1
|
Gutiérrez-Venegas G, Rosas-Martínez M. Nobiletin and 5‑demethylnobiletin ameliorate hypopharyngeal squamous cell carcinoma by suppressing TGF‑β‑mediated epithelial‑mesenchymal transition. Oncol Lett 2025; 29:176. [PMID: 39975956 PMCID: PMC11836556 DOI: 10.3892/ol.2025.14922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2024] [Accepted: 10/02/2024] [Indexed: 02/21/2025] Open
Abstract
Hypopharynx squamous cell carcinoma accounts for 5% of all diseases diagnosed in Mexico. It is associated with poor oral hygiene, alcohol consumption and tobacco use and is usually diagnosed at an advanced stage, with metastasis to the lymph nodes. Metastasis from primary tumors occurs via a complex process called epithelial-mesenchymal transition (EMT), in which epithelial cells gradually acquire characteristics of mesenchymal cells, enabling their spread. Flavonoids have anticancer effects. In the present study, the effects of the polymethoxyflavones nobiletin (Nob) and 5-demethylnobiletin (5-DMN) on transforming growth factor (TGF)-β1-induced EMT in hypopharyngeal squamous cell carcinoma cells were evaluated. Either polymethoxyflavone alone inhibited cell proliferation and combined treatment had no synergistic effect. The two flavonoids inhibited EMT by reversing the effects of TGF-β on morphological changes, migration and the expression of the markers E-cadherin, N-cadherin, Slug and Snail. Thus, Nob and 5-DMN are potential candidates for use in the treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Gloria Gutiérrez-Venegas
- Biochemistry Laboratory of The Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Marisol Rosas-Martínez
- Biochemistry Laboratory of The Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
2
|
Yu J, Li Y, Li Y, Liu X, Huo Q, Wu N, Zhang Y, Zeng T, Zhang Y, Li HY, Lian J, Zhou J, Moses EJ, Geng J, Lin J, Li W, Zhu X. Phosphorylation of FOXN3 by NEK6 promotes pulmonary fibrosis through Smad signaling. Nat Commun 2025; 16:1865. [PMID: 39984467 PMCID: PMC11845461 DOI: 10.1038/s41467-025-56922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025] Open
Abstract
The transcriptional repressor FOXN3 plays a key role in regulating pulmonary inflammatory responses, which are crucial in the development of pulmonary fibrosis. However, its specific regulatory function in lung fibrosis remains unclear. Here, we show that FOXN3 suppresses pulmonary fibrosis by inhibiting Smad transcriptional activity. FOXN3 targets a substantial number of Smad response gene promoters, facilitating Smad4 ubiquitination, which disrupts the association of the Smad2/3/4 complex with chromatin and abolishes its transcriptional response. In response to pro-fibrotic stimuli, NEK6 phosphorylates FOXN3 at S412 and S416, leading to its degradation. The loss of FOXN3 inhibits β-TrCP-mediated ubiquitination of Smad4, stabilizing the Smad complex's association with its responsive elements and promoting transcriptional activation, thus contributing to the development of pulmonary fibrosis. Notably, we found a significant inverse expression pattern between FOXN3 and Smad4 in clinical pulmonary fibrosis cases, underscoring the importance of the NEK6-FOXN3-Smad axis in the pathological process of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jinjin Yu
- Anhui Province Key Laboratory of Respiratory Tumor and Infectious Disease, Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical University, Bengbu, China
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
- Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, Bengbu, China
| | - Yingke Li
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Yiming Li
- Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Xiaotian Liu
- Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Qingyang Huo
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Nan Wu
- Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, Bengbu, China
| | - Yangxia Zhang
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Taoling Zeng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yong Zhang
- Anhui Province Key Laboratory of Respiratory Tumor and Infectious Disease, Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical University, Bengbu, China
| | - Henry You Li
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Jie Lian
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Jihong Zhou
- Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Emmanuel Jairaj Moses
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia.
| | - Jian Geng
- Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China.
| | - Juntang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, China.
| | - Wei Li
- Anhui Province Key Laboratory of Respiratory Tumor and Infectious Disease, Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical University, Bengbu, China.
| | - Xinxing Zhu
- Anhui Province Key Laboratory of Respiratory Tumor and Infectious Disease, Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
3
|
Vithalkar MP, Pradhan S, Sandra KS, Bharath HB, Nayak Y. Modulating NLRP3 Inflammasomes in Idiopathic Pulmonary Fibrosis: A Comprehensive Review on Flavonoid-Based Interventions. Cell Biochem Biophys 2025:10.1007/s12013-025-01696-4. [PMID: 39966334 DOI: 10.1007/s12013-025-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a severe, rapidly advancing disease that drastically diminishes life expectancy. Without treatment, it can progress to lung cancer. The precise etiology of IPF remains unknown, but inflammation and damage to the alveolar epithelium are widely thought to be pivotal in its development. Research has indicated that activating the NLRP3 inflammasome is a crucial mechanism in IPF pathogenesis, as it triggers the release of pro-inflammatory cytokines such as IL-1β, IL-18, and TGF-β. These cytokines contribute to the myofibroblast differentiation and extracellular matrix (ECM) accumulation. Currently, treatment options for IPF are limited. Only two FDA-approved medications, pirfenidone and nintedanib, are available. While these drugs can decelerate disease progression, they come with a range of side effects and do not cure the disease. Additional treatment strategies primarily involve supportive care and therapy. Emerging research has highlighted that numerous flavonoids derived from traditional medicines can inhibit the critical regulators responsible for activating the NLRP3 inflammasome. These flavonoids show promise as potential therapeutic agents for managing IPF, offering a new avenue for treatment that targets the core inflammatory processes of this debilitating condition.
Collapse
Affiliation(s)
- Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - Shreya Pradhan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - K S Sandra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - H B Bharath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India.
| |
Collapse
|
4
|
Zhou M, You X, Zhang J, Ye Z, Song J, Chen B, Fan L, Ma J, Yang S, Cheng M, Chen W. miR-629-3p inhibits fine particulate matter exposure-induced lung function decline: Results from the two-stage population study and in vitro study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125535. [PMID: 39701361 DOI: 10.1016/j.envpol.2024.125535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/09/2024] [Revised: 10/29/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
MiRNAs were reported to play crucial roles in the pathogenesis of health damage caused by environmental pollutants. However, its potential role in fine particulate matter (PM2.5) exposure-induced lung function decline has rarely been elucidated. The present study was developed to profile specific miRNAs that were related to both PM2.5 exposure and lung function decline, and to investigate the regulating role in PM2.5 exposure-induced lung injury. Based on the Wuhan-Zhuhai cohort, in the discovery stage, plasma miRNA profiling for PM2.5 exposure was conducted through next-generation sequencing among 60 participants with 120 observations in a repeated-measures design. Plasma miRNA profiling for lung function decline was conducted among 10 pairs of lung function decline incident cases and matched healthy controls. In the validating stage, miR-629-3p was selected from miRNAs that were related to both PM2.5 exposure and lung function decline, and was measured by quantitative real-time PCR among 475 residents to validate its association with PM2.5 exposure as well as lung function. In vitro, PM2.5-treated A549 and BEAS-2B cell models and miR-629-3p mimic/inhibitor models were used to explore the role and underlying mechanism of miR-629-3p on epithelial-mesenchymal transition (EMT) induced by PM2.5 exposure. The two-stage population study found a negative association between personal PM2.5 exposure and plasma miR-629-3p, while a positive association between miR-629-3p and lung function. In vitro, PM2.5 treatment stimulated the expressions of EMT-related factors, accompanied by the activation of TGF-β1/TGF-βR1 signal pathway. Overexpression of miR-629-3p could inhibit PM2.5-induced TGF-βR1 expression and alleviate EMT process. And inhibition of miR-629-3p could promote TGF-βR1 expression and aggravate EMT process. In conclusion, miR-629-3p may alleviate the lung injury induced by PM2.5 exposure through inhibiting TGF-β1/TGF-βR1 pathway.
Collapse
Affiliation(s)
- Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojie You
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiake Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiahao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingdong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lieyang Fan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shijie Yang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Man Cheng
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Arafa SS, Elnoury HA, Badr El-Din S, Sakr MA, Hendawi FF, Masoud RAE, Barghash SS, Elbehairy DS, Hemeda AA, Farrag IM, Abdelrahman DS, Elsadek AM, Ghanem SK, AboShabaan HS, Atwa AM, Nour El Din M, Radwan AF, Al-Zahrani M, Alhomodi AF, Abdulfattah AM, Abdelkader A. Acetamiprid-induced pulmonary toxicity via oxidative stress, epithelial-mesenchymal transition, apoptosis, and extracellular matrix accumulation in human lung epithelial cells and fibroblasts: Protective role of heat-killed Lactobacilli. Food Chem Toxicol 2025; 198:115322. [PMID: 39961414 DOI: 10.1016/j.fct.2025.115322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Acetamiprid (ACE) is a neonicotinoid insecticide with widespread global application, resulting in persistent human exposure. The current research examined the toxicological implications of ACE exposure on human lung fibroblasts (MRC-5 cells) and bronchial epithelial cells (BEAS-2B cells). The following implications were explored: oxidative stress, epithelial-mesenchymal transition, apoptosis, cellular proliferation, and extracellular matrix accumulation. The prospective protective properties of heat-killed Lactobacillus fermentum and Lactobacillus delbrueckii (HKL) were further studied. The 14-day exposure to ACE at 4 μM triggered oxidative stress and inflammation. ACE promoted epithelial-mesenchymal transition, as evidenced by the decline of protein and mRNA abundances of E-cadherin alongside increased protein and mRNA quantities of α-SMA and N-cadherin in BEAS-2B cells. Additionally, it elicited apoptosis in BEAS-2B cells and stimulated the cellular growth of MRC-5 cells. The TGF-β1/Smad pathway was activated upon ACE exposure, leading to the accumulation of extracellular matrix. HKL demonstrated antioxidant, anti-apoptotic, anti-proliferative, and anti-fibrotic properties, mitigating ACE-induced toxicity. Our findings delineate the molecular mechanisms underlying epithelial-mesenchymal transition, inflammation, oxidative stress, and extracellular matrix accumulation in ACE-induced pulmonary fibrosis, which provides new insights into pulmonary injury. Additionally, this investigation would offer us an approach to mitigate lung deterioration induced by ACE through utilizing heat-killed probiotic supplementation.
Collapse
Affiliation(s)
- Samah S Arafa
- Department of Pesticides, Faculty of Agriculture, Menoufia University, Shibin Elkom, Egypt.
| | - Heba A Elnoury
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Sahar Badr El-Din
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed A Sakr
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez University, Suez, Egypt
| | - Fatma Fawzi Hendawi
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Rehab Ali Elsayed Masoud
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Samia Soliman Barghash
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt; Department of Pharmacology and Toxicology, Pharmacy College, Qassim University, Saudi Arabia
| | - Doaa Sabry Elbehairy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Ayat Abdelaty Hemeda
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Islam Mostafa Farrag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Doaa Sayed Abdelrahman
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Amira Mohammad Elsadek
- Department of Chest Diseases, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Sahar K Ghanem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Hind S AboShabaan
- Department of Clinical Pathology, National Liver Institute Hospital, Menoufia University, Shibin Elkom, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, Iraq
| | - Mahmoud Nour El Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Cairo, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt; Department of Pharmacy, Kut University College, Al Kut, Wasit, Iraq
| | - Majid Al-Zahrani
- Department of Biological Sciences, College of Sciences and Art, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ahmad F Alhomodi
- Department of Biology, College of Science and Arts, Najran University, Saudi Arabia
| | - Ahmed M Abdulfattah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Embryonic Stem Cell Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
6
|
Chen W, Peng J, Tang X, Ouyang S. MSC-derived exosome ameliorates pulmonary fibrosis by modulating NOD 1/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Heliyon 2025; 11:e41436. [PMID: 39872463 PMCID: PMC11761938 DOI: 10.1016/j.heliyon.2024.e41436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
Background Pulmonary fibrosis (PF) is an irreversible and usually fatal lung disease. In recent years, the therapeutic role of exosomes derived from mesenchymal stem cells (MSC-exos) in anti-fibrotic treatment has received much attention. In this study, we aimed to determine the anti-fibrotic properties and related molecular mechanisms of MSC-exos in Bleomycin(BLM)-induced PF. Methods We used BLM-induced mice model of PF and in vitro model. MSC-exos were isolated from BMSCs cells using Exo Quick-TC kit and identified using conventional methods. Using cell counting kit-8 (CCK-8) to detect cell viability. Classic molecular biology approaches such as RT-qPCR, Western blot, immunofluorescence, and ELISA were used to examine molecular pathways. Histopathological examination was performed using HE and Masson staining. Results MSC-exos alleviated inflammation, inhibited epithelial-mesenchymal transition (EMT), and ameliorated PF. Further studies showed that MSC-exos regulated NOD1/NF-kB signaling pathway to suppress the activation of NLRP3 inflammasomes both in vivo and in vitro. Additionally, overexpression of NLRP3 significantly reversed the anti-fibrotic effects of MSC-exos in BLM-induced lung epithelial cells. Conclusion MSC-derived exosome ameliorates pulmonary fibrosis by modulating NOD 1/NLRP3-mediated epithelial-mesenchymal transition and inflammation.
Collapse
Affiliation(s)
- Wei Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jie Peng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xiangyi Tang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Shao Ouyang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, Hunan, China
| |
Collapse
|
7
|
Sangaraju R, Sinha SN, Mungamuri SK, Gouda B, Kumari S, Patil PB, Godugu C. Effect of ethyl acetate extract of the whole plant Clerodendrum phlomidis on improving bleomycin (BLM)-induced idiopathic pulmonary fibrosis (IPF) in Rats: In vitro and in vivo research. Int Immunopharmacol 2025; 145:113688. [PMID: 39642567 DOI: 10.1016/j.intimp.2024.113688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a prevalent chronic lung condition of unknown etiology characterized by fibrosis and inflammation. Lung scarring progresses owing to cytokines and immune cells that promote inflammation and fibrosis in idiopathic pulmonary fibrosis (IPF). The anti-inflammatory and anti-fibrotic properties of the ethyl acetate extract of Clerodendrum phlomidis (CPEA), derived from the Indian plant "agnimantha," are recognized in traditional Ayurvedic medicine. This study investigated the potential protective mechanisms of Clerodendrum phlomidis (CPEA), which have not been previously examined, and demonstrated how CPEA affects bleomycin (BLM)-induced lung fibrosis. Phytometabolomic analysis of Clerodendrum phlomidis was performed using UPLC-ESI-Q/TOF-MS. Free radical scavenging assays were also used to evaluate the antioxidant capacity of the plants using ABTS, DPPH, FRAP, and NO assays. Using ELISA and Griess reagent assays, we assessed the anti-inflammatory effects of CPEA in LPS-induced Jurkat, THP-1, and LL-29 cell lines. This study compared intratracheal injection of BLM-induced IPF in Wistar rats with oral administration of CPEA extract for its anti-fibrotic and anti-inflammatory properties. Multiple techniques were employed, including enzyme-linked immunosorbent assay (ELISA), hydroxyproline, histopathological, biochemical, antioxidant enzyme profiling, and hematological analyses. Polyphenolic compounds were identified using qualitative CPEA. Plant extracts demonstrated free radical-scavenging activity in vitro and exhibited antioxidant properties. CPEA extract reduced TNF-α, IL-1β, and NO levels in LPS-stimulated Jurkat, THP-1, and LL-29 cells. In response to BLM-induced lung and serum conditions in Wistar rats, the CPEA extract significantly reduced (p < 0.05) markers of inflammation and fibrosis (ALP, LDH, TNF-α, CXCL8-MIP2, MMP7, SP-A, SP-D, NO, TBARS, and MPO) and significantly restored antioxidant enzymes (p < 0.05) (GSH, GPx, and GST) and anti-inflammatory cytokines (IL10). Oral CPEA extract attenuates fibrosis, inflammation, oxidative stress, nitrosative stress, and lipid peroxidation in BLM-induced idiopathic pulmonary fibrosis (IPF). CPEA extract improved lung function and increased survival rates. Clinical trials are necessary, as this study indicated that the dietary flavonoid-rich component of CPEA extracts possesses anti-inflammatory and antioxidant properties. CPEA extract restored antioxidant enzyme levels and exerted anti-fibrotic and anti-inflammatory effects in rats with idiopathic lung fibrosis induced by BLM. CPEAs protect against lipopolysaccharide (LPS)-induced inflammation in vitro and bleomycin-induced idiopathic pulmonary fibrosis (IPF) in vivo. The findings of our investigation indicate that CPEA demonstrates therapeutic potential for IPF in human subjects, as evidenced by its capacity to enhance antioxidant, anti-inflammatory, and anti-fibrotic markers in preclinical disease models.
Collapse
Affiliation(s)
- Rajendra Sangaraju
- Division of Food Safety, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania P.O, Hyderabad 500007, India
| | - Sukesh Narayan Sinha
- Division of Food Safety, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania P.O, Hyderabad 500007, India.
| | - Sathish Kumar Mungamuri
- Division of Food Safety, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania P.O, Hyderabad 500007, India
| | - Balaji Gouda
- Division of Food Safety, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania P.O, Hyderabad 500007, India
| | - Sapna Kumari
- Division of Food Safety, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania P.O, Hyderabad 500007, India
| | - Pradeep B Patil
- Animal Facility Division, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania P.O, Hyderabad 500007, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| |
Collapse
|
8
|
Xu Y, Wang YR, Peng WP, Bu HM, Zhou Y, Wu Q. Tanshinone IIA Alleviates Pulmonary Fibrosis by Inhibiting Pyroptosis of Alveolar Epithelial Cells Through the MAPK Signaling Pathway. Phytother Res 2025; 39:282-297. [PMID: 39520221 DOI: 10.1002/ptr.8372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024]
Abstract
The current dearth of safe and efficacious pharmaceutical interventions for pulmonary fibrosis (PF) has prompted investigations into alternative treatments. This study aim to investigate the underlying mechanisms of Tanshinone IIA in the treatment of PF. PF was induced in a mouse model by intratracheal infusion of bleomycin (BLM), followed by gavage administration of varying concentrations of Tanshinone IIA. Lung tissue was obtained for pathological slides, proteomic and transcriptomic analyses. The target was predicted and analyzed using network pharmacology. Initially, an in vitro model in A549 cells was established by adding BLM, followed by treatment with varying concentrations of Tanshinone IIA. Subsequently, NAC and the ERK inhibitor, U0126, were individually introduced. Treatment with Tanshinone IIA in vivo decreased lung tissue lesions. Proteomic, transcriptomic, and network pharmacology analyses suggested that Tanshinone IIA may offer therapeutic benefits for PF by mitigating oxidative stress damage via the MAPK signaling pathway. In vitro studies demonstrated that BLM treatment in A549 cells induced exposure of the N-terminal end of the pyroptosis core protein GSDMD, and elevated oxidative stress levels in A549 cells, concomitant with the upregulation of P-ERK protein expression. Subsequent administration of Tanshinone IIA, NAC, and U0126 reduced the number of A549 cells undergoing pyroptosis, decreased oxidative stress levels, and decreased P-ERK protein expression. These findings suggested that Tanshinone IIA potentially delays the progression of PF. The mechanism of action involves the inhibition of oxidative stress and reduced epithelial cell pyroptosis via the MAPK-related pathway. The findings may provide a new reference for treatment of PF.
Collapse
Affiliation(s)
- Yong Xu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi-Ran Wang
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Wen-Pan Peng
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Hui-Min Bu
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yao Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Qi Wu
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
9
|
Yu JW, Lu WH. Melittin alleviates bleomycin-induced pulmonary fibrosis in vivo through regulating TGF-β1/Smad2/3 and AMPK/SIRT1/PGC-1α signaling pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:426-433. [PMID: 39968084 PMCID: PMC11831745 DOI: 10.22038/ijbms.2024.81986.17740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/17/2024] [Accepted: 09/28/2024] [Indexed: 02/20/2025]
Abstract
Objectives The present study investigated the protective effect of melittin (MEL) against bleomycin (BLM)- induced pulmonary fibrosis (PF) in mice and the mechanism underlying this effect. Materials and Methods A mouse model of PF was established by intratracheal injection of 3.5 mg/kg BLM. Twenty-four hours after the model was established, the mice in the treatment groups were intraperitoneally injected with MEL, and specimens were collected 28 days later. The body weight, survival rate, and pulmonary index (PI) of the mice were determined. Haematoxylin and eosin (HE) staining, Masson's trichrome staining, immunohistochemical staining, kit assays, and Western blot (WB) analysis were performed. Results Our study indicated that MEL significantly increased the body weight and survival rate, reduced PI, and improved lung histopathology in mice. In addition, MEL inhibited epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) deposition. Attenuated mitochondrial damage and reduced oxidative stress (OS) were also observed in MEL-treated mice. We further showed that MEL inhibited the TGF-β1/Smad2/3 pathway and activated the AMPK/SIRT1/PGC-1α pathway. Conclusion MEL is a promising future therapeutic agent for PF. Its multifaceted and complex mechanism of action inhibits both EMT and ECM production by modulating the TGF-β1/Smad2/3 pathway. It also improves mitochondrial function and reduces OS at least partially through the activation of the AMPK/SIRT1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Jia-Wang Yu
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, 230032, China
- EICU, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, China
| | - Wei-Hua Lu
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, 230032, China
- ICU, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, China
| |
Collapse
|
10
|
Li YQ, Yu XM, Shang XM, Lin JY, Tan RZ, Li JC, Su HW, Shen HP, Wang HL, Wang L. Biochanin A suppresses Klf6-mediated Smad3 transcription to attenuate renal fibrosis in UUO mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156067. [PMID: 39326137 DOI: 10.1016/j.phymed.2024.156067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/14/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Renal fibrosis is a hallmark of chronic kidney disease (CKD). Smad3 serves as the principal transcription factor mediating the pro-fibrosis effects of TGF-β signaling in renal fibrosis. Biochanin A (BCA), a natural isoflavone, has been shown to attenuate renal fibrosis by inhibiting TGF-β signaling but the detailed mechanisms remain unresolved. This study aimed to elucidate the specific mechanisms by which BCA modulates TGF-β signaling. METHODS Renal fibrosis models were established both in vitro, using TGF-β1-stimulated mouse renal tubular TCMK1 cells, and in vivo, employing mice with unilateral ureter obstruction (UUO). RNA-seq was conducted to identify BCA-regulated genes. The AnimalTFDB4.0 database was utilized to predict transcription factors with potential binding to Smad3 promoter. The activities of TGF-β signaling and the cloned mouse Smad3 promoter were assessed using luciferase reporter assays. Plasmid transfection was performed using polyethylenimine in TCMK1 cells or ultrasound microbubbles in UUO kidneys. Gene expression was analyzed by RT-PCR, western blot, and immunohistochemistry assays. RESULTS BCA significantly inhibited TGF-β signaling activity and suppressed TGF-β1-induced fibrotic gene expression in TCMK1 cells. RNA-seq and in silico analyses identified Smad3 as the key gene downregulated by BCA, while leaving Smad2 unaffected. This selective transcriptional suppression of Smad3 by BCA was validated by luciferase reporter assays using the cloned Smad3 promoter. Furthermore, transcription factor binding prediction identified that Klf6, a transcription factor downregulated by BCA, has binding potential to the Smad3 promoter and promotes Smad3 transcription. Klf6 expression was induced in TGF-β1-stimulated TCMK1 cells and UUO kidneys, but this induction was abolished upon BCA treatment. Importantly, Klf6 overexpression restored Smad3 expression and counteracted the anti-fibrosis effects of BCA in both TGF-β1-stimulated TCMK1 cells and UUO kidneys. CONCLUSION TGF-β-responsive Klf6 transcriptionally transactivates Smad3 expression. BCA exerts anti-renal fibrosis effects by inhibiting the Klf6-Smad3 signaling axis, underscoring its therapeutic potential in the treatment of CKD.
Collapse
Affiliation(s)
- Yu-Qing Li
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xin-Ming Yu
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xue-Mei Shang
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jing-Yi Lin
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Rui-Zhi Tan
- Research Center of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jian-Chun Li
- Research Center of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Hong-Wei Su
- The Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Hong-Ping Shen
- The Clinical Trial Research Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Hong-Lian Wang
- Research Center of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China.
| | - Li Wang
- Research Center of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
11
|
Lv Y, Xu Y, Liu S, Zeng X, Yang B. Biochanin A Attenuates Psoriasiform Inflammation by Regulating Nrf2/HO-1 Pathway Activation and Attenuating Inflammatory Signalling. Cell Biochem Biophys 2024:10.1007/s12013-024-01595-0. [PMID: 39499389 DOI: 10.1007/s12013-024-01595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/09/2024] [Indexed: 11/07/2024]
Abstract
Psoriasis is a long-term inflammatory skin condition marked by an overabundance of keratinocytes and the release of pro-inflammatory cytokines in the outer layer of skin. For the comprehensive management of intermediate to advanced psoriasis, innovative biological treatments have been developed. Products for the superficial therapy of mild to moderate psoriasis are still necessary, though. Trifolium pratense contains the isoflavone biochanin A (BCA), which exhibits antiviral, antioxidant, anti-carcinogenic, and anti-inflammatory properties, and helps protect the integrity and function of the endothelium. Although investigations have not shown that BCA is effective in treating psoriasis, it has been shown to slow down the breakdown of the skin barrier by regulating keratinocyte growth. We sought to clarify the basic mechanisms behind BCA's impact on psoriasis in vitro and in vivo using experimental research via regulating Nrf2/HO-1 signaling pathway. By subjecting human primary keratinocytes to psoriasis-related cytokines, psoriasis-like keratinocytes were produced. The CCK8 test was used in this investigation to assess cell viability. BCA reduced keratinocyte growth and inflammatory cascade stimulation produced by TNF-α and IL-6, according to in vitro investigations conducted on HaCaT cells. The in vivo findings showed that six days of BCA therapy significantly decreased the skin, hematological indicators, levels of NO, TBARS, histopathological, and pro-inflammatory factors of COX-2, iNOS, NF-κB pathway. It additionally influenced the protein content of pro-inflammatory cytokines such as IL-17, IL-23, IL-1β in the epidermis along with IL-6, TNF-α among the epidermis and serum. In addition, in contrast to the IMQ group, BCA improved the skin's level of Nrf2/HO-1 protein, anti-inflammatory cytokine IL-10, and antioxidant indicators like SOD, CAT, GST, GSH, GR, and Vit-C. Ultimately, our research shows that BCA was effective in treating psoriasis in pre-clinical animal models by activating the Nrf2/HO-1 pathway, leading to an increase in antioxidant and anti-inflammatory markers.
Collapse
Affiliation(s)
- Yaping Lv
- Department of Dermatology and Venereology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, China
| | - Yingsheng Xu
- Department of Clinical Nutrition, Ezhou Central Hospital, Ezhou, Hubei, 436000, China
| | - Songchun Liu
- Department of Clinical Nutrition, Ezhou Central Hospital, Ezhou, Hubei, 436000, China
| | - Xianjing Zeng
- General Practice Medicine, Affiliated Hospital of Jinggangshan University, Ji 'an, Jiangxi, 343000, China
| | - Bin Yang
- Department of Dermatology, Affiliated Hospital of Jinggangshan University, Ji 'an, Jiangxi, 343000, China, Jinggangshan University, Ji 'an, Jiangxi, 343009, China.
| |
Collapse
|
12
|
Xia Y, Wang H, Shao M, Liu X, Sun F. MAP3K19 Promotes the Progression of Tuberculosis-Induced Pulmonary Fibrosis Through Activation of the TGF-β/Smad2 Signaling Pathway. Mol Biotechnol 2024; 66:3300-3310. [PMID: 37906388 DOI: 10.1007/s12033-023-00941-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Tuberculosis-induced pulmonary fibrosis (PF) is a chronic, irreversible interstitial lung disease, which severely affects lung ventilation and air exchange, leading to respiratory distress, impaired lung function, and ultimately death. As previously reported, epithelial-mesenchymal transition (EMT) and fibrosis in type II alveolar epithelial cells (AEC II) are two critical processes that contributes to the initiation and progression of tuberculosis-related PF, but the underlying pathological mechanisms remain unclear. In this study, through performing Real-Time quantitative PCR (RT-qPCR), Western blot, immunohistochemistry, and immunofluorescence staining assay, we confirmed that the expression levels of EMT and fibrosis-related biomarkers were significantly increased in lung tissues with tuberculosis-associated PF in vivo and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) strain-infected AEC II cells in vitro. Besides, we noticed that the mitogen-activated protein kinase 19 (MAP3K19) was aberrantly overexpressed in PF models, and silencing of MAP3K19 significantly reduced the expression levels of fibronectin, collagen type I, and alpha-smooth muscle actin to decrease fibrosis, and upregulated E-cadherin and downregulated vimentin to suppress EMT in BCG-treated AEC II cells. Then, we uncovered the underlying mechanisms and found that BCG synergized with MAP3K19 to activate the pro-inflammatory transforming growth factor-beta (TGF-β)/Smad2 signal pathway in AEC II cells, and BCG-induced EMT process and fibrosis in AEC II cells were all abrogated by co-treating cells with TGF-β/Smad2 signal pathway inhibitor LY2109761. In summary, our results uncovered the underlying mechanisms by which the MAP3K19/TGF-β/Smad2 signaling pathway regulated EMT and fibrotic phenotypes of AEC II cells to facilitate the development of tuberculosis-associated PF, and these findings will provide new ideas and biomarkers to ameliorate tuberculosis-induced PF in clinic.
Collapse
Affiliation(s)
- Yu Xia
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China.
| | - Haiyue Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Meihua Shao
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Xuemei Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Feng Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| |
Collapse
|
13
|
Wang P, Chen W, li B, Yang S, Li W, Zhao S, Ning J, Zhou X, Cheng F. Exosomes on the development and progression of renal fibrosis. Cell Prolif 2024; 57:e13677. [PMID: 38898750 PMCID: PMC11533081 DOI: 10.1111/cpr.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2024] [Revised: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Renal fibrosis is a prevalent pathological alteration that occurs throughout the progression of primary and secondary renal disorders towards end-stage renal disease. As a complex and irreversible pathophysiological phenomenon, it includes a sequence of intricate regulatory processes at the molecular and cellular levels. Exosomes are a distinct category of extracellular vesicles that play a crucial role in facilitating intercellular communication. Multiple pathways are regulated by exosomes produced by various cell types, including tubular epithelial cells and mesenchymal stem cells, in the context of renal fibrosis. Furthermore, research has shown that exosomes present in bodily fluids, including urine and blood, may be indicators of renal fibrosis. However, the regulatory mechanism of exosomes in renal fibrosis has not been fully elucidated. This article reviewed and analysed the various mechanisms by which exosomes regulate renal fibrosis, which may provide new ideas for further study of the pathophysiological process of renal fibrosis and targeted treatment of renal fibrosis with exosomes.
Collapse
Affiliation(s)
- Peihan Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Wu Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Bojun li
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Songyuan Yang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Wei Li
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Sheng Zhao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Jinzhuo Ning
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Xiangjun Zhou
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
14
|
Zhang J, Zhang J, Yao Z, Shao W, Song Y, Tang W, Li B. GAMG ameliorates silica-induced pulmonary inflammation and fibrosis via the regulation of EMT and NLRP3/TGF-β1/Smad signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117124. [PMID: 39342756 DOI: 10.1016/j.ecoenv.2024.117124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/06/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Silicosis is an occupational disease caused by exposure to silica characterized by pulmonary inflammation and fibrosis, for which there is a lack of effective drugs. Glycyrrhetinic acid 3-O-β-D-glucuronide (GAMG) can treat silicosis due to its anti-inflammatory and anti-fibrotic properties. Here, the effect of therapeutic interventions of GAMG was evaluated in early-stage and advanced silicosis mouse models. GAMG significantly improved fibrotic pathological changes and collagen deposition in the lungs, alleviated lung inflammation in the BALF, reduced the expression of TNF-α, IL-6, NLRP3, TGF-β1, vimentin, Col-Ⅰ, N-cadherin, and inhibited epithelial-mesenchymal transition (EMT), thereby ameliorating pulmonary fibrosis. Moreover, the dose of 100 mg/kg GAMG can effectively prevent early-stage silicosis, while that of 200 mg/kg was recommended for advanced silicosis. In vitro and in vivo study verified that GAMG can suppress EMT through the NLRP3/TGF-β1/Smad2/3 signaling pathway. Therefore, GAMG could be a promising preventive (early-stage silicosis) and therapeutic (advanced silicosis) strategy, which provides a new idea for formulating prevention and treatment strategies.
Collapse
Affiliation(s)
- Jing Zhang
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China; Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China.
| | - Jiazhen Zhang
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Zongze Yao
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Wei Shao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanchao Song
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Wenjian Tang
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Bo Li
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China.
| |
Collapse
|
15
|
Li J, Huang N, Zhang X, Sun C, Chen J, Wei Q. Changes of collagen content in lung tissues of plateau yak and its mechanism of adaptation to hypoxia. PeerJ 2024; 12:e18250. [PMID: 39372716 PMCID: PMC11451445 DOI: 10.7717/peerj.18250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
Collagen is crucial for tissue structure, functional maintenance, and cellular processes such as proliferation and differentiation. However, the specific changes in collagen expression and its associated genes in the lung tissues of yaks at high altitudes and their relationship with environmental adaptation remain poorly understood. Studying differences in the content of collagen fibers and gene expression between yaks at high (4,500 m) and low (2,600 m) altitudes, as well as between cattle at low altitudes (2,600 m). Using Masson staining, we found that the collagen fiber content in the lung tissues of yaks at low altitude was significantly higher compared to yaks at high altitude and cattle at the same altitude (P < 0.05). It was revealed through transcriptomic analyses that genes differentially expressed between high and low altitude yaks, as well as between low altitude yaks and cattle, were notably enriched in pathways related to cell adhesion, collagen synthesis, focal adhesion, and ECM-receptor interactions. Specifically, genes involved in mesenchymal collagen synthesis (e.g., COL1A1, COL1A2, COL3A1), basement membrane collagen synthesis (e.g., COL4A1, COL4A2, COL4A4, COL4A6), and peripheral collagen synthesis (e.g., COL5A1, COL6A1, COL6A2, COL6A3) were significantly upregulated in the lung tissues of yaks at low altitude compared to their high altitude counterparts and cattle (P < 0.05). In conclusion, yaks at lower altitudes exhibit increased collagen synthesis by upregulating collagen gene expression, which contributes to maintaining alveolar stability and septal flexibility. Conversely, the expression of collagen genes in yak lung tissues was down-regulated with the increase in altitude, and it was speculated that the decrease in collagen may be used to constrain the function of elastic fibers that are more abundant at high altitude, so as to enable them to adapt to the harsh environment with hypoxia and high altitude. This adaptation mechanism highlights the role of collagen in environmental acclimatization and contributes to our understanding of how altitude and species influence collagen-related physiological processes in yaks.
Collapse
Affiliation(s)
- Jingyi Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Nating Huang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Xun Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Ci Sun
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Jiarui Chen
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Qing Wei
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
16
|
Fawzy MA, Ibrahim KH, Aly AA, Mohamed AH, Naguib Abdel Hafez SM, Abdelzaher WY, Elkaeed EB, Alsfouk AA, Abdelhafez ESMN. One-pot synthesis and pharmacological evaluation of new quinoline/pyrimido-diazepines as pulmonary antifibrotic agents. Future Med Chem 2024; 16:2211-2230. [PMID: 39291539 PMCID: PMC11622787 DOI: 10.1080/17568919.2024.2394018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Aim: Pulmonary fibrosis is a life threating disease which requires an immediate treatment and due to the limited medications, this study focused on synthesizing a series of quinoline-based pyrimidodiazepines 4a-f as a novel antifibrotic hit.Materials & methods: The target compounds were synthesized via a one-pot reaction then investigated in a rat model of lung fibrosis induced by bleomycin (BLM).Results: Results revealed significant attenuation of the tested pro-inflammatory cytokines, fibrotic genes and apoptotic markers; however, Bcl-2 was upregulated, indicating a protective effect against fibrosis. Moreover, the molecular docking studies highlighted promising interactions between compounds 4b and 4c and specific amino acids within the protein pockets of caspase-3 (ARG341 and THR177), malondialdehyde (LYS195, LYS118 and ARG188) and TNF-α (SER99 and NME102).Conclusion: Compounds 4b and 4c emerge as promising candidates for further preclinical investigation as pulmonary antifibrotic agents.
Collapse
Affiliation(s)
- Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, 61519, Egypt
| | - Karim Hagag Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Minia University, 61519, Egypt
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt
| | - Asmaa H Mohamed
- Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt
| | | | - Walaa Yehia Abdelzaher
- Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia, 61519, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh11597, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh11671, Saudi Arabia
| | - El-Shimaa MN Abdelhafez
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| |
Collapse
|
17
|
Ma J, Ding L, Zang X, Wei R, Yang Y, Zhang W, Su H, Li X, Li M, Sun J, Zhang Z, Wang Z, Zhao D, Li X, Zhao L, Tong X. Licoricesaponin G2 ameliorates bleomycin-induced pulmonary fibrosis via targeting TNF-α signaling pathway and inhibiting the epithelial-mesenchymal transition. Front Pharmacol 2024; 15:1437231. [PMID: 39301567 PMCID: PMC11412005 DOI: 10.3389/fphar.2024.1437231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Background Pulmonary fibrosis (PF) emerges as a significant pulmonary sequelae in the convalescent phase of coronavirus disease 2019 (COVID-19), with current strategies neither specifically preventive nor therapeutic. Licoricesaponin G2 (LG2) displays a spectrum of natural activities, including antibacterial, anti-inflammatory, and antioxidant properties, and has been effectively used in treating various respiratory conditions. However, the potential protective effects of LG2 against PF remain underexplored. Methods Network analysis and molecular docking were conducted in combination to identify the core targets and pathways through which LG2 acts against PF. In the model of bleomycin (BLM)-induced C57 mice and transforming growth factor-β1 (TGF-β1)-induced A549 and MRC5 cells, techniques such as western blot (WB), quantitative Real-Time PCR (qPCR), Immunohistochemistry (IHC), Immunofluorescence (IF), and Transwell migration assays were utilized to analyze the expression of Epithelial-mesenchymal transition (EMT) and inflammation proteins. Based on the analysis above, we identified targets and potential mechanisms underlying LG2's effects against PF. Results Network analysis has suggested that the mechanism by which LG2 combats PF may involve the TNF-α pathway. Molecular docking studies have demonstrated a high binding affinity of LG2 to TNF-α and MMP9. Observations from the study indicated that LG2 may mitigate PF by modulating EMT and extracellular matrix (ECM) remodeling. It is proposed that the therapeutic effect is likely arises from the inhibition of inflammatory expression through regulation of the TNF-α pathway. Conclusion LG2 mitigates PF by suppressing TNF-α signaling pathway activation, modulating EMT, and remodeling the ECM. These results provide compelling evidence supporting the use of LG2 as a potential natural therapeutic agent for PF in clinical trials.
Collapse
Affiliation(s)
- Jing Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoyu Zang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ruonan Wei
- Shiyan Hospital of Traditional Chinese Medicine, Shiyan, China
| | - Yingying Yang
- China-Japan Friendship Hospital, National Center for Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Wei Zhang
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Hang Su
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jun Sun
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Yuan Y. Imbalance of dendritic cell function in pulmonary fibrosis. Cytokine 2024; 181:156687. [PMID: 38963940 DOI: 10.1016/j.cyto.2024.156687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2024] [Revised: 05/08/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Pulmonary fibrosis (PF) is a chronic, irreversible interstitial lung disease. The pathogenesis of PF remains unclear, and there are currently no effective treatments or drugs that can completely cure PF. The primary cause of PF is an imbalance of inflammatory response and inappropriate repair following lung injury. Dendritic cells (DCs), as one of the immune cells in the body, play an important role in regulating immune response, immune tolerance, and promoting tissue repair following lung injury. However, the role of DCs in the PF process is ambiguous or even contradictory in the existing literature. On the one hand, DCs can secrete transforming growth factor β(TGF-β), stimulate Th17 cell differentiation, stimulate fibroblast proliferation, and promote the generation of inflammatory factors interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α), thereby promoting PF. On the other hand, DCs suppress PF through mechanisms including the secretion of IL-10 to inhibit effector T cell activity in the lungs and promote the function of regulatory T cells (Tregs), as well as by expressing matrix metalloproteinases (MMPs) which facilitate the degradation of the extracellular matrix (ECM). This article will infer possible reasons for the different roles of DCs in PF and analyze possible reasons for the functional imbalance of DCs in pulmonary fibrosis from the complexity and changes of the pulmonary microenvironment, autophagy defects of DCs, and changes in the pulmonary physical environment.
Collapse
Affiliation(s)
- Yuan Yuan
- Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China.
| |
Collapse
|
19
|
Geng Q, Yan L, Shi C, Zhang L, Li L, Lu P, Cao Z, Li L, He X, Tan Y, Zhao N, Liu B, Lu C. Therapeutic effects of flavonoids on pulmonary fibrosis: A preclinical meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155807. [PMID: 38876010 DOI: 10.1016/j.phymed.2024.155807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/01/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The efficacy of flavonoid supplementation in animal models of pulmonary fibrosis has been demonstrated. PURPOSE We conducted a systematic review and meta-analysis to evaluate the efficacy and underlying mechanisms of flavonoids in animal models of bleomycin-induced pulmonary fibrosis. STUDY DESIGN Relevant studies (n = 45) were identified from English- and Chinese-language databases from the inception of the database until October 2023. METHODS Methodological quality was evaluated using the SYRCLE risk of bias tool. Statistical analyses were conducted using RevMan 5.3 and Stata 17.0. Lung inflammation and fibrosis score were the primary outcome indicators. RESULTS Flavonoids can alleviate pathological changes in the lungs. The beneficial effects of flavonoids on pulmonary fibrosis likely relate to their inhibition of inflammatory responses, restoration of oxidative and antioxidant homeostasis, and regulation of fibroblast proliferation, migration, and activation by transforming growth factor β1/mothers against the decapentaplegic homologue/AMP-activated protein kinase (TGF-β1/Smad3/AMPK), inhibitor kappa B alpha/nuclear factor-kappa B (IκBα/NF-κB), phosphatidylinositol 3-kinase (PI3K)/AKT, interleukin 6/signal transducer/activator of transcription 3 (IL6/STAT3), and nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2-Keap1) pathways. CONCLUSION Flavonoids are potential candidate compounds for the prevention and treatment of pulmonary fibrosis. However, extensive preclinical research is necessary to confirm the antifibrotic properties of natural flavonoids.
Collapse
Affiliation(s)
- Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Changqi Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| |
Collapse
|
20
|
Xu X, Yuan L, Hu X, Li J, Wu H, Chen F, Huang F, Kong W, Liu W, Xu J, Zhou Y, Zou Y, Shen Y, Guan R, He J, Lu W. Bone morphogenetic protein 4 ameliorates bleomycin-induced pulmonary fibrosis in mice by repressing NLRP3 inflammasome activation and epithelial-mesenchymal transition. J Thorac Dis 2024; 16:4875-4891. [PMID: 39268124 PMCID: PMC11388215 DOI: 10.21037/jtd-23-1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2023] [Accepted: 06/11/2024] [Indexed: 09/15/2024]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive and deadly lung disease with limited therapeutic options. Bone morphogenetic protein 4 (BMP4), a multifunctional growth factor that belongs to the transforming growth factor-β superfamily, is able to relieve pulmonary fibrosis in mice; nevertheless, the potential mechanism of action remains largely unknown. Growing evidence supports the notion that reiterant damage to the alveolar epithelial cells (AECs) is usually the "prime mover" for pulmonary fibrosis. Here, we examined the effect and mechanisms of BMP4 on bleomycin (BLM)-induced activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome and epithelial-mesenchymal transition (EMT) in vivo and in vitro. Methods The in vivo impact of BMP4 was investigated in a BLM mouse model. Histopathologic changes were analyzed by hematoxylin-eosin (H&E) and Masson's trichrome staining. The NLRP3 inflammasome activation was determined by quantitative real time polymerase chain reaction (qRT-PCR) and immunofluorescence staining. Biomarkers of EMT were measured by qRT-PCR, Western blot and immunofluorescence staining. The in vitro impact of BMP4 on BLM-induced NLRP3 inflammasome activation and EMT was explored in A549 AECs. We also evaluated whether BMP4 inhibited BLM-activated ERK1/2 signaling to address the possible molecular mechanisms. Results BMP4 was significantly downregulated in the mouse lungs from BLM-induced pulmonary fibrosis. BMP4+/- mice presented with more severe lung fibrosis in response to BLM, and accelerated NLRP3 inflammasome activation and EMT process compared with that in BMP4+/+ mice. Whereas overexpression of BMP4 by injecting adeno-associated virus (AAV) 9 into mice attenuated BLM-induced fibrotic changes, NLRP3 inflammasome activation, and EMT in the mouse lungs, thus exerting protective efficacy against lung fibrosis. In vitro, BMP4 significantly reduced BLM-induced activation of NLRP3 inflammasome and EMT in human alveolar epithelial A549 cells. Mechanically, BMP4 repressed BLM-induced activation of ERK1/2 signaling in vivo and in vitro, suggesting that ERK1/2 inactivation contributes to BMP4-induced effects on BLM-induced activation of NLRP3 inflammasome and EMT. Conclusions Our findings suggest that BMP4 can suppress NLRP3 inflammasome activation and EMT in AECs via inhibition of ERK1/2 signaling pathway, thus has a potential for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xin Xu
- Department of Transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Hu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jingpei Li
- Department of Transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huihui Wu
- Department of Endocrinology and Metabolism, Jing'an District Center Hospital of Shanghai, Shanghai, China
| | - Fang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fei Huang
- Department of Transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiguo Kong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingyi Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - You Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunhan Zou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Shen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruijuan Guan
- Department of Transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- Department of Transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Veeram A, Shaikh TB, Kaur R, Chowdary EA, Andugulapati SB, Sistla R. Yohimbine Treatment Alleviates Cardiac Inflammation/Injury and Improves Cardiac Hemodynamics by Modulating Pro-Inflammatory and Oxidative Stress Indicators. Inflammation 2024; 47:1423-1443. [PMID: 38466531 DOI: 10.1007/s10753-024-01985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
Acute myocarditis, also known as myocardial inflammation, is a self-limited condition caused by systemic infection with cardiotropic pathogens, primarily viruses, bacteria, or fungi. Despite significant research, inflammatory cardiomyopathy exacerbated by heart failure, arrhythmia, or left ventricular dysfunction and it has a dismal prognosis. In this study, we aimed to evaluate the therapeutic effect of yohimbine against lipopolysaccharide (LPS) induced myocarditis in rat model. The anti-inflammatory activity of yohimbine was assessed in in-vitro using RAW 264.7 and H9C2 cells. Myocarditis was induced in rats by injecting LPS (10 mg/kg), following the rats were treated with dexamethasone (2 mg/kg) or yohimbine (2.5, 5, and 10 mg/kg) for 12 h and their therapeutic activity was examined using various techniques. Yohimbine treatment significantly attenuated the LPS-mediated inflammatory markers expression in the in-vitro model. In-vivo studies proved that yohimbine treatment significantly reduced the LPS-induced increase of cardiac-specific markers, inflammatory cell counts, and pro-inflammatory markers expression compared to LPS-control samples. LPS administration considerably affected the ECG, RR, PR, QRS, QT, ST intervals, and hemodynamic parameters, and caused abnormal pathological parameters, in contrast, yohimbine treatment substantially improved the cardiac parameters, mitigated the apoptosis in myocardial cells and ameliorated the histopathological abnormalities that resulted in an improved survival rate. LPS-induced elevation of cardiac troponin-I, myeloperoxidase, CD-68, and neutrophil elastase levels were significantly attenuated upon yohimbine treatment. Further investigation showed that yohimbine exerts an anti-inflammatory effect partly by modulating the MAPK pathway. This study emphasizes yohimbine's therapeutic benefit against LPS-induced myocarditis and associated inflammatory markers response by regulating the MAPK pathway.
Collapse
Affiliation(s)
- Anjali Veeram
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Taslim B Shaikh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Rajwinder Kaur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - E Abhisheik Chowdary
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
22
|
Walvekar KP, Tirunavalli SK, Eedara AC, Chandra Y, Kuncha M, B R Kumar A, Sistla R, Andugulapati SB, Chilaka S. Biochanin A Ameliorates Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice by Modulating the NF-κB and MAPK Signaling Pathways. Inflammation 2024:10.1007/s10753-024-02103-5. [PMID: 39017810 DOI: 10.1007/s10753-024-02103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Psoriasis is a chronic skin inflammatory disorder characterized by the hyper-activation of the immune system and the over-proliferation of epidermal keratinocytes. This study aimed to investigate the anti-psoriatic activity of Biochanin A (BCA), a phytomolecule with known anti-inflammatory and anti-cancer properties, using the IMQ-induced psoriasis-like mouse model. Network pharmacology analysis was performed to investigate the targetability of Biochanin A (BCA) against psoriasis. Psoriasis-like skin inflammation was established using BALB/c mice by topical application of IMQ (5%). BCA cream (0.3%, 1%, 3%) was applied on the skin regions every day for 6 days. The skin phenotypes-erythema and scaling were scored every day. On the 7th day, skin tissues were collected for gene expression analysis, histopathological analysis, cytokine levels determination, and western blot analysis for signaling mechanisms. The network pharmacology analysis has identified 57 common targets between psoriasis and BCA. The topical application of IMQ induced a typical psoriasis-like skin phenotype including redness, skin thickening, and plaque formation. Upon BCA treatment, the psoriasis-like symptoms were significantly reduced in a dose-dependent manner. The targets identified by the network pharmacology (MMP9, EGFR, and PTGS2) and the pro-inflammatory cytokine gene expression were found to be significantly elevated in IMQ controls, and upon BCA treatment they were found significantly reduced. The release of cytokines linked to psoriasis (IL-17A and IL-23) were significantly reduced upon BCA treatment. Furthermore, our findings demonstrated that BCA treatment alleviated the psoriasis-like symptoms via modulating NF-κB and MAPK signaling pathways. Our results demonstrate the therapeutic potential of BCA against IMQ-induced psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Komal Paresh Walvekar
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India
| | - Satya Krishna Tirunavalli
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India
| | - Abhisheik Chowdary Eedara
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Yogesh Chandra
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Madhusudhana Kuncha
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Ashwin B R Kumar
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Ramakrishna Sistla
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India
| | - Sai Balaji Andugulapati
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India.
| | - Sabarinadh Chilaka
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
23
|
Shaikh TB, Chandra Y, Andugulapati SB, Sistla R. Vistusertib improves pulmonary inflammation and fibrosis by modulating inflammatory/oxidative stress mediators via suppressing the mTOR signalling. Inflamm Res 2024; 73:1223-1237. [PMID: 38789791 DOI: 10.1007/s00011-024-01894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Inflammation and oxidative stress are key factors in the development of pulmonary fibrosis (PF) by promoting the differentiation of fibroblasts through modulating various pathways including Wnt/β-catenin, TGF-β and mTOR signalling. OBJECTIVE AND METHODS This study aimed to evaluate the effects and elucidate the mechanisms of vistusertib (VSB) in treating pulmonary inflammation/fibrosis, specifically by targeting the mTOR pathway using various in vitro and in vivo models. RESULTS Lipopolysaccharide (LPS)-induced inflammation model in macrophages (RAW 264.7), epithelial (BEAS-2B) and endothelial (HMVEC-L) cells revealed that treatment with VSB significantly reduced the IL-6, TNF-α, CCL2, and CCL7 expression. TGF-β induced differentiation was also significantly reduced upon VSB treatment in fibrotic cells (LL29 and DHLF). Further, bleomycin-induced inflammation and fibrosis models demonstrated that treatment with VSB significantly ameliorated the severe inflammation, and lung architectural distortion, by reducing the inflammatory markers expression/levels, inflammatory cells and oxidative stress indicators. Further, fibrosis model results exhibited that, VSB treatment significantly reduced the α-SMA, collagen and TGF-β expressions, improved the lung architecture and restored lung functions. CONCLUSION Overall, this study uncovers the anti-inflammatory/anti-fibrotic effects of VSB by modulating the mTOR activation. Although VSB was tested for lung fibrosis, it can be tested for other fibrotic disorders to improve the patient's survival and quality of life.
Collapse
Affiliation(s)
- Taslim B Shaikh
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Yogesh Chandra
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
| | - Sai Balaji Andugulapati
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Ramakrishna Sistla
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
24
|
Lin Z, Lin D, Lin D. The Mechanisms of Adipose Stem Cell-Derived Exosomes Promote Wound Healing and Regeneration. Aesthetic Plast Surg 2024; 48:2730-2737. [PMID: 38438760 DOI: 10.1007/s00266-024-03871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024]
Abstract
Chronic wound healing is a class of diseases influenced by multiple complex factors, causing severe psychological and physiological impact on patients. It is an intractable clinical challenge and its possible mechanisms are not yet clear. It has been proven that adipose stem cell-derived exosomes (ADSC-Exos) can promote wound healing and inhibit scar formation by regulating inflammation, promoting cell proliferation, migration, and angiogenesis, regulating matrix remodeling, which provides a new approach for wound healing through biological treatment. This review focuses on the mechanism, treatment, and administration methods of ADSC-Exos in wound healing, providing a comprehensive understanding the mechanisms of ADSC-Exos on wound healing. LEVEL OF EVIDENCE I: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Zhengjie Lin
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Danyi Lin
- Department of Pathology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China.
| | - Dane Lin
- Neonatal Intensive Care Unit, Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, China.
| |
Collapse
|
25
|
Wang S, Chen CY, Liu CC, Stavropoulos D, Rao M, Petrash JM, Chang KC. GDF-15 Attenuates the Epithelium-Mesenchymal Transition and Alleviates TGFβ2-Induced Lens Opacity. Transl Vis Sci Technol 2024; 13:2. [PMID: 38949633 PMCID: PMC11221611 DOI: 10.1167/tvst.13.7.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2023] [Accepted: 05/11/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose We sought to evaluate the efficacy of growth differentiation factor (GDF)-15 treatment for suppressing epithelial-mesenchymal transition (EMT) and alleviating transforming growth factor β2 (TGFβ2)-induced lens opacity. Methods To test whether GDF-15 is a molecule that prevents EMT, we pretreated the culture with GDF-15 in neural progenitor cells, retinal pigment epithelial cells, and lens epithelial cells and then treated with factors that promote EMT, GDF-11, and TGFβ2, respectively. To further investigate the efficacy of GDF-15 on alleviating lens opacity, we used mouse lens explant culture to mimic secondary cataracts. We pretreated the lens culture with GDF-15 and then added TGFβ2 to develop lens opacity (n = 3 for each group). Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to measure EMT protein and gene expression, respectively. Results In cell culture, GDF-15 pretreatment significantly attenuated EMT marker expression in cultured cells induced by treatment with GDF-11 or TGFβ2. In the lens explant culture, GDF-15 pretreatment also reduced mouse lens opacity induced by exposure to TGFβ2. Conclusions Our results indicate that GDF-15 could alleviate TGFβ2-induced EMT and is a potential therapeutic agent to slow or prevent posterior capsular opacification (PCO) progression after cataract surgery. Translational Relevance Cataracts are the leading cause of blindness worldwide, with the only current treatment involving surgical removal of the lens and replacement with an artificial lens. However, PCO, also known as secondary cataract, is a common complication after cataract surgery. The development of an adjuvant that slows the progression of PCO will be beneficial to the field of anterior complications.
Collapse
Affiliation(s)
- Shining Wang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chi-Yu Chen
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chia-Chun Liu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dimitrios Stavropoulos
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J. Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Tu J, Chen X, Li C, Liu C, Huang Y, Wang X, Liang H, Yuan X. Nintedanib Mitigates Radiation-Induced Pulmonary Fibrosis by Suppressing Epithelial Cell Inflammatory Response and Inhibiting Fibroblast-to-Myofibroblast Transition. Int J Biol Sci 2024; 20:3353-3371. [PMID: 38993568 PMCID: PMC11234214 DOI: 10.7150/ijbs.92620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2023] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Radiation-induced pulmonary fibrosis (RIPF) represents a serious complication observed in individuals undergoing thoracic radiation therapy. Currently, effective interventions for RIPF are unavailable. Prior research has demonstrated that nintedanib, a Food and Drug Administration (FDA)-approved anti-fibrotic agent for idiopathic pulmonary fibrosis, exerts therapeutic effects on chronic fibrosing interstitial lung disease. This research aimed to investigate the anti-fibrotic influences of nintedanib on RIPF and reveal the fundamental mechanisms. To assess its therapeutic impact, a mouse model of RIPF was established. The process involved nintedanib administration at various time points, both prior to and following thoracic radiation. In the RIPF mouse model, an assessment was conducted on survival rates, body weight, computed tomography features, histological parameters, and changes in gene expression. In vitro experiments were performed to discover the mechanism underlying the therapeutic impact of nintedanib on RIPF. Treatment with nintedanib, administered either two days prior or four weeks after thoracic radiation, significantly alleviated lung pathological changes, suppressed collagen deposition, and improved the overall health status of the mice. Additionally, nintedanib demonstrated significant mitigation of radiation-induced inflammatory responses in epithelial cells by inhibiting the PI3K/AKT and MAPK signaling pathways. Furthermore, nintedanib substantially inhibited fibroblast-to-myofibroblast transition by suppressing the TGF-β/Smad and PI3K/AKT/mTOR signaling pathways. These findings suggest that nintedanib exerts preventive and therapeutic effects on RIPF by modulating multiple targets instead of a single anti-fibrotic pathway and encourage the further clinical trials to determine the efficacy of nintedanib in patients with RIPF.
Collapse
Affiliation(s)
- Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunya Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaofan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Liang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Ma L, Liu C, Zhao Y, Liu M, Liu Y, Zhang H, Yang S, An J, Tian Y, Cao Y, Qu G, Song S, Cao Q. Anti-pulmonary fibrosis activity analysis of methyl rosmarinate obtained from Salvia castanea Diels f. tomentosa Stib. using a scalable process. Front Pharmacol 2024; 15:1374669. [PMID: 38895626 PMCID: PMC11183283 DOI: 10.3389/fphar.2024.1374669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Pulmonary fibrosis is a progressive, irreversible, chronic interstitial lung disease associated with high morbidity and mortality rates. Current clinical drugs, while effective, do not reverse or cure pulmonary fibrosis and have major side effects, there are urgent needs to develop new anti-pulmonary fibrosis medicine, and corresponding industrially scalable process as well. Salvia castanea Diels f. tomentosa Stib., a unique herb in Nyingchi, Xizang, China, is a variant of S. castanea. and its main active ingredient is rosmarinic acid (RA), which can be used to prepare methyl rosmarinate (MR) with greater drug potential. This study presented an industrially scalable process for the preparation of MR, which includes steps such as polyamide resin chromatography, crystallization and esterification, using S. castanea Diels f. tomentosa Stib. as the starting material and the structure of the product was verified by NMR technology. The anti-pulmonary fibrosis effects of MR were further investigated in vivo and in vitro. Results showed that this process can easily obtain high-purity RA and MR, and MR attenuated bleomycin-induced pulmonary fibrosis in mice. In vitro, MR could effectively inhibit TGF-β1-induced proliferation and migration of mouse fibroblasts L929 cells, promote cell apoptosis, and decrease extracellular matrix accumulation thereby suppressing progressive pulmonary fibrosis. The anti-fibrosis effect of MR was stronger than that of the prodrug RA. Further study confirmed that MR could retard pulmonary fibrosis by down-regulating the phosphorylation of the TGF-β1/Smad and MAPK signaling pathways. These results suggest that MR has potential therapeutic implications for pulmonary fibrosis, and the establishment of this scalable preparation technology ensures the development of MR as a new anti-pulmonary fibrosis medicine.
Collapse
Affiliation(s)
- Li Ma
- Binzhou Medical University, Shandong, China
| | | | | | - Mengke Liu
- Binzhou Medical University, Shandong, China
| | - Yunyi Liu
- Binzhou Medical University, Shandong, China
| | | | - Shude Yang
- Department of Edible Mushrooms, School of Agriculture, Ludong University, Shandong, China
| | - Jing An
- Division of Infectious Diseases and Global Health, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, United States
| | | | | | - Guiwu Qu
- Binzhou Medical University, Shandong, China
| | - Shuling Song
- Binzhou Medical University, Shandong, China
- Shandong Engineering Research Center for Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong, China
| | - Qizhi Cao
- Binzhou Medical University, Shandong, China
| |
Collapse
|
28
|
Wu Y, Shi W, Li H, Liu C, Shimizu K, Li R, Zhang C. Specneuzhenide improves bleomycin-induced pulmonary fibrosis in mice via AMPK-dependent reduction of PD-L1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155318. [PMID: 38493719 DOI: 10.1016/j.phymed.2023.155318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/25/2023] [Indexed: 03/19/2024]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is an escalating global health issue, characterized by rising rates of morbidity and mortality annually. Consequently, further investigation of potential damage mechanisms and potential preventive strategies for PF are warranted. Specnuezhenide (SPN), a prominent secoiridoid compound derived from Ligustrum lucidum Ait, exhibits anti-inflammatory and anti-oxidative capacities, indicating the potential therapeutic actions on PF. However, the underlying mechanisms of SPN on PF remain unclear. PURPOSE This work was aimed at investigating the protective actions of SPN on PF and the potential mechanism. METHODS In vivo, mice were administrated with bleomycin (BLM) to establish PF model. PF mice were treated with SPN (45/90 mg/kg) by gavage. In vitro, we employed TGF-β1 (10 ng/mL)-induced MLE-12 and PLFs cells, which then were treated with SPN (5, 10, 20 µM). DARTS assay, biofilm interference experiment and molecular docking were performed to investigate the molecular target of SPN. RESULTS In vivo, we found SPN treatment improved survival rate, alleviated pathological changes through reducing BLM-induced extracellular matrix (ECM) deposition, as well as BLM-induced epithelial-mesenchymal transition (EMT). In vitro, SPN inhibited EMT and lung fibroblast transdifferentiation. Mechanistically, SPN activated the AMPK protein to decrease the abnormally high level of PD-L1. Furthermore, the compound C, known as an AMPK inhibitor, exhibited a significant hindrance to the inhibition of SPN on TGF-β1-caused fibroblast transdifferentiation and proliferation. This outcome could be attributed to the fact that compound C could eliminate the inhibitory effects of SPN on PD-L1 expression. Interestingly, DARTS assay, biofilm interference experiment and molecular docking results all indicated that SPN could bind to AMPK, which suggested that SPN might be a potential agonist targeting AMPK protein. CONCLUSION Altogether, the results in our work illustrated that SPN promoted AMPK-dependent reduction of PD-L1 protein, contributing to the inhibition of fibrosis progression. Thus, SPN may represent a potential AMPK agonist for PF treatment.
Collapse
Affiliation(s)
- Yanliang Wu
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Chinese Medicine Resources, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wen Shi
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Chinese Medicine Resources, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haini Li
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Chinese Medicine Resources, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chang Liu
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Chinese Medicine Resources, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Kuniyoshi Shimizu
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Forest and Forest Products Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Renshi Li
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Chinese Medicine Resources, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Chinese Medicine Resources, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
29
|
Yao F, Xu M, Dong L, Shen X, Shen Y, Jiang Y, Zhu T, Zhang C, Yu G. Sinomenine attenuates pulmonary fibrosis by downregulating TGF-β1/Smad3, PI3K/Akt and NF-κB signaling pathways. BMC Pulm Med 2024; 24:229. [PMID: 38730387 PMCID: PMC11088103 DOI: 10.1186/s12890-024-03050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2023] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Since COVID-19 became a global epidemic disease in 2019, pulmonary fibrosis (PF) has become more prevalent among persons with severe infections, with IPF being the most prevalent form. In traditional Chinese medicine, various disorders are treated using Sinomenine (SIN). The SIN's strategy for PF defense is unclear. METHODS Bleomycin (BLM) was used to induce PF, after which inflammatory factors, lung histological alterations, and the TGF-/Smad signaling pathway were assessed. By administering various dosages of SIN and the TGF- receptor inhibitor SB-431,542 to human embryonic lung fibroblasts (HFL-1) and A549 cells, we were able to examine proliferation and migration as well as the signaling molecules implicated in Epithelial-Mesenchymal Transition (EMT) and Extra-Cellular Matrix (ECM). RESULTS In vivo, SIN reduced the pathological changes in the lung tissue induced by BLM, reduced the abnormal expression of inflammatory cytokines, and improved the weight and survival rate of mice. In vitro, SIN inhibited the migration and proliferation by inhibiting TGF-β1/Smad3, PI3K/Akt, and NF-κB pathways, prevented the myofibroblasts (FMT) of HFL-1, reversed the EMT of A549 cells, restored the balance of matrix metalloenzymes, and reduced the expression of ECM proteins. CONCLUSION SIN attenuated PF by down-regulating TGF-β/Smad3, PI3K/Akt, and NF-κB signaling pathways, being a potential effective drug in the treatment of PF.
Collapse
Affiliation(s)
- Fuqiang Yao
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Minghao Xu
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Lingjun Dong
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Xiao Shen
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Yujie Shen
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Yisheng Jiang
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Chu Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| |
Collapse
|
30
|
Bo C, Liu F, Zhang Z, Du Z, Xiu H, Zhang Z, Li M, Zhang C, Jia Q. Simvastatin attenuates silica-induced pulmonary inflammation and fibrosis in rats via the AMPK-NOX pathway. BMC Pulm Med 2024; 24:224. [PMID: 38720270 PMCID: PMC11080310 DOI: 10.1186/s12890-024-03014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1β, IL-6, tumor necrosis factor-α and transforming growth factor-β1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.
Collapse
Affiliation(s)
- Cunxiang Bo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fang Liu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Guangzhou Huaxia Vocational College, Guangzhou, China
| | - Zewen Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haidi Xiu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenling Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ming Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Caiqing Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
- Pulmonary and Critical Care Medicine, Shandong Province's Second General Hospital (Shandong Province ENT Hospital), Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, Shandong, China.
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
31
|
Feng J, Zhong H, Mei S, Tang R, Zhou Y, Xing S, Gao Y, Xu Q, He Z. LPS-induced monocarboxylate transporter-1 inhibition facilitates lactate accumulation triggering epithelial-mesenchymal transformation and pulmonary fibrosis. Cell Mol Life Sci 2024; 81:206. [PMID: 38709307 DOI: 10.1007/s00018-024-05242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
The epithelial-mesenchymal transformation (EMT) process of alveolar epithelial cells is recognized as involved in the development of pulmonary fibrosis. Recent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung tissue and elevated lactate concentration are associated with the pathogenesis of sepsis-associated pulmonary fibrosis. However, it is uncertain whether LPS promotes the development of sepsis-associated pulmonary fibrosis by promoting lactate accumulation in lung tissue, thereby initiating EMT process. We hypothesized that monocarboxylate transporter-1 (MCT1), as the main protein for lactate transport, may be crucial in the pathogenic process of sepsis-associated pulmonary fibrosis. We found that high concentrations of lactate induced EMT while moderate concentrations did not. Besides, we demonstrated that MCT1 inhibition enhanced EMT process in MLE-12 cells, while MCT1 upregulation could reverse lactate-induced EMT. LPS could promote EMT in MLE-12 cells through MCT1 inhibition and lactate accumulation, while this could be alleviated by upregulating the expression of MCT1. In addition, the overexpression of MCT1 prevented LPS-induced EMT and pulmonary fibrosis in vivo. Altogether, this study revealed that LPS could inhibit the expression of MCT1 in mouse alveolar epithelial cells and cause lactate transport disorder, which leads to lactate accumulation, and ultimately promotes the process of EMT and lung fibrosis.
Collapse
Affiliation(s)
- Jinhua Feng
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Han Zhong
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Shuya Mei
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Ri Tang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Yang Zhou
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Shunpeng Xing
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Yuan Gao
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Qiaoyi Xu
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China.
| | - Zhengyu He
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China.
| |
Collapse
|
32
|
Cao J, Ma Y, Zhao W, Feng C. Age at menarche and idiopathic pulmonary fibrosis: a two-sample mendelian randomization study. BMC Pulm Med 2024; 24:117. [PMID: 38448907 PMCID: PMC10916238 DOI: 10.1186/s12890-024-02936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Sex difference in the incidence rate of idiopathic pulmonary fibrosis (IPF) indicates that estrogen has a certain protective effect on the disease. Nevertheless, there is a dearth of study investigating the association between factors pertaining to endogenous estrogen exposure level, such as age at menarche (AAM) in women, and IPF. Our study intended to employ Mendelian randomization (MR) method to elucidate the causal association between AAM and IPF. METHODS Our study utilized AAM as a measure of endogenous estrogen exposure and investigated its causal effect on the risk of IPF through MR. We employed the inverse variance weighted (IVW) method to assess the causal relationship between AAM and IPF risk, with supplementary analyses conducted using the weighted median estimator (WME) and MR-Egger method. Several sensitivity analyses were performed to assess the dependability of MR estimates. RESULTS A total of 9 selected single nucleotide polymorphisms (SNPs) significantly associated with AAM were selected as instrumental variables. The IVW method showed that genetically later AAM was associated with an increased risk of IPF (odds ratio [OR] = 1.0014, 95%confidence interval [CI] = 1.0005-1.0023, p = 0.001). The median weighting method and the MR-Egger method obtained similar estimates, and no heterogeneity or pleiotropy was found, indicating that the results were robust. CONCLUSIONS Our MR study suggested a causal relationship between a later onset of menarche and a heightened susceptibility to IPF.
Collapse
Affiliation(s)
- Jiaqi Cao
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Yazhou Ma
- Department of Neurology, Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Wei Zhao
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Chunlai Feng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
33
|
Du S, Zhou X, Zheng B. Beyond Traditional Medicine: EVs-Loaded Hydrogels as a Game Changer in Disease Therapeutics. Gels 2024; 10:162. [PMID: 38534580 DOI: 10.3390/gels10030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/28/2024] Open
Abstract
Extracellular vesicles (EVs), especially exosomes, have shown great therapeutic potential in the treatment of diseases, as they can target cells or tissues. However, the therapeutic effect of EVs is limited due to the susceptibility of EVs to immune system clearance during transport in vivo. Hydrogels have become an ideal delivery platform for EVs due to their good biocompatibility and porous structure. This article reviews the preparation and application of EVs-loaded hydrogels as a cell-free therapy strategy in the treatment of diseases. The article also discusses the challenges and future outlook of EVs-loaded hydrogels.
Collapse
Affiliation(s)
- Shutong Du
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaohu Zhou
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Bo Zheng
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
34
|
Yu H, Liu S, Wang S, Gu X. A narrative review of the role of HDAC6 in idiopathic pulmonary fibrosis. J Thorac Dis 2024; 16:688-695. [PMID: 38410580 PMCID: PMC10894383 DOI: 10.21037/jtd-23-1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2023] [Accepted: 11/17/2023] [Indexed: 02/28/2024]
Abstract
Background and Objective Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible condition characterized by the deposition of extracellular matrix resulting from repetitive damage to the alveolar epithelium. These injuries, along with dysregulated wound repair and fibroblast dysfunction, lead to continuous tissue remodeling and fibrosis, eventually resulting in end-stage pulmonary fibrosis. Currently, there is no specific pharmacological treatment available for IPF. The role of inflammation in the development of IPF is still a topic of debate, and it is sometimes considered incidental to fibrosis. Over the past decade, macrophages have emerged as significant contributors to the pathogenesis of fibrosis. M1 macrophages are responsible for wound healing following alveolar epithelial injury, while M2 macrophages are involved in resolving wound repair and terminating the inflammatory response in the lungs. Various studies provide evidence that M2-like macrophages contribute to the abnormal fibrogenesis. In recent years, there has been growing interest in understanding macrophage polarization and its role in the development of pulmonary fibrosis. Histone deacetylase 6 (HDAC6), a member of the HDAC family with two functional deacetylase structural domains and a ubiquitin-binding zinc finger structural domain (ZnF-BUZ), plays a crucial role in pulmonary fibrosis. This article explores the role of HDAC6 in pulmonary fibrosis and evaluates its potential as a treatment approach for IPF. Methods PubMed, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang, China Biomedical Literature Service System (CBMdisc) and Web of Science were searched to obtain researches, published in English and Chinese, until July 2023. The search was performed using specific keywords such as Histone deacetylase 6, HDAC6, Idiopathic pulmonary fibrosis, IPF, fibrosis. Key Content and Findings HDAC6 has diverse effects on physiological processes, including the NLRP3 inflammasome, epithelial-mesenchymal transition, the TGFβ-PI3K-AKT pathway, macrophage polarization and TGF-β-Smad signaling pathway, due to its unique structure. HDAC6 has been found to enhance the inflammatory response and fibrosis of lung tissues, contributing to the development of IPF. Conclusions In the future, HDAC6 inhibitors are expected to play a crucial role in the treatment of fibrotic disorders and should be studied further deserves to pursue in future research.
Collapse
Affiliation(s)
- Hanming Yu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shi Liu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Wang
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Chen X, Wei M, Li GD, Sun QL, Fan JQ, Li JY, Yun CM, Liu DM, Shi H, Qu YQ. YuPingFeng (YPF) upregulates caveolin-1 (CAV1) to alleviate pulmonary fibrosis through the TGF-β1/Smad2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117357. [PMID: 37898439 DOI: 10.1016/j.jep.2023.117357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/08/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) is considered a valuable asset in China's medical tradition. YPF is a classic prescription that has been derived from the "Jiu Yuan Fang" formula and consists of three herbs: Huangqi (Astragalus membranaceus Bunge), Baizhu (Atractylodes rubra Dekker), and Fangfeng (Saposhnikovia divaricata (Turcz.) Schischk). This prescription is widely acclaimed for its exceptional pharmacological properties, including potent antioxidant effects, hormone regulation, and immune modulation effects. AIM OF THE STUDY Previous research provides evidence suggesting that YPF may have therapeutic effects on pulmonary fibrosis. Further exploration is essential to confirm its effectiveness and elucidate the fundamental processes. MATERIALS AND METHODS First, the active components and target genes of YPF were extracted from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Next, the GSE53845 dataset, which contains information on pulmonary fibrosis, was downloaded from the GEO database. Network informatics methods was then be utilized to identify target genes associated with pulmonary fibrosis. A YPF-based network of protein-protein interactions was constructed to pinpoint possible target genes for pulmonary fibrosis treatment. Additionally, an in vitro model of pulmonary fibrosis induced by bleomycin (BLM) was established to further investigate and validate the possible mechanisms underlying the effectiveness of YPF. RESULTS In this study, a total of 24 active ingredients of YPF, along with 178 target genes associated with the treatment, were identified. Additionally, 615 target genes related to pulmonary fibrosis were identified. Functional enrichment analysis revealed that 18 candidate genes (CGs) exhibited significant responses to tumor necrosis factor, NF-kB survival signaling, and positive regulation of apoptosis processes. Among these CGs, CAV1, VCAM1, and TP63 were identified as key target genes. Furthermore, cell experiments confirmed that the expression of CAV1 protein and RNA expression was increased in pulmonary fibrosis, but significantly decreased after treatment with YPF. Additionally, the expression of pSmad2, α-SMA, TGF-β1, and TNF-α was also decreased following YPF treatment. CONCLUSIONS Network pharmacology analysis revealed that YPF exhibits significant potential as a therapeutic intervention for pulmonary fibrosis by targeting various compounds and pathways. This study emphasizes that the efficacy of YPF in treating pulmonary fibrosis may be attributed to its ability to up-regulate CAV1 expression and inhibiting pulmonary fibrosis via modulation of the TGF-β1/Smad2 signaling pathway. These findings underscore the promising role of YPF and its ability to potentially alleviate pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Department of Pulmonary and Critical Care Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Min Wei
- Department of Pulmonary and Critical Care Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Guo-Dong Li
- Department of Pulmonary and Critical Care Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Qi-Liang Sun
- Department of Pulmonary and Critical Care Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Jia-Qi Fan
- Jining Medical University, 133 Hehua Rd, Jining, China
| | - Jun-Yi Li
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Chun-Mei Yun
- Department of Pulmonary and Critical Care Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Dao-Ming Liu
- Department of Pulmonary and Critical Care Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Hong Shi
- Department of Pulmonary and Critical Care Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
36
|
Wu W, Wang Z, Zhang H, Zhang X, Tian H. circGRHPR inhibits aberrant epithelial-mesenchymal transformation progression of lung epithelial cells associated with idiopathic pulmonary fibrosis. Cell Biol Toxicol 2024; 40:7. [PMID: 38267743 PMCID: PMC10808371 DOI: 10.1007/s10565-024-09839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Air pollution has greatly increased the risk of idiopathic pulmonary fibrosis (IPF). Circular RNAs (circRNAs) have been found to play a significant role in the advancement of IPF, but there is limited evidence of correlation between circRNAs and lung epithelial cells (LECs) in IPF. This research aimed to explore the influence of circRNAs on the regulation of EMT progression in LECs, with the objective of elucidating its mechanism and establishing its association with IPF. Our results suggested that the downregulation of circGRHPR in peripheral blood of clinical cases was associated with the diagnosis of IPF. Meanwhile, we found that circGRHPR was downregulated in transforming growth factor-beta1 (TGF-β1)-induced A549 and Beas-2b cells. It is a valid model to study the abnormal EMT progression of IPF-associated LECs in vitro. The overexpression of circGRHPR inhibited the abnormal EMT progression of TGF-β1-induced LECs. Furthermore, as the sponge of miR-665, circGRHPR released the expression of E3 ubiquitin-protein ligase NEDD4-like (NEDD4L), thus promoting its downstream transforming growth factor beta receptor 2 (TGFBR2) ubiquitination. It is helpful to reduce the response of LECs to TGF-β1 signaling. In summary, circGRHPR/miR-665/NEDD4L axis inhibited the abnormal EMT progression of TGF-β1-induced LECs by promoting TGFBR2 ubiquitination, which provides new ideas and potential targets for the treatment of IPF.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, People's Republic of China
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Huiying Zhang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, People's Republic of China
| | - Xiaojun Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, People's Republic of China.
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, People's Republic of China.
| |
Collapse
|
37
|
Kaur R, Shaikh TB, Priya Sripadi H, Kuncha M, Vijaya Sarathi UVR, Kulhari H, Balaji Andugulapati S, Sistla R. Nintedanib solid lipid nanoparticles improve oral bioavailability and ameliorate pulmonary fibrosis in vitro and in vivo models. Int J Pharm 2024; 649:123644. [PMID: 38040396 DOI: 10.1016/j.ijpharm.2023.123644] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Nintedanib (NIN) and pirfenidone are the only approved drugs for the treatment of Idiopathic Pulmonary Fibrosis (IPF). However, NIN and pirfenidone have low oral bioavailability and limited therapeutic potential, requiring higher dosages to increase their efficacy, which causes significant liver and gastrointestinal toxicities. In this study, we aimed to develop nintedanib-loaded solid lipid nanoparticles (NIN-SLN) to improve the oral bioavailability and therapeutic potential against TGF-β-induced differentiation in IPF fibroblasts and bleomycin (BLM)-induced lung fibrosis in rat models. NIN-SLN was prepared using a double-emulsification method and characterization studies (Particle size, zeta potential, entrapment efficiency and other parameters) were performed using various techniques. NIN-SLN treatment significantly (p < 0.001) downregulated α-SMA and COL3A1 expression in TGF-β stimulated DHLF and LL29 cells. NIN-SLN showed a 2.87-fold increase in the bioavailability of NIN and also improved the NIN levels in lung tissues compared to NIN alone. Pharmacodynamic investigation revealed that NIN-SLN (50 mg/Kg) treatment significantly attenuated BLM-induced lung fibrosis by inhibiting epithelial-to-mesenchymal-transition (EMT), extracellular matrix remodelling, and collagen deposition compared to free NIN. Additionally, in the BLM model of fibrosis, NIN-SLN greatly improved the BLM-caused pathological changes, attenuated the NIN-induced gastrointestinal abnormalities, and significantly improved the lung functional indices compared to free NIN. Collectively, NIN-SLN could be a promising nanoformulation for the management of pulmonary fibrosis.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Taslim B Shaikh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Hari Priya Sripadi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Madhusudana Kuncha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - U V R Vijaya Sarathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382 030, Gujarat, India.
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
38
|
Abd Elrazik NA, Helmy SA. Betanin protects against bleomycin-induced pulmonary fibrosis by regulating the NLRP3/IL-1β/TGF-β1 pathway-mediated epithelial-to-mesenchymal transition. Food Funct 2024; 15:284-294. [PMID: 38083874 DOI: 10.1039/d3fo03464j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease that leads to dyspnea and progressive loss of lung function. This study aimed to investigate the protective effect of betanin (BET), the major pigment in red beetroot, on pulmonary fibrosis induced by bleomycin (BLM) in rats and to assess the underlying mechanisms. In this view, total and differential cell counts and LDH activity in bronchoalveolar lavage fluid were estimated. Furthermore, MDA and GSH contents in the lungs were colorimetrically measured, while hydroxyproline, NLRP3, ASC, caspase-1, TGF-β1, and vimentin levels in lung tissue were evaluated using the ELISA technique. Moreover, IL-1β, E-cadherin, and α-SMA expressions were analyzed by immunostaining of lung specimens. BET treatment protects against pulmonary fibrosis as indicated by the reduction in total and differential cell counts, LDH activity, hydroxyproline, NLRP3, ASC, caspase-1, IL-1β, and TGF-β1 levels. MDA content was also decreased following BET administration, while GSH content was elevated. Additionally, BET suppressed the EMT process as evidenced by an increase in E-cadherin expression besides the reduction in vimentin and α-SMA expressions. To conclude, these results revealed the protective effect of BET against pulmonary fibrosis that might be attributed to the attenuation of the NLRP3/IL-1β/TGF-β1 signaling pathway and EMT process.
Collapse
Affiliation(s)
- Nesma A Abd Elrazik
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Sahar A Helmy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
39
|
Ghafouri‐Fard S, Askari A, Shoorei H, Seify M, Koohestanidehaghi Y, Hussen BM, Taheri M, Samsami M. Antioxidant therapy against TGF-β/SMAD pathway involved in organ fibrosis. J Cell Mol Med 2024; 28:e18052. [PMID: 38041559 PMCID: PMC10826439 DOI: 10.1111/jcmm.18052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
Fibrosis refers to excessive build-up of scar tissue and extracellular matrix components in different organs. In recent years, it has been revealed that different cytokines and chemokines, especially Transforming growth factor beta (TGF-β) is involved in the pathogenesis of fibrosis. It has been shown that TGF-β is upregulated in fibrotic tissues, and contributes to fibrosis by mediating pathways that are related to matrix preservation and fibroblasts differentiation. There is no doubt that antioxidants protect against different inflammatory conditions by reversing the effects of nitrogen, oxygen and sulfur-based reactive elements. Oxidative stress has a direct impact on chronic inflammation, and as results, prolonged inflammation ultimately results in fibrosis. Different types of antioxidants, in the forms of vitamins, natural compounds or synthetic ones, have been proven to be beneficial in the protection against fibrotic conditions both in vitro and in vivo. In this study, we reviewed the role of different compounds with antioxidant activity in induction or inhibition of TGF-β/SMAD signalling pathway, with regard to different fibrotic conditions such as gastro-intestinal fibrosis, cardiac fibrosis, pulmonary fibrosis, skin fibrosis, renal fibrosis and also some rare cases of fibrosis, both in animal models and cell lines.
Collapse
Affiliation(s)
- Soudeh Ghafouri‐Fard
- Department of Medical Genetics, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Arian Askari
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Hamed Shoorei
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
- Clinical Research Development Unit of Tabriz Valiasr HospitalTabriz University of Medical SciencesTabrizIran
| | - Mohammad Seify
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences InstituteShahid Sadoughi University of Medical SciencesYazdIran
| | - Yeganeh Koohestanidehaghi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences InstituteShahid Sadoughi University of Medical SciencesYazdIran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of PharmacyHawler Medical UniversityErbilIraq
| | - Mohammad Taheri
- Institute of Human GeneticsJena University HospitalJenaGermany
- Urology and Nephrology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Majid Samsami
- Cancer Research Center, Loghman Hakim HospitalShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
40
|
Anuranjana P, Beegum F, K.P D, George KT, Viswanatha G, Nayak PG, Kanwal A, Kishore A, Shenoy RR, Nandakumar K. Mechanisms Behind the Pharmacological Application of Biochanin-A: A review. F1000Res 2023; 12:107. [PMID: 38106650 PMCID: PMC10725524 DOI: 10.12688/f1000research.126059.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
This review was aimed at summarizing the cellular and molecular mechanisms behind the various pharmacological actions of biochanin-A. Many studies have been reported claiming its application in cancers, metabolic disorders, airway hyperresponsiveness, cardiac disorders, neurological disorders, etc. With regard to hormone-dependent cancers like breast, prostate, and other malignancies like pancreatic, colon, lung, osteosarcoma, glioma that has limited treatment options, biochanin-A revealed agreeable results in arresting cancer development. Biochanin-A has also shown therapeutic benefits when administered for neurological disorders, diabetes, hyperlipidaemia, and other chronic diseases/disorders. Isoflavones are considered phenomenal due to their high efficiency in modifying the physiological functions of the human body. Biochanin-A is one among the prominent isoflavones found in soy (glycine max), red clover (Trifolium pratense), and alfalfa sprouts, etc., with proven potency in modulating vital cellular mechanisms in various diseases. It has been popular for ages among menopausal women in controlling symptoms. In view of the multi-targeted functions of biochanin-A, it is essential to summarize it's mechanism of action in various disorders. The safety and efficacy of biochanin-A needs to be established in clinical trials involving human subjects. Biochanin-A might be able to modify various systems of the human body like the cardiovascular system, CNS, respiratory system, etc. It has shown a remarkable effect on hormonal cancers and other cancers. Many types of research on biochanin-A, particularly in breast, lung, colon, prostate, and pancreatic cancers, have shown a positive impact. Through modulating oxidative stress, SIRT-1 expression, PPAR gamma receptors, and other multiple mechanisms biochanin-A produces anti-diabetic action. The diverse molecular mechanistic pathways involved in the pharmacological ability of biochanin-A indicate that it is a very promising molecule and can play a major impact in modifying several physiological functions.
Collapse
Affiliation(s)
- P.V. Anuranjana
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya K.P
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krupa Thankam George
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | | | - Pawan G. Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rekha R. Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K. Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
41
|
Li H, Zhu Y, Chen Z, Ma Q, Abd-Elhamid AI, Feng B, Sun B, Wu J. Biomimetic Cardiac Fibrotic Model for Antifibrotic Drug Screening. Tissue Eng Part C Methods 2023; 29:558-571. [PMID: 37658841 DOI: 10.1089/ten.tec.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/05/2023] Open
Abstract
Cardiac fibrosis is characterized by pathological proliferation and activation of cardiac fibroblasts to myofibroblasts. Inhibition and reverse of transdifferentiation of cardiac fibroblasts to myofibroblasts is a potential strategy for cardiac fibrosis. Despite substantial progress, more effort is needed to discover effective drugs to improve and reverse cardiac fibrosis. The main reason for the slow development of antifibrotic drugs is that the traditional polystyrene culture platform does not recapitulate the microenvironment where cells reside in tissues. In this study, we propose an in vitro cardiac fibrotic model by seeding electrospun yarn scaffolds with cardiac fibroblasts. Our results show that yarn scaffolds allow three-dimensional growth of cardiac fibroblasts, promote extracellular matrix (ECM) deposition, and induce the transdifferentiation of cardiac fibroblasts to myofibroblasts. Exogenous transforming growth factor-β1 further promotes cardiac fibroblast activation and ECM deposition, which makes it a suitable fibrotic model to predict the antifibrotic potential of drugs. By using this platform, we demonstrate that both Honokiol (HKL) and Pirfenidone (PFD) show potential in antifibrosis to some extent. HKL is more efficient in antifibrosis than PFD as revealed by biochemical composition, gene, and molecular analyses as well as histological and biomechanical analysis. The electrospun yarn scaffold provides a novel platform for constructing in vitro fibrotic models to study cardiac fibrosis and to predict the antifibrotic efficacy of novel drugs.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| | - Yifan Zhu
- Department of Pediatric Cardiothoracic Surgery, Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhe Chen
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| | - Qiaolin Ma
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| | - Ahmed I Abd-Elhamid
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| | - Bei Feng
- Department of Pediatric Cardiothoracic Surgery, Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Binbin Sun
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| | - Jinglei Wu
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| |
Collapse
|
42
|
Liu H, Lai W, Nie H, Shi Y, Zhu L, Yang L, Tian L, Li K, Bian L, Xi Z, Lin B. PM 2.5 triggers autophagic degradation of Caveolin-1 via endoplasmic reticulum stress (ERS) to enhance the TGF-β1/Smad3 axis promoting pulmonary fibrosis. ENVIRONMENT INTERNATIONAL 2023; 181:108290. [PMID: 37924604 DOI: 10.1016/j.envint.2023.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Air pollution is highly associated with respiratory diseases. However, the influence and mechanism of particulate matter with aerodynamic equal to or less than 2.5 μm (PM2.5) in lung homeostasis remain unclear. Herein, we demonstrated the induction of pulmonary fibrosis (PF) by PM2.5 exposure. The animal model showed that PM2.5 exposure could activate the oxidative stress and inflammation response, promoting epithelial-mesenchymal transition and accumulation of collagen, high expression of pro-fibrotic factors, and pathological characteristics of fibrosis. The proteomic analysis indicated that PM2.5 exposure decreased the expression of caveolin-1 (Cav-1), and many differential proteins were enriched in the TGF-β1/Smad, endoplasmic reticulum stress (ERS) and autophagy pathways. Combining in vivo and in vitro experiments, it was found that PM2.5 exposure could reduce Cav-1 protein levels and activate TGF-β1/Smad3 signaling pathways through ERS and autophagy pathways, thereby inducing cell apoptosis and promoting pulmonary fibrosis. However, inhibiting ERS could alleviate the occurrence of autophagy, and blocking the autophagy system could increase the level of Cav-1 protein and inhibit TGF- β 1/Smad3 signaling pathway to improve pulmonary fibrosis. Therefore, we demonstrated that the exposure of PM2.5 could enhance the ERS induced-autophagy-mediated Cav-1 degradation, thus activating the TGF-β1/Smad3 axis to promote pneumonocytes apoptosis and overproduction of extracellular matrix (ECM), finally aggravating PF. Moreover, our findings revealed that intermittent exposure to high doses of PM2.5 was more toxic than continuous exposure to low dose.
Collapse
Affiliation(s)
- Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Huipeng Nie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lina Zhu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Linhui Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
43
|
Li X, Chen D, Ouyang B, Wang S, Li Y, Li L, Zhu S, Zheng G. KLF5/MDM2 Axis Modulates Oxidative Stress and Epithelial-Mesenchymal Transition in Human Lens Epithelial Cells: The Role in Diabetic Cataract. J Transl Med 2023; 103:100226. [PMID: 37532224 DOI: 10.1016/j.labinv.2023.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2022] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Diabetic cataract (DC) is a common cause of visual loss in older diabetic subjects. Krüppel-like factor 5 (KLF5) plays an essential role in migration and the epithelial-mesenchymal transition (EMT) in diverse cells and is involved in oxidative stress. However, the effects of KLF5 on DC remain unknown. This study aimed to examine the biological function of KLF5 in DC and its underlying mechanism. The expression patterns of KLF5 were detected in vivo and in vitro. Then, KLF5 was knocked down in human lens epithelial cells (HLECs) to explore its functional roles and underlying mechanisms. Dual-luciferase reporter assay and chromatin immunoprecipitation analysis were used to detect whether KLF5 could bind the promoter of E3 ubiquitin ligase mouse double minute 2 (MDM2), a key regulator of EMT. Lastly, the regulation of KLF5 in the biological behaviors of HLECs via MDM2 was analyzed. We found a significant increase of KLF5 in the DC lens anterior capsular, diabetic rat lens, and high glucose (HG)-stimulated HLECs. Knockdown of KLF5 inhibited oxidative stress, inflammation, migration, and EMT of HG-stimulated HLECs. KLF5 silencing impeded MDM2 expression and restricted the activation of MARK1/FAK and NF-κB signaling pathways in HLECs under HG condition. Additionally, KLF5 was found to bind the MDM2 promoter and enhance the transcriptional activity of MDM2. The protective effects by silencing KLF5 on HG-cultured HLECs could be offset by MDM2 overexpression. We demonstrated that knockdown of KLF5 alleviated oxidative stress, migration, and EMT of HG-cultured HLECs by regulating MDM2, suggesting a potential therapeutic strategy for DC.
Collapse
Affiliation(s)
- Xiao Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Doudou Chen
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Bowen Ouyang
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, Hainan, China
| | - Shengnan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yawei Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Siquan Zhu
- Department of Ophthalmology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
44
|
Gál R, Halmosi R, Gallyas F, Tschida M, Mutirangura P, Tóth K, Alexy T, Czopf L. Resveratrol and beyond: The Effect of Natural Polyphenols on the Cardiovascular System: A Narrative Review. Biomedicines 2023; 11:2888. [PMID: 38001889 PMCID: PMC10669290 DOI: 10.3390/biomedicines11112888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality worldwide. Unhealthy dietary habits have clearly been shown to contribute to the development of CVDs. Beyond the primary nutrients, a healthy diet is also rich in plant-derived compounds. Natural polyphenols, found in fruits, vegetables, and red wine, have a clear role in improving cardiovascular health. In this review, we strive to summarize the results of the relevant pre-clinical and clinical trials that focused on some of the most important natural polyphenols, such as resveratrol and relevant flavonoids. In addition, we aim to identify their common sources, biosynthesis, and describe their mechanism of action including their regulatory effect on signal transduction pathways. Finally, we provide scientific evidence regarding the cardiovascular benefits of moderate, long-term red wine consumption.
Collapse
Affiliation(s)
- Roland Gál
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Róbert Halmosi
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary;
| | - Michael Tschida
- Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Pornthira Mutirangura
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Kálmán Tóth
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Tamás Alexy
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - László Czopf
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
| |
Collapse
|
45
|
Sommer B, González-Ávila G, Flores-Soto E, Montaño LM, Solís-Chagoyán H, Romero-Martínez BS. Phytoestrogen-Based Hormonal Replacement Therapy Could Benefit Women Suffering Late-Onset Asthma. Int J Mol Sci 2023; 24:15335. [PMID: 37895016 PMCID: PMC10607548 DOI: 10.3390/ijms242015335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
It has been observed that plasmatic concentrations of estrogens, progesterone, or both correlate with symptoms in asthmatic women. Fluctuations in female sex steroid concentrations during menstrual periods are closely related to asthma symptoms, while menopause induces severe physiological changes that might require hormonal replacement therapy (HRT), that could influence asthma symptoms in these women. Late-onset asthma (LOA) has been categorized as a specific asthmatic phenotype that includes menopausal women and novel research regarding therapeutic alternatives that might provide relief to asthmatic women suffering LOA warrants more thorough and comprehensive analysis. Therefore, the present review proposes phytoestrogens as a promising HRT that might provide these females with relief for both their menopause and asthma symptoms. Besides their well-recognized anti-inflammatory and antioxidant capacities, phytoestrogens activate estrogen receptors and promote mild hormone-like responses that benefit postmenopausal women, particularly asthmatics, constituting therefore a very attractive potential therapy largely due to their low toxicity and scarce side effects.
Collapse
Affiliation(s)
- Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias ‘Ismael Cosio Villegas’, Calzada de Tlalpan 4502, Colonia Sección XVI, Mexico City CP 14080, Mexico
| | - Georgina González-Ávila
- Laboratorio de Oncología Biomédica, Departamento de Enfermedades Crónico Degenerativas, Instituto Nacional de Enfermedades Respiratorias ‘Ismael Cosio Villegas’, Mexico City CP 14080, Mexico;
| | - Edgar Flores-Soto
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico; (E.F.-S.); (L.M.M.); (B.S.R.-M.)
| | - Luis M. Montaño
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico; (E.F.-S.); (L.M.M.); (B.S.R.-M.)
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca CP 62209, Morelos, Mexico;
| | - Bianca S. Romero-Martínez
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico; (E.F.-S.); (L.M.M.); (B.S.R.-M.)
| |
Collapse
|
46
|
Velázquez-Enríquez JM, Reyes-Avendaño I, Santos-Álvarez JC, Reyes-Jiménez E, Vásquez-Garzón VR, Baltiérrez-Hoyos R. Identification of Hub Genes in Idiopathic Pulmonary Fibrosis and Their Association with Lung Cancer by Bioinformatics Analysis. Adv Respir Med 2023; 91:407-431. [PMID: 37887075 PMCID: PMC10604190 DOI: 10.3390/arm91050032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible disease with a high mortality rate worldwide. However, the etiology and pathogenesis of IPF have not yet been fully described. Moreover, lung cancer is a significant complication of IPF and is associated with increased mortality. Nevertheless, identifying common genes involved in developing IPF and its progression to lung cancer remains an unmet need. The present study aimed to identify hub genes related to the development of IPF by meta-analysis. In addition, we analyzed their expression and their relationship with patients' progression in lung cancer. METHOD Microarray datasets GSE24206, GSE21369, GSE110147, GSE72073, and GSE32539 were downloaded from Gene Expression Omnibus (GEO). Next, we conducted a series of bioinformatics analysis to explore possible hub genes in IPF and evaluated the expression of hub genes in lung cancer and their relationship with the progression of different stages of cancer. RESULTS A total of 1888 differentially expressed genes (DEGs) were identified, including 1105 upregulated and 783 downregulated genes. The 10 hub genes that exhibited a high degree of connectivity from the PPI network were identified. Analysis of the KEGG pathways showed that hub genes correlate with pathways such as the ECM-receptor interaction. Finally, we found that these hub genes are expressed in lung cancer and are associated with the progression of different stages of lung cancer. CONCLUSIONS Based on the integration of GEO microarray datasets, the present study identified DEGs and hub genes that could play an essential role in the pathogenesis of IPF and its association with the development of lung cancer in these patients, which could be considered potential diagnostic biomarkers or therapeutic targets for the disease.
Collapse
Affiliation(s)
- Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca 68020, Mexico; (J.M.V.-E.); (I.R.-A.); (J.C.S.-Á.); (E.R.-J.); (V.R.V.-G.)
| | - Itayetzi Reyes-Avendaño
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca 68020, Mexico; (J.M.V.-E.); (I.R.-A.); (J.C.S.-Á.); (E.R.-J.); (V.R.V.-G.)
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca 68020, Mexico; (J.M.V.-E.); (I.R.-A.); (J.C.S.-Á.); (E.R.-J.); (V.R.V.-G.)
| | - Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca 68020, Mexico; (J.M.V.-E.); (I.R.-A.); (J.C.S.-Á.); (E.R.-J.); (V.R.V.-G.)
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca 68020, Mexico; (J.M.V.-E.); (I.R.-A.); (J.C.S.-Á.); (E.R.-J.); (V.R.V.-G.)
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca 68020, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca 68020, Mexico; (J.M.V.-E.); (I.R.-A.); (J.C.S.-Á.); (E.R.-J.); (V.R.V.-G.)
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca 68020, Mexico
| |
Collapse
|
47
|
Xu Y, Huang Y, Cheng X, Hu B, Jiang D, Wu L, Peng S, Hu J. Mechanotransductive receptor Piezo1 as a promising target in the treatment of fibrosis diseases. Front Mol Biosci 2023; 10:1270979. [PMID: 37900917 PMCID: PMC10602816 DOI: 10.3389/fmolb.2023.1270979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Fibrosis could happen in every organ, leading to organic malfunction and even organ failure, which poses a serious threat to global health. Early treatment of fibrosis has been reported to be the turning point, therefore, exploring potential correlates in the pathogenesis of fibrosis and how to reverse fibrosis has become a pressing issue. As a mechanism-sensitive cationic calcium channel, Piezo1 turns on in response to changes in the lipid bilayer of the plasma membrane. Piezo1 exerts multiple biological roles, including inhibition of inflammation, cytoskeletal stabilization, epithelial-mesenchymal transition, stromal stiffness, and immune cell mechanotransduction, interestingly enough. These processes are closely associated with the development of fibrotic diseases. Recent studies have shown that deletion or knockdown of Piezo1 attenuates the onset of fibrosis. Therefore, in this paper we comprehensively describe the biology of this gene, focusing on its potential relevance in pulmonary fibrosis, renal fibrosis, pancreatic fibrosis, and cardiac fibrosis diseases, except for the role of drugs (agonists), increased intracellular calcium and mechanical stress using this gene in alleviating fibrosis.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiqian Huang
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiaoqing Cheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
48
|
Tirunavalli SK, Pramatha S, Eedara AC, Walvekar KP, Immanuel C, Potdar P, Nayak PG, Chamallamudi MR, Sistla R, Chilaka S, Andugulapati SB. Protective effect of β-glucan on Poly(I:C)-induced acute lung injury/inflammation: Therapeutic implications of viral infections in the respiratory system. Life Sci 2023; 330:122027. [PMID: 37597767 DOI: 10.1016/j.lfs.2023.122027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
AIMS Acute lung inflammation, particularly acute respiratory distress syndrome (ARDS), is caused by a variety of pathogens including bacteria and viruses. β-Glucans have been reported to possess both anti-inflammatory and immunomodulatory properties. The current study evaluated the therapeutic effect of β-glucans on polyinosinic:polycytidylic acid (Poly(I:C)) induced lung inflammation in both hamster and mice models. MAIN METHODS Poly(I:C)-induced ALI/inflammation models were developed in hamsters (2.5 mg/kg) and mice (2 mg/kg) by delivering the Poly(I:C) intratracheally, and followed with and without β-glucan administration. After treatment, lung mechanics were assessed and lung tissues were isolated and analyzed for mRNA/protein expression, and histopathological examinations. KEY FINDINGS Poly(I:C) administration, caused a significant elevation of inflammatory marker's expression in lung tissues and showed abnormal lung mechanics in mice and hamsters. Interestingly, treatment with β-glucan significantly (p < 0.001) reversed the Poly(I:C)-induced inflammatory events and inflammatory markers expression in both mRNA (IL-6, IL-1β, TNF-α, CCL2 and CCL7) and protein levels (TNF-α, CD68, myeloperoxidase, neutrophil elastase, MUC-5Ac and iNOS). Lung functional assays revealed that β-glucan treatment significantly improved lung mechanics. Histopathological analysis showed that β-glucan treatment significantly attenuated the Poly(I:C) induced inflammatory cell infiltration, injury and goblet cell population in lung tissues. Consistent with these findings, β-glucan treatment markedly reduced the number of neutrophils and macrophages in lung tissues. Our findings further demonstrated that β-glucan could reduce inflammation by suppressing the MAPK pathway. SIGNIFICANCE These results suggested that β-glucan may attenuate the pathogenic effects of Poly(I:C)-induced ALI/ARDS via modulating the MAPK pathway, indicating β-glucan as a possible therapeutic agent for the treatment of viral-pulmonary inflammation/injury.
Collapse
Affiliation(s)
- Satya Krishna Tirunavalli
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Shashidhar Pramatha
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi 576104, Karnataka, India
| | - Abhisheik Chowdary Eedara
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Komal Paresh Walvekar
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Christiana Immanuel
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Pooja Potdar
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Pawan G Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi 576104, Karnataka, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi 576104, Karnataka, India
| | - Ramakrishna Sistla
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Sabarinadh Chilaka
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| | - Sai Balaji Andugulapati
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
49
|
Li Y, Zhao H, Hu S, Zhang X, Chen H, Zheng Q. PET imaging with [ 68Ga]-labeled TGFβ-targeting peptide in a mouse PANC-1 tumor model. Front Oncol 2023; 13:1228281. [PMID: 37781175 PMCID: PMC10540840 DOI: 10.3389/fonc.2023.1228281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Purpose Transforming growth factor β (TGFβ) is upregulated in many types of tumors and plays important roles in tumor microenvironment construction, immune escape, invasion, and metastasis. The therapeutic effect of antibodies and nuclide-conjugated drugs targeting TGFβ has not been ideal. Targeting TGFβ with small-molecule or peptide carriers labeled with diagnostic/therapeutic nuclides is a new development direction. This study aimed to explore and confirm the imaging diagnostic efficiency of TGFβ-targeting peptide P144 coupled with [68Ga] in a PANC-1 tumor model. Procedures TGFβ-targeting inhibitory peptide P144 with stable activity was prepared through peptide synthesis and screening, and P144 was coupled with biological chelator DOTA and labeled with radionuclide [68Ga] to achieve a stable TGFβ-targeting tracer [68Ga]Ga-P144. This tracer was first used for positron emission tomography (PET) molecular imaging study of pancreatic cancer in a mouse PANC-1 tumor model. Results [68Ga]Ga-P144 had a high targeted uptake and relatively long uptake retention time in tumors and lower uptakes in non-target organs and backgrounds. Target pre-blocking experiment with the cold drug P144-DOTA demonstrated that the radioactive uptake with [68Ga]Ga-P144 PET in vivo, especially in tumor tissue, had a high TGFβ-targeting specificity. [68Ga]Ga-P144 PET had ideal imaging efficiency in PANC-1 tumor-bearing mice, with high specificity in vivo and good tumor-targeting effect. Conclusion [68Ga]Ga-P144 has relatively high specificity and tumor-targeted uptake and may be developed as a promising diagnostic tool for TGFβ-positive malignancies.
Collapse
Affiliation(s)
- Yong Li
- Department of Nuclear Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Hong Zhao
- Department of Nuclear Medicine, Shenzhen People’s Hospital, Shenzhen, China
| | - Shan Hu
- Department of Nuclear Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Xichen Zhang
- Department of Nuclear Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Haojian Chen
- Department of Nuclear Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Qihuang Zheng
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
50
|
李 明, 孙 美, 贾 渊, 任 徽, 刘 含. [Biomechanical properties of epithelial mesenchymal transition in idiopathic pulmonary fibrosis]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:632-637. [PMID: 37666752 PMCID: PMC10477379 DOI: 10.7507/1001-5515.202206016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Academic Contribution Register] [Received: 06/12/2022] [Revised: 02/02/2023] [Indexed: 09/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scar-forming disease with a high mortality rate that has received widespread attention. Epithelial mesenchymal transition (EMT) is an important part of the pulmonary fibrosis process, and changes in the biomechanical properties of lung tissue have an important impact on it. In this paper, we summarize the changes in the biomechanical microenvironment of lung tissue in IPF-EMT in recent years, and provide a systematic review on the effects of alterations in the mechanical microenvironment in pulmonary fibrosis on the process of EMT, the effects of mechanical factors on the behavior of alveolar epithelial cells in EMT and the biomechanical signaling in EMT, in order to provide new references for the research on the prevention and treatment of IPF.
Collapse
Affiliation(s)
- 明艳 李
- 河南中医药大学 中医药科学院 呼吸疾病中医药防治省部共建协同创新中心 河南省中医药防治呼吸病重点实验室(郑州 450016)Henan University of Chinese Medicine, Academy of Chinese Medicine Sciences, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan & Ministry of Education of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Zhengzhou 450016, P.R. China
| | - 美好 孙
- 河南中医药大学 中医药科学院 呼吸疾病中医药防治省部共建协同创新中心 河南省中医药防治呼吸病重点实验室(郑州 450016)Henan University of Chinese Medicine, Academy of Chinese Medicine Sciences, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan & Ministry of Education of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Zhengzhou 450016, P.R. China
| | - 渊博 贾
- 河南中医药大学 中医药科学院 呼吸疾病中医药防治省部共建协同创新中心 河南省中医药防治呼吸病重点实验室(郑州 450016)Henan University of Chinese Medicine, Academy of Chinese Medicine Sciences, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan & Ministry of Education of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Zhengzhou 450016, P.R. China
| | - 徽 任
- 河南中医药大学 中医药科学院 呼吸疾病中医药防治省部共建协同创新中心 河南省中医药防治呼吸病重点实验室(郑州 450016)Henan University of Chinese Medicine, Academy of Chinese Medicine Sciences, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan & Ministry of Education of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Zhengzhou 450016, P.R. China
- 西安交通大学 仿生工程与生物力学中心(西安 710049)Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - 含 刘
- 河南中医药大学 中医药科学院 呼吸疾病中医药防治省部共建协同创新中心 河南省中医药防治呼吸病重点实验室(郑州 450016)Henan University of Chinese Medicine, Academy of Chinese Medicine Sciences, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan & Ministry of Education of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Zhengzhou 450016, P.R. China
| |
Collapse
|