1
|
Ji Z, Sun B, Yang T, Li X, Zhang Z, Bao M, Zhao L, Lou H, Li Y, Sun G, Huang J. Holistic quality assessment and monitoring of YiXinShu capsule based on three-dimensional fingerprints combined with quantitative analysis, antioxidant activity and chemometrics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118630. [PMID: 39053720 DOI: 10.1016/j.jep.2024.118630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE YiXinShu capsule (YXSC), originally from the classical TCM formula named "Sheng-Mai-San", has been extensively utilized in clinic for the treatment of cardiovascular diseases. However, there were few reports about the quality assessment of YXSCs both internationally and domestically. AIM OF THE STUDY The objective was to develop a multi-strategy platform incorporating systematic quantitative fingerprint analysis and antioxidant activity determination, with chemometric analysis and bivariate correlation analysis as the auxiliary approaches, to assess and monitor the quality of YXSCs. MATERIALS AND METHODS Firstly, according to the Chinese Pharmacopoeia (2020 edition), 12 key indicator components from seven herb medicines were quantified by HPLC method. Then, three-dimensional fingerprints comprising five-wavelength fusion fingerprint (FWF-FP), electrochemical fingerprint (EC-FP) and Differential Scanning Calorimetry fingerprint (DSC-FP) were established to assess and monitor YXSCs using systematically quantified fingerprint method (SQFM) and principal component analysis (PCA). Moreover, by integrating the analysis of the three-dimensional fingerprints, the quality of YXSCs from different batches was effectively screened. Finally, the antioxidant activity of this TCM was assessed through DPPH and ABTS methods, and the L-ascorbic acid equivalent antioxidant capacity (AEAC) values were compared to evaluate the antioxidant activities of the two methods. A Partial Least Squares (PLS) model was used to develop the spectrum-activity relationship between FWF-FP and AEAC, and a bivariate correlation analysis (BCA) was used to assess the correlation between FWF-FP and EC-FP. RESULTS The key indexes including tanshinone I, tol, toe, Atp, first exothermic peak, and second exothermic peak can differentiate between various batches of YXSCs based on their three-dimensional fingerprint profiles. The integration evaluation results from 42 batches of YXSCs were categorized into 2-5 grades, indicating good quality consistency across different batches. In vitro studies have indicated a significant antioxidant activity capacity of YXSCs. The PLS model revealed that 37 out of the 41 fingerprint peaks exhibited antioxidant activity. The overall trend of BCA was consistent with PLS model results. CONCLUSION This research presents a scientific and holistic strategy for the quality consistency evaluation of YXSCs, thereby offering an effective approach for the thorough evaluation of TCMs.
Collapse
Affiliation(s)
- Zhengchao Ji
- Department of Laboratory Medicine, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin Province, 130021, PR China
| | - Beihan Sun
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Ting Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Xuan Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Zhenwei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Mengfan Bao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Liping Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Hongyin Lou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Yanyan Li
- Department of Laboratory Medicine, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin Province, 130021, PR China.
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China.
| | - Jing Huang
- Department of Laboratory Medicine, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin Province, 130021, PR China.
| |
Collapse
|
2
|
Chen Q, Chen P, Bi C, Shen X, Guo L, Jiang Y, Liu Y, Wu Y, Li Y, Wu Z, Zhu X, Song P, Yang P, Zhang Y, Yang Z. Screening immunomodulatory Q-markers in Astragali Radix based on UHPLC-QTOF-MS analysis and spectrum-effect relationship. Biomed Chromatogr 2024; 38:e6015. [PMID: 39385660 DOI: 10.1002/bmc.6015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 10/12/2024]
Abstract
Astragali Radix (AR) is one of the famous traditional Chinese medicines (TCMs) for boosting immunity, whereas the quality markers (Q-markers) of AR have not been clearly researched. The immunomodulatory activities of the bioactive extractions and components were evaluated by NO inhibition rate; phagocytic index; IL-10, TNF-α, IL-1β, and IL-6 cytokines in RAW264.7 cells; and the relative proliferation rate of spleen cells. The total saponins (TS) and the grade 2 (Xiaoxuan, XX) of AR showed the strongest immunomodulatory activities. At the concentration of 40 μg/mL, the TS increased spleen cells proliferation by 48.0% and upregulated the level of IL-1β and IL-6. Cytokines in the XX-treated group were at least 1.6 times higher than the control group. A total of 190 common peaks were detected in AR by ultrahigh-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS). The multivariate statistical analyses revealed that 41 compounds were positively correlated with immune responses, and bioactive compounds were verified by using RAW264.7 cell assay. Subsequently, the contents of six compounds in different commercial grades were determined, and the results showed the same trend in contents and activities. Finally, calycosin-7-O-β-D-glucoside, astragaloside IV, astragaloside II, astragaloside I, isomucronulatol-7-O-glucoside, and 9,10-dimethoxypterocarpan-3-O-glucoside were screened out as immunomodulatory Q-markers of AR.
Collapse
Affiliation(s)
- Qin Chen
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ping Chen
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Chunmei Bi
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xue Shen
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Lirong Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yihan Jiang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yangyang Wu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yimeng Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhengrong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xujiang Zhu
- Gansu Institute of Drug Control, Lanzhou, China
| | | | | | - Yawen Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Liu M, Zhao X, Wen J, Sun L, Huang R, Zhang H, Liu Y, Ren X. A multidimensional strategy for uncovering comprehensive quality markers of Scutellariae Radix based on UPLC-Q-TOF-MS analysis, artificial neural network, network pharmacology analysis, and molecular simulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1423678. [PMID: 39022612 PMCID: PMC11251886 DOI: 10.3389/fpls.2024.1423678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Introduction Scutellariae Radix (SR), derived from the root of Scutellaria baicalensis Georgi, is a traditional Chinese medicine (TCM) for clearing heat and cooling blood. It has been used as a traditional herbal medicine and is popular as a functional food in Asian countries today. Methods In this study, UPLC-Q-TOF-MS was first employed to identify the chemical components in the ethanol extract of SR. Then, the extraction process was optimized using star point design-response surface methodology. Fingerprints of different batches and processed products were established, and chemical markers were screened through a combination of various artificial neural network models. Finally, network pharmacology and molecular simulation techniques were utilized for verification to determine the quality markers. Results A total of 35 chemical components in SR were identified, and the optimal extraction process was determined as follows: ultrasonic extraction with 80% methanol at a ratio of 120:1 for 70 minutes, with a soaking time of 30 minutes. Through discriminant analysis using various artificial neural network models, the samples of SR could be classified into two categories based on their growth years: Kuqin (dried roots of older plants) and Ziqin (roots of younger plants). Moreover, the samples within each category could be further clustered according to their origins. The four different processed products of SR could also be distinguished separately. Finally, through the integration of network pharmacology and molecular simulation techniques, it was determined that baicalin, baicalein, wogonin, norwogonin, norwogonin-8-O-glucuronide, skullcapflavone II, hispidulin, 8, 8"-bibaicalein, and oroxylin A-7-O-beta-D-glucuronide could serve as quality markers for SR. Discussion The primary factors affecting the quality of SR were its growth years. The geographic origin of SR was identified as a secondary factor affecting its quality. Processing also had a significant impact on its quality. The selected quality markers have laid the foundation for the quality control of SR, and this research strategy also provides a research paradigm for improving the quality of TCM.
Collapse
Affiliation(s)
- Meiqi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoran Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinli Wen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Huang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huijie Zhang
- Department of Pharmacy, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
- Chinese Medicine Research Institute, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Wang R, Yu C, Shang Y, Wen J, Wei W, Du K, Li J, Fang S, Chang Y. Quantification and discovery of quality markers from Toddalia asiatica by UHPLC-MS/MS coupled with chemometrics. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:634-646. [PMID: 38191127 DOI: 10.1002/pca.3318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Toddalia asiatica (TA) is a classical traditional Chinese medicine used to treat rheumatoid arthritis and contusions. However, research regarding TA quality control is currently limited. OBJECTIVE We aimed to establish a strategy for identifying quality markers that can be used for the evaluation of the quality of TA. METHOD A rapid and efficient ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) method was developed for the quantitative determination of 19 compounds in TA from different regions. Then, the extraction process of TA was successively optimized by single-factor optimization and response surface methodology. Moreover, chemometrics was employed to confirm the correlation between quality and target compounds. RESULTS Utilizing the UHPLC-MS/MS method, separation of the 19 bioactive compounds was achieved within 14 min. The method was validated in terms of linearity (r2 > 0.9982), precision (0.08%-3.70%), repeatability (0.50%-2.54%), stability (2.26%-5.46%), and recovery (95.8%-113%). The optimal extraction process (extraction solvent, 65% ethanol aqueous solution; solid-liquid ratio, 1:20; extraction time, 25 min) was determined with the total content of 19 bioactive compounds as indicator. Significant disparities were observed in the contents of target compounds across different batches of TA. Besides, all samples could be categorized into two distinct groups, and magnoflorine, (-)-lyoniresinol, nitidine chloride, norbraylin, skimmianine, and decarine were identified as quality markers. CONCLUSION In the present study, we developed a strategy to improve the quality control of TA. In consideration of the pharmacodynamic activity and statistical differences, six compounds are proposed as quality markers for TA.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Chenxi Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiake Wen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Wei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Liu S, Jin X, Wang R, Meng X, Du K, Li J, Gao X, Chang Y. A metabolomics discrimination-based strategy for screening the antithrombin active markers of perilla seeds: A natural oil crop. Food Chem 2024; 432:137183. [PMID: 37633135 DOI: 10.1016/j.foodchem.2023.137183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Natural crops oil with high nutritional value has gradually attracted attention. Perilla seeds are regarded as a source of functional edible oil in America, Asia and European countries due to its abundant nutrients. In this research, samples were extracted by different polarity solvents and evaluated their thrombin inhibition activities in vitro. Metabolomics combined with chemometrics revealed the antithrombin active markers of perilla seeds. The enzyme kinetics and molecular docking results were useful in clarifying their inhibition of thrombin. The orthogonal experimental design was applied to optimize the extraction process of six antithrombin active markers from perilla seeds. The results showed that rosmarinic acid, luteolin, luteolin-7-O-glucoside, α-linolenic acid, linoleic acid, and oleic acid were screened out as functional and active markers. Besides, perilla seeds as a natural oil crop had the potential of antithrombin. It can also be applied in the food field because of its nutraceutical functions. Metabolomics combined with chemometrics will facilitate the discovery of functional, active markers in perilla seeds, which is conducive to accurate quality control.
Collapse
Affiliation(s)
- Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Yan R, Cui W, Ma W, Li J, Liu Z, Lin Y. Typhaneoside-Tetrahedral Framework Nucleic Acids System: Mitochondrial Recovery and Antioxidation for Acute Kidney Injury treatment. ACS NANO 2023; 17:8767-8781. [PMID: 37057738 DOI: 10.1021/acsnano.3c02102] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Acute kidney injury (AKI) is not only a worldwide problem with a cruel hospital mortality rate but also an independent risk factor for chronic kidney disease and a promoting factor for its progression. Despite supportive therapeutic measures, there is no effective treatment for AKI. This study employs tetrahedral framework nucleic acid (tFNA) as a vehicle and combines typhaneoside (Typ) to develop the tFNA-Typ complex (TTC) for treating AKI. With the precise targeting ability on mitochondria and renal tubule, increased antiapoptotic and antioxidative effect, and promoted mitochondria and kidney function restoration, the TTC represents a promising nanomedicine for AKI treatment. Overall, this study has developed a dual-targeted nanoparticle with enhanced therapeutic effects on AKI and could have critical clinical applications in the future.
Collapse
Affiliation(s)
- Ran Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Jiajie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
An Integrated Strategy of Chemical Fingerprint and Network Pharmacology for the Discovery of Efficacy-Related Q-Markers of Pheretima. Int J Anal Chem 2022; 2022:8774913. [PMID: 36245784 PMCID: PMC9553678 DOI: 10.1155/2022/8774913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Pheretima, one of the animal-derived traditional Chinese medicines, has been wildly used in various cardiovascular and cerebrovascular diseases, including stroke, coronary heart disease, hyperlipidemia, and hyperglycemia. However, it was still a big challenge to select the quality markers for Pheretima quality control. The fingerprint and network pharmacology-based strategy was proposed to screen the efficiency related quality markers (Q-Markers) of Pheretima. The ratio of sample to liquid, ultrasonic-extraction time, temperature, and power were optimized by orthogonal design, respectively. The chemical fingerprint of forty batches of Pheretima was established, and six common peaks were screened. The network pharmacology was used to construct the Pheretima-Components-Targets-Pathways-Stroke network. It was found that six potential efficacy Q-markers in Pheretima could exert the relaxing meridians effect to treat stroke through acting on multiple targets and regulating various pathways. A simple HPLC-DAD method was developed and validated to determine the efficacy Q-markers. Grey relational analysis was used to further verify the relation of potential efficiency related quality markers with the anticoagulation activity of Pheretima, which indicated that the contents of these markers exhibited high relationship with the anticoagulation activity. It was concluded that hypoxanthine, uridine, phenylalanine, inosine, guanosine, and tryptophan were selected as quality markers related to relaxing meridians to evaluate the quality of Pheretima. The fingerprint and network pharmacology-based strategy was proved to be a powerful strategy for the discovery of efficiency related Q-markers of Pheretima.
Collapse
|
8
|
Emerging biotechnology applications in natural product and synthetic pharmaceutical analyses. Acta Pharm Sin B 2022; 12:4075-4097. [DOI: 10.1016/j.apsb.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
|
9
|
Gao M, Lan J, Zhang Y, Yu S, Bao B, Yao W, Cao Y, Shan M, Cheng F, Zhang L, Chen P. Discovery of processing-associated Q-marker of carbonized traditional Chinese medicine: An integrated strategy of metabolomics, systems pharmacology and in vivo high-throughput screening model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154152. [PMID: 35636167 DOI: 10.1016/j.phymed.2022.154152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Carbonized traditional Chinese medicine (TCM) is a kind of distinctive traditional medicine, which has been widely used to cure various bleeding syndromes in clinic for over 2000 years. However, there are no effective quality control methods developed on carbonized TCM so far. PURPOSE This study aimed at developing a processing-associated quality marker (Q-marker) discovery strategy, which would enable to promote the quality control study of carbonized TCM. METHODS Carbonized Typhae Pollen (CTP), a typical carbonized TCM with fantastic efficacy of stanching bleeding and removing blood stasis, was used as an example. First, a ultraperformance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) method was established to characterize four types of CTP in different processing degrees. Second, chemometric method was applied to screen candidate Q-markers. Third, peak area changes and Aratio changes of each candidate markers in 57 batches samples were described (Traceability and Transitivity). Fourth, systems pharmacology and two high-throughput zebrafish models: cerebral hemorrhage model and thrombus model were used to furtherly screen Q-markers (Effectiveness). Finally, a ultraperformance liquid chromatographic coupled with triple quadrupole tandem mass spectrometry (UPLC-TQ-MS) method was established and applied to quantify Q-markers in additional 10 batches of CTP samples (Measurability). RESULTS The chemical profiles of Typhae Pollen during the carbonized process were investigated. Then, 12 candidate compounds were screened in chemometric part. Six Q-markers (isorhamnetin-3-O-neohesperidoside, isorhamnetin-3-O-rutinoside, kaempferol-3-O-neohesperidoside, naringenin, quercetin and isorhamnetin) were subsequently screened out using three principles of Q-markers combined with content changes and two in vivo zebrafish models. Their average contents in additional 10 batches of CTP were 316.8 μg/g, 13.7 μg/g, 6.1 μg/g, 197.8 μg/g, 12.9 μg/g and 199.3 μg/g, respectively. Their content proportion was about 25: 1: 0.5: 15: 1: 15. CONCLUSION A processing-associated Q-marker discovery strategy was developed for carbonized TCM. It might provide a novel insight to solve the problem of 'Chao Tan Cun Xing' in carbonized process.
Collapse
Affiliation(s)
- Mingliang Gao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Jinshan Lan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Yusong Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Sheng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China.
| | - Peidong Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China.
| |
Collapse
|
10
|
Li Y, Ju S, Lin Z, Wu H, Wang Y, Jin H, Ma S, Zhang B. Bioactive-Chemical Quality Markers Revealed: An Integrated Strategy for Quality Control of Chicory. Front Nutr 2022; 9:934176. [PMID: 35859756 PMCID: PMC9292578 DOI: 10.3389/fnut.2022.934176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
As a miraculous Xinjiang Uyghur customary traditional Chinese medicine (TCM), Chicory (Cichorium glandulosum Boiss.et Huet and Cichorium intybus L.) has been found to have therapeutic potential for metabolic diseases in recent years. Although it is widely used as an ethnic medicine, there is still a lack of targeted quality control indicators in quality standards. Hence, this study was conducted to further develop a strategy to reveal bioactive-chemical quality markers based on the existing foundation. First, through the comparative screening of fingerprint profiles of a large amount of Cichorium glandulosum Boiss.et Huet and Cichorium intybus L., superiority components were found to be potential indicators of chemical quantitative properties for the roots and above-ground parts. The results of content determination showed that their contents differed among different species and parts. Second, the potential dominant components were further confirmed using network pharmacology and molecular docking techniques. Again, the results of RAW264.7 cells and L02 cells experiments showed that chicory acid and lactucin were the main components that could reflect the anti-inflammatory and uric acid-lowering potential of chicory. Finally, under this strategy, this study reveals that cichoric acid and lactucin have the properties of quality markers and quality control of chicory. In a word, this work contributes to the quality control, standard improvement, and rational clinical use of chicory.
Collapse
Affiliation(s)
- Yaolei Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Ju
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zhijian Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Hongyu Jin
- National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Shuangcheng Ma,
| | - Bing Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
- Bing Zhang,
| |
Collapse
|
11
|
Sun L, Liu J, Zhao H, Wang Z, Liu X, Chang Y, Yao D. Phytoremediation performance of three traditional ornamental hydrophytes and the structure of their rhizosphere microorganism populations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50727-50741. [PMID: 35243578 DOI: 10.1007/s11356-022-19543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
The use of phytoremediation technology in urban and rural landscapes can permit both aesthetic and water purification functions to be achieved sustainably. Here, the ability of three ornamental aquatic plant species (Lythrum salicaria L., Sagittaria trifolia L., and Typha orientalis C. Presl) to remove nutrients from simulated contaminated water over 35 days and the structure of their rhizosphere microorganism populations were evaluated to examine their potential to be used for landscape phytoremediation as well as determine the mechanism of nutrient removal. L. salicaria had the highest nutrient removal ability (86.91-96.96% removal efficiency of total nitrogen and 46.04-66.70% removal efficiency of total phosphorus). The population structure of rhizosphere microorganisms was mainly affected by plant species and not the nutrient level of the water body according to principal coordinates analysis and non-metric multi-dimensional scaling. Betaproteobacteriales and Chitinophagales were highly correlated with the content of nutrients in water according to redundancy analysis. The accumulation of the two orders by L. salicaria and higher biomass might explain the stronger removal ability of L. salicaria. The findings of this study indicate that these plants could enhance urban and rural water landscape design; our results also shed new light on the mechanism of phytoremediation by rhizosphere microorganisms.
Collapse
Affiliation(s)
- Linhe Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Jixiang Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Huijun Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
| | - Zhenxin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaojing Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Yajun Chang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China.
| | - Dongrui Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China.
| |
Collapse
|
12
|
Cui Y, Du K, Hou S, Yang R, Qi L, Li J, Chang Y. A comprehensive strategy integrating metabolomics with multiple chemometric for discovery of function related active markers for assessment of foodstuffs: A case of hawthorn (Crataegus cuneata) fruits. Food Chem 2022; 383:132464. [DOI: 10.1016/j.foodchem.2022.132464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 01/05/2023]
|
13
|
Wang X, Lu H, Wen L, Chen H, Wang X, Li L, Lin H. Identification of Potential Active Ingredients and Mechanisms of Cattail Pollen for Treating Infertile Patients With Endometriosis Based on Bioinformatics and Molecular Docking. Nat Prod Commun 2022; 17. [DOI: 10.1177/1934578x221114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Introduction: Cattail Pollen is a commonly used Chinese medicine for promoting blood circulation and removing blood stasis in infertility patients with endometriosis, but its ingredients and mechanism of action are still unclear. The aims of this study were to explore the potential active ingredients, targets and mechanisms of Cattail Pollen in treating infertility patients with endometriosis based on bioinformatics and molecular docking. Methods: The GSE120103 dataset was downloaded from the Gene Expression Omnibus (GEO) database to screen out differentially expressed genes. Cytoscape software was constructed to construct the protein–protein interaction network and screen for hub proteins, and molecular docking was performed to identify the binding activity of Cattail Pollen active ingredients and infertility genes. Then, DAVID software was used to perform gene ontology (GO) functional analysis and KEGG pathway enrichment analysis on differentially expressed genes. Results: There were 1320 differentially expressed genes in patients with endometriosis. ADCY5, RLN3, and ADCY6 proteins encoded by genes that were upregulated in infertile patients with endometriosis. Eight active ingredients of Cattail Pollen were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform: naringenin ((2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one), arachidonic acid, isorhamnetin, β-sitosterol, kaempferol, Testosterone palmitate, kaempferol-3-O-α-L-rhamnosyl(1→2)-β-D-glucoside and quercetin. Molecular docking identified that the binding activity of arachidonic acid with ADCY5, RLN3, and ADCY6; and testosterone palmitate with ADCY5 and ADCY6 was strong. GO analysis suggested that differentially expressed genes were involved in multiple biological processes, cellular components, and molecular functions. KEGG enrichment analysis found that differentially expressed genes were enriched in neuroactive ligand–receptor interaction, cytokine–cytokine receptor interaction, chemokine signaling pathway, and Jak-STAT signaling pathway. Conclusions: This study discovered the differentially expressed genes of naturally conceived and infertile patients with endometriosis, and clarified the effective ingredients, targets, and potential signaling pathways of Cattail Pollen in the treatment of infertility patients with endometriosis.
Collapse
Affiliation(s)
- Xiaotong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hongdan Lu
- Shenzhen Dapeng New District Maternal and Child Health Hospital, Shenzhen, China
| | - Lijuan Wen
- The Second School of Clinical Medicine & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huamei Chen
- The Fifth People's Hospital of Nanhai District, Foshan, China
| | - Xing Wang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lifang Li
- Ningxia Hui Autonomous Region Hospital and Research Institute of Traditional Chinese Medicine, Yinchuan, China
| | - Haixiong Lin
- Ningxia Hui Autonomous Region Hospital and Research Institute of Traditional Chinese Medicine, Yinchuan, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
14
|
Screening for the extracorporeal coagulation activity quality markers(Q-markers)of Dried and Stir fried ginger. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Chemical Characterization and Metabolic Profiling of the Compounds in the Chinese Herbal Formula Li Chang Decoction by UPLC-QTOF/MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1322751. [PMID: 35463075 PMCID: PMC9020952 DOI: 10.1155/2022/1322751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022]
Abstract
Background Li Chang decoction (LCD), a Chinese medicine formula, is commonly used to treat ulcerative colitis (UC) in clinics. Purpose This study aimed to identify the major components in LCD and its prototype and metabolic components in rat biological samples. Methods The chemical constituents in LCD were identified by establishing a reliable ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF/MS) method. Afterwards, the rats were orally administered with LCD, and the biological samples (plasma, urine, and feces) were collected for further analyzing the effective compounds in the treatment of UC. Result A total of 104 compounds were discriminated in LCD, including 26 flavonoids, 20 organic acids, 20 saponins, 8 amino acids, 5 oligosaccharides, 5 tannins, 3 lignans, 2 alkaloids, and 15 others (nucleosides, glycosides, esters, etc.). About 50 prototype and 94 metabolic components of LCD were identified in biological samples. In total, 29 prototype components and 22 metabolic types were detected in plasma. About 27 prototypes and 96 metabolites were discriminated in urine, and 34 prototypes and 18 metabolites were identified in feces. Conclusion The flavonoids, organic acids, and saponins were the major compounds of LCD, and this study promotes the further pharmacokinetic and pharmacological evaluation of LCD.
Collapse
|
16
|
Du KZ, Cui Y, Chen S, Yang R, Shang Y, Wang C, Yan Y, Li J, Chang YX. An integration strategy combined progressive multivariate statistics with anticoagulant activity evaluation for screening anticoagulant quality markers in Chinese patent medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114964. [PMID: 34990765 DOI: 10.1016/j.jep.2021.114964] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The cardiovascular and cerebrovascular diseases affect human health globally. Naoxintong capsules (NXTs), a famous Chinese Patent Medicine, has been especially applied to treat cerebral infarction and coronary heart disease in clinical practice. The anticoagulant activity of this prescription plays an important role in this course of treatment. AIM OF THE STUDY Thrombin and factor Xa (FXa) are two key targets considering the anticoagulant activity. The purpose of this investigation is to screen the quanlity markers as key thrombin and FXa inhibitors for the anticoagulant activity oriented quality control of Chinese patent medicine. MATERIALS AND METHODS Simple multi-polar solvent extraction processes using various proportions of solvents were conducted and their thrombin/FXa inhibitory activities were evaluated in vitro. Bivariate correlation analysis (BCA), grey correlation analysis (GCA), and orthogonal partial least squares discriminate analysis (OPLS-DA) were adopted for screening the potential active markers related to the anticoagulant activity. The chemical structures of these active compounds were identified by UHPLC-Q-TOF-MS/MS and their thrombin/FXa inhibitory activity was determined. The molecular docking technology was applied to explore the interaction between the compounds and targets. The contribution of these anticoagulant active ingredients in NXT was also investigated. Last but not the least, the contents of these markers in NXT were determined by liquid chromatography-electrospray ionization tandem triple quadrupole mass spectrometry (HPLC-ESI-MS/MS) method. RESULTS The results showed that the NXT extract exhibited great activity against thrombin and FXa, especially extracted by 75% methanol (v/v). Six marker compounds with potential anticoagulant activity were screened out. Therein, four of the active compounds owing thrombin inhibitory activity (paeoniflorin, lithospermic acid, salvianolic acid B, Z-ligustilide) and five of the active compounds owing FXa inhibitory activity (3,5-dicaffeoylquinic acid, rosmarinic acid, lithospermic acid, salvianolic acid B and Z-ligustilide). In addition, these active compounds accounted for a large proportion of thrombin/FXa inhibitory activity of NXTs. The binding energy also showed the strong interaction formed by close connection of the compounds to the residues of targets. CONCLUSIONS The proposed integrated stategy could be an efficient strategy to screen potential thrombin/FXa inhibitors for the bioactivity related quanlity control of Chinese patent medicine.
Collapse
Affiliation(s)
- Kun-Ze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chenhong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yiqi Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan-Xu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
17
|
Wang X, Zhang H, Lu M, Jiang H, Xia F, Gao J, Wan J, Yang F. Characterization of thrombin inhibitors in tea through ultra high performance liquid chromatography‐mass spectrometry combined with multivariate statistical analysis. SEPARATION SCIENCE PLUS 2021. [DOI: 10.1002/sscp.202000103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xu Wang
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P.R. China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P.R. China
| | - Min Lu
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P.R. China
| | - Hui Jiang
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P.R. China
| | - Fang‐Bo Xia
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Taipa Macau P.R. China
| | - Jian‐Li Gao
- Academy of Chinese Medical Sciences Zhejiang Chinese Medical University Hangzhou Zhejiang P.R. China
| | - Jian‐Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Taipa Macau P.R. China
| | - Feng‐Qing Yang
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P.R. China
| |
Collapse
|
18
|
Yang S, Wang X, Duan C, Zhang J. A novel approach combining metabolomics and molecular pharmacology to study the effect of Gei Herba on mouse hematopoietic function. Biomed Pharmacother 2020; 129:110437. [PMID: 32768939 DOI: 10.1016/j.biopha.2020.110437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/21/2023] Open
Abstract
Gei Herba, Chinese named Lanbuzheng (LBZ), is a traditional Chinese medicine promotes hematopoiesis, yet the underlying mechanism for this effect remains largely unknown. In the present study, a novel approach combining LC-MS metabolomics and molecular pharmacology was developed to investigate the hematopoietic effect and mechanism of LBZ on hematopoietic dysfunction (HD) caused by cyclophosphamide (CTX) in treated mice. The results show that LBZ can reduce damage in the spleen, a result consistent with the peripheral hemogram. Fourteen potential biomarkers were identified in the spleen by metabolic profiles analysis, including 5-hydroxymethyluracil, ascorbalamic acid, adenosine 5'-monophosphate, menadiol disulfate, l-homocysteine sulfonic acid and l-carnitine. Change in biomarker levels suggest that LBZ mainly affects β-oxidation of very-long-chain fatty acids, oxidation of branched chain fatty acids and carnitine synthesis, and those metabolites produced along with related metabolic pathways are closely associated with anti-apoptosis. A molecular pharmacology approach was simultaneously developed to examine accompanying cellular signaling mechanisms. LBZ activates PI3K/Akt signaling pathways and granulocyte-colony-stimulating-factor (G-CSF)-mediated Janus kinase 2 (JAK2)/transcription 3 (STAT3), resulting in inhibiting the release of cytochrome c. Further, LBZ inhibits caspase-mediated mitochondrial-dependent apoptosis mediated by caspase-9 and caspase-3. LBZ can thus reduce CTX-induced HD via G-CSF-mediated JAK2/STAT3 signaling and PI3K/Akt mitochondrial-dependent apoptotic pathways. The present study combines metabolomic and molecular pharmacological methods to elucidate mechanisms for the protective effect of LBZ on mouse HD following CTX-induced damage. This approach may be useful for exploring mechanisms of action of other drugs.
Collapse
Affiliation(s)
- Sha Yang
- Department of Pharmcy, Zunyi Medical University, Zunyi, 563000, China; Zunyi Insitute of Products Quality Inspection and Testing, Zunyi, 56300, China
| | - Xiaoning Wang
- Department of Pharmcy, Zunyi Medical University, Zunyi, 563000, China; Key Lab Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 56300,China
| | - Cancan Duan
- Department of Pharmcy, Zunyi Medical University, Zunyi, 563000, China; Key Lab Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 56300,China.
| | - Jianyong Zhang
- Department of Pharmcy, Zunyi Medical University, Zunyi, 563000, China; Key Lab Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 56300,China.
| |
Collapse
|