1
|
Hu D, Huang Z, Li W, Shan L, Wu MY, Feng S, Wan Y. Macrophage Membrane-Cloaked ROS-Responsive Albumin Nanoplatforms for Targeted Delivery of Curcumin to Alleviate Acute Liver Injury. Mol Pharm 2025; 22:771-786. [PMID: 39783460 DOI: 10.1021/acs.molpharmaceut.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Developing low-toxicity, high-efficacy, and fast-acting strategies to manage acute liver injury (ALI) is critical due to its rapid progression and potential for severe outcomes. Curcumin (CUR) has shown promise in ALI therapy due to its ability to modulate the inflammatory microenvironment by scavenging reactive oxygen species (ROS). Nevertheless, CUR is highly hydrophobic limiting its bioavailability and effective in vivo transport, which hinders its further application. In this study, we developed an inflammatory microenvironment-targeted drug delivery system by covalently coupling human serum albumin (HSA) with ROS-sensitive thioketal linkers and loading it with CUR to form nanoparticles (HSA-TK/CUR). These nanoparticles were then coated with a macrophage membrane (CM@HSA-TK/CUR), resulting in negatively charged spherical particles (≈ -23.26 mV) with an average particle size of around 165 nm. ROS responsiveness was confirmed through drug release assays and enhanced ROS depletion was further demonstrated by Diacetyldichlorofluorescein (DCFH-DA) ROS detection experiments. CM@HSA-TK/CUR treatment resulted in a 94.7% reduction in ROS levels in inflammatory cells. In addition, cellular uptake and in vivo distribution experiments demonstrated that camouflaging HSA-TK/CUR with macrophage membranes significantly enhanced its targeting of the inflammatory microenvironment. The findings revealed that CM@HSA-TK/CUR rapidly accumulated in the injured liver within 6 h, inhibited the production of pro-inflammatory factors (IL-1β, IL-6, and TNF-α), shifted macrophage polarization from M1 to M2 in vivo, and protected hepatocytes from oxidative stress-associated cell death, significantly attenuating the inflammatory response in ALI mice. In conclusion, CM@HSA-TK/CUR has excellent potential in treating mice with ALI.
Collapse
Affiliation(s)
- Dandan Hu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhenqiu Huang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenlong Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lianhai Shan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ming-Yu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
2
|
Li Y, Luo Y, Hu Y, Li S, Li G, Zhang W, Gu X, Wang J, Li S, Cheng H. Network pharmacology and multi-omics validation of the Jianpi-Yishen formula in the treatment of chronic kidney disease. Front Immunol 2025; 15:1512519. [PMID: 39877349 PMCID: PMC11772200 DOI: 10.3389/fimmu.2024.1512519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Objective Chronic kidney disease (CKD) is a major global health problem. In clinical practice, the Chinese patent herbal medicine Jianpi-Yishen (JPYS) formula is commonly used to treat CKD. However, the molecular mechanisms by which JPYS targets and modulates the host immune response remain unclear. Methods This study utilized network pharmacology, RNA sequencing (RNA-seq), and metabolic analyses using in vivo and in vitro models to investigate the impact of the JPYS formula on inflammation and the immune system. Specifically, the study focused on macrophage polarization and metabolic changes that may slow down the progression of CKD. Results A total of 14,946 CKD-related targets were identified from the GeneCards and Online Mendelian Inheritance in Man (OMIM) databases through network pharmacology analyses. 227 potential targets of the JPYS formula were predicted using the TCMSP database. Additionally, network diagram demonstrated that 11 targets were associated with macrophage activity. In vivo studies indicated that the JPYS formula could reduce blood urea nitrogen and serum creatinine in adenine-induced CKD rats. Furthermore, the formula inhibited inflammatory damage and abnormal macrophage infiltration in this CKD model. RNA-seq, proteomic and metabolic analyses identified the regulation of amino acid metabolism by betaine, specifically referring to glycine, serine, and threonine metabolism, as a key target of the JPYS formula in slowing the progression of CKD. In addition, in vitro studies suggested that JPYS may enhance tryptophan metabolism in M1 macrophage polarization and betaine metabolism in M2 macrophage polarization. Conclusions The JPYS formula has been shown to have beneficial impact on CKD; a key mechanism is the mitigation of inflammatory damage through the interaction between amino acid metabolism and macrophage polarization. Of specific importance in this context are the roles of tryptophan in M1 polarization and betaine in M2 polarization.
Collapse
Affiliation(s)
- Yuyan Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yueming Luo
- Department of Geriatrics, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yilan Hu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Siting Li
- Beijing Tongrentang Hospital of Traditional Chinese Medicine, Beijing, China
| | - Guandong Li
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wanyangchuan Zhang
- Department of Minimally Invasive Intervention and Vascular Surgery, Chongqing Red Cross Hospital (People’s Hospital of Jiangbei District), Chongqing, China
| | - Xiufen Gu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianting Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shunmin Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hong Cheng
- Department of Geriatrics, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
3
|
Chen XY, Zhi LJ, Chen J, Li R, Long KL. Research hotspots and future trends in sepsis-associated acute kidney injury: a bibliometric and visualization analysis. Front Med (Lausanne) 2025; 11:1456535. [PMID: 39839617 PMCID: PMC11747655 DOI: 10.3389/fmed.2024.1456535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025] Open
Abstract
Objectives Sepsis-associated acute kidney injury (SA-AKI) commonly occurs in critically ill patients and is closely associated with adverse outcomes. A comprehensive analysis of the current research landscape in SA-AKI can help uncover trends and key issues in this field. This study aims to provide a scientific basis for research directions and critical issues through bibliometric analysis. Methods We searched all articles on SA-AKI indexed in the SCI-Expanded of WoSCC up to May 7, 2024, and conducted bibliometric and visual analyses using bibliometric software CiteSpace and VOSviewer. Results Over the past 20 years, there has been a steady increase in literature related to renal repair following AKI. China and the United States contribute over 60% of the publications, driving research in this field. The University of Pittsburgh is the most active academic institution, producing the highest number of publications. J. A. Kellum is both the most prolific and the most cited author in this area. "Shock" and "American Journal of Physiology-Renal Physiology" are the most popular journals, publishing the highest number of articles. Recent high-frequency keywords in this field include "septic AKI," "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage." The terms "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage" represent current research hotspots and potential targets in this area. Conclusion This is the first comprehensive bibliometric study to summarize the trends and advancements in SA-AKI research in recent years. These findings identify current research frontiers and hot topics, providing valuable insights for scholars studying SA-AKI.
Collapse
Affiliation(s)
- Xing-Yue Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Jia Zhi
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun-Lan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Xiu H, Yang K, Dong L, Lai H, Zhu Z, Jiang D, Yan J, Shi C, Pan S, Yin Z, Yuwen L, Liang B. Near-Infrared Light-Responsive Cu 2MoS 4@GelMA Hydrogel with Photothermal Therapy, Antibacterial Effect and Bone Immunomodulation for Accelerating Infection Elimination and Fracture Healing. Adv Healthc Mater 2025; 14:e2403205. [PMID: 39506453 DOI: 10.1002/adhm.202403205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Managing fracture infections is a significant challenge in trauma orthopedics, given the limited self-healing capacity of fractures and the difficulty in eradicating infections. In this study, Cu2MoS4 nanoparticles (CMSs) with are prepared enzyme-like activity and both pH and near-infrared (NIR) light responsiveness. These CMSs are combined with methacrylated gelatin (GelMA) to synthesize CMSs hydrogels (CMSs@Gel) with antimicrobial and bone tissue repair-promoting capabilities. In vitro and in vivo experiments, the CMSs@Gel demonstrated good biocompatibility; peroxidase-like (POD), oxidase-like (OXD), and catalase-like (CAT) activities; excellent photothermal conversion efficiency; and immunomodulatory capacity. Furthermore, the CMSs@Gel exhibited slow degradation, enabling it to exert different pH-responsive enzyme activities and modulate the production of reactive oxygen species (ROS) and the polarization of macrophages throughout the treatment process. Notably, these effects are significantly enhanced under near-infrared (NIR) light. Additionally, under NIR irradiation, the CMSs@Gel maintained the fracture environment at a mild temperature (40-42 °C), promoting osteogenesis and angiogenesis. In summary, the CMSs@Gel enhances bactericidal activity during fracture infection and effectively promotes fracture healing after infection control, providing long-term therapeutic effects. This study offers a robust theoretical basis for the staged and long-term treatment of fracture infections in the future.
Collapse
Affiliation(s)
- Haonan Xiu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Kaili Yang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Li Dong
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Haohua Lai
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Zhangyu Zhu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Dongdong Jiang
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Junwei Yan
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Chen Shi
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Shaowei Pan
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Zhaowei Yin
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Bin Liang
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| |
Collapse
|
5
|
Li J, Yan X, Wu Z, Shen J, Li Y, Zhao Y, Du F, Li M, Wu X, Chen Y, Xiao Z, Wang S. Role of miRNAs in macrophage-mediated kidney injury. Pediatr Nephrol 2024; 39:3397-3410. [PMID: 38801452 DOI: 10.1007/s00467-024-06414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Macrophages, crucial components of the human immune system, can be polarized into M1/M2 phenotypes, each with distinct functions and roles. Macrophage polarization has been reported to be significantly involved in the inflammation and fibrosis observed in kidney injury. MicroRNA (miRNA), a type of short RNA lacking protein-coding function, can inhibit specific mRNA by partially binding to its target mRNA. The intricate association between miRNAs and macrophages has been attracting increasing interest in recent years. This review discusses the role of miRNAs in regulating macrophage-mediated kidney injury. It shows how miRNAs can influence macrophage polarization, thereby altering the biological function of macrophages in the kidney. Furthermore, this review highlights the significance of miRNAs derived from exosomes and extracellular vesicles as a crucial mediator in the crosstalk between macrophages and kidney cells. The potential of miRNAs as treatment applications and biomarkers for macrophage-mediated kidney injury is also discussed.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xida Yan
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, China
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yalin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
6
|
Wu Z, Hu J, Li Y, Yao X, Ouyang S, Ren K. Assessment of renal pathophysiological processes and protective effect of quercetin on contrast-induced acute kidney injury in type 1 diabetic mice using diffusion tensor imaging. Redox Rep 2024; 29:2398380. [PMID: 39284588 PMCID: PMC11407404 DOI: 10.1080/13510002.2024.2398380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose: To investigate the renal pathophysiological processes and protective effect of quercetin on contrast-induced acute kidney injury (CI-AKI) in mice with type 1 diabetic mellitus(DM) using diffusion tensor imaging(DTI).Methods: Mice with DM were divided into two groups. In the diabetic + contrast medium(DCA) group, the changes of the mice kidneys were monitored at 1, 24, 48, and 72 h after the injection of iodixanol(4gI/kg). The mice in the diabetic + contrast medium + quercetin(DCA + QE) group were orally given different concentrations of quercetin for seven days before injection of iodixanol. In vitro experiments, renal tubular epithelial (HK-2) cells exposed to high glucose conditions were treated with various quercetin concentrations before treatment with iodixanol(250 mgI/mL).Results: DTI-derived mean diffusivity(MD) and fractional anisotropy(FA) values can be used to evaluate CI-AKI effectively. Quercetin significantly increased the expression of Sirt 1 and reduced oxidative stress by increasing Nrf 2/HO-1/SOD1. The antiapoptotic effect of quercetin on CI-AKI was revealed by decreasing proteins level and by reducing the number of apoptosis-positive cells. In addition, flow cytometry indicated quercetin-mediated inhibition of M1 macrophage polarization in the CI-AKI.Conclusions: DTI will be an effective noninvasive tool in diagnosing CI-AKI. Quercetin attenuates CI-AKI on the basis of DM through anti-oxidative stress, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Ziqian Wu
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen Radiological Control Center, Xiamen, People's Republic of China
| | - Jingyi Hu
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen Radiological Control Center, Xiamen, People's Republic of China
| | - Yanfei Li
- Cell Therapy Research Center, Xiamen Humanity Hospital, Xiamen, People's Republic of China
| | - Xiang Yao
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Siyu Ouyang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen Radiological Control Center, Xiamen, People's Republic of China
| |
Collapse
|
7
|
Qin W, Huang J, Zhang M, Xu M, He J, Liu Q. Nanotechnology-Based Drug Delivery Systems for Treating Acute Kidney Injury. ACS Biomater Sci Eng 2024; 10:6078-6096. [PMID: 39226188 PMCID: PMC11480945 DOI: 10.1021/acsbiomaterials.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Acute kidney injury (AKI) is a disease that is characterized by a rapid decline in renal function and has a relatively high incidence in hospitalized patients. Sepsis, renal hypoperfusion, and nephrotoxic drug exposure are the main causes of AKI. The major therapy measures currently include supportive treatment, symptomatic treatment, and kidney transplantation. These methods are supportive treatments, and their results are not satisfactory. Fortunately, many new treatments that markedly improve the AKI therapy efficiency are emerging. These include antioxidant therapy, ferroptosis therapy, anti-inflammatory therapy, autophagy therapy, and antiapoptotic therapy. In addition, the development of nanotechnology has further promoted therapeutic effects on AKI. In this review, we highlight recent advances in the development of nanocarriers for AKI drug delivery. Emphasis has been placed on the latest developments in nanocarrier modification and design. We also summarize the applications of different nanocarriers in AKI treatment. Finally, the advantages and challenges of nanocarrier applications in AKI are summarized, and several nanomedicines that have been approved for clinical trials to treat diverse kidney diseases are listed.
Collapse
Affiliation(s)
- Wanbing Qin
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Jiaqi Huang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Manting Zhang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Mingwei Xu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Junbing He
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Qinghua Liu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
- Department
of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
- NHC Key
Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong
Provincial Key Laboratory of Nephrology, Guangzhou, 510080 Guangdong, China
| |
Collapse
|
8
|
Ban JQ, Ao LH, He X, Zhao H, Li J. Advances in macrophage-myofibroblast transformation in fibrotic diseases. Front Immunol 2024; 15:1461919. [PMID: 39445007 PMCID: PMC11496091 DOI: 10.3389/fimmu.2024.1461919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophage-myofibroblast transformation (MMT) has emerged as a discovery in the field of fibrotic disease research. MMT is the process by which macrophages differentiate into myofibroblasts, leading to organ fibrosis following organ damage and playing an important role in fibrosis formation and progression. Recently, many new advances have been made in studying the mechanisms of MMT occurrence in fibrotic diseases. This article reviews some critical recent findings on MMT, including the origin of MMT in myofibroblasts, the specific mechanisms by which MMT develops, and the mechanisms and effects of MMT in the kidneys, lungs, heart, retina, and other fibrosis. By summarizing the latest research related to MMT, this paper provides a theoretical basis for elucidating the mechanisms of fibrosis in various organs and developing effective therapeutic targets for fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and
Disease Control, Ministry of Education, Guizhou Medical University,
Guiyang, China
| |
Collapse
|
9
|
Guo S, Zhou L, Liu X, Gao L, Li Y, Wu Y. Baicalein alleviates cisplatin-induced acute kidney injury by inhibiting ALOX12-dependent ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155757. [PMID: 38805781 DOI: 10.1016/j.phymed.2024.155757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/07/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND In acute kidney injury (AKI), ferroptosis is the main mechanism of cell death in the renal tubular epithelium. Baicalein, a traditional Chinese medicine monomer, plays a protective role in various kidney diseases; however, the effect of baicalein on ferroptosis in AKI still needs further exploration. PURPOSE In this study, we explored the role of baicalein and its specific mechanism in mediating ferroptosis in cisplatin-induced AKI. METHODS We used a cisplatin-induced AKI model to study the effects of baicalein on renal tissue and tubular epithelial cell injury. The effects of baicalein on tubular epithelial cell ferroptosis were detected in cisplatin-induced AKI and further verified by folic acid-induced AKI. The Swiss Target Prediction online database was used to predict the possible mechanism by which baicalein regulates ferroptosis, and the specific target proteins were further verified. Molecular docking and SPR were used to further determine the binding potential of baicalein to the target protein. Finally, RNA interference (RNAi) technology and enzymatic inhibition were used to determine whether baicalein regulates ferroptosis through target proteins. RESULTS Baicalein alleviated cisplatin- and folic acid-induced renal dysfunction and pathological damage and improved cisplatin-induced HK2 cell injury. Mechanistically, baicalein reduced the expression of 12-lipoxygenase (ALOX12), which inhibits phospholipid peroxidation and ferroptosis in AKI. Molecular docking and SPR demonstrated direct binding between baicalein and ALOX12. Finally, we found that silencing ALOX12 had a regulatory effect similar to that of baicalein. Comparable results were also obtained with the ALOX12 inhibitor ML355. CONCLUSION This was the first study to confirm that baicalein regulates ferroptosis both in vitro and in vivo in cisplatin-induced AKI and to verify the regulatory effect of baicalein in folic acid-induced AKI. Our results reveal the critical role of ALOX12 in kidney damage and ferroptosis caused by cisplatin and emphasize the regulatory effect of baicalein on renal tubular epithelial cell ferroptosis mediated by ALOX12. Baicalein is an effective drug for treating AKI, and ALOX12 is a potential drug target.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Lang Zhou
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yuanyuan Li
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Center for Scientific Research of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
10
|
Singh S, Supaweera N, Nwabor OF, Yusakul G, Chaichompoo W, Suksamrarn A, Panpipat W, Chunglok W. Polymeric scaffold integrated with nanovesicle-entrapped curcuminoids for enhanced therapeutic efficacy. Nanomedicine (Lond) 2024; 19:1313-1329. [PMID: 38884141 PMCID: PMC11285238 DOI: 10.1080/17435889.2024.2347823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024] Open
Abstract
Aim: Polymeric scaffolds were developed fortified with nanovesicle-encapsulated individual curcumin (CUR) and tetrahydrocurcumin (THC) for improved therapeutic efficacy due to their low stability and efficacy in native form. Method: Nanovesicle-encapsulated individual CUR and THC were fabricated using thin-film hydration techniques and characterized. Results & conclusion: CUR/THC in native and vesicle-encapsulated form demonstrated diminished LPS-instigate nitric oxide (NO) levels in macrophage cells in a concentration-dependent demeanor. However, vesicle-encapsulated CUR/THC inhibited NO production at lower concentrations, compared with the native CUR/THC form. Furthermore, the scaffold fortified with vesicle-encapsulated CUR/THC demonstrated improved physical properties with excellent antioxidant, biocompatibility, and human keratinocyte cell proliferation ability. The results recommended that nanovesicle-encapsulated THC can be retained as a potential substitute for CUR with improved therapeutic efficacy.
Collapse
Affiliation(s)
- Sudarshan Singh
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Food Technology & Innovation Research Center of Excellence, Research & Innovation Institute of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nassareen Supaweera
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Ozioma F Nwabor
- Department of Biomedical & Chemical Engineering, College of Engineering & Computer Science, Syracuse University, Syracuse, NY 13244, USA
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Waraluck Chaichompoo
- Department of Food & Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry & Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Worawan Panpipat
- Food Technology & Innovation Research Center of Excellence, Research & Innovation Institute of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- School of Agricultural Technology & Food Industry, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Food Technology & Innovation Research Center of Excellence, Research & Innovation Institute of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| |
Collapse
|
11
|
Liang Y, Ren T, Li R, Yu Z, Wang Y, Zhang X, Qin Z, Li J, Hu J, Luo C. Natural Products with Potential Effects on Hemorrhoids: A Review. Molecules 2024; 29:2673. [PMID: 38893547 PMCID: PMC11173953 DOI: 10.3390/molecules29112673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Hemorrhoid disease is a common anorectal disorder affecting populations worldwide, with high prevalence, treatment difficulties, and considerable treatment costs. Compared to other treatment options, medical therapy for hemorrhoids offers minimal harm, more dignity to patients, and is more economical. Unfortunately, there are few chemical hemorrhoid medications available clinically, which makes the search for efficacious, cost-effective, and environmentally friendly new medication classes a focal point of research. In this context, searching for available natural products to improve hemorrhoids exhibits tremendous potential. These products are derived from nature, predominantly from plants, with a minor portion coming from animals, fungi, and algae. They have excellent coagulation pathway regulation, anti-inflammatory, antibacterial, and tissue regeneration activities. Therefore, we take the view that they are a class of potential hemorrhoid drugs, prevention products, and medication add-on ingredients. This article first reviews the factors contributing to the development of hemorrhoids, types, primary symptoms, and the mechanisms of natural products for hemorrhoids. Building on this foundation, we screened natural products with potential hemorrhoid improvement activity, including polyphenols and flavonoids, terpenes, polysaccharides, and other types.
Collapse
Affiliation(s)
- Yicheng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| | - Tankun Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| | - Ruyi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| | - Zhonghui Yu
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637002, China;
| | - Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| | - Xin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| | - Zonglin Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| | - Jinlong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| | - Jing Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| | - Chuanhong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (T.R.); (R.L.); (Y.W.); (X.Z.); (Z.Q.); (J.L.)
| |
Collapse
|
12
|
Dai C, Sharma G, Liu G, Shen J, Shao B, Hao Z. Therapeutic detoxification of quercetin for aflatoxin B1-related toxicity: Roles of oxidative stress, inflammation, and metabolic enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123474. [PMID: 38309422 DOI: 10.1016/j.envpol.2024.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Aflatoxins (AFTs), a type of mycotoxin mainly produced by Aspergillus parasiticus and Aspergillus flavus, could be detected in food, feed, Chinese herbal medicine, grain crops and poses a great threat to public health security. Among them, aflatoxin B1 (AFB1) is the most toxic one. Exposure to AFB1 poses various health risks to both humans and animals, including the development of chronic inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. The molecular mechanisms underlying these risks are intricate and dependent on specific contexts. This review primarily focuses on summarizing the protective effects of quercetin, a natural phenolic compound, in mitigating the toxic effects induced by AFB1 in both in vitro experiments and animal models. Additionally, the review explores the molecular mechanisms that underlie these protective effects. Quercetin has been demonstrated to not only have the direct inhibitory action on the production of AFTs from Aspergillus, both also possess potent ameliorative effects against AFB1-induced cytotoxicity, hepatotoxicity, and neurotoxicity. These effects are attributed to the inhibition of oxidative stress, mitochondrial dysfunction, mitochondrial apoptotic pathway, and inflammatory response. It could also directly target several metabolic enzymes (i.e., CYP3As and GSTA1) to reduce the production of toxic metabolites of AFB1 within cells, then reduce AFB1-induced cytotoxicity. In conclusion, this review highlights quercetin is a promising detoxification agent for AFB1. By advancing our understanding of the protective mechanisms offered by quercetin, we aim to contribute to the development of effective detoxification agents against AFB1, ultimately promoting better health outcomes.
Collapse
Affiliation(s)
- Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gaoyi Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing, 100013, PR China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
13
|
Zhang J, Jiang J, Wang B, Wang Y, Qian Y, Suo J, Li Y, Peng Z. SAP130 released by ferroptosis tubular epithelial cells promotes macrophage polarization via Mincle signaling in sepsis acute kidney injury. Int Immunopharmacol 2024; 129:111564. [PMID: 38320352 DOI: 10.1016/j.intimp.2024.111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
The pathological mechanism of sepsis-associated acute kidney injury (SA-AKI) is complex and involves tubular epithelial cell (TEC) death and immune cell activation. However, the interaction between tubular cell death and macrophage-mediated inflammation remains unclear. In this study, we uncovered that TEC ferroptosis was activated in SA-AKI. Increased levels of ferroptotic markers, including ferroptosis-related proteins, lipid peroxidation, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), reactive oxygen species (ROS), and mitochondrial damage, were observed in the kidney tissue of cecum ligation and puncture (CLP) and Lipopolysaccharide (LPS)-induced SA-AKI mouse models, which were subsequently suppressed by Ferrostatin-1 (Fer-1). In vitro experiments showed that Fer-1 inhibits LPS-induced mitochondrial damage, Fe2+ accumulation, and cytosolic ROS production. Moreover, it was found that TEC ferroptosis induced by promoted macrophage-inducible C-type lectin (Mincle) and its downstream expression and M1 polarization, which was mediated by the release of spliceosome-associated protein 130 (SAP130), an endogenous ligand of Mincle, from TEC. It was confirmed in vitro that the supernatant from LPS-stimulated TECs promoted Mincle expression and M1 polarization in macrophages. Further experiments revealed that M1 macrophages aggravated TEC ferroptosis, which was offset by neutralizing SAP130 or inhibiting Mincle expression. In addition, neutralizing the circulatory SAP130 blunted kidney ferroptosis and Mincle expression, as well as macrophage infiltration in the kidney of SA-AKI mice. In conclusion, the release of SAP130 from ferroptotic TECs promoted M1 macrophage polarization by triggering Mincle/syk/NF-κB signaling, and M1 macrophages, in turn, aggravated TEC ferroptosis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Jun Jiang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Bingqing Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Yue Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Yaoyao Qian
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Jinmeng Suo
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|
14
|
Gao J, Deng Q, Yu J, Wang C, Wei W. Role of renal tubular epithelial cells and macrophages in cisplatin-induced acute renal injury. Life Sci 2024; 339:122450. [PMID: 38262575 DOI: 10.1016/j.lfs.2024.122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a sudden and continuous decline in renal function. The drug cisplatin is commonly used as chemotherapy for solid tumors, and cisplatin-induced acute kidney injury (CI-AKI), which is characterized by acute tubular necrosis and inflammation, frequently occurs in tumor patients. Renal tubular epithelial cells (RTECs) are severely damaged early in this process and play an important role in renal tubular injury and the recruitment of immune cells. Macrophages are the most common infiltrating immune cells in the kidney and have a significant impact on CI-AKI and subsequent repair. This article reviews the latest research progress on the effects of RTECs and macrophages on CI-AKI and their interactions in AKI to provide a direction for identifying therapeutic targets for treating AKI.
Collapse
Affiliation(s)
- Jinzhang Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Qinxiang Deng
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Third Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jun Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China.
| |
Collapse
|
15
|
Jin J, Yang YR, Gong Q, Wang JN, Ni WJ, Wen JG, Meng XM. Role of epigenetically regulated inflammation in renal diseases. Semin Cell Dev Biol 2024; 154:295-304. [PMID: 36328897 DOI: 10.1016/j.semcdb.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/01/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
In recent decades, renal disease research has witnessed remarkable advances. Experimental evidence in this field has highlighted the role of inflammation in kidney disease. Epigenetic dynamics and immunometabolic reprogramming underlie the alterations in cellular responses to intrinsic and extrinsic stimuli; these factors determine cell identity and cell fate decisions and represent current research hotspots. This review focuses on recent findings and emerging concepts in epigenetics and inflammatory regulation and their effect on renal diseases. This review aims to summarize the role and mechanisms of different epigenetic modifications in renal inflammation and injury and provide new avenues for future research on inflammation-related renal disease and drug development.
Collapse
Affiliation(s)
- Juan Jin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Ya-Ru Yang
- Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, Hefei, China
| | - Qian Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
16
|
Zhai J, Chen Z, Zhu Q, Guo Z, Wang N, Zhang C, Deng H, Wang S, Yang G. The Protective Effects of Curcumin against Renal Toxicity. Curr Med Chem 2024; 31:5661-5669. [PMID: 38549536 DOI: 10.2174/0109298673271161231121061148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/27/2023] [Accepted: 10/30/2023] [Indexed: 09/25/2024]
Abstract
Curcumin is a naturally polyphenolic compound used for hepatoprotective, thrombosuppressive, neuroprotective, cardioprotective, antineoplastic, antiproliferative, hypoglycemic, and antiarthritic effects. Kidney disease is a major public health problem associated with severe clinical complications worldwide. The protective effects of curcumin against nephrotoxicity have been evaluated in several experimental models. In this review, we discussed how curcumin exerts its protective effect against renal toxicity and also illustrated the mechanisms of action such as anti-inflammatory, antioxidant, regulating cell death, and anti-fibrotic. This provides new perspectives and directions for the clinical guidance and molecular mechanisms for the treatment of renal diseases by curcumin.
Collapse
Affiliation(s)
- Jianan Zhai
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhengguo Chen
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Qi Zhu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhifang Guo
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| |
Collapse
|
17
|
Yuan W, Kou S, Ma Y, Qian Y, Li X, Chai Y, Jiang Z, Zhang L, Sun L, Huang X. Hyperoside ameliorates cisplatin-induced acute kidney injury by regulating the expression and function of Oat1. Xenobiotica 2023; 53:559-571. [PMID: 37885225 DOI: 10.1080/00498254.2023.2270046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Cisplatin is a widely used chemotherapeutic agent to treat solid tumours in clinics. However, cisplatin-induced acute kidney injury (AKI) limits its clinical application. This study investigated the effect of hyperoside (a flavonol glycoside compound) on regulating AKI.The model of cisplatin-induced AKI was established, and hyperoside was preadministered to investigate its effect on improving kidney injury.Hyperoside ameliorated renal pathological damage, reduced the accumulation of SCr, BUN, Kim-1 and indoxyl sulphate in vivo, increased the excretion of indoxyl sulphate into the urine, and upregulated the expression of renal organic anion transporter 1 (Oat1). Moreover, evaluation of rat kidney slices demonstrated that hyperoside promoted the uptake of PAH (p-aminohippurate, the Oat1 substrate), which was confirmed by transient over-expression of OAT1 in HEK-293T cells. Additionally, hyperoside upregulated the mRNA expression of Oat1 upstream regulators hepatocyte nuclear factor-1α (HNF-1α) and pregnane X receptor (PXR).These findings indicated hyperoside could protect against cisplatin-induced AKI by promoting indoxyl sulphate excretion through regulating the expression and function of Oat1, suggesting hyperoside may offer a potential tactic for cisplatin-induced AKI treatment.
Collapse
Affiliation(s)
- Wenjing Yuan
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Shanshan Kou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Ying Ma
- Foreign Language Teaching Department, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yusi Qian
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Xinyu Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Yuanyuan Chai
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Zhenzhou Jiang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Lixin Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Xin Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
18
|
Ji ZH, Gao F, Xie WY, Wu HY, Ren WZ, Yuan B. Mammary Epithelial Cell-Derived Exosomal miR-221-3p Regulates Macrophage Polarization by Targeting Igf2 bp2 during Mastitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14742-14757. [PMID: 37757458 DOI: 10.1021/acs.jafc.3c03350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Mastitis affects the milk quality and yield and is the most expensive disease in dairy cows. Elucidation of the pathogenesis of mastitis is of great importance for disease control. As a medium of intercellular communication, exosomes play key roles in various inflammatory diseases by regulating macrophage polarization. However, the molecular factors in exosomes that mediate the intercellular communication between mammary epithelial cells and macrophages during mastitis remain to be further explored. In this study, we isolated and identified mammary epithelial cell-derived exosomes from a lipopolysaccharide (LPS)/lipoteichoic acid (LTA)-induced mastitis cell model, and we demonstrated that exosomes from LPS/LTA-stimulated mammary epithelial cells promote M1-type macrophage polarization in vivo and in vitro. Based on the results of high-throughput sequencing, we constructed a differential miRNA (microRNA) expression profile of exosomes and demonstrated that miR-221-3p was highly expressed. Furthermore, in vivo and in vitro experiments, combined with coculture experiments and fluorescence tracing, showed that high miR-221-3p expression promoted M1-type macrophage polarization, demonstrating the transcellular role of miR-221-3p. Mechanistically, dual luciferase reporter gene assays and rescue assays showed that miR-221-3p regulated macrophage polarization by targeting Igf2bp2. The results of this study will deepen our understanding of the pathogenesis of mastitis, and the molecular regulatory axis that was established in this study is expected to be a target for mastitis treatment.
Collapse
Affiliation(s)
- Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Fei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Hong-Yu Wu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
- Jilin Academy of Agricultural Sciences, Jilin 132101, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| |
Collapse
|
19
|
Xiao M, Li G, Yang H. Microbe-host interactions: structure and functions of Gram-negative bacterial membrane vesicles. Front Microbiol 2023; 14:1225513. [PMID: 37720140 PMCID: PMC10500606 DOI: 10.3389/fmicb.2023.1225513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Bacteria-host interaction is a common, relevant, and intriguing biological phenomena. The host reacts actively or passively to the bacteria themselves, their products, debris, and so on, through various defense systems containing the immune system, the bacteria communicate with the local or distal tissues of the host via their own surface antigens, secreted products, nucleic acids, etc., resulting in relationships of attack and defense, adaptation, symbiosis, and even collaboration. The significance of bacterial membrane vesicles (MVs) as a powerful vehicle for the crosstalk mechanism between the two is growing. In the recent decade, the emergence of MVs in microbial interactions and a variety of bacterial infections, with multiple adhesions to host tissues, cell invasion and evasion of host defense mechanisms, have brought MVs to the forefront of bacterial pathogenesis research. Whereas MVs are a complex combination of molecules not yet fully understood, research into its effects, targeting and pathogenic components will advance its understanding and utilization. This review will summarize structural, extraction and penetration information on several classes of MVs and emphasize the role of MVs in transport and immune response activation. Finally, the potential of MVs as a therapeutic method will be highlighted, as will future research prospects.
Collapse
Affiliation(s)
- Min Xiao
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, China
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Guiding Li
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, China
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, China
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
20
|
Mufti A, Feriani A, Ouchari W, Mandour YM, Tlili N, Ibrahim MA, Mahmoud MF, Sobeh M. Leonotis ocymifolia (Burm.f.) Iwarsson aerial parts aqueous extract mitigates cisplatin-induced nephrotoxicity via attenuation of inflammation, and DNA damage. Front Pharmacol 2023; 14:1221486. [PMID: 37593171 PMCID: PMC10428015 DOI: 10.3389/fphar.2023.1221486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Herein, we explored the protective effect of Leonotis ocymifolia (Burm.f.) Iwarsson aerial parts extract (LO) against cisplatin (CP)-induced nephrotoxicity in rats and profiled their phytocontents. A total of 31 compounds belonging to organic and phenolic acids and their glycosides as well as flavonoids and their O- and C-glycosides were identified through LC-MS/MS. The DPPH and FRAP assays revealed that the extract had powerful antioxidant properties. The in vivo results demonstrated that administering LO extract for 30 days (40 and 80 mg/kg b. w.) significantly improved the altered renal injury markers via reducing creatinine (high dose only) and uric acid levels compared to the Cp-group. The deleterious action of cisplatin on renal oxidative stress markers (GSH, MDA, SOD, and CAT) were also mitigated by LO-pretreatment. The reduction of the inflammatory marker (IL-6), and inhibition of DNA fragmentation, highlighted the prophylactic action of LO in kidney tissue. Molecular docking followed by a 100 ns molecular dynamic simulation analyses revealed that, amongst the 31 identified compounds in LO, chlorogenic and caffeoylmalic acids had the most stable binding to IL-6. The nephroprotective effects were further confirmed by histopathological observations, which showed improvement in ultrastructural changes induced by cisplatin. The observed findings reinforce the conclusion that L. ocymifolia extract exerts nephroprotective properties, which could be related to its antioxidant and anti-inflammatory activities. Further studies are required to determine the therapeutic doses and the proper administration time.
Collapse
Affiliation(s)
- Afoua Mufti
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Wafae Ouchari
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Yasmine M. Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
| | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de L’Environnement, Université de Carthage, Carthage, Tunisia
| | | | - Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mansour Sobeh
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
21
|
Yan Q, Li M, Dong L, Luo J, Zhong X, Shi F, Ye G, Zhao L, Fu H, Shu G, Zhao X, Zhang W, Yin H, Li Y, Tang H. Preparation, characterization and protective effect of chitosan - Tripolyphosphate encapsulated dihydromyricetin nanoparticles on acute kidney injury caused by cisplatin. Int J Biol Macromol 2023; 245:125569. [PMID: 37369257 DOI: 10.1016/j.ijbiomac.2023.125569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Dihydromyricetin (DMY) is a natural dihydroflavonol compound known for its diverse pharmacological benefits. However, its limited stability and bioavailability posed significant challenges for further applications. To address these issues, in this study, an ion crosslinking method was utilized to prepare chitosan nanoparticles that were loaded with DMY. The synthesized chitosan nanoparticles (CS-DMY-NPs) were spherical in shape with particle size and ζ potential of 198.7 nm and 45.05 mV, respectively. Furthermore, in vitro release experiments demonstrated that CS-DMY-NPs had sustained release and protective effects in simulated gastric and intestinal fluids. CS-DMY-NPs exhibited better antioxidant activity by ABTS and DPPH radical scavenging activity than free DMY. In vivo study showed that CS-DMY-NPs alleviated cisplatin-induced kidney damage by inhibiting oxidative stress and proinflammatory cytokines, and had better activity compared to DMY (free). Immunofluorescence data showed that CS-DMY-NPs activated the Nrf2 signaling pathways in a dose-dependent manner to combat cisplatin-induced kidney damage. Our results demonstrate that CS-TPP has good compatibility with DMY, and CS-DMY-NPs exhibited better protective effects against cisplatin-induced acute kidney injury (AKI) than free DMY.
Collapse
Affiliation(s)
- Qiaohua Yan
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Meiqing Li
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Liying Dong
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Luo
- Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China
| | - Xiaohui Zhong
- The Disease Prevention and Control Center of Cuipin District, Yibin 644000, China
| | - Fei Shi
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Zhao
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Hualin Fu
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Shu
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinghong Zhao
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Zhang
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongmei Yin
- School of Animal Science, Xichang University, Xichang 615000, Sichuan Province, China
| | - Yinglun Li
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China.
| | - Huaqiao Tang
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
22
|
Shu H, Wang Y, Zhang H, Dong Q, Sun L, Tu Y, Liao Q, Feng L, Yao L. The role of the SGK3/TOPK signaling pathway in the transition from acute kidney injury to chronic kidney disease. Front Pharmacol 2023; 14:1169054. [PMID: 37361201 PMCID: PMC10285316 DOI: 10.3389/fphar.2023.1169054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Profibrotic phenotype of renal tubular epithelial cells (TECs) featured with epithelial to mesenchymal transition (EMT) and profibrotic factors secretion, and aberrant accumulation of CD206+ M2 macrophages are the key points in the transition from acute kidney injury (AKI) to chronic kidney disease (CKD). Nevertheless, the underlying mechanisms involved remain incompletely understood. Serum and glucocorticoid-inducible kinase (SGK) is a serine/threonine protein kinase, required for intestinal nutrient transport and ion channels modulation. T-LAK-cell-originated protein kinase (TOPK) is a member of the mitogen activated protein kinase family, linked to cell cycle regulation. However, little is known about their roles in AKI-CKD transition. Methods: In this study, three models were constructed in C57BL/6 mice: low dose and multiple intraperitoneal injection of cisplatin, 5/6 nephrectomy and unilateral ureteral obstruction model. Rat renal tubular epithelial cells (NRK-52E) were dealt with cisplatin to induce profibrotic phenotype, while a mouse monocytic cell line (RAW264.7) were cultured with cisplatin or TGF-β1 to induce M1 or M2 macrophage polarization respectively. And co-cultured NRK-52E and RAW264.7 through transwell plate to explore the interaction between them. The expression of SGK3 and TOPK phosphorylation were detected by immunohistochemistry, immunofluorescence and western blot analysis. Results: In vivo, the expression of SGK3 and p-TOPK were gradually inhibited in TECs, but enhanced in CD206+ M2 macrophages. In vitro, SGK3 inhibition aggravated epithelial to mesenchymal transition through reducing the phosphorylation state of TOPK, and controlling TGF-β1 synthesis and secretion in TECs. However, SGK3/TOPK axis activation promoted CD206+ M2 macrophage polarization, which caused kidney fibrosis by mediating macrophage to myofibroblast transition (MMT). When co-cultured, the TGF-β1 from profibrotic TECs evoked CD206+ M2 macrophage polarization and MMT, which could be attenuated by SGK3/TOPK axis inhibition in macrophages. Conversely, SGK3/TOPK signaling pathway activation in TECs could reverse CD206+ M2 macrophages aggravated EMT. Discussion: We revealed for the first time that SGK3 regulated TOPK phosphorylation to mediate TECs profibrotic phenotype, macrophage plasticity and the crosstalk between TECs and macrophages during AKI-CKD transition. Our results demonstrated the inverse effect of SGK3/TOPK signaling pathway in profibrotic TECs and CD206+ M2 macrophages polarization during the AKI-CKD transition.
Collapse
Affiliation(s)
- Huapan Shu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingqing Dong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Nephrology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lulu Sun
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuchi Tu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianqian Liao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Feng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
23
|
Li J, Li T, Li Z, Song Z, Gong X. Potential therapeutic effects of Chinese meteria medica in mitigating drug-induced acute kidney injury. Front Pharmacol 2023; 14:1153297. [PMID: 37077810 PMCID: PMC10106589 DOI: 10.3389/fphar.2023.1153297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Drug-induced acute kidney injury (DI-AKI) is one of the leading causes of kidney injury, is associated with high mortality and morbidity, and limits the clinical use of certain therapeutic or diagnostic agents, such as antineoplastic drugs, antibiotics, immunosuppressants, non-steroidal anti-inflammatory drugs, and contrast media. In recent years, numerous studies have shown that many Chinese meteria medica, metabolites derived from botanical drugs, and Chinese medicinal formulas confer protective effects against DI-AKI by targeting a variety of cellular or molecular mechanisms, such as oxidative stress, inflammatory, cell necrosis, apoptosis, and autophagy. This review summarizes the research status of common DI-AKI with Chinese meteria medica interventions, including cisplatin, gentamicin, contrast agents, methotrexate, and acetaminophen. At the same time, this review introduces the metabolites with application prospects represented by ginseng saponins, tetramethylpyrazine, panax notoginseng saponins, and curcumin. Overall, this review provides a reference for the development of promising nephroprotectants.
Collapse
|
24
|
Zhang Y, Tu J, Li Y, Wang Y, Lu L, Wu C, Yu XY, Li Y. Inflammation macrophages contribute to cardiac homeostasis. CARDIOLOGY PLUS 2023. [DOI: 10.1097/cp9.0000000000000035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
25
|
Shen L, Chen W, Ding J, Shu G, Chen M, Zhao Z, Xia S, Ji J. The role of metabolic reprogramming of oxygen-induced macrophages in the dynamic changes of atherosclerotic plaques. FASEB J 2023; 37:e22791. [PMID: 36723768 DOI: 10.1096/fj.202201486r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
Atherosclerosis (As) is a chronic vascular inflammatory disease. Macrophages are the most important immune cells in atherosclerotic plaques, and the phenotype of plaque macrophages shifts dynamically to adapt to changes in the plaque microenvironment. The aerobic microenvironment of early atherosclerotic plaques promotes the transformation of M2/alternatively activated macrophages mainly through oxidative phosphorylation; the anoxic microenvironment of advanced atherosclerotic plaques mainly promotes the formation of M1/classically activated macrophages through anaerobic glycolysis; and the adventitia angiogenesis of aged atherosclerotic plaques leads to an increase in the proportion of M2/M1 macrophages. Therefore, this review deeply elucidates the dynamic change mechanism of plaque macrophages and the regulation of plaque oxygen content and immune metabolism to find new targets for the treatment of As.
Collapse
Affiliation(s)
- Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Weiyue Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Jiayi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Shuiwei Xia
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| |
Collapse
|
26
|
The Development of Dyslipidemia in Chronic Kidney Disease and Associated Cardiovascular Damage, and the Protective Effects of Curcuminoids. Foods 2023; 12:foods12050921. [PMID: 36900438 PMCID: PMC10000737 DOI: 10.3390/foods12050921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Chronic kidney disease (CKD) is a health problem that is constantly growing. This disease presents a diverse symptomatology that implies complex therapeutic management. One of its characteristic symptoms is dyslipidemia, which becomes a risk factor for developing cardiovascular diseases and increases the mortality of CKD patients. Various drugs, particularly those used for dyslipidemia, consumed in the course of CKD lead to side effects that delay the patient's recovery. Therefore, it is necessary to implement new therapies with natural compounds, such as curcuminoids (derived from the Curcuma longa plant), which can cushion the damage caused by the excessive use of medications. This manuscript aims to review the current evidence on the use of curcuminoids on dyslipidemia in CKD and CKD-induced cardiovascular disease (CVD). We first described oxidative stress, inflammation, fibrosis, and metabolic reprogramming as factors that induce dyslipidemia in CKD and their association with CVD development. We proposed the potential use of curcuminoids in CKD and their utilization in clinics to treat CKD-dyslipidemia.
Collapse
|
27
|
Research progress on Mincle as a multifunctional receptor. Int Immunopharmacol 2023; 114:109467. [PMID: 36436471 DOI: 10.1016/j.intimp.2022.109467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 11/25/2022]
Abstract
Macrophage-induced C-type lectin (Mincle), a lipopolysaccharide-induced protein, is widely expressed on antigen-presenting cells. Mincle acts as a pattern recognition receptor that recognizes pathogen-associated molecular patterns of pathogens such as bacteria and fungi, mainly glycolipids, which induces an acquired immune response against microbial infection. Interestingly, Mincle can also identify patterns of lipid damage-associated molecule patterns released by injured cells, such as Sin3-associated protein 130 and β-glucosylceramides, which induces sterile inflammation and ultimately accelerates the progression of stroke, obesity, hepatitis, kidney injury, autoimmune diseases and tumors by promoting tissue inflammation. This article will review the various functions of Mincle, such as mediating sterile inflammation of tissues to accelerate disease progression, initiating immune responses to fight infection and promoting tumor progression.
Collapse
|
28
|
Yuan L, Yang J, Liu F, Li L, Liu J, Chen Y, Cheng J, Lu Y, Yuan Y. Macrophage-derived exosomal miR-195a-5p impairs tubular epithelial cells mitochondria in acute kidney injury mice. FASEB J 2023; 37:e22691. [PMID: 36515680 DOI: 10.1096/fj.202200644r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
Macrophages (Mφ) infiltration is a common characteristic of acute kidney injury (AKI). Exosomes-mediated cell communication between tubular epithelial cells (TECs) and Mφ has been suggested to be involved in AKI. Exosomes-derived from injured TECs could regulate Mφ polarization during AKI. However, little is known regarding how activated Mφ regulates kidney injury. To explore the role of activated Mφ in the AKI process, we revealed that Mφ-derived exosomes from AKI mice (ExosAKI ) caused mitochondria damage and induced TECs injury. Then, we detected the global miRNA expression profiles of MφNC and MφAKI and found that among the upregulated miRNAs, miR-195a-5p, which regulates mitochondria metabolism in cancer, was significantly increased in MφAKI . Due to the enrichment of miR-195a-5p in ExosAKI , the miR-195a-5p level in the kidney was elevated in AKI mice. More interestingly, based on the high expression of pri-miR-195a-5p in kidney-infiltrated Mφ, and the reduction of miR-195a-5p in kidney after depletion of Mφ in AKI mice, we confirmed that miR-195a-5p may be produced in infiltrated Mφ, and shuttled into TECs via ExosMφ . Furthermore, in vitro inhibition of miR-195a-5p alleviated the effect of ExosAKI induced mitochondrial dysfunction and cell injury. Consistently, antagonizing miR-195a-5p with a miR-195a-5p antagomir attenuated cisplatin-induced kidney injury and mitochondrial dysfunction in mice. These findings revealed that the Mφ exosomal miR-195a-5p derived from AKI mice played a critical pathologic role in AKI progression, representing a new therapeutic target for AKI.
Collapse
Affiliation(s)
- Longhui Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jingchao Yang
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Fei Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
29
|
Wei Z, pinfang K, jing Z, zhuoya Y, Shaohuan Q, Chao S. Curcumin Improves Diabetic Cardiomyopathy by Inhibiting Pyroptosis through AKT/Nrf2/ARE Pathway. Mediators Inflamm 2023; 2023:3906043. [PMID: 37101595 PMCID: PMC10125772 DOI: 10.1155/2023/3906043] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 04/28/2023] Open
Abstract
This study is aimed at exploring whether curcumin can regulate the AKT pathway, promote the transfer of Nrf2 into the nucleus, and inhibit cell pyroptosis in diabetic cardiomyopathy. Diabetic rats and cardiomyocytes were treated with curcumin to study its effect on myocardial pyroptosis. Whether curcumin can promote the transfer of Nrf2 into the nucleus through AKT pathway regulation was assessed by western blotting and immunofluorescence. The Nrf2 knockout vector and ml385 were used to block the Nrf2 pathway, and the differences between the different groups in the expression of pyroptosis protein, cell activity, and incidence of apoptosis were evaluated to verify the relationship between the effect of curcumin on pyroptosis inhibition and the Nrf2 pathway. Curcumin promoted the transfer of Nrf2 into the nucleus through the AKT pathway and increased the expression of the antioxidant factors HO-1 and GCLC. These effects reduced reactive oxygen species accumulation and mitochondrial damage in diabetic myocardium and inhibited diabetes-induced pyroptosis. However, in cardiomyocytes with a blocked Nrf2 pathway, the ability of curcumin to inhibit pyroptosis was significantly reduced, and the protective effect on the cells was lost. Curcumin can reduce the accumulation of superoxide in the myocardium through AKT/Nrf2/ARE pathway activation and inhibit pyroptosis. It also has a role in diabetic cardiomyopathy treatment. This study provides new directions for evaluating the mechanism of diabetic cardiomyopathy and treating diabetic myocardium.
Collapse
Affiliation(s)
- Zhang Wei
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Kang pinfang
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Zhou jing
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Yao zhuoya
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Qian Shaohuan
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Shi Chao
- Department of Cardiac Surgery of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| |
Collapse
|
30
|
Tang L, Zhu M, Che X, Yang X, Xu Y, Ma Q, Zhang M, Ni Z, Shao X, Mou S. Astragaloside IV Targets Macrophages to Alleviate Renal Ischemia-Reperfusion Injury via the Crosstalk between Hif-1α and NF-κB (p65)/Smad7 Pathways. J Pers Med 2022; 13:jpm13010059. [PMID: 36675720 PMCID: PMC9863138 DOI: 10.3390/jpm13010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
(1) Background: Astragaloside IV (AS-IV) is derived from Astragalus membranous (AM), which is used to treat kidney disease. Macrophages significantly affect the whole process of renal ischemia-reperfusion (I/R). The regulation of macrophage polarization in kidneys by AS-IV was the focus. (2) Methods: Renal tubular injury and fibrosis in mice were detected by Hematoxylin and Eosin staining and Masson Trichrome Staining, separately. An ELISA and quantitative real-time polymerase chain reaction were used to explore the cytokine and mRNA expression. Western blot was used to determine protein expression and siRNA technology was used to reveal the crosstalk of signal pathways in RAW 264.7 under hypoxia. (3) Results: In the early stages of I/R injury, AS-IV reduced renal damage and macrophage infiltration. M1-associated markers were decreased, while M2 biomarkers were increased. The NF-κB (p65)/Hif-1α pathway was suppressed by AS-IV in M1. Moreover, p65 dominated the expression of Hif-1α. In the late stages of I/R injury, renal fibrosis was alleviated, and M2 infiltration also decreased after AS-IV treatment. Hif-1α expression was reduced by AS-IV, while Smad7 expression was enhanced. Hif-1α interferes with the expression of Smad7 in M2. (4) Conclusions: AS-IV promoted the differentiation of M1 to M2, relieving the proinflammatory response to alleviate the kidney injury during the early stages. AS-IV attenuated M2 macrophage infiltration to prevent kidney fibrosis during the later stages.
Collapse
Affiliation(s)
- Lumin Tang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Minyan Zhu
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiajing Che
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoqian Yang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yao Xu
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qing Ma
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ming Zhang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhaohui Ni
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinghua Shao
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shan Mou
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Correspondence:
| |
Collapse
|
31
|
Zheng N, Zhou M, He Y, Xu H, Chen X, Duan Z, Yang L, Zeng R, Liu Y, Li M. Low curcumin concentrations combined with blue light inhibits cutibacterium acnes biofilm-induced inflammatory response through suppressing MAPK and NF-κB in keratinocytes. Photodiagnosis Photodyn Ther 2022; 40:103204. [PMID: 36403927 DOI: 10.1016/j.pdpdt.2022.103204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Curcumin has been employed as a photosensitizer agent during photodynamic therapy (PDT). Cutibacterium acnes (C. acnes) can cause an inflammatory response in human keratinocytes; however, no research has been conducted to determine whether curcumin and its photodynamic properties can prevent this inflammatory reaction. OBJECTIVE We hypothesized that curcumin may control the C. acnes biofilm-induced inflammatory response in keratinocytes, either alone or in combination with blue light photodynamic therapy. METHODS Following C. acnes biofilm stimulation, human primary keratinocytes were treated with 20 μM curcumin solution alone or 5 μM curcumin with combined blue light irradiation. The amount of secreted protein was measured using an ELISA kit. The expression levels of Toll-like receptor 2 (TLR2) and its downstream proteins were determined using western blot. RESULTS Treatment with 20 μM curcumin, but not 5 μM curcumin, reduced the inflammatory response to C. acnes biofilms in keratinocytes by blocking the TLR2/MAPK/NF-κB pathway. Interestingly, 5 μM curcumin combined with blue light also reduced the C. acnes biofilm-induced inflammation indicated above by blocking the TLR2/MAPK/NF-κB pathway. CONCLUSION Curcumin alone, in sufficient concentrations, or low-concentration curcumin with blue light had anti-inflammatory activity on keratinocytes stimulated by C. acnes biofilms through inhibition of MAPK and NF-κB signaling pathways by downregulating TLR2 expression.
Collapse
Affiliation(s)
- Nana Zheng
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Graduate School of Peking Union Medical College, China
| | - Meng Zhou
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yanyan He
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Haoxiang Xu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xu Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zhimin Duan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Lu Yang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Graduate School of Peking Union Medical College, China
| | - Rong Zeng
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Yuzhen Liu
- Department of Dermatology, the Affiliated Jiangning Hospital with Nanjing Medical University, 169 Hushan Street, Nanjing, Jiangsu 210042, China.
| | - Min Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, 12 Jiang Wang Miao Street, Nanjing, Jiangsu 210042, China.
| |
Collapse
|
32
|
Wang LY, Liu J, Peng YZ, Zhang CP, Zou W, Liu F, Zhan KB, Zhang P. Curcumin-Nicotinate Attenuates Hippocampal Synaptogenesis Dysfunction in Hyperlipidemia Rats by the BDNF/TrkB/CREB Pathway: Involving Idol/LDLR Signaling to Eliminate Aβ Deposition. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221141162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hyperlipidemia has been demonstrated to evoke Alzheimer disease (AD) pathologies such as Amyloid-β (Aβ) deposition and synaptogenesis dysfunction in the hippocampus. Curcumin gives protection against anti-amyloid properties and synaptogenesis dysfunction. Curcumin-Nicotinate (CurTn), a new type of curcumin derivative, ameliorates cognitive impairment by rescuing autophagic flux in the CA1 hippocampus of diabetic rats. However, whether Curtn possesses an antagonistic effect on AD-related pathologies in the hippocampus induced by hyperlipidemia remains ill-defined. The present study aims to investigate whether CurTn alleviates synaptogenesis dysfunction by promoting the activation of brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB)/cAMP-response element binding protein (CREB) signaling and whether the underlying fundamental mechanism involves the elimination of Aβ deposition due to Idol/low-density lipoprotein receptor (LDLR) signaling in the hippocampus of high-fat diet (HFD)-induced hyperlipidemia rats. The results demonstrated that CurTn not only improved synaptogenesis dysfunction in the hippocampus of HFD rats, as evidenced by the increases in the expressions of synapse-related proteins postsynaptic density protein 95 (PSD-95), synapsin-1, and Glutamate receptor 1 (GluR1), but also activated BDNF/TrkB/CREB signaling, as evidenced by the elevation of the expressions of BDNF, pTrkB, and CREB. Moreover, CurTn modulated the Idol/LDLR pathway in the hippocampus of HFD rats, as evidenced by the decreased expression of Idol and the increased expression of LDLR. Furthermore, CurTn eliminated the deposition of Aβ, as evidenced by the reduction in the content of Aβ40 and Aβ42. These results reveal that CurTn may attenuate synaptogenesis dysfunction by activating BDNF/TrkB/CREB signaling, as the possible result of the modulation of Idol/LDLR signaling to eliminate Aβ deposition in the hippocampus of HFD rats.
Collapse
Affiliation(s)
- Lin-Yu Wang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| | - Jiao Liu
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| | - Yi-Zhu Peng
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| | - Cai-Ping Zhang
- Department of Biochemistry, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| | - Wei Zou
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| | - Feng Liu
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| | - Ke-Bin Zhan
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| | - Ping Zhang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| |
Collapse
|
33
|
Zhang R, Hu Z, Wang Y, Qiu R, Wang G, Wang L, Hu B. A biomimetic double network hydrogel ameliorates renal fibrosis and promotes renal regeneration. J Mater Chem B 2022; 10:9424-9437. [PMID: 36378134 DOI: 10.1039/d2tb01939f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are serious global public health issues. Both interconnect closely, and AKI-CKD transition significantly increases the morbidity of CKD and inevitably progresses to end stage renal disease. However, with the current drug delivery system it is hard to achieve precise delivery and apply it to clinical practice due to the local fibrotic milieu of the AKI-CKD transition procedure. Consequently, new treatment options to halt or even reverse AKI-CKD transition are urgently needed. Curcumin and Ac-SDKP were proved to be capable of ameliorating renal injury and restoring renal biological function. However, due to the water-insolubility, poor absorption and ease of degradation features, their utilization based on traditional drug delivery systems was still confined to the laboratory. A new approach for the targeted delivery of curcumin and Ac-SDKP into kidneys is needed. Hydrogels, owing to their capability of targeted-drug delivery and bio-favorable nature, emerge as a promising resolution. Herein, we developed a bioinspired double network hydrogel scaffold loaded with curcumin and N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) to explore the feasibility of drug-loaded hydrogels for treatment of AKI-CKD transition. This double network hydrogel (GCS) was prepared based on gelatin and curcumin-zinc with polydopamine (DOPA) coating and then immobilized with Ac-SDKP on the surface. The prepared hydrogels possessed appropriate porosity, suitable mechanical properties, and excellent biocompatibility. In vitro, the GCS hydrogel was demonstrated to be pro-angiogenic, anti-oxidative and anti-fibrotic. In vivo, after the GCS hydrogel was implanted into partially nephrectomized rat kidneys, local renal fibrosis was observed to be improved significantly, and neo-blood vessels and neonatal renal tubules appeared around the implanted area. We speculated that the GCS hydrogel could ameliorate renal fibrosis and injury significantly and stimulate regeneration in situ. Taken together, this study demonstrated the promising potential of this bioinspired hydrogel scaffold for renal injury repair and renal regeneration.
Collapse
Affiliation(s)
- Rui Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Key Lab for Organ Failure Research, Ministry of Education Guangzhou, Guangdong, 510515, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Zifan Hu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yongqin Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Key Lab for Organ Failure Research, Ministry of Education Guangzhou, Guangdong, 510515, China.
| | - Renjie Qiu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guobao Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Key Lab for Organ Failure Research, Ministry of Education Guangzhou, Guangdong, 510515, China.
| | - Leyu Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Bianxiang Hu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Key Lab for Organ Failure Research, Ministry of Education Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
34
|
Asian Pigeonwing Plants (Clitoria ternatea) Synergized Mesenchymal Stem Cells by Modulating the Inflammatory Response in Rats with Cisplatin-Induced Acute Kidney Injury. Pharmaceuticals (Basel) 2022; 15:ph15111396. [DOI: 10.3390/ph15111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury is a heterogeneous set of disorders distinguished by a sudden decrease in the glomerular filtration rate, which is evidenced by an increase in the serum creatinine concentration or oliguria and categorized by stage and cause. It is an ever-growing health problem worldwide, with no reliable treatment. In the present study, we evaluated the role of Clitoria ternatea combined with mesenchymal stem cells in treating cisplatin-induced acute kidney injury in rats. Animals were challenged with cisplatin, followed by 400 mg/kg of Asian pigeonwing extract and/or mesenchymal stem cells (106 cells/150 g body weight). Kidney functions and enzymes were recorded, and histopathological sectioning was also performed. The expression profile of IL-1β, IL-6, and caspase-3 was assessed using the quantitative polymerase chain reaction. The obtained data indicated that mesenchymal stem cells combined with the botanical extract modulated the creatinine uric acid and urea levels. Cisplatin increased the level of malondialdehyde and decreased the levels of both superoxide dismutase and glutathione; however, the dual treatment was capable of restoring the normal levels. Furthermore, all treatments modulated the IL-6, IL-1β, and caspase-3 gene expression profiles. The obtained data shed some light on adjuvant therapy using C. ternatea and mesenchymal stem cells in treating acute kidney injury; however, further investigations are required to understand these agents’ synergistic mechanisms fully. The total RNA was extracted from the control, the positive control, and all of the therapeutically treated animals. The expression profiles of the IL-6, IL-1β, and caspase-3 genes were evaluated using the real-time polymerase chain reaction. Cisplatin treatment caused a significant upregulation in IL-6. All treatments could mitigate the IL-6-upregulating effect of cisplatin, with the mesenchymal stem cell treatment being the most effective. The same profile was observed in the IL-1β and caspase-3 genes, except that the dual treatment (mesenchymal stem cells and the botanical extract) was the most effective in ameliorating the adverse effect of cisplatin; it downregulated caspase-3 expression better than the positive control.
Collapse
|
35
|
Dai C, Tian E, Hao Z, Tang S, Wang Z, Sharma G, Jiang H, Shen J. Aflatoxin B1 Toxicity and Protective Effects of Curcumin: Molecular Mechanisms and Clinical Implications. Antioxidants (Basel) 2022; 11:antiox11102031. [PMID: 36290754 PMCID: PMC9598162 DOI: 10.3390/antiox11102031] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most significant classes of mycotoxins, aflatoxins (AFTs), can cause a variety of detrimental outcomes, including cancer, hepatitis, aberrant mutations, and reproductive issues. Among the 21 identified AFTs, aflatoxin B1 (AFB1) is the most harmful to humans and animals. The mechanisms of AFB1-induced toxicity are connected to the generation of excess reactive oxygen species (ROS), upregulation of CYP450 activities, oxidative stress, lipid peroxidation, apoptosis, mitochondrial dysfunction, autophagy, necrosis, and inflammatory response. Several signaling pathways, including p53, PI3K/Akt/mTOR, Nrf2/ARE, NF-κB, NLRP3, MAPKs, and Wnt/β-catenin have been shown to contribute to AFB1-mediated toxic effects in mammalian cells. Curcumin, a natural product with multiple therapeutic activities (e.g., anti-inflammatory, antioxidant, anticancer, and immunoregulation activities), could revise AFB1-induced harmful effects by targeting these pathways. Therefore, the potential therapeutic use of curcumin against AFB1-related side effects and the underlying molecular mechanisms are summarized. This review, in our opinion, advances significant knowledge, sparks larger discussions, and drives additional improvements in the hazardous examination of AFTs and detoxifying the application of curcumin.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Correspondence:
| | - Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhihui Hao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shusheng Tang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhanhui Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haiyang Jiang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
36
|
Xie KH, Liu XH, Jia J, Zhong X, Han RY, Tan RZ, Wang L. Hederagenin ameliorates cisplatin-induced acute kidney injury via inhibiting long non-coding RNA A330074k22Rik/Axin2/β-catenin signalling pathway. Int Immunopharmacol 2022; 112:109247. [PMID: 36155281 DOI: 10.1016/j.intimp.2022.109247] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Acute kidney injury (AKI), a kidney disease with high morbidity and mortality, is characterized by a dramatic decline in renal function. Hederagenin (HDG), a pentacyclic triterpenoid saponin isolated from astragalus membranaceus, has been shown to have significant anti-inflammatory effects on various diseases. However, the effects of HDG on renal injury and inflammation in AKI has not been elucidated. METHODS In this research, mice model of AKI was established by intraperitoneal injection of cisplatin in vivo, the inflammatory model of renal tubular epithelial cells was established by LPS stimulation in vitro, and HDG was used to intervene in vitro and in vivo models. Transcriptome sequencing was used to analyze the alterations of LncRNA and mRNA expression in AKI model and LncRNA-A330074k22Rik (A33) knockdown cells, respectively. Renal in situ electrotransfer knockdown plasmid was used to establish mice model of AKI with low expression of A33 in kidney. RESULTS The results showed that HDG effectively alleviate cisplatin-induced kidney injury and inflammation in mice. Transcriptome sequencing results showed that multiple LncRNAs in kidney of AKI model exhibited significant changes, among which LncRNA-A33 had the most obvious change trend. Subsequent results showed that A33 was highly expressed in kidney of AKI mice and LPS-induced renal tubular cells. After in situ renal electroporation knockdown plasmid down-regulated A33 in kidney of AKI mice, it was found that inhibition of A33 could significantly relieve cisplatin-induced kidney injury and inflammation of AKI, while HDG could effectively suppress the expression of A33 in vitro and in vivo, respectively. Subsequently, transcriptome sequencing was again used to analyze the changes in mRNA expression of renal tubular cells after A33 knockdown by siRNA. The results showed that a large number of inflammation-related signaling pathways were down-regulated, Axin2 and its downstream β-catenin signal were significantly inhibited. Cell recovery test showed that HDG inhibited Axin2/β-catenin signal by down-regulating A33, and improved kidney injury and inflammation of AKI. CONCLUSION Taken together, HDG significantly ameliorated cisplatin-induced kidney injury through LncRNA-A330074k22Rik/Axin2/β-catenin signal axis, which providing a potential therapeutic approach for the treatment of AKI.
Collapse
Affiliation(s)
- Ke-Huan Xie
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiao-Heng Liu
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jian Jia
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xia Zhong
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Rang-Yue Han
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Rui-Zhi Tan
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| | - Li Wang
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
37
|
Schürmann M, Goon P, Sudhoff H. Review of potential medical treatments for middle ear cholesteatoma. Cell Commun Signal 2022; 20:148. [PMID: 36123729 PMCID: PMC9487140 DOI: 10.1186/s12964-022-00953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Middle ear cholesteatoma (MEC), is a destructive, and locally invasive lesion in the middle ear driven by inflammation with an annual incidence of 10 per 100,000. Surgical extraction/excision remains the only treatment strategy available and recurrence is high (up to 40%), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review was targeted at connecting the dysregulated inflammatory network of MEC to pathogenesis and identification of pharmaceutical targets. We summarized the numerous basic research endeavors undertaken over the last 30+ years to identify the key targets in the dysregulated inflammatory pathways and judged the level of evidence for a given target if it was generated by in vitro, in vivo or clinical experiments. MEC pathogenesis was found to be connected to cytokines characteristic for Th1, Th17 and M1 cells. In addition, we found that the inflammation created damage associated molecular patterns (DAMPs), which further promoted inflammation. Similar positive feedback loops have already been described for other Th1/Th17 driven inflammatory diseases (arthritis, Crohn’s disease or multiple sclerosis). A wide-ranging search for molecular targeted therapies (MTT) led to the discovery of over a hundred clinically approved drugs already applied in precision medicine. Based on exclusion criteria designed to enable fast translation as well as efficacy, we condensed the numerous MTTs down to 13 top drugs. The review should serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history. Video Abstract
Middle ear cholesteatoma (MEC) is a destructive and locally invasive ulcerated lesion in the middle ear driven by inflammation which occurs in 10 out of 100,000 people annually. Surgical extraction/excision is the only treatment strategy available and recurrence is high (up to 40% after ten years), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review is focused on the connections between inflammation and MEC pathogenesis. These connections can be used as attack points for pharmaceuticals. For this we summarized the results of research undertaken over the last 30 + years. MEC pathogenesis can be described by specific inflammatory dysregulation already known from arthritis, Crohn’s disease or multiple sclerosis. A hallmark of this dysregulation are positive feedback loops of the inflammation further amplifying itself in a vicious circle-like manner. We have identified over one hundred drugs which are already used in clinic to treat other inflammatory diseases, and could potentially be repurposed to treat MEC. To improve and expedite clinical success rates, we applied certain criteria based on our literature searches and condensed these drugs down to the 13 top drugs. We hope the review will serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history.
Collapse
Affiliation(s)
- Matthias Schürmann
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany
| | - Peter Goon
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.,Department of Medicine, National University of Singapore, and National University Health System, Singapore, Singapore
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.
| |
Collapse
|
38
|
Cai Y, Huang C, Zhou M, Xu S, Xie Y, Gao S, Yang Y, Deng Z, Zhang L, Shu J, Yan T, Wan CC. Role of curcumin in the treatment of acute kidney injury: research challenges and opportunities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154306. [PMID: 35809376 DOI: 10.1016/j.phymed.2022.154306] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication in clinical inpatients, and it continues a high morbidity and mortality rate despite many clinical treatment measures. AKI is triggered by infections, surgery, heavy metal exposure and drug side effects, but current chemical drugs often fall short of expectations for AKI treatment and have toxic side effects. Therefore, finding new interventions and treatments, especially of natural origin, is of remarkable clinical significance and application. The herbal monomer curcumin is a natural phenolic compound extracted from the plant Curcuma longa and showed various biological activities, including AKI. Furthermore, recent studies have shown that curcumin restores renal function by modulating the immune system and the release of inflammatory mediators, scavenging oxygen free radicals, reducing apoptosis and improving mitochondrial dynamics. However, curcumin has a low bioavailability, which limits its clinical application. For this reason, it is essential to investigate the therapeutic effects and molecular mechanisms of curcumin in AKI, as well as to improve its bioavailability for curcumin formulation development and clinical application. PURPOSE This review summarizes the sources, pharmacokinetics, and limitations in the clinical application of curcumin and explores methods to optimize its bioavailability using nanotechnology. In particular, the therapeutic effects and molecular mechanisms of curcumin on AKI are highlighted to provide a theoretical basis for AKI treatment in clinical practices. METHODS This review was specifically searched by means of a search of three databases (Web of Science, PubMed and Science Direct), till December 2021. Search terms were "Curcumin", "Acute kidney injury", "AKI", " Pharmacokinetics", "Mitochondria" and "Nano formulations". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review) RESULTS: Studies have shown that curcumin responded to AKI-induced renal injury and restored renal tubular epithelial cell function by affecting multiple signaling pathways in AKI models induced by factors such as cisplatin, lipopolysaccharide, ischemia/reperfusion, gentamicin and potassium dichromate. Curcumin was able to affect NF-κB signaling pathway and reduce the expression of IL-1β, IL-6, IL-8 and TNF-α, thus preventing renal inflammatory injury. In the prevention of renal tubular oxidative damage, curcumin reduced ROS production by activating the activity of Nrf2, HO-1 and PGC-1α. In addition, curcumin restored mitochondrial homeostasis by upregulating OPA1 and downregulating DRP1 expression, while reducing apoptosis by inhibiting the caspase-3 apoptotic pathway. In addition, due to the low bioavailability and poor absorption of curcumin in vivo, curcumin nanoformulations including nanoparticles, liposomes, and polymeric micelles are formulated to improve the bioavailability. CONCLUSION This review provides new ideas for the use of curcumin in the prevention and treatment of AKI by modulating the molecular targets of several different cellular signaling pathways.
Collapse
Affiliation(s)
- Yi Cai
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Chaoming Huang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengyu Zhou
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shiqi Xu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongwan Xie
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuhan Gao
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yantianyu Yang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zirong Deng
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Libei Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jicheng Shu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Chunpeng Craig Wan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
39
|
Liu Z, Shi B, Wang Y, Xu Q, Gao H, Ma J, Jiang X, Yu W. Curcumin alleviates aristolochic acid nephropathy based on SIRT1/Nrf2/HO-1 signaling pathway. Toxicology 2022; 479:153297. [PMID: 36037877 DOI: 10.1016/j.tox.2022.153297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
Aristolochic acid I (AA-I), presenting in a variety of natural medicinal plants, which could cause tubular epithelial cell injury. Curcumin (CUR), a polyphenolic substance isolated from turmeric, is a natural antioxidant. The aim of this experiment was to investigate whether CUR attenuated AA-I-induced renal injury in rats through the SIRT1/Nrf2/HO-1 signaling pathway. SD rats were treated with AA-I (10 mg/kg) or/and CUR (200 mg/kg) for 28 days to assess the protective effect of CUR on AA-I-induced renal injury in vivo. NRK-52E cells were treated with AA-I (40 μ M) or/and CUR (20 μ M) for 24 h in vitro. The intervention pathway of CUR against oxidative stress injury induced by AA-I was assessed by observing pathological changes, oxidative stress status, apoptosis and the expression of SIRT1/Nrf2/HO-1 signaling pathway-related factors. The results showed that AA-I exposure increased the contents of BUN, Cr, KIM-1, NGAL, ALT and AST in serum. It increased the content of MDA, decreased the activities of SOD, GST, GSH and the content of ATP in renal tissue. Pathological changes such as inflammatory cell infiltration and mitochondrial injury occurred in renal tissue. AA-I exposure resulted in a substantial rise in the levels of BAX, Ccaspase-9, Cleaved Caspase-9, Caspase-3, Cleaved Caspase-3 and a significant decrease in mRNA and protein expression levels of Bcl-2, SIRT1, Nrf2, NQO1, HO-1 and Keap1. However, these changes were reversed by CUR intervention. In summary, AA-I exposure caused mitochondrial dysfunction and triggered apoptosis through the oxidative stress pathway. However, CUR could reduce AA-I-induced renal injury by activating the SIRT1/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Zhihui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Yu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Qingyang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Hongxin Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Xiaowen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Wenhui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China; Heilongjiang Key Laboratory for prevention and control of common animal diseases, Harbin 150030, People's Republic of China; Chinese Veterinary Research Institute, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
40
|
Zhang YY, Yao YD, Chen F, Guo X, Kang JL, Huang YF, He F, Dong Y, Xie Y, Wu P, Zhou H. (9S,13R)-12-oxo-phytodienoic acid attenuates inflammation by inhibiting mPGES-1 and modulating macrophage polarization via NF-κB and Nrf2/HO-1 pathways. Pharmacol Res 2022; 182:106310. [PMID: 35714824 DOI: 10.1016/j.phrs.2022.106310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 12/15/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) relieve inflammation by suppressing prostaglandin E2/cyclooxygenase 2 (PGE2/COX-2) with cardiovascular and gastrointestinal bleeding risk. Theoretically, suppressing PGE2 through inhibiting the terminal synthase microsomal prostaglandin E2 synthase-1 (mPGES-1) instead of upstream COX-2 is ideal for inflammation. Here, (9S,13R)-12-oxo-phytodienoic acid (AA-24) extracted from Artemisia anomala was first screened as an anti-inflammatory candidate and decreased inducible nitric oxide synthase (iNOS), nitric oxide (NO), mPGES-1, and PGE2 without affecting COX-1/2, thromboxane A2 (TXA2) and prostaglandin I2 (PGI2). Besides, AA-24 suppressed the differentiation of M0 macrophages to M1 phenotype but enhanced it to M2 phenotype, blocked the activation of NF-κB pathway, and increased the activation of Nrf2 and heme oxygenase-1 (HO-1). Moreover, AA-24 selectively inhibited mPGES-1 and reduced inflamed paw edema in carrageenan-induced mice. In conclusion, AA-24 attenuates inflammation by inhibiting mPGES-1 and modulating macrophage polarization via the NF-κB and Nrf2/HO-1 pathways and could be a promising candidate for developing anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Fang Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Xin Guo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jun-Li Kang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yu-Feng Huang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510006, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Fan He
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510006, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China.
| | - Ying Xie
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510006, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China.
| | - Peng Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| | - Hua Zhou
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510006, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China.
| |
Collapse
|
41
|
Chen D, Yu C, Ying Y, Luo Y, Ren L, Zhu C, Yang K, Wu B, Liu Q. Study of the Osteoimmunomodulatory Properties of Curcumin-Modified Copper-Bearing Titanium. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103205. [PMID: 35630685 PMCID: PMC9144993 DOI: 10.3390/molecules27103205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022]
Abstract
Peri-implantitis can lead to implant failure. In this study, curcumin (CUR) was modified onto the copper-bearing titanium alloy (Cu-Ti) with the assistance of polydopamine (PDA) in order to study the bone immune response and subsequent osteogenesis. FE-SEM, XPS and water contact angle were utilized to characterize the coating surface. Bone marrow mesenchymal stem cells (BMSCs) and macrophages were cultured separately and together onto the CUR modified Cu-Ti. Cell activity, expression of relative genes and proteins, cell migration ability, and fluorescence staining of cells were performed. CUR modification slightly increased the activation of M1-type and M2-type cells under physiological conditions. In the inflammation state, CUR inhibited the overexpression of M1 macrophages and induced M2-type differentiation. In addition, the modification itself could provoke the expression of osteoblastic-related genes of BMSCs, while promoting the osteogenic differentiation of BMSCs through the activation of macrophages in both physiological and inflammatory states. The BMSCs migration was increased, the expression of osteogenic-related genes and proteins was up-regulated, and alkaline phosphatase activity (ALP) was increased. Thus, the modification of CUR can promote the osteointegration effect of Cu-Ti by bone immunomodulation and may, in addition, improve the success rate of implants.
Collapse
Affiliation(s)
- Danhong Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; (D.C.); (C.Y.); (Y.Y.)
- College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Chengcheng Yu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; (D.C.); (C.Y.); (Y.Y.)
- College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Ying Ying
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; (D.C.); (C.Y.); (Y.Y.)
- College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yuanyi Luo
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.L.); (C.Z.)
| | - Ling Ren
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (L.R.); (K.Y.)
| | - Caizhen Zhu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.L.); (C.Z.)
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (L.R.); (K.Y.)
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; (D.C.); (C.Y.); (Y.Y.)
- College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
- Correspondence: (Q.L.); (B.W.); Tel.: +86-20-62787153 (Q.L.); +86-20-62787678 (B.W.)
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; (D.C.); (C.Y.); (Y.Y.)
- College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
- Correspondence: (Q.L.); (B.W.); Tel.: +86-20-62787153 (Q.L.); +86-20-62787678 (B.W.)
| |
Collapse
|
42
|
Abstract
It has been estimated that nearly 80% of anticancer drug-treated patients receive potentially nephrotoxic drugs, while the kidneys play a central role in the excretion of anticancer drugs. Nephrotoxicity has long been a serious complication that hampers the effectiveness of cancer treatment and continues to influence both mortality and length of hospitalization among cancer patients exposed to either conventional cytotoxic agents or targeted therapies. Kidney injury arising from anticancer drugs tends to be associated with preexisting comorbidities, advanced cancer stage, and the use of concomitant non-chemotherapeutic nephrotoxic drugs. Despite the prevalence and impact of kidney injury on therapeutic outcomes, the field is sorely lacking in an understanding of the mechanisms driving cancer drug-induced renal pathophysiology, resulting in quite limited and largely ineffective management of anticancer drug-induced nephrotoxicity. Consequently, there is a clear imperative for understanding the basis for nephrotoxic manifestations of anticancer agents for the successful management of kidney injury by these drugs. This article provides an overview of current preclinical research on the nephrotoxicity of cancer treatments and highlights prospective approaches to mitigate cancer therapy-related renal toxicity.
Collapse
Affiliation(s)
- Chaoling Chen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Dengpiao Xie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
43
|
Saurin S, Meineck M, Erkel G, Opatz T, Weinmann-Menke J, Pautz A. Drug Candidates for Autoimmune Diseases. Pharmaceuticals (Basel) 2022; 15:503. [PMID: 35631330 PMCID: PMC9143092 DOI: 10.3390/ph15050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
Most of the immunosuppressive drugs used in the clinic to prevent organ rejection or to treat autoimmune disorders were originally isolated from fungi or bacteria. Therefore, in addition to plants, these are valuable sources for identification of new potent drugs. Many side effects of established drugs limit their usage and make the identification of new immunosuppressants necessary. In this review, we present a comprehensive overview of natural products with potent anti-inflammatory activities that have been tested successfully in different models of chronic inflammatory autoimmune diseases. Some of these candidates already have passed first clinical trials. The anti-inflammatory potency of these natural products was often comparable to those of established drugs, and they could be used at least in addition to standard therapy to reduce their dose to minimize unwanted side effects. A frequent mode of action is the inhibition of classical inflammatory signaling pathways, such as NF-κB, in combination with downregulation of oxidative stress. A drawback for the therapeutic use of those natural products is their moderate bioavailability, which can be optimized by chemical modifications and, in addition, further safety studies are necessary. Altogether, very interesting candidate compounds exist which have the potential to serve as starting points for the development of new immunosuppressive drugs.
Collapse
Affiliation(s)
- Sabrina Saurin
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Myriam Meineck
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Gerhard Erkel
- Department of Molecular Biotechnology and Systems Biology, Technical University, 67663 Kaiserslautern, Germany;
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, 55099 Mainz, Germany;
| | - Julia Weinmann-Menke
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
44
|
Pei Z, Wu M, Yu H, Long G, Gui Z, Li X, Chen H, Jia Z, Xia W. Isoliquiritin Ameliorates Cisplatin-Induced Renal Proximal Tubular Cell Injury by Antagonizing Apoptosis, Oxidative Stress and Inflammation. Front Med (Lausanne) 2022; 9:873739. [PMID: 35433741 PMCID: PMC9005826 DOI: 10.3389/fmed.2022.873739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by morbidity, mortality, and cost. Cis-diamminedichloroplatinum (cisplatin) is a chemotherapeutic agent used to treat solid tumors and hematological malignancies, but its side effects, especially nephrotoxicity, limit its clinical application. Isoliquiritin (ISL), one of the major flavonoid glycoside compounds in licorice, has been reported to have anti-apoptotic, antioxidant, and anti-inflammatory activities. However, the effect and mechanism of ISL on cisplatin-induced renal proximal tubular cell injury remain unknown. In this study, mouse proximal tubular cells (mPTCs) and human proximal tubule epithelial cells (HK2) were administered increasing concentrations of ISL from 7.8125 to 250 μM. Moreover, mPTC and HK2 cells were pretreated with ISL for 6–8 h, followed by stimulation with cisplatin for 24 h. CCK-8 assay was performed to evaluate the cell viability. Apoptosis and reactive oxygen species (ROS) of cells were measured by using flow cytometer and western blotting. Our results showed that ISL had no obvious effect on cell viability. ISL decreased cisplatin-induced cell injury in a dose-dependent manner. ISL also protected against cisplatin-induced cell apoptosis. Meanwhile, the enhanced protein levels of Bax, cleaved caspase-3/caspase-3 ratio, levels of Pp-65/p-65, levels of IL-6, and the production of ROS induced by cisplatin were significantly attenuated by ISL treatment. Moreover, ISL markedly increased the protein levels of Bcl-2 and SOD2, which were reduced by cisplatin stimulation. These results showed that ISL ameliorated cisplatin-induced renal proximal tubular cell injury by antagonizing apoptosis, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Zhiyin Pei
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Wu
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hanqing Yu
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guangfeng Long
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen Gui
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaonan Li
- Department of Children Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbing Chen
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Driving role of macrophages in transition from acute kidney injury to chronic kidney disease. Chin Med J (Engl) 2022; 135:757-766. [PMID: 35671177 PMCID: PMC9276339 DOI: 10.1097/cm9.0000000000002100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Acute kidney injury (AKI), characterized by acute renal dysfunction, is an increasingly common clinical problem and an important risk factor in the subsequent development of chronic kidney disease (CKD). Regardless of the initial insults, the progression of CKD after AKI involves multiple types of cells, including renal resident cells and immune cells such as macrophages. Recently, the involvements of macrophages in AKI-to-CKD transition have garnered significant attention. Furthermore, substantial progress has also been made in elucidating the pathophysiological functions of macrophages from the acute kidney to repair or fibrosis. In this review, we highlight current knowledge regarding the roles and mechanisms of macrophage activation and phenotypic polarization, and transdifferentiation in the development of AKI-to-CKD transition. In addition, the potential of macrophage-based therapy for preventing AKI-to-CKD transition is also discussed.
Collapse
|
46
|
Mahmoud S, Hassab El-Nabi S, Hawash A, El-Seedi HR, Khalifa SAM, Ullah S, Al-Sehemi AG, El-Garawani IM. Curcumin-Injected Musca domestica Larval Hemolymph: Cecropin Upregulation and Potential Anticancer Effect. Molecules 2022; 27:1570. [PMID: 35268671 PMCID: PMC8911634 DOI: 10.3390/molecules27051570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022] Open
Abstract
Over recent decades, much attention has been given to imply the natural products in cancer therapy alone or in combination with other established procedures. Insects have a rich history in traditional medicine across the globe, which holds promise for the future of natural product drug discovery. Cecropins, peptides produced by insects, are components of a defense system against infections and are well known to exert antimicrobial and antitumor capabilities. The present study aimed to investigate, for the first time, the role of curcumin in enhancing the anticancer effect of Musca domestica larval hemolymph. Third larval instars of M. domestica were injected with curcumin and the hemolymph was picked at 4, 8, and 24 h post-curcumin injection. M. domestica cecropin A (MdCecA) was evaluated in control and injected larval hemolymphs. The cytotoxicity on breast cancer cell lines (MCF-7) and normal Vero cells was assessed to be comparable to control larval hemolymph. Curcumin-injected larval hemolymphs exhibited significant cytotoxicity with respect to the uninjected ones against MCF-7; however, Vero cells showed no cytotoxicity. The IC50 was 106 ± 2.9 and 388 ± 9.2 μg/mL for the hemolymphs of injected larvae at 4 and 8 h, respectively, while the control larval hemolymph revealed the IC50 of >500 μg/mL. For mechanistic anticancer evaluation, concentrations of 30, 60, and 100 μg/mL of curcumin-injected larval hemolymphs were examined. A significant G2/M cell cycle arrest was observed, confirming the anti-proliferative properties of hemolymphs over the tested concentrations. The MdCecA transcripts were significantly (p < 0.05) upregulated at 4 and 8 h post-injection, while a significant downregulation was observed after 24 h. Cecropin quantification by LC−MS revealed that MdCecA peptides have the highest expression in the hemolymph of the treated larvae at 8 h relative to the control group. The upregulation of cecropin expression at mRNA and protein levels may be attributed to the curcumin stimulation and linked to the increased cytotoxicity toward the cancer cell line. In conclusion, the results suggest that the apoptotic and anti-proliferative effects of M. domestica hemolymph on MCF-7 cells following the curcumin injection can be used as a natural candidate in future pharmaceutical industries.
Collapse
Affiliation(s)
- Shaymaa Mahmoud
- Department of Zoology, Faculty of Science, Menoufia University, Menoufia 32511, Egypt; (S.M.); (S.H.E.-N.); (A.H.)
| | - Sobhy Hassab El-Nabi
- Department of Zoology, Faculty of Science, Menoufia University, Menoufia 32511, Egypt; (S.M.); (S.H.E.-N.); (A.H.)
| | - Asmaa Hawash
- Department of Zoology, Faculty of Science, Menoufia University, Menoufia 32511, Egypt; (S.M.); (S.H.E.-N.); (A.H.)
- Department of Bioscience, Faculty of Dentistry, Sinai University, Ismailia 41632, Egypt
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Menoufia 32511, Egypt
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden;
| | - Sami Ullah
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.U.); (A.G.A.-S.)
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.U.); (A.G.A.-S.)
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Islam M. El-Garawani
- Department of Zoology, Faculty of Science, Menoufia University, Menoufia 32511, Egypt; (S.M.); (S.H.E.-N.); (A.H.)
| |
Collapse
|
47
|
Li W, Luo L, Zhu J, Yan H, Yang X, Tang W, Li D, He D, Wang J, Dai W, Ma X, Ao S, Ma W, Du N, Mao C, Diao X, Yang X, Liu D, Zhang Z, Liang H, Wang F. Water extract of Cayratia albifolia C.L.Li root relieves zymosan A-induced inflammation by restraining M1 macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153901. [PMID: 35026521 DOI: 10.1016/j.phymed.2021.153901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cayratia albifolia C.L.Li (CAC) is a traditional Chinese herbal medicine used to treat inflammatory diseases. Our laboratory has firstly reported that the water extract from CAC relieved lipopolysaccharide (LPS)-induced inflammation, however stronger evidence is still needed to prove its anti-inflammatory effects and the mechanisms involved are also ambiguous. PURPOSE This study sought to provide more evidence for the application of CAC in alleviating infectious inflammation and disclose novel pharmacological mechanisms. METHODS Mice were injected with zymA into their paws or peritoneal cavities, and then treated with CAC. ELISA, immunofluorescence and flow cytometry were performed to detect the cytokines (IL-1β, IL-6, TNF-α and IL-10) generation, the cell infiltration, and the CD86 or CD206 expression of macrophages. Then in vitro assays were performed on bone marrow-derived macrophages (BMDMs) and peritoneal macrophages (PMs) to detect their expression of iNOS, arg-1 and the cytokines above. On mechanisms, western blotting (WB), electrophoretic mobility shift assay (EMSA) and flow cytometry were carried out to measure NF-κB transcriptional activity, mitochondrial bioactivity and the mTORC1 activation when BMDMs were stimulated by zymA and treated with CAC. Finally, the chemical components consisted in the extract were analyzed by LC-MS. RESULTS 200 mg/kg CAC clearly inhibited zymA induced mouse paw edema and reduced the contents of IL-1β, IL-6 and TNF-α rather than IL-10 in local tissues. CAC also reduced CD86 but not CD206 in macrophages in situ. Through in vitro experiments, it was discovered that CAC reduced the protein and mRNA levels of IL-1β, IL-6 and TNF-α, and also inhibited iNOS expression, but showed no influence on IL-10 and arg-1 in macrophages. We found CAC reduced NF-κB transcriptional activity, down-regulated mitochondrial membrane potential and ROS levels, and inhibited mTORC1 activity. Finally, we identified 15 major compounds in the extract, among which 4-guanidinobutyric acid and kynurenic acid were the most abundant. CONCLUSION This study provides further evidence that CAC significantly reduces zymA induced infectious inflammation. In addition, this novel data revealed that CAC restrained M1 rather than promoting M2 macrophages polarization via multi-target inhibitory effects, based on its potentially active components.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Li Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Junyu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Huan Yan
- College of Public Health, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Engineering Technology Research center for Green Processing of Nature Product Center, Xinjiang Autonomous Academy of Instrumental Analysis, Urumqi, 830011, China
| | - Xue Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Wanqi Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Dandan Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Dongmei He
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Jin Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Weihong Dai
- The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, China
| | - Xiaoyuan Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Shengxiang Ao
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Wei Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Nana Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Chengyi Mao
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiaoyan Diao
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Xia Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Daoyan Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Zaiqi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Hunan, 418000, China.
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China.
| | - Fangjie Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
48
|
Lin X, Lei XQ, Yang JK, Jia J, Zhong X, Tan RZ, Wang L. Astragalus mongholicus Bunge and Panax notoginseng formula (A&P) improves renal mesangial cell damage in diabetic nephropathy by inhibiting the inflammatory response of infiltrated macrophages. BMC Complement Med Ther 2022; 22:17. [PMID: 35057768 PMCID: PMC8781170 DOI: 10.1186/s12906-021-03477-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the main causes of end-stage renal disease with scantly effective treatment. Numerous evidences indicated that macrophages play an important role in the occurrence and pathogenesis of DN by secreting inflammatory cytokines. Mincle is mainly expressed in macrophages and promotes kidney inflammation and damage of acute kidney injury. However, the role of Mincle in DN is unclear. In this study, we aim to investigate the effect of Mincle-related macrophage inflammation on DN, and whether it can be identified as the therapeutic target for Astragalus mongholicus Bunge and Panax notoginseng Formula (A&P), a widely used Chinese herbal decoction for DN treatment. METHODS In vivo experiments high-fat and high-sugar diet and streptozotocin was used to establish a diabetic nephropathy model, while in vitro experiments inflammation model was induced by high-glucose in mouse Bone Marrow-Derived Macrophages (BMDM) cells and mouse mesangial (MES) cells. Kidney pathological staining is used to detect kidney tissue damage and inflammation, Western blotting, Real-time PCR and ELISA are performed to detect Mincle signaling pathway related proteins and inflammatory cytokines. RESULTS Mincle was mainly expressed in infiltrated macrophage of DN kidney, and was significant decreased after A&P administration. The in vitro experiments also proved that A&P effectively down-regulated the expression of Mincle in macrophage stimulated by high glucose. Meanwhile, the data demonstrated that A&P can reduce the activation of NFκB, and the expression and secretion of inflammatory cytokines in DN kidney or BMDM cells. Notably, we set up a co-culture system to conform that BMDM cells can aggravate the inflammatory response of mesangial (MES) cells under high glucose stimulation. Furthermore, we found that the anti-injury role of A&P in MES cells was dependent on inhibition of the Mincle in macrophage. CONCLUSION In summary, our study found that A&P is effective in reducing renal pathological damage and improving renal function and inflammation in diabetic nephropathy by a mechanism mainly related to the inhibition of the Mincle/Card9/NFκB signaling pathway.
Collapse
Affiliation(s)
- Xiao Lin
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, 319# zhongshan road, Luzhou, 646000, Sichuan, China
| | - Xiao-Qin Lei
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, 319# zhongshan road, Luzhou, 646000, Sichuan, China
| | - Jie-Ke Yang
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, 319# zhongshan road, Luzhou, 646000, Sichuan, China
| | - Jian Jia
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, 319# zhongshan road, Luzhou, 646000, Sichuan, China
| | - Xia Zhong
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, 319# zhongshan road, Luzhou, 646000, Sichuan, China
| | - Rui-Zhi Tan
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, 319# zhongshan road, Luzhou, 646000, Sichuan, China.
| | - Li Wang
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, 319# zhongshan road, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
49
|
Hastreiter AA, Paredes LC, Saraiva Camara NO. Metabolic requirement for macrophages. MACROPHAGES IN THE HUMAN BODY 2022:49-66. [DOI: 10.1016/b978-0-12-821385-8.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
50
|
A novel mechanism for NLRP3 inflammasome activation. Metabol Open 2022; 13:100166. [PMID: 35198946 PMCID: PMC8844605 DOI: 10.1016/j.metop.2022.100166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
The NLRP3 inflammasome, as an important component of the innate immune system, plays vital roles in various metabolic disorders. It has been reported that the NLRP3 inflammasome can be activated by a broad range of distinct stimuli, such as K+ efflux, mitochondrial dysfunction, lysosomal disruption and trans-Golgi disassembly, etc. However, there has been no well-established model for NLRP3 inflammasome activation so far, especially the underlying mechanisms for mitochondria in NLRP3 inflammasome activation remain elusive. Given that K+ efflux is a widely accepted nexus for triggering activation of NLRP3 inflammasome in most previous studies, we sought to elucidate the role of mitochondria in K+ efflux-induced NLRP3 inflammasome activation. Here, we demonstrated that inflammation activation by LPS evoked the expression of genes that involved in mitochondrial biogenesis and mitophagy, subsequently mitochondrial mass and mitochondrial membrane potential were also elevated, suggesting the contribution of mitochondria in inflammatory responses. Moreover, we inhibited mitochondrial biogenesis by silencing Tfam and genetic ablation of Tfam abolished the NLRP3 inflammasome activation induced by K+ efflux via release of mitochondrial DNA (mtDNA), as deprivation of cellular mtDNA by EtBr treatment could reverse inflammasome activation induced by K+ efflux. Collectively, we reveal that mtDNA release induced by K+ efflux in macrophages activates NLRP3 inflammasome, and propose that mitochondria may serve as a potential therapeutic target for NLRP3 inflammasome-related diseases.
Collapse
|