 0.5-1% of people with symptoms that significantly impact a sufferer's lifestyle. The cells involved in propagating RA tend to display pro-inflammatory and cancer-like characteristics. Medical drug treatment is currently the main avenue of RA therapy. However, drug options are limited due to severe side effects, high costs, insufficient disease retardation in a majority of patients, and therapeutic effects possibly subsiding over time. Thus there is a need for new drug therapies. Endoplasmic reticulum (ER) stress, a condition due to accumulation of misfolded proteins in the ER, and subsequent cellular responses have been found to be involved in cancer and inflammatory pathologies, including RA. ER stress protein markers and their modulation have therefore been suggested as therapeutic targets, such as GRP78 and CHOP, among others. Some current RA therapeutic drugs have been found to have ER stress-modulating properties. Traditional Chinese Medicines (TCMs) frequently use natural products that affect multiple body and cellular targets, and several medicines and/or their isolated compounds have been found to also have ER stress-modulating capabilities, including TCMs used in RA treatment by Chinese Medicine practitioners. This review encourages, in light of the available information, the study of these RA-treating, ER stress-modulating TCMs as potential new pharmaceutical drugs for use in clinical RA therapy, along with providing a list of other ER stress-modulating TCMs utilized in treatment of cancers, inflammatory diseases and other diseases, that have potential use in RA treatment given similar ER stress-modulating capacity.
Collapse
Affiliation(s)
- Ivo Ricardo de Seabra Rodrigues Dias
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hang Hong Lo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Kaixi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Ali Adnan Nasim
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| |
Collapse
|
20
|
Chopra B, Dhingra AK. Natural products: A lead for drug discovery and development. Phytother Res 2021; 35:4660-4702. [PMID: 33847440 DOI: 10.1002/ptr.7099] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
Natural products are used since ancient times in folklore for the treatment of various ailments. Plant-derived products have been recognized for many years as a source of therapeutic agents and structural diversity. A literature survey has been carried out to determine the utility of natural molecules and their modified analogs or derivatives as pharmacological active entities. This review presents a study on the importance of natural products in terms of drug discovery and development. It describes how the natural components can be utilized after small modifications in new perspectives. Various new modifications in structure offer a unique opportunity to establish a new molecular entity with better pharmacological potential. It was concluded that in this current era, new attempts are taken to utilize the compounds derived from natural sources as novel drug candidates, with a focus to find and discover new effective molecules that were referred to as "new entities of natural product drug discovery."
Collapse
Affiliation(s)
- Bhawna Chopra
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Ashwani Kumar Dhingra
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| |
Collapse
|
21
|
Prommee N, Itharat A, Panthong S, Makchuchit S, Ooraikul B. Ethnopharmacological analysis from Thai traditional medicine called prasachandaeng remedy as a potential antipyretic drug. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113520. [PMID: 33129948 DOI: 10.1016/j.jep.2020.113520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prasachandaeng (PSD) remedy is a famous antipyretic drug for adults and children in Thai traditional medicine used and is described in Thailand's National List of Essential Medicine. Relationship between the taste of this herbal medicine, ethnopharmacological used and its pharmacological properties was reviewed. AIMS OF STUDY Since there has been no scientific report on the antipyretic activity of PSD, aim of this study was to investigate the efficacy related antipyretic drug of the remedy and its 12 herbal ingredients. It involved quality evaluation of raw materials, extraction of PSD and its ingredients, in vitro evaluation of their inhibitory activities on fever mediators, i.e. NO and PGE2 production in murine macrophage (RAW 264.7) cell line stimulated by lipopolysaccharide, and its stability study of the 95% ethanolic extract of PSD remedy. MATERIALS AND METHODS PSD remedy was extracted by maceration with 50% and 95% ethanol (PSD50 and PSD95), by decoction with distilled water (PSDW), and hydrolysis of PSDW with 0.1 N HCl (PSDH). The 12 plant ingredients were extracted with 95% ethanol. Quality evaluation of PSD ingredients was performed according to the standard procedures for the quality control of herbal materials. The inhibitory activity on nitric oxide production was determined by the Griess reaction and the inhibition of prostaglandin E2 production was determined using the ELISA test kit. RESULTS PSD ingredients passed the quality standard stipulated for herbal materials. PSD95 exhibited the highest inhibitory activities on the production of NO and PGE2 with the IC50 values of 42.40 ± 0.72 and 4.65 ± 0.76 μg/mL, respectively. A standard drug acetaminophen (ACP) exhibited inhibition of NO and PGE2 production with the IC50 values of 99.50 ± 0.43 and 6.110 ± 0.661 μg/mL, respectively. The stability study was suggested two years shelf-life of PSD95. This is the first report on the activity related antipyretic activity of PSD remedy and its ingredients against two fever mediators, NO and PGE2. CONCLUSION The results suggested that the 95% ethanolic extracts of PSD remedy and some of its ingredients, were better than ACP in reducing fever. PSD should be further studied using in vivo models and clinical trials to support its use as an antipyretic drug in Thai traditional medicine.
Collapse
Affiliation(s)
- Nuntika Prommee
- Student of Doctor of Philosophy (Applied Thai Traditional Medicine), Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12120, Thailand.
| | - Arunporn Itharat
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani 12120, Thailand; Center of Excellence in Applied Thai Traditional Medicine Research (CEATMR), Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12120, Thailand.
| | - Sumalee Panthong
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani 12120, Thailand; Center of Excellence in Applied Thai Traditional Medicine Research (CEATMR), Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12120, Thailand.
| | - Sunita Makchuchit
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani 12120, Thailand; Center of Excellence in Applied Thai Traditional Medicine Research (CEATMR), Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12120, Thailand.
| | - Buncha Ooraikul
- Center of Excellence in Applied Thai Traditional Medicine Research (CEATMR), Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12120, Thailand; Professor Emeritus, Department of Agricultural Food and Nutritional Science, Faculty of Agricultural Life and Environmental Sciences, University of Alberta, Edmonton, Bualuang ASEAN Chair Professor, Thammasat University, Canada.
| |
Collapse
|
22
|
Kim NY, Yang IJ, Kim S, Lee C. Lotus (Nelumbo nucifera) seedpod extract inhibits cell proliferation and induces apoptosis in non-small cell lung cancer cells via downregulation of Axl. J Food Biochem 2020; 45:e13601. [PMID: 33381866 DOI: 10.1111/jfbc.13601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the most frequent cause of cancer-related death. In this study, we found the anticancer activity of lotus seedpod extract (LSPE) in NSCLC cells, since LSPE treatment inhibited cell proliferation of A549 and H460 cells in a dose-dependent manner and the clonogenic activities of LSPE-treated cells were also reduced. In LSPE-treated cells, the cleavage of poly (ADP-ribose) polymerase (PARP) and phosphorylation of H2X, were also observed, indicating the pro-apoptotic effect of LSPE. Next, we found that LPSE treatment diminished the levels of protein and mRNA of Axl, a receptor tyrosine kinase (RTK) that transduces critical signals for cell proliferation and inhibition of apoptosis. The promoter activity of Axl was found to be dose-dependently decreased in response to LSPE treatment, implying that LSPE inhibited Axl gene expression at transcriptional level. In addition, Axl overexpression was found to decrease the effects of LSPE on inhibition of cell proliferation and colony formation as well as induction of PARP cleavage and phosphorylation of H2AX, while the same activities of LPSE were increased by knockdown of Axl gene expression, indicating that the antiproliferative and pro-apoptotic effect of LSPE is inversely proportional to the protein level of Axl. Taken together, we found that the LSPE suppressed cell proliferation and induced apoptosis of NSCLC cells, which is attenuated or augmented by overexpression or RNA interference of Axl expression, respectively. Our data suggest that Axl is a novel therapeutic target of LSPE to inhibit cell proliferation and promote apoptosis in NSCLC cells. PRACTICAL APPLICATIONS: In this study, lotus seedpod extract (LSPE) was found to have the cytotoxic and apoptosis-inducing potentials in non-small-cell lung cancer (NSCLC) cells. LSPE downregulated the Axl expression at transcriptional level and the effects of LSPE on cell proliferation as well as apoptosis were affected by Axl protein level. Therefore, the inference of Axl-mediated intracellular signals by LSPE must be a novel approach to control NSCLC. Since our data imply that LSPE contains bioactive compounds targeting Axl, further studies to elucidate these compounds might discover a potent therapeutic agent.
Collapse
Affiliation(s)
- Nam-Yi Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, South Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, South Korea
| | - Soyoung Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, South Korea
| | - ChuHee Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
23
|
Erdogan S, Turkekul K. Neferine inhibits proliferation and migration of human prostate cancer stem cells through p38 MAPK/JNK activation. J Food Biochem 2020; 44:e13253. [PMID: 32394497 DOI: 10.1111/jfbc.13253] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/04/2020] [Accepted: 04/04/2020] [Indexed: 12/16/2022]
Abstract
Cancer stem cells (CSCs) are one of the significant causes of cancer treatment failure and metastasis, as they have significant chemo-and radio-resistance leading to tumor recurrence. Here we investigated the possible anticancer properties of neferine, a natural alkaloid, on human prostate cancer (PCa) cells and their stem cells. CD44+ CSCs were isolated from androgen-insensitive PC3 cells by magnetic-activated cell sorting system (MACS). Neferine dose-and time-dependently inhibited the viability of PC3 and CSCs as well as androgen-sensitive LNCaP cells through inducing apoptosis and cell cycle arrest at G1 phase. Neferine was shown to downregulate the expression of Bcl-2 and CDK4, and upregulate caspase 3, clePARP, p21, p27, and p53. The treatment significantly inhibits the migration of CSCs. Neferine induces JNK and p38 MAPK phosphorylation, and downregulates PI3K and NF-ĸβ signaling. In conclusion, neferine may have a therapeutic effect inhibiting the PCa cell proliferation as well as by eliminating CSCs. PRACTICAL APPLICATIONS: Neferine is an alkaloid found in the seed embryo of Nelumbo nucifera and has recently been shown to have anticancer effects on various human cancer cells. More than 90% of cancer-related deaths develop after metastasis, and CSCs are considered to be largely responsible for the cell migration and invasion. It has been shown that treatment of neferine kills not only PCa cells but also CSCs, and may contribute to the prevention of progression of PCa and metastasis by inhibiting cell proliferation and migration.
Collapse
Affiliation(s)
- Suat Erdogan
- Department of Medical Biology, School of Medicine, Trakya University, Edirne, Turkey
| | - Kader Turkekul
- Department of Medical Biology, School of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
24
|
Hsu LS, Chang CH, Lee YJ, Wang CJ. Nelumbo nucifera Leaves Prevent NMU-Induced Mammary Tumor through Downregulation of Fatty Acid Synthase, Estrogen Receptor-α and Her2 Expression. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 47:1885-1899. [PMID: 31838869 DOI: 10.1142/s0192415x19500964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Diet polyphenol can reportedly prevent the formation of breast-cancer cells. Nelumbo nucifera leaf extract (NLE) is enriched with polyphenols and has several cellular functions, such as anti-atherosclerosis, anti-inflammation, and antitumor. In this study, we investigated the role of NLE in the prevention of N-methyl-N-nitrosourea (NMU)-induced mammary tumor formation. Cotreatment with NLE significantly reduced the NMU-induced tumor incidence, number, and volume. NLE administration significantly repressed the tumor growth and weight of nude mice upon inoculation with BT-474 cancer cells. Immunohistochemical staining indicated that fatty acid synthetase, estrogen receptor (ER)-α, and phosphorylated ER-α were obviously reduced in the cancer part of BT-474 inoculated nude mice upon administration of 2% NLE. Western blot analysis revealed that NLE and NLPE (polyphenol-rich NLE) repressed ER-α expression and phosphorylation and decreased the phosphorylation of Her-2 without affecting their expression. Overall, NLE and NLPE exhibited more effective antitumor abilities in NMU-induced mammary cancer formation than with tamoxifen and Herceptin.
Collapse
Affiliation(s)
- Li-Sung Hsu
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung City 40201, Taiwan
| | - Chun-Hua Chang
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung City 40201, Taiwan
| | - Yi-Ju Lee
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan.,Department of Pathology, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Chau-Jong Wang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung City 40201, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| |
Collapse
|
25
|
Menéndez-Perdomo IM, Facchini PJ. Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus ( Nelumbo nucifera). J Biol Chem 2020; 295:1598-1612. [PMID: 31914404 PMCID: PMC7008365 DOI: 10.1074/jbc.ra119.011547] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/28/2019] [Indexed: 12/15/2022] Open
Abstract
Benzylisoquinoline alkaloids (BIAs) are a major class of plant metabolites with many pharmacological benefits. Sacred lotus (Nelumbo nucifera) is an ancient aquatic plant of medicinal value because of antiviral and immunomodulatory activities linked to its constituent BIAs. Although more than 30 BIAs belonging to the 1-benzylisoquinoline, aporphine, and bisbenzylisoquinoline structural subclasses and displaying a predominant R-enantiomeric conformation have been isolated from N. nucifera, its BIA biosynthetic genes and enzymes remain unknown. Herein, we report the isolation and biochemical characterization of two O-methyltransferases (OMTs) involved in BIA biosynthesis in sacred lotus. Five homologous genes, designated NnOMT1-5 and encoding polypeptides sharing >40% amino acid sequence identity, were expressed in Escherichia coli Functional characterization of the purified recombinant proteins revealed that NnOMT1 is a regiospecific 1-benzylisoquinoline 6-O-methyltransferase (6OMT) accepting both R- and S-substrates, whereas NnOMT5 is mainly a 7-O-methyltransferase (7OMT), with relatively minor 6OMT activity and a strong stereospecific preference for S-enantiomers. Available aporphines were not accepted as substrates by either enzyme, suggesting that O-methylation precedes BIA formation from 1-benzylisoquinoline intermediates. Km values for NnOMT1 and NnOMT5 were 20 and 13 μm for (R,S)-norcoclaurine and (S)-N-methylcoclaurine, respectively, similar to those for OMTs from other BIA-producing plants. Organ-based correlations of alkaloid content, OMT activity in crude extracts, and OMT gene expression supported physiological roles for NnOMT1 and NnOMT5 in BIA metabolism, occurring primarily in young leaves and embryos of sacred lotus. In summary, our work identifies two OMTs involved in BIA metabolism in the medicinal plant N. nucifera.
Collapse
Affiliation(s)
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
26
|
Ashraf MA. Phytochemicals as Potential Anticancer Drugs: Time to Ponder Nature's Bounty. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8602879. [PMID: 32076618 PMCID: PMC7013350 DOI: 10.1155/2020/8602879] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/13/2020] [Indexed: 01/09/2023]
Abstract
Medicinal plants have been used from the beginning of human civilization, which is mostly evident from the ancient script and traditional herbal medicine recipe. Despite the historically enriched demonstration about the use of plant as therapeutics, the pharmaceutical industries lack interest on phytochemical research compared with synthetic drug. Mostly, the absence of information about plant-based medicinal therapeutics is responsible to draw the attention of researchers to think about natural products as potential drug for detrimental diseases, such as cancer. This review will cover about clinically successful plant-based anticancer drugs and underappreciated, but potential, drugs to bridge the information gap between plant biologists and clinical researchers. Additionally, unprecedented advancement of synthetic chemistry, omics study to pin point the target genes/proteins, and efficient drug delivery system have made it easier for researchers to develop a phytochemical as an efficient anticancer drug.
Collapse
|
27
|
Neferine induces autophagy-dependent cell death in apoptosis-resistant cancers via ryanodine receptor and Ca 2+-dependent mechanism. Sci Rep 2019; 9:20034. [PMID: 31882989 PMCID: PMC6934498 DOI: 10.1038/s41598-019-56675-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
Resistance of cancer cells to chemotherapy is a significant clinical concern and mechanisms regulating cell death in cancer therapy, including apoptosis, autophagy or necrosis, have been extensively investigated over the last decade. Accordingly, the identification of medicinal compounds against chemoresistant cancer cells via new mechanism of action is highly desired. Autophagy is important in inducing cell death or survival in cancer therapy. Recently, novel autophagy activators isolated from natural products were shown to induce autophagic cell death in apoptosis-resistant cancer cells in a calcium-dependent manner. Therefore, enhancement of autophagy may serve as additional therapeutic strategy against these resistant cancers. By computational docking analysis, biochemical assays, and advanced live-cell imaging, we identified that neferine, a natural alkaloid from Nelumbo nucifera, induces autophagy by activating the ryanodine receptor and calcium release. With well-known apoptotic agents, such as staurosporine, taxol, doxorubicin, cisplatin and etoposide, utilized as controls, neferine was shown to induce autophagic cell death in a panel of cancer cells, including apoptosis-defective and -resistant cancer cells or isogenic cancer cells, via calcium mobilization through the activation of ryanodine receptor and Ulk-1-PERK and AMPK-mTOR signaling cascades. Taken together, this study provides insights into the cytotoxic mechanism of neferine-induced autophagy through ryanodine receptor activation in resistant cancers.
Collapse
|
28
|
Kim EA, Sung EG, Song IH, Kim JY, Sung HJ, Sohn HY, Park JY, Lee TJ. Neferine-induced apoptosis is dependent on the suppression of Bcl-2 expression via downregulation of p65 in renal cancer cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:734-742. [PMID: 31187116 DOI: 10.1093/abbs/gmz061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/03/2019] [Indexed: 11/12/2022] Open
Abstract
Neferine is an alkaloid extracted from a seed embryo of Nelumbo nucifera and has recently been shown to have anticancer effects in various human cancer cell lines. However, the detailed molecular mechanism of neferine-induced apoptosis has not been elucidated in renal cancer cells. In the present study, we observed that neferine induced inhibition of cell proliferation and apoptosis in Caki-1 cells in a dose-dependent manner by using MT assay and flow cytometry and that neferine-mediated apoptosis was attenuated by pretreatment with N-benzyloxycarbony-Val-Ala-Asp (O-methyl)-fluoromethyketone, a pan-caspase inhibitor. Treatments with neferine dose-dependently downregulated B cell lymphoma-2 (Bcl-2) expression at the transcriptional level determined by reverse transcriptase-polymerase chain reaction. The forced expression of Bcl-2 and p65 attenuated the neferine-mediated apoptosis in Caki-1 cells. In addition, neferine induced apoptosis by downregulating Bcl-2 and p65 expression in the other two kidney cancer cell lines determined by flow cytometry and western blot analysis. Finally, we observed that treatment with neferine induced apoptosis by inhibiting the NF-κB pathway through caspase-mediated cleavage of the p65 protein by western blot analysis. Collectively, this study demonstrated that neferine-induced apoptosis is mediated by the downregulation of Bcl-2 expression via repression of the NF-κB pathway in renal cancer cells.
Collapse
Affiliation(s)
- Eun-Ae Kim
- Department of Anatomy, College of Medicine, Yeungnam University, Nam-Gu, Daegu, Korea
| | - Eon-Gi Sung
- Department of Anatomy, College of Medicine, Yeungnam University, Nam-Gu, Daegu, Korea
| | - In-Hwan Song
- Department of Anatomy, College of Medicine, Yeungnam University, Nam-Gu, Daegu, Korea
| | - Joo-Young Kim
- Department of Anatomy, College of Medicine, Yeungnam University, Nam-Gu, Daegu, Korea
| | - Hwa-Jung Sung
- Department of Food and Nutrition, Andong National University, Andong, Korea
| | - Ho-Yong Sohn
- Department of Food and Nutrition, Andong National University, Andong, Korea
| | - Jong-Yi Park
- Gyeongbuk Institute For Bio-Industry, Andong, Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Nam-Gu, Daegu, Korea
| |
Collapse
|
29
|
Liu Z, Zhang S, Wang T, Shao H, Gao J, Wang Y, Ge Y. Neferine inhibits MDA-MB-231 cells growth and metastasis by regulating miR-374a/FGFR-2. Chem Biol Interact 2019; 309:108716. [PMID: 31207222 DOI: 10.1016/j.cbi.2019.06.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Neferine (NEF) is a major bisbenzylisoquinline alkaloid mainly exists in the seed embryo of Nelumbo nucifera (Gaertn.) that possesses anti-tumor effects. Our study designed to check the effect of NEF on breast cancer MDA-MB-231 cells and further explore the potential mechanism. METHODS MDA-MB-231 cells were administrated with various dosages of NEF for 24 h after which cell viability was measured. The effects of NEF on cell proliferation, apoptosis, migration and invasion were assessed by BrdU staining, flow cytometry assay and Transwell assay. Western blot was utilized to assess the accumulation of proteins related with proliferation, apoptosis, metastasis, PI3K/AKT and MEK/ERK pathways. RESULTS Viability was efficiently reduced by NEF in a dose-dependent manner. NEF (8 μM) significantly suppressed cell proliferation, migration and invasion but enhanced apoptosis in MDA-MB-213 cells. Interestingly, NEF suppressed miR-374a expression and miR-374a mediated the inhibitory effect of NEF. Moreover, miR-374a positively regulated FGFR-2 expression and FGFR-2 overexpression impeded the effect of NEF on MDA-MB-213 cells. FGFR-2 overexpression abolished the suppressive effect of NEF on PI3K/AKT and MEK/ERK pathways. CONCLUSION We found that NEF possessed the anti-growth and anti-metastasis effect on MDA-MB-231 cells through regulating miR-374a/FGFR-2, which might provide new insight for breast cancer management.
Collapse
Affiliation(s)
- Zhisheng Liu
- Department of General Surgery, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, 266000, China
| | - Shenglin Zhang
- Department of General Surgery, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, 266000, China
| | - Tingting Wang
- Department of General Surgery, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, 266000, China
| | - Hui Shao
- Department of General Surgery, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, 266000, China
| | - Junjie Gao
- Department of Healthcare Internal Medicine, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Ye Wang
- Department of General Surgery, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, 266000, China
| | - Yunjie Ge
- Department of Healthcare Internal Medicine, Qingdao Municipal Hospital, Qingdao, 266071, China.
| |
Collapse
|
30
|
Neferine inhibits LPS-ATP-induced endothelial cell pyroptosis via regulation of ROS/NLRP3/Caspase-1 signaling pathway. Inflamm Res 2019; 68:727-738. [PMID: 31172209 DOI: 10.1007/s00011-019-01256-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Oxidative stress-induced endothelial dysfunction and pyroptosis play an important role during chronic kidney disease (CKD) progression. Neferine, which is an alkaloid ingredient from the lotus seed embryo, has many biological actions such as anti-inflammatory, anticancer and antioxidant. However, the role of neferine in endothelial cell pyroptosis and the involved mechanism remain obscure. The aim is to probe the protective effects of neferine on cell pyroptosis and the involved underlying mechanism. METHODS After the HUVECs were primed with neferine treatment for 2 h prior to LPS and ATP exposure for 24 h, the cell proliferation was determined by BrdU; the cell LDH release was detected by LDH kits; the levels of intracellular ROS, MDA and SOD were tested by detection kits; Caspase-1 activity kit was used to determine caspase-1 activity; the contents of NLRP3, ASC, caspase-1, IL-1β, IL-18 and GSDMD were tested by RT-PCR and western blot. RESULTS We found that neferine could inhibit LPS-ATP-induced oxidative stress and the activation of NLRP3 inflammasome signaling, and increased the endothelial cell viability and SOD production. siRNA which mediated the knockdown of NLRP3 promoted the neferine-induced inhibition effects of cell pyroptosis. Furthermore, these neferine-induced effects were reversed by the over-expression of NLRP3. CONCLUSIONS Our findings indicated neferine may reduce ROS by anti-oxidation and inhibit LPS-ATP-induced endothelial cell pyroptosis via blocking ROS/NLRP3/Caspase-1 signaling pathway, which provides the evidence for therapeutic effect in CKD.
Collapse
|
31
|
Zhang Y, Xiao Y, Dong Q, Ouyang W, Qin Q. Neferine in the Lotus Plumule Potentiates the Antitumor Effect of Imatinib in Primary Chronic Myeloid Leukemia Cells In Vitro. J Food Sci 2019; 84:904-910. [PMID: 30866043 DOI: 10.1111/1750-3841.14484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/19/2022]
Abstract
Imatinib, the prototype BCR-ABL tyrosine kinase inhibitor (TKI), is the first-line treatment for Philadelphia chromosome-positive chronic myeloid leukemia (CML) in the chronic phase. However, a subgroup of patients exhibit poor response or experience relapse. This issue may be overcome by combination therapy using natural compounds. Neferine, a major bisbenzylisoquinoline alkaloid extracted from "lotus plumule" (seed embryo of lotus) commonly used in traditional Chinese medicine and tea, was used herein in the combination treatment of CML. The MTT assay showed that neferine exerted cytotoxicity in primary CML cells in a dose-dependent manner. Moreover, low concentrations of neferine (4 and 8 µM) sensitized primary CML cells to imatinib (CI < 1), and significantly decreased its IC50 from 0.70 ± 0.10 to 0.32 ± 0.06 µM and 0.16 ± 0.02 µM, respectively. Cotreatment of neferine and imatinib significantly decreased the expression of BCR-ABL protein and its molecular chaperone heat shock protein 90 (Hsp90) mRNA and protein levels, and further decreased phospho-extracellular regulated protein kinase 1/2 (p-Erk1/2) and myeloid cell leukemia (Mcl-1) expression. These results suggest that neferine might be a potential imatinib sensitizer in CML treatment. PRACTICAL APPLICATION: In China, Lotus plumule, the green embryo of lotus, is used as a tea and as a source of herbal medicine in the treatment of anxiety, insomnia, spermatorrhea, and thirst. Additional, neferine, a bisbenzylisoquinoline alkaloid extracted from lotus plumule has been shown to have antitumor potential. Herein, the effect of neferine and imatinib cotreatment on primary CML cells obtained from CML patients was assessed, with a synergistic effect being observed between the two compounds. Therefore, neferine might be a promising natural compound to potentiate imatinib in CML patients.
Collapse
Affiliation(s)
- Yalan Zhang
- Xiangya Hospital, Central South Univ., Changsha, China
| | - Yuhang Xiao
- Xiangya Hospital, Central South Univ., Changsha, China
| | - Qixing Dong
- Xiangya Hospital, Central South Univ., Changsha, China
| | | | - Qun Qin
- Xiangya Hospital, Central South Univ., Changsha, China
| |
Collapse
|
32
|
The Role of the ER-Induced UPR Pathway and the Efficacy of Its Inhibitors and Inducers in the Inhibition of Tumor Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5729710. [PMID: 30863482 PMCID: PMC6378054 DOI: 10.1155/2019/5729710] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/08/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Cancer is the second most frequent cause of death worldwide. It is considered to be one of the most dangerous diseases, and there is still no effective treatment for many types of cancer. Since cancerous cells have a high proliferation rate, it is pivotal for their proper functioning to have the well-functioning protein machinery. Correct protein processing and folding are crucial to maintain tumor homeostasis. Endoplasmic reticulum (ER) stress is one of the leading factors that cause disturbances in these processes. It is induced by impaired function of the ER and accumulation of unfolded proteins. Induction of ER stress affects many molecular pathways that cause the unfolded protein response (UPR). This is the way in which cells can adapt to the new conditions, but when ER stress cannot be resolved, the UPR induces cell death. The molecular mechanisms of this double-edged sword process are involved in the transition of the UPR either in a cell protection mechanism or in apoptosis. However, this process remains poorly understood but seems to be crucial in the treatment of many diseases that are related to ER stress. Hence, understanding the ER stress response, especially in the aspect of pathological consequences of UPR, has the potential to allow us to develop novel therapies and new diagnostic and prognostic markers for cancer.
Collapse
|
33
|
Weber C, Opatz T. Bisbenzylisoquinoline Alkaloids. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 2019; 81:1-114. [DOI: 10.1016/bs.alkal.2018.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Sivalingam K, Amirthalingam V, Ganasan K, Huang CY, Viswanadha VP. Neferine suppresses diethylnitrosamine-induced lung carcinogenesis in Wistar rats. Food Chem Toxicol 2019; 123:385-398. [DOI: 10.1016/j.fct.2018.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 10/24/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023]
|
35
|
Menéndez-Perdomo IM, Facchini PJ. Benzylisoquinoline Alkaloids Biosynthesis in Sacred Lotus. Molecules 2018; 23:E2899. [PMID: 30404216 PMCID: PMC6278464 DOI: 10.3390/molecules23112899] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 12/30/2022] Open
Abstract
Sacred lotus (Nelumbo nucifera Gaertn.) is an ancient aquatic plant used throughout Asia for its nutritional and medicinal properties. Benzylisoquinoline alkaloids (BIAs), mostly within the aporphine and bisbenzylisoquinoline structural categories, are among the main bioactive constituents in the plant. The alkaloids of sacred lotus exhibit promising anti-cancer, anti-arrhythmic, anti-HIV, and anti-malarial properties. Despite their pharmacological significance, BIA metabolism in this non-model plant has not been extensively investigated. In this review, we examine the diversity of BIAs in sacred lotus, with an emphasis on the distinctive stereochemistry of alkaloids found in this species. Additionally, we discuss our current understanding of the biosynthetic genes and enzymes involved in the formation of 1-benzylisoquinoline, aporphine, and bisbenzylisoquinoline alkaloids in the plant. We conclude that a comprehensive functional characterization of alkaloid biosynthetic enzymes using both in vitro and in vivo methods is required to advance our limited knowledge of BIA metabolism in the sacred lotus.
Collapse
Affiliation(s)
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
36
|
Neferine inhibits proliferation, migration and invasion of U251 glioma cells by down-regulation of miR-10b. Biomed Pharmacother 2018; 109:1032-1040. [PMID: 30551353 DOI: 10.1016/j.biopha.2018.10.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Glioma is a common brain tumor, which is a serious threat to the life and health of human with high mortality rate. Recently, neferine (NEF) has been reported to play an important role in various cancers. In the study, we aimed to investigate the effect of NEF on human glioma cell line U251. METHODS U251 cells were pre-treated with different concentrations of NEF, and then CCK-8, BrdU, flow cytometry and transwell assays were used to test cell proliferation, apoptosis, migration and invasion. Subsequently, the expression vectors of miR-10b mimic and miR-10b inhibitor were transfected into U251 cells, and the relative expression of miR-10b was examined by qRT-PCR. The main proteins of CyclinD1/p53/p16, pro-Caspase-3/-9, cleaved-Caspase-3/-9, MMP-9, Vimentin, PTEN/PI3K/AKT and p38MAPK signal pathways were determined by western blot assay. RESULTS NEF significantly suppressed cell proliferation, and induced apoptosis, as well as regulated CyclinD1, p53, p16 and cleaved-Caspase-3/-9 expressions in U251 cells. Moreover, NEF inhibited cell migration, invasion and decreased MMP-9 and Vimentin expression in U251 cells. Additionally, miR-10b expression was down-regulated in NEF-stimulated cells, and overexpression of miR-10b reversed the regulatory effects of NEF on U251 cells proliferation, migration, invasion and apoptosis. Additionally, we found that PTEN was a direct target of miR-10b in U251 cells. Besides, NEF deactivated PTEN/PI3K/AKT and p38MAPK signal pathways by down-regulation of miR-10b in U251 cells. CONCLUSIONS These results suggested that NEF exerted anti-tumor effect by down-regulation of miR-10b and deactivation of PTEN/PI3K/AKT and p38MAPK signal pathways in glioma cells. These findings might provide a novel therapeutic strategy for glioma.
Collapse
|
37
|
Wu X, Guo Y, Min X, Pei L, Chen X. Neferine, a Bisbenzylisoquinoline Alkaloid, Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1263-1279. [PMID: 30149754 DOI: 10.1142/s0192415x18500660] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Both the incidence and prevalence of ulcerative colitis (UC) are increasing throughout the world. Neferine, a natural alkaloid, demonstrated a variety of biological activities. In this study, the anti-inflammatory effect of neferine was investigated. Raw264.7 cells were stimulated with lipopolysaccharide (LPS) or LPS plus Z-VAD-fmk (Z-VAD). The inhibitory effect of neferine on secretion of nitrite, cytokines tumor necrosis factor alpha (TNF-[Formula: see text]) and interleukin 6 (IL-6), expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was determined. The protective effect of neferine was investigated in dextran sulfate sodium (DSS)-induced UC mouse model. Neferine significantly inhibited LPS and LPS plus Z-VAD induced secretion of nitrite, cytokines, and expression of iNOS and COX-2. Oral administration of neferine (10[Formula: see text]mg/kg and 25[Formula: see text]mg/kg) significantly reduced DSS-induced mouse weight loss, decreased disease activity index (DAI) scores, improved colon pathological changes, and decreased plasma cytokines. In addition, neferine significantly inhibited the protein expression of iNOS, COX-2, receptor-interacting protein 1 (RIP1), RIP3, mixed lineage kinase domain-like protein (MLKL), and increased the protein expression of caspase-8 in colon tissues. These data suggest that neferine was a potent anti-inflammatory agent against LPS and DSS induced inflammation both in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaxia Wu
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, P. R. China
| | - Yanling Guo
- † Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi, P. R. China
| | - Xiangjing Min
- † Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi, P. R. China
| | - Lixia Pei
- ‡ Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiuping Chen
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, P. R. China.,† Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi, P. R. China
| |
Collapse
|
38
|
Kim C, Kim B. Anti-Cancer Natural Products and Their Bioactive Compounds Inducing ER Stress-Mediated Apoptosis: A Review. Nutrients 2018; 10:nu10081021. [PMID: 30081573 PMCID: PMC6115829 DOI: 10.3390/nu10081021] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second biggest cause of death worldwide. Despite a number of studies being conducted, the effective mechanism for treating cancer has not yet been fully understood. The tumor-microenvironment such as hypoxia, low nutrients could disturb function of endoplasmic reticulum (ER) to maintain cellular homeostasis, ultimately leading to the accumulation of unfolded proteins in ER, so-called ER stress. The ER stress has a close relation with cancer. ER stress initiates unfolded protein response (UPR) to re-establish ER homeostasis as an adaptive pathway in cancer. However, persistent ER stress triggers the apoptotic pathway. Therefore, blocking the adaptive pathway of ER stress or facilitating the apoptotic pathway could be an anti-cancer strategy. Recently, natural products and their derivatives have been reported to have anti-cancer effects via ER stress. Here, we address mechanisms of ER stress-mediated apoptosis and highlight strategies for cancer therapy by utilizing ER stress. Furthermore, we summarize anti-cancer activity of the natural products via ER stress in six major types of cancers globally (lung, breast, colorectal, gastric, prostate and liver cancer). This review deepens the understanding of ER stress mechanisms in major cancers as well as the suppressive impact of natural products against cancers via ER stress.
Collapse
Affiliation(s)
- Changmin Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
39
|
Zhang Q, Li Y, Miao C, Wang Y, Xu Y, Dong R, Zhang Z, Griffin BB, Yuan C, Yan S, Yang X, Liu Z, Kong B. Anti-angiogenesis effect of Neferine via regulating autophagy and polarization of tumor-associated macrophages in high-grade serous ovarian carcinoma. Cancer Lett 2018; 432:144-155. [PMID: 29879497 DOI: 10.1016/j.canlet.2018.05.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/27/2018] [Accepted: 05/30/2018] [Indexed: 12/26/2022]
Abstract
High-grade serous ovarian carcinoma (HGSOC) is one of the most lethal gynecologic malignancies. Currently, anti-angiogenesis therapy is the most promising strategy for the successful treatment of HGSOC. In this study, we found Neferine could inhibit the angiogenesis of ovarian cancer cells both in vitro and in vivo. Further analysis revealed that its suppressive effect on human umbilical vein endothelial cell (HUVEC) proliferation correlated with promoting cell cycle arrest and autophagy. The cell cycle genes were dose-dependently reduced and the level of LC3II/LC3I (microtubule associated protein 1 light chain 3) was increased. Using a specific marker for macrophages (CD206 and Mrc1), we indicated that Neferine could inhibit M2-macrophage in vivo. Finally, CD206 was stained in 150 HGSOC samples and its high expression predicted inferior overall survival. Our current study is the first to demonstrate the anti-angiogenesis mechanism of Neferine by inducing autophagy via mTOR/p70S6K pathway inhibition and suppressing M2-macrophage polarization. Our findings suggest that Neferine is an attractive reagent with great potential in HGSOC therapy, especially in standard-therapy resistant cases.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Yinuo Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Chunying Miao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Yuqiong Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Ying Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Ruifen Dong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Zhiwei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Brannan B Griffin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Shi Yan
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Zhaojian Liu
- Department of Cell Biology, Shandong University, School of Medicine, Ji'nan, Shandong, 250012, PR China.
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| |
Collapse
|
40
|
Liu X, Song X, Lu J, Chen X, Liang E, Liu X, Zhang M, Zhang Y, Du Z, Zhao Y. Neferine inhibits proliferation and collagen synthesis induced by high glucose in cardiac fibroblasts and reduces cardiac fibrosis in diabetic mice. Oncotarget 2018; 7:61703-61715. [PMID: 27533252 PMCID: PMC5308684 DOI: 10.18632/oncotarget.11225] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/27/2016] [Indexed: 12/17/2022] Open
Abstract
Cardiac fibrosis is a common pathological process accompanying diabetes mellitus. In this report, we studied the effects of neferine (a major bisbenzylisoquinline alkaloid derived from lotus embryos) on cardiac fibrosis induced by diabetes mellitus, as well as the underlying molecular pathways. In vivo, type 1 diabetes mellitus was induced in mice by administering streptozotocin. Diabetic mice were treated with neferine through oral gavage, and cardiac function was assessed using echocardiography. Total collagen deposition was assessed by Masson's trichrome and Picrosirius staining. In vitro, cardiac fibroblasts were cultured in normal or high-glucose medium with or without neferine. Neferine attenuated left ventricular dysfunction and remodeling and reduced collagen deposition in diabetic mice. In vitro, neferine inhibited cardiac fibroblast proliferation, migration, and differentiation into myofibroblasts. In addition, neferine reduced high-glucose-induced collagen production and inhibited TGF-β1-Smad, ERK and p38 MAPK signaling activation in cardiac fibroblasts. These results suggest that neferine may have antifibrogenic effects in diabetes-related cardiac fibrosis.
Collapse
Affiliation(s)
- Xue Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China.,Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Xiuhui Song
- The People's Hospital of Jimo City, Qingdao, Shandong 266200, China
| | - Jianjun Lu
- The People's Hospital of Qihe City, Dezhou, Shandong 251100, China
| | - Xueying Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Ershun Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoqiong Liu
- Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Zhanhui Du
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Yuxia Zhao
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
41
|
Hu WH, Chan GKL, Lou JS, Wu QY, Wang HY, Duan R, Cheng MYT, Dong TTX, Tsim KWK. The extract of Polygoni Cuspidati Rhizoma et Radix suppresses the vascular endothelial growth factor-induced angiogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:135-143. [PMID: 29655679 DOI: 10.1016/j.phymed.2018.03.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/29/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Polygoni Cuspidati Rhizoma et Radix (PCRR; the root and rhizome of Polygonum cuspidatum Sieb. et Zucc) is a traditional Chinese medicine for the treatment of inflammation, hyperlipemia, favus, jaundice and scald. HYPOTHESIS/PURPOSE The extract of PCRR inhibits vascular endothelial growth factor (VEGF)-induced angiogenesis. The hypothesis is supported by analysis of PCRR extract and investigation of pharmacological role and signaling mechanism of PCRR extract in regulating angiogenic responses. STUDY DESIGN The PCRR ethanolic extract was examined for its inhibitory effects on angiogenesis based on VEGF-treated human umbilical vein endothelial cells and in zebrafish model METHODS: The effects and signaling mechanism of a standardized ethanolic extract of PCRR were tested on cell proliferation, migration and tube formation in VEGF-treated human umbilical vein endothelial cells, and which was further validated in zebrafish embryo model. RESULTS The treatment of PCRR extract in cultured endothelial cells inhibited VEGF-induced cell proliferation, cell migration and tube formation in a dose-dependent manner and also suppressed the formation of sub-intestinal vessels in zebrafish embryos. Moreover, the applied PCRR extract suppressed VEGF-induced phosphorylations of VEGF receptor 2 (VEGFR2) and JNK. Thus, the site of effect triggered by PCRR was proposed to be mediated by VEGFR2. To further support this notion, the phosphorylations of Erk, Akt and eNOS, induced by VEGF, were markedly reduced under the challenge of PCRR extract: the reductions were subsequently further decreased in the present of inhibitors of Erk, Akt and eNOS. In parallel, the formation of ROS induced by VEGF in cultured endothelial cells was markedly reduced in the present of PCRR extract. CONCLUSION Collectively, our studies demonstrated the pharmacological role and signaling mechanism of PCRR in regulation of angiogenic responses, which supported further evaluation and development of PCRR as a potential therapeutic agent for the treatment and prevention of diseases related with angiogenesis.
Collapse
Affiliation(s)
- Wei-Hui Hu
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Gallant Kar-Lun Chan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Ski, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen, China; Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Jian-Shu Lou
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Qi-Yun Wu
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Huai-You Wang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Ski, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen, China
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Ski, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen, China; Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Michael Yu-Tung Cheng
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Tina Ting-Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Ski, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen, China; Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Karl Wah-Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Ski, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen, China; Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China.
| |
Collapse
|
42
|
Wang P, Zhu L, Sun D, Gan F, Gao S, Yin Y, Chen L. Natural products as modulator of autophagy with potential clinical prospects. Apoptosis 2018; 22:325-356. [PMID: 27988811 DOI: 10.1007/s10495-016-1335-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Natural compounds derived from living organisms are well defined for their remarkable biological and pharmacological properties likely to be translated into clinical use. Therefore, delving into the mechanisms by which natural compounds protect against diverse diseases may be of great therapeutic benefits for medical practice. Autophagy, an intricate lysosome-dependent digestion process, with implications in a wide variety of pathophysiological settings, has attracted extensive attention over the past few decades. Hitherto, accumulating evidence has revealed that a large number of natural products are involved in autophagy modulation, either inducing or inhibiting autophagy, through multiple signaling pathways and transcriptional regulators. In this review, we summarize natural compounds regulating autophagy in multifarious diseases including cancer, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and immune diseases, hoping to inspire further investigation of the underlying mechanisms of natural compounds and to facilitate their clinical use for multiple human diseases.
Collapse
Affiliation(s)
- Peiqi Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lingjuan Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feihong Gan
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Suyu Gao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuanyuan Yin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lixia Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
43
|
Marthandam Asokan S, Mariappan R, Muthusamy S, Velmurugan BK. Pharmacological benefits of neferine - A comprehensive review. Life Sci 2018; 199:60-70. [PMID: 29499283 DOI: 10.1016/j.lfs.2018.02.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 12/12/2022]
Abstract
This article recapitulates the existing in vitro and in vivo studies focusing on the effects of neferine-an alkaloid derivative of lotus plant, in various disease models and its effects on key signaling molecules. The review also compiles a large number of research studies that demonstrate methods for isolation and extraction, biosynthetic pathway, pharmacological activity and mode of action of neferine and their underlying mechanisms at cellular level. Neferine is a unique bis-benzylisoquinoline alkaloid that possesses a number of therapeutic effects such as anti-cancer, anti-diabetic, anti-aging, anti-microbial, anti-thrombotic, anti-arrhythmic, anti-inflammatory and even anti-HIV. It also enhances the anti-cancer properties of other anti-cancer drugs like cisplatin, adriamycin, taxol, etc. It is also reported to reverse chemo-resistance and enhance sensitivity of the cancer cells towards anti-cancer drugs. The underlying mechanisms for its activities mainly include apoptosis, autophagy and G1 arrest. Neferine protects them against the effect of drugs like cisplatin. The therapeutic properties of neferine is widely diverse, while it shows toxicity to cancer it also shows cyto-protective effects against cardio-vascular diseases, pulmonary disease, and is also effective against Alzheimer's disease and elicits anti-oxidative effect in many cellular systems. This article thus is the first ever attempt to review the therapeutic activities of neferine established in in vitro and in vivo models and to compile all the fragmented data available on the omnipotent activities of neferine.
Collapse
Affiliation(s)
| | - Ravichandran Mariappan
- Department of Biotechnology, Jawaharlal Nehru Technological University, Hyderabad 500 055, Telangana, India
| | | | | |
Collapse
|
44
|
Liu T, Liu X, Li W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget 2018; 7:40800-40815. [PMID: 27027348 PMCID: PMC5130046 DOI: 10.18632/oncotarget.8315] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/10/2016] [Indexed: 12/19/2022] Open
Abstract
Cancer is a disease caused by the abnormal proliferation and differentiation of cells governed by tumorigenic factors. Chemotherapy is one of the major cancer treatment strategies, and it functions by targeting the physiological capabilities of cancer cells, including sustained proliferation and angiogenesis, the evasion of programmed cell death, tissue invasion and metastasis. Remarkably, natural products have garnered increased attention in the chemotherapy drug discovery field because they are biologically friendly and have high therapeutic effects. Tetrandrine, isolated from the root of Stephania tetrandra S Moore, is a traditional Chinese clinical agent for silicosis, autoimmune disorders, inflammatory pulmonary diseases, cardiovascular diseases and hypertension. Recently, the novel anti-tumor effects of tetrandrine have been widely investigated. More impressive is that tetrandrine affects multiple biological activities of cancer cells, including the inhibition of proliferation, angiogenesis, migration, and invasion; the induction of apoptosis and autophagy; the reversal of multidrug resistance (MDR); and the enhancement of radiation sensitization. This review focuses on introducing the latest information about the anti-tumor effects of tetrandrine on various cancers and its underlying mechanism. Moreover, we discuss the nanoparticle delivery system being developed for tetrandrine and the anti-tumor effects of other bisbenzylisoquinoline alkaloid derivatives on cancer cells. All current evidence demonstrates that tetrandrine is a promising candidate as a cancer chemotherapeutic.
Collapse
Affiliation(s)
- Ting Liu
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Xin Liu
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, P. R. China
| | - Wenhua Li
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
45
|
Qian Y, Chen X, Qi J, Liu X. A novel analytical method based on HPLC-PDA coupled post-column derivatization to evaluate the ability to inhibit tyrosine nitration in lotus leaf extracts. RSC Adv 2018; 8:38715-38720. [PMID: 35558301 PMCID: PMC9090667 DOI: 10.1039/c8ra07087c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/23/2018] [Indexed: 01/16/2023] Open
Abstract
Protein tyrosine nitration plays a key role in many inflammatory and cardiovascular diseases and diabetes. Many natural products are used to treat these diseases through their ability to potentially interfere this reaction. Here, we describe a novel method to provide active fingerprinting of inhibition of tyrosine nitration by natural products based on post-column tyrosine nitration reaction analysis using high-performance liquid chromatography coupled to a photometric diode array. Results indicated that lotus leaf extracts exhibited obvious inhibitory activity against tyrosine nitration by peroxynitrite, and that chemical and active fingerprints were simultaneously established, with the active fingerprints indicating the active compounds of the lotus leaves. Additionally, flavonoids were screened as the principal active compounds involved in inhibiting tyrosine nitration in the lotus leaf extracts, with quercetin-3-O-glucuronide and quercetin-3-O-glucoside exhibiting the greatest contributions. Moreover, our results suggested that lotus leaves from three regions (Nanjing, Suzhou, and Hangzhou) exhibited the best inhibitory activity. These findings indicated the usefulness of this method for screening active compounds involved in inhibiting protein tyrosine nitration, and that similar strategies can likely be applied to evaluate the inhibitory activity against tyrosine nitration of other natural products. A novel analytical method based on HPLC-PDA coupled post-column derivatization to evaluate the inhibitory activity of tyrosine nitration in lotus leaf extracts.![]()
Collapse
Affiliation(s)
- Yin Qian
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- PR China
| | - Xi Chen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- PR China
| | - Jin Qi
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- PR China
| | - Xuming Liu
- School of Life Science and Technology
- China Pharmaceutical University
- Nanjing 211198
- PR China
| |
Collapse
|
46
|
Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA, Khalil AT. Plant-derived anticancer agents: A green anticancer approach. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.10.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
47
|
Kadioglu O, Law BYK, Mok SWF, Xu SW, Efferth T, Wong VKW. Mode of Action Analyses of Neferine, a Bisbenzylisoquinoline Alkaloid of Lotus ( Nelumbo nucifera) against Multidrug-Resistant Tumor Cells. Front Pharmacol 2017; 8:238. [PMID: 28529482 PMCID: PMC5418350 DOI: 10.3389/fphar.2017.00238] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/18/2017] [Indexed: 12/28/2022] Open
Abstract
Neferine, a bisbenzylisoquinoline alkaloid isolated from the green seed embryos of Lotus (Nelumbo nucifera Gaertn), has been previously shown to have various anti-cancer effects. In the present study, we evaluated the effect of neferine in terms of P-glycoprotein (P-gp) inhibition via in vitro cytotoxicity assays, R123 uptake assays in drug-resistant cancer cells, in silico molecular docking analysis on human P-gp and in silico absorption, distribution, metabolism, and excretion (ADME), quantitative structure activity relationships (QSAR) and toxicity analyses. Lipinski rule of five were mainly considered for the ADME evaluation and the preset descriptors including number of hydrogen bond donor, acceptor, hERG IC50, logp, logD were considered for the QSAR analyses. Neferine revealed higher toxicity toward paclitaxel- and doxorubicin-resistant breast, lung or colon cancer cells, implying collateral sensitivity of these cells toward neferine. Increased R123 uptake was observed in a comparable manner to the control P-gp inhibitor, verapamil. Molecular docking analyses revealed that neferine still interacts with P-gp, even if R123 was pre-bound. Bioinformatical ADME and toxicity analyses revealed that neferine possesses the druggability parameters with no predicted toxicity. In conclusion, neferine may allocate the P-gp drug-binding pocket and prevent R123 binding in agreement with P-gp inhibition experiments, where neferine increased R123 uptake.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of MainzMainz, Germany
| | - Betty Y. K. Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and TechnologyMacau, China
| | - Simon W. F. Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and TechnologyMacau, China
| | - Su-Wei Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and TechnologyMacau, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of MainzMainz, Germany
| | - Vincent K. W. Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and TechnologyMacau, China
| |
Collapse
|
48
|
Sivalingam KS, Paramasivan P, Weng CF, Viswanadha VP. Neferine Potentiates the Antitumor Effect of Cisplatin in Human Lung Adenocarcinoma Cells Via a Mitochondria-Mediated Apoptosis Pathway. J Cell Biochem 2017; 118:2865-2876. [DOI: 10.1002/jcb.25937] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Kalai Selvi Sivalingam
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering; Bharathiar University; Coimbatore Tamil Nadu India
| | - Poornima Paramasivan
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering; Bharathiar University; Coimbatore Tamil Nadu India
| | - Ching Feng Weng
- Laboratory of Molecular Physiology, Department of Life Sciences, Institute of Biotechnology; National Dong Hwa University; Hualien 974 Taiwan
| | - Vijaya padma Viswanadha
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering; Bharathiar University; Coimbatore Tamil Nadu India
- Basic Medical Science; China Medical University; Taichung Taiwan
- Departments of Biotechnology; Asia University; Taichung Taiwan
| |
Collapse
|
49
|
The anti-tumor activities of Neferine on cell invasion and oxaliplatin sensitivity regulated by EMT via Snail signaling in hepatocellular carcinoma. Sci Rep 2017; 7:41616. [PMID: 28134289 PMCID: PMC5278559 DOI: 10.1038/srep41616] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
Tumor invasion and chemotherapy resistance, which are associated with epithelial-mesenchymal transition (EMT), remain as major challenges in hepatocellular carcinoma (HCC) treatment. Neferine, a natural component of Nelumbo nucifera, have been proven the antitumor efficiency in cancer, but the effects of Neferine on HCC invasion and chemosensitivity need to be elucidated. Applying multiple assays of cell proliferation, flow cytometry, immunofluorescence staining, qRT-PCR, Western blot, fluorescence molecular tomography imaging, the influences of Neferine on EMT-regulated viability, apoptosis, invasion, and oxaliplatin (OXA) sensitivity were assessed in HCC cells of HepG2 and Bel-7402, as well as in xenograft animal models in vivo. Here, we reported that Neferine had no obvious effects on HCC cells proliferation, but significantly enhanced cytotoxicity and apoptosis caused by OXA in vitro and in vivo. Through an upregulation of E-cadherin and downregulation of Vimentin, Snail and N-cadherin, Neferine suppressed EMT-induced migration and invasion abilities of HCC cells. TGF-β1 cancelled the effects of Neferine on the migration and invasion of HCC cells. Snail overexpression or TGF-β1-induced EMT attenuated Neferine-mediated OXA sensitization in HCC. Together, our data suggest that Neferine enhances oxaliplatin sensitivity through an inhibition of EMT in HCC cells. Neferine may be used as an OXA sensitizer in HCC chemotherapy.
Collapse
|
50
|
Sharma BR, Gautam LNS, Adhikari D, Karki R. A Comprehensive Review on Chemical Profiling ofNelumbo Nucifera: Potential for Drug Development. Phytother Res 2016; 31:3-26. [DOI: 10.1002/ptr.5732] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/28/2016] [Accepted: 09/03/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Bhesh Raj Sharma
- Department of Oriental Medicine Resources, College of Natural Sciences; Mokpo National University; 61 Muan-gun Jeonnam 534-729 Korea
| | - Lekh Nath S. Gautam
- C. Eugene Bennett Department of Chemistry; West Virginia University; Morgantown WV 26506 USA
| | | | - Rajendra Karki
- Department of Oriental Medicine Resources, College of Natural Sciences; Mokpo National University; 61 Muan-gun Jeonnam 534-729 Korea
| |
Collapse
|