1
|
Liu R, Zhang Y, Liu M, Shang Z, Song S, Zhang Y, Zhou Y, Tu C. Natural molecule isoliquiritigenin mitigates MASH and liver fibrosis in mice by promoting autophagy through the PI3K/Akt signaling pathway. J Nutr Biochem 2025; 136:109808. [PMID: 39571827 DOI: 10.1016/j.jnutbio.2024.109808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/19/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Isoliquiritigenin (ISL), a flavonoid derived from licorice root, has diverse biological and pharmacological properties. This study aimed to investigate the hepatoprotective effects and mechanism of action of ISL on the pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH). C57BL/6 mice fed a chow diet or choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) received ISL (10 mg/kg) or vehicle daily via oral administration. To further explore the mechanism of ISL in MASH pathogenesis, AML12 cells were exposed to palmitic acid (PA) as an in vitro model of lipid toxicity. The results showed that, compared with vehicle-treated mice, ISL treatment alleviated liver injury, steatosis, inflammation, and fibrosis in MASH mice. Moreover, ISL treatment reduced the recruitment of CD68+ macrophages and activated hepatic stellate cells (HSCs) in MASH livers. In vitro experiments showed that ISL reduced lipid accumulation and mitigated inflammatory responses in PA-induced AML12 cells. Notably, RNA-sequencing analyses revealed that the anti-MASH effect of ISL enhanced autophagy via the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. This was further validated by assessing autophagy markers in both MASH liver tissues and PA-stimulated AML12 cells in vitro. Additionally, molecular docking analysis demonstrated that the target proteins of ISL exhibited strong binding affinity to PIK3 isoforms. In conclusion, our findings highlight that ISL mitigates MASH and fibrosis in mice by promoting autophagy through the PI3K/Akt/mTOR signaling pathway, providing reliable evidence to support further studies on MASH in humans.
Collapse
Affiliation(s)
- Rong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Liver disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Liu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhiyin Shang
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yajun Zhang
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuantao Tu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Deng K, Li M, Xiang L, Wang Y, Li Y, Wen J, Li Y, Kuang S, Wen J, Zhou C, Huang S, Lv Z. Integrated UHPLC-Q-exactive orbitrap HRMS and serum pharmacochemistry for the investigation of anti-hepatic fibrosis effect of Baoganning Decoction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156363. [PMID: 39799893 DOI: 10.1016/j.phymed.2025.156363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/21/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Early intervention in hepatic fibrosis (HF) is critical to reducing the risk of cirrhosis-related mortality and hepatocellular cancer. However, treating fibrosis has proven to be more challenging, with no approved anti-fibrotic therapies currently available for HF. Traditional Chinese medicines (TCMs) hold significant potential for the management of HF. PURPOSE This study aims to propose a systematic approach for investigating the pharmacological basis of Baoganning (BGN) Decoction, providing empirical evidence to support future research on its targets and mechanisms of BGN. STUDY DESIGN Ultrahigh-performance liquid chromatography coupled with high- resolution mass spectrometry (UPLC-HRMS) was employed to analyze the chemical composition of BGN. Key compounds were investigated using disease databases to predict relevant targets, followed by molecular docking and molecular dynamics simulations to explore molecular-level interactions. The efficacy and critical targets of BGN were validated through in vivo and in vitro experiments. METHODS UPLC-HRMS was used to identify the chemical composition of the BGN, and serum pharmacology determined the active chemical constituents in rat plasma. Zebrafish, HSC-T6 cells, JS-1 cell line and mice served as experimental models to evaluate the antifibrotic effects of BGN. RESULTS BGN demonstrated significant antifibrotic effect in vivo and in vitro models. A total of 757 compounds were identified in BGN, with 18 prototypical components and metabolites detected. Three compounds-quillaic acid, methyl cholate, and 3β-hydroxy-5-cholenoic exhibited dose-dependent inhibitory effects on HF. Molecular docking studies revealed stable interactions between these compounds and predicted targets. Additionally, the screened components effectively reduced the expression of α-SMA and COL-I in both a cellular model and a zebrafish fibrosis model in a dose-dependent manner. CONCLUSION The comprehensive analysis of BGN's chemical composition and its metabolic processes provides valuable insights into its pharmacological effects. These findings support the potential clinical and international application of BGN in treating hepatic fibrosis and improving patient outcomes.
Collapse
Affiliation(s)
- Kaili Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Min Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Liangliang Xiang
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1010, New Zealand
| | - Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Yamei Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Junya Wen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Yuanyuan Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Shanshan Kuang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Jinjie Wen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, PR China.
| |
Collapse
|
3
|
Fu W, Zhang M, Meng Y, Wang J, Sun L. Increased NPM1 inhibit ferroptosis and aggravate renal fibrosis via Nrf2 pathway in chronic kidney disease. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167551. [PMID: 39437857 DOI: 10.1016/j.bbadis.2024.167551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/29/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Recent findings underscore the significance of ferroptosis, an innovative iron-dependent mode of cell death, in the etiology and progression of chronic kidney disease (CKD). Nucleophosmin 1 (NPM1), a nucleolar protein, contributes to fibrogenesis and modulates cellular functions and mortality. Initial investigations utilized bioinformatics techniques to pinpoint genes with altered expression in CKD and to forecast the potential links between NPM1, ferroptosis, and renal fibrosis. Increased NPM1 expression was verified in the renal tissues of CKD patients. Experimental models of renal fibrosis in both animals and cells were then used for further study. The suppression of NPM1 led to an augmentation in iron metabolism and lipid peroxidation processes integral to ferroptosis, contributing to the mitigation of renal fibrosis. In contrast, an elevation in NPM1 expression had the opposite effect. This modulation may be interconnected with the nuclear factor erythroid 2-related factor 2 pathway. Moreover, the application of the ferroptosis inhibitor, Fer-1, not only obstructed ferroptosis but also diminished NPM1 expression, which, in turn, contributed to the alleviation of renal fibrosis. Thus, our findings suggest that in CKD the NPM1 level increased and led to decreased ferroptosis and aggravated renal fibrosis via an Nrf2 pathway. Ferroptosis inhibitor can alleviate renal fibrosis.
Collapse
Affiliation(s)
- Wenjing Fu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Mingyu Zhang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Yilin Meng
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Li Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
4
|
Ye H, Wang H, Han B, Chen K, Wang X, Ma F, Cheng L, Zheng S, Zhao X, Zhu J, Li J, Hong M. Guizhi Shaoyao Zhimu decoction inhibits neutrophil extracellular traps formation to relieve rheumatoid arthritis via gut microbial outer membrane vesicles. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156254. [PMID: 39586125 DOI: 10.1016/j.phymed.2024.156254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common autoimmune disease with a high disability rate. Accumulating studies suggest that neutrophil extracellular traps (NETs) play a crucial role in the pathogenesis of RA and targeting NETs has emerged as a potential therapeutic strategy for RA. As a traditional Chinese medicine, Guizhi-Shaoyao-Zhimu Decoction (GSZD) has exhibited good efficacy in the treatment of rheumatoid arthritis (RA), while the underly mechanism especially the possibility that GSZD alter NETs formation to relieve RA remains unknown. PURPOSE Our study aimed to investigate relationship between GSZD and NETs in RA treatment and revealed underlying mechanism. METHODS We constructed collagen-induced arthritis (CIA) model and treated CIA mice with GZSY to validate therapeutic effects of GSZD and examine whether GZSD could inhibit NETs formation in RA. And 16S rRNA sequencing and Fecal microbiota transplantation (FMT) experiment were performed to determine whether GSZD could reduce NETs formation to alleviate RA in gut microbiota-associated manner and identify crucial bacterium in response to GSZD administration. CIA mice treated with effective bacteria and its outer membrane vesicles (OMVs) with oral administration to investigate protective effect against RA and NETs regulative efficiency. We utilized small interfering RNA in vivo and vitro to silence gene mediating effect of GZSD-gut microbiota-NETs. RESULTS GSZD could inhibit NETs formation and relive arthritis in CIA mice. Additionally, GSZD alter gut microbiota composition and significantly increase intestinal Parabacteroides goldsteinii (P.goldsteinii) abundance. Mechanistically, P.goldsteinii enriched by GSZD secreted outer membrane vesicles (OMVs) to translocate into joints and activate Cav-1-Nrf2 axis, leading to reduced NETs formation and alleviate arthritis. In clinical, the abundance of P.goldsteinii exhibited negative correlation with NETs indexes and RA disease activities. CONCLUSION Our findings suggest that GSZD inhibits NETs formation to relieve RA in P.goldsteinii-Cav-1-Nrf2 associated manner, which could provide new sight of the prevention and treatment of RA.
Collapse
Affiliation(s)
- Haixin Ye
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hao Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingqi Han
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Keshan Chen
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xing Wang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fopei Ma
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lifang Cheng
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Songyuan Zheng
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueqin Zhao
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junqing Zhu
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Juan Li
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Mukeng Hong
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Liu W, Luo G. CAV1 inhibits Xc - system through IFNGR1 to promote ferroptosis to inhibit stemness and improves anti-PD-1 efficacy in breast cancer. Transl Oncol 2024; 50:102149. [PMID: 39395272 PMCID: PMC11736403 DOI: 10.1016/j.tranon.2024.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/14/2024] Open
Abstract
Breast cancer is the most prevalent malignancy among women worldwide, with breast cancer stem cells (BCSCs) being the primary drivers of metastasis and recurrence. Numerous studies have elucidated the relationship between ferroptosis and cellular stemness, identifying the Xc- system as a key regulatory mechanism governing ferroptosis. However, the interplay between CAV1 and ferroptosis, along with its implications for stemness in breast cancer, remains inadequately understood. This gap in knowledge impedes advancements in targeted therapies for breast cancer. We employed immunohistochemistry and bioinformatics analyses to demonstrate the downregulation of CAV1 in breast cancer tissues. Additionally, we utilized CCK-8 assays, EDU staining, and Transwell assays to assess cell proliferation, migration, and invasion capabilities. Furthermore, we evaluated indicators associated with ferroptosis while examining markers related to stemness through sphere culture experiments and flow cytometry techniques. Our findings indicate that CAV1 expression can induce cell death via ferroptosis while simultaneously inhibiting both cell proliferation and features of stemness by upregulating IFNGR1 and promoting ferroptosis. Moreover, our in vivo experiments revealed that overexpression of CAV1 enhances the efficacy of anti-PD-1 therapy. In conclusion, our study elucidates the regulatory role of CAV1 on ferroptosis within breast cancer contexts; it suppresses BCSC characteristics while positioning CAV1 as a promising therapeutic target for combating this disease.
Collapse
Affiliation(s)
- Wenhong Liu
- Department of Radiology, First Affiliated Hospital of University of South China, 69 Chuanshan Avenue, Hengyang City, Hunan, 421001, China
| | - Guanghua Luo
- Department of Radiology, First Affiliated Hospital of University of South China, 69 Chuanshan Avenue, Hengyang City, Hunan, 421001, China.
| |
Collapse
|
6
|
Xiong W, Lin X, Lin X, Wu L, Lin W. A Ketogenic Diet Affects Gut Microbiota by Regulating Gut Microbiota and Promoting Hippocampal TRHR Expression to Combat Seizures. J Mol Neurosci 2024; 74:104. [PMID: 39489848 DOI: 10.1007/s12031-024-02245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/05/2024] [Indexed: 11/05/2024]
Abstract
With the persistent challenge that epilepsy presents to therapeutic avenues, the study seeks to decipher the effects of the ketogenic diet (KD) on gut microbiota and subsequent epileptic outcomes. Mouse fecal samples from distinct KD and control diet (CD) cohorts underwent 16S rRNA sequencing. Differential genes of epileptic mice under these diets were sourced from the GEO database. The study melded in vivo and in vitro techniques to explore the nuanced interactions between KD, gut microbiota, and hippocampal TRHR dynamics. The KD regimen was found to result in a notable reduction in gut microbiota diversity when compared to the CD groups. Distinctive microbial strains, which are hypothesised to interact with epilepsy through G protein-coupled receptors, were spotlighted. In vivo, explorations affirmed that gut microbiota as central to KD's anti-epileptic efficacy. Of 211 distinguished genes, the neuroactive ligand-receptor interaction pathway was underscored, particularly emphasizing TRHR and TRH. Clinical observations revealed a surge in hippocampal TRHR and TRH expressions influenced by KD, mirroring shifts in neuronal discharges. The KD, leveraging gut microbiota alterations, amplifies hippocampal TRHR expression. This finding provides a novel intervention strategy to reduce seizures.
Collapse
Affiliation(s)
- Wenting Xiong
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Xiaohui Lin
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Xin Lin
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Luyan Wu
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
- Fujian Key Laboratory of Molecular Neurology, Fujian Province, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Wanhui Lin
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Province, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
7
|
Zhang L, Luan Y, Ding X, Yang C, Xing L, Zhang H, Liu Z. Integration of network pharmacology and transcriptomics to explore the mechanism of isoliquiritigenin in treating heart failure induced by myocardial infarction. Toxicol Appl Pharmacol 2024; 492:117114. [PMID: 39357681 DOI: 10.1016/j.taap.2024.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The inflammatory response and myocardial remodeling play critical roles in the progression of heart failure (HF) following myocardial infarction (MI). Isoliquiritigenin (ISL) possesses anti-inflammatory properties and has been investigated in cardiovascular diseases such as atherosclerosis. However, the effects and mechanism of ISL on MI-induced HF remain unclear. This research aimed to explore the effects and mechanism of ISL in the treatment of HF on the basis of network pharmacology, transcriptomics, and experimental verification. METHODS AND RESULTS We established an MI-induced HF mouse model in which ISL was administered via gavage for 28 days. Ultrasonic cardiogram data were collected from the mice, and pathological staining was conducted. Then, network pharmacology and molecular docking were performed. Transcriptomic analysis was also conducted on mouse myocardial tissue. Ultimately, we integrated transcriptomic data and network pharmacology to reveal the underlying mechanism, with the results verified through in vivo experiments. Our experiments indicated that ISL improved cardiac function, preserved myocardial structure, inhibited collagen fiber accumulation, reduced inflammatory factor secretion, and mitigated myocardial cell apoptosis in mice with MI-induced HF. A combination of transcriptomics and network pharmacology analysis revealed that core targets of ISL related to HF were significantly enriched in the Tumor Necrosis Factor (TNF) signaling pathway. Molecular docking validation demonstrated that ISL shows strong binding to these core targets. Additionally, in vivo experiments verified that ISL protects against HF post-MI by inhibiting the TNF signaling pathway. CONCLUSION We clarified the anti-inflammatory and antimyocardial remodeling mechanisms of ISL in the treatment of HF post-MI, which involves the TNF signaling pathway.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yuling Luan
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xinyue Ding
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Chenghao Yang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lina Xing
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Hui Zhang
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Zongjun Liu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
8
|
Zeng L, Jin X, Xiao QA, Jiang W, Han S, Chao J, Zhang D, Xia X, Wang D. Ferroptosis: action and mechanism of chemical/drug-induced liver injury. Drug Chem Toxicol 2024; 47:1300-1311. [PMID: 38148561 DOI: 10.1080/01480545.2023.2295230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Drug-induced liver injury (DILI) is characterized by hepatocyte injury, cholestasis injury, and mixed injury. The liver transplantation is required for serious clinical outcomes such as acute liver failure. Current studies have found that many mechanisms were involved in DILI, such as mitochondrial oxidative stress, apoptosis, necroptosis, autophagy, ferroptosis, etc. Ferroptosis occurs when hepatocytes die from iron-dependent lipid peroxidation and plays a key role in DILI. After entry into the liver, where some drugs or chemicals are metabolized, they convert into hepatotoxic substances, consume reduced glutathione (GSH), and decrease the reductive capacity of GSH-dependent GPX4, leading to redox imbalance in hepatocytes and increase of reactive oxygen species (ROS) and lipid peroxidation level, leading to the undermining of hepatocytes; some drugs facilitated the autophagy of ferritin, orchestrating the increased ion level and ferroptosis. The purpose of this review is to summarize the role of ferroptosis in chemical- or drug-induced liver injury (chemical/DILI) and how natural products inhibit ferroptosis to prevent chemical/DILI.
Collapse
Affiliation(s)
- Li Zeng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xueli Jin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Qing-Ao Xiao
- Department of Interventional Radiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Wei Jiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Shanshan Han
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Jin Chao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Ding Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xuan Xia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Decheng Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
9
|
Guo Y, Song J, Liu Y, Yuan M, Zhong W, Guo Y, Guo L. Study on the Hepatotoxicity of Emodin and Its Application in the Treatment of Liver Fibrosis. Molecules 2024; 29:5122. [PMID: 39519763 PMCID: PMC11547690 DOI: 10.3390/molecules29215122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Emodin (EMO) is an anthraquinone compound derived from Rheum palmatum L., which has rich pharmacological activity. However, studies have shown that EMO may cause hepatotoxicity. In this study, EMO was combined with tetrandrine and prepared as lipid nanoparticles (E-T/LNPs). The anti-liver fibrosis activity of EMO before and after formulation was evaluated by zebrafish and mice. In addition, the toxicity of EMO and E-T/LNPs was compared and the toxicity-efficacy concentrations of E-T/LNPs in zebrafish were verified. E-T/LNPs are morphologically stable (particle size within 100 nm), have high encapsulation efficiency and good stability, and are capable of long-lasting slow release in vitro. The combination and preparation can reduce the toxicity and enhance the effect of EMO, and increase the toxicity and effect concentration of E-T/LNPs in vivo. In a short period, low doses of E-T/LNPs can be used for the treatment of liver fibrosis; high doses of E-T/LNPs cause toxicity in vivo. Immunohistochemistry showed that E-T/LNPs inhibited hepatic fibrosis by downregulating the levels of IL-1β and TGF-β. Based on the advantages of combination therapy and nanotechnology, it can play a role in reducing the toxicity and increasing the efficacy of EMO in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yurou Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (J.S.); (Y.L.); (M.Y.); (W.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiawen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (J.S.); (Y.L.); (M.Y.); (W.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yushi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (J.S.); (Y.L.); (M.Y.); (W.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (J.S.); (Y.L.); (M.Y.); (W.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenxiao Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (J.S.); (Y.L.); (M.Y.); (W.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (J.S.); (Y.L.); (M.Y.); (W.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (J.S.); (Y.L.); (M.Y.); (W.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
10
|
Liao Y, Lv F, Quan T, Wang C, Li J. Flavonoids in natural products for the therapy of liver diseases: progress and future opportunities. Front Pharmacol 2024; 15:1485065. [PMID: 39512816 PMCID: PMC11540641 DOI: 10.3389/fphar.2024.1485065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
The liver is the largest, important organ and the site for essential biochemical reactions in the human body. It has the function to detoxify toxic substances and synthesize useful biomolecules. Liver diseases related complications represent a significant source of morbidity and mortality worldwide, creating a substantial economic burden. Oxidative stress, excessive inflammation, and dysregulated energy metabolism significantly contributed to liver diseases. Therefore, discovery of novel therapeutic drugs for the treatment of liver diseases are urgently required. For centuries, flavonoids and their preparations which have the beneficial health effects in chronic diseases have been used to treat various human illnesses. Flavonoids mainly include flavones, isoflavones, flavanols, dihydroflavones, dihydroflavonols, anthocyanins and chalcones. The primary objective of this review is to assess the efficacy and safety of flavonoids, mainly from a clinical point of view and considering clinically relevant end-points. We summarized the recent progress in the research of hepatoprotective and molecular mechanisms of different flavonoids bioactive ingredients and also outlined the networks of underlying molecular signaling pathways. Further pharmacology and toxicology research will contribute to the development of natural products in flavonoids and their derivatives as medicines with alluring prospect in the clinical application.
Collapse
Affiliation(s)
- Yanmei Liao
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Fei Lv
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Tianwen Quan
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Chuan Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Jike Li
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Wenbo Z, Jianwei H, Hua L, Lei T, Guijuan C, Mengfei T. The potential of flavonoids in hepatic fibrosis: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155932. [PMID: 39146877 DOI: 10.1016/j.phymed.2024.155932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Hepatic fibrosis is a pathophysiological process of extracellular matrix abnormal deposition induced by multiple pathogenic factors. Currently, there is still a lack of effective and non-toxic drugs for treating fibrosis in clinic. Flavonoids are polyphenolic compounds synthesized in plants and modern pharmacological studies confirmed flavonoids exhibit potent hepatoprotective effect. PURPOSE Summarize literature to elaborate the mechanism of HF and evaluate the potential of flavonoids in HF, aiming to provide a new perspective for future research. METHODS The literatures about hepatic fibrosis and flavonoids are collected via a series of scientific search engines including Google Scholar, Elsevier, PubMed, CNKI, WanFang, SciFinder and Web of Science database. The key words are "flavonoids", "hepatic fibrosis", "pharmacokinetic", "toxicity", "pathogenesis" "traditional Chinese medicine" and "mechanism" as well as combination application. RESULTS Phytochemical and pharmacological studies revealed that about 86 natural flavonoids extracted from Chinese herbal medicines possess significantly anti-fibrosis effect and the mechanisms maybe through anti-inflammatory, antioxidant, inhibiting hepatic stellate cells activation and clearing activated hepatic stellate cells. CONCLUSIONS This review summarizes the flavonoids which are effective in HF and the mechanisms in vivo and in vitro. However, fewer studies are focused on the pharmacokinetics of flavonoids in HF model and most studies are limited to preclinical studies, therefore there is no reliable data from clinical trials for the development of new drugs. Further in-depth research related it can be conducted to improve the bioavailability of flavonoids and serve the development of new drugs.
Collapse
Affiliation(s)
- Zhu Wenbo
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China.
| | - Han Jianwei
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Liu Hua
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan 410008, China
| | - Tang Lei
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| | - Chen Guijuan
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| | - Tian Mengfei
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| |
Collapse
|
12
|
Meng D, Ren S. Mairin from Huangqi Decoction Mitigates Liver Cirrhosis through
Suppression of Pro-inflammatory Signaling Pathways: A Network
Pharmacology and Experimental Study. THE NATURAL PRODUCTS JOURNAL 2024; 14. [DOI: 10.2174/0122103155273345231210170121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 01/04/2025]
Abstract
Background::
Liver cirrhosis is a consequence of various chronic liver conditions and may
lead to liver failure and cancer. Huangqi Decoction (HQD) is a Traditional Chinese Medicine (TCM)
effective for treating liver conditions, including cirrhosis. Therefore, both the active ingredients and
the pharmacological actions of HQD deserve further exploration. The active components and pharmacological
actions of HQD in preventing and treating liver cirrhosis were investigated using network
pharmacology. The actions of the principal active ingredient, Mairin, were investigated empirically.
Methods::
Using network pharmacology, the critical components of HQD were identified from multiple
databases, and UPLC screening and targets were investigated using Swiss Target Prediction.
Targets associated with liver cirrhosis were identified using the GeneCards database. GO and KEGG
enrichment analysis of targets that overlapped between HQD and cirrhosis were analyzed in DAVID,
and a “component-target-pathway” network for HQD was created in Cytoscape 3.7.2. The biological
functions of the key active component, Mairin, were investigated using in silico docking, cell experiments,
and evaluation in a carbon-tetrachloride (CCl4)-induced mouse model of liver cirrhosis.
CCK-8 and F-actin assays were used to measure cell viability and hepatic stellate cell (HSC) activation,
respectively; fibrosis was measured by histological and immunohistochemical evaluations, and
the levels of the cirrhosis-related protein α-SMA and predicted essential target proteins in the PI3KAKT,
NFκB-IκBα, and NLRP3-IL18 pathways were determined by western blotting.
Results::
Fourteen active HQD components, 72 targets, and 10 pathways common to HQD and cirrhosis
were identified. Network analysis indicated the association of Mairin with most targets and
with inflammation through the PI3K/Akt, NF-κB, and NLRP3 pathways. Dose-dependent reductions
in the activation and proliferation of LX-2 cells after Mairin treatment were observed. Mairin reversed
the histopathological changes in the livers of cirrhosis model mice. Mairin also significantly
reduced the α-SMA, NF-κB, IκBα, NLRP3, and IL-18 protein levels while increasing those of p-
PI3K and p-Akt, suggesting that Mairin mitigates liver cirrhosis through modulation of the PI3KAKT,
NFκB-IκBα, and NLRP3-IL18 pathways.
Conclusions::
Using a comprehensive investigative process involving network pharmacology, bioinformatics,
and experimental verification, it was found that Mairin, an active component of HQD,
may be useful for developing specific treatments for preventing and treating liver cirrhosis.
Collapse
Affiliation(s)
- Di Meng
- Department of Traditional Chinese Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Shuang Ren
- Department of Traditional Chinese Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Han J, Li Q, Sun K, Pan C, Liu J, Huang P, Feng J, Liu Y, Meininger GA. Natural Products Improve Organ Microcirculation Dysfunction Following Ischemia/Reperfusion- and Lipopolysaccharide-Induced Disturbances: Mechanistic and Therapeutic Views. ENGINEERING 2024; 38:77-99. [DOI: 10.1016/j.eng.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Liu C, Wang G, Han W, Tian Q, Li M. Ferroptosis: a potential therapeutic target for stroke. Neural Regen Res 2024; 19:988-997. [PMID: 37862200 PMCID: PMC10749612 DOI: 10.4103/1673-5374.385284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 10/22/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by massive iron accumulation and iron-dependent lipid peroxidation, differing from apoptosis, necroptosis, and autophagy in several aspects. Ferroptosis is regarded as a critical mechanism of a series of pathophysiological reactions after stroke because of iron overload caused by hemoglobin degradation and iron metabolism imbalance. In this review, we discuss ferroptosis-related metabolisms, important molecules directly or indirectly targeting iron metabolism and lipid peroxidation, and transcriptional regulation of ferroptosis, revealing the role of ferroptosis in the progression of stroke. We present updated progress in the intervention of ferroptosis as therapeutic strategies for stroke in vivo and in vitro and summarize the effects of ferroptosis inhibitors on stroke. Our review facilitates further understanding of ferroptosis pathogenesis in stroke, proposes new targets for the treatment of stroke, and suggests that more efforts should be made to investigate the mechanism of ferroptosis in stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
15
|
Lin L, Li X, Li Y, Lang Z, Li Y, Zheng J. Ginsenoside Rb1 induces hepatic stellate cell ferroptosis to alleviate liver fibrosis via the BECN1/SLC7A11 axis. J Pharm Anal 2024; 14:100902. [PMID: 38784156 PMCID: PMC11112007 DOI: 10.1016/j.jpha.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 05/25/2024] Open
Abstract
Liver fibrosis is primarily driven by the activation of hepatic stellate cells (HSCs), a process associated with ferroptosis. Ginsenoside Rb1 (GRb1), a major active component extracted from Panax ginseng, inhibits HSC activation. However, the potential role of GRb1 in mediating HSC ferroptosis remains unclear. This study examined the effect of GRb1 on liver fibrosis both in vivo and in vitro, using CCl4-induced liver fibrosis mouse model and primary HSCs, LX-2 cells. The findings revealed that GRb1 effectively inactivated HSCs in vitro, reducing alpha-smooth muscle actin (α-SMA) and Type I collagen (Col1A1) levels. Moreover, GRb1 significantly alleviated CCl4-induced liver fibrosis in vivo. From a mechanistic standpoint, the ferroptosis pathway appeared to be central to the antifibrotic effects of GRb1. Specifically, GRb1 promoted HSC ferroptosis both in vivo and in vitro, characterized by increased glutathione depletion, malondialdehyde production, iron overload, and accumulation of reactive oxygen species (ROS). Intriguingly, GRb1 increased Beclin 1 (BECN1) levels and decreased the System Xc-key subunit SLC7A11. Further experiments showed that BECN1 silencing inhibited GRb1-induced effects on HSC ferroptosis and mitigated the reduction of SLC7A11 caused by GRb1. Moreover, BECN1 could directly interact with SLC7A11, initiating HSC ferroptosis. In conclusion, the suppression of BECN1 counteracted the effects of GRb1 on HSC inactivation both in vivo and in vitro. Overall, this study highlights the novel role of GRb1 in inducing HSC ferroptosis and promoting HSC inactivation, at least partly through its modulation of BECN1 and SLC7A11.
Collapse
Affiliation(s)
- Lifan Lin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xinmiao Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yifei Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhichao Lang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yeping Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
16
|
Dong M, Yang Z, Gao Q, Deng Q, Li L, Chen H. Protective Effects of Isoliquiritigenin and Licochalcone B on the Immunotoxicity of BDE-47: Antioxidant Effects Based on the Activation of the Nrf2 Pathway and Inhibition of the NF-κB Pathway. Antioxidants (Basel) 2024; 13:445. [PMID: 38671893 PMCID: PMC11047486 DOI: 10.3390/antiox13040445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
2,2',4,4'-Tetrabrominated biphenyl ether (BDE-47) is a polybrominated diphenyl ether (PBDE) homologue that is ubiquitous in biological samples and highly toxic to humans and other organisms. Prior research has confirmed that BDE-47 can induce oxidative damage in RAW264.7 cells, resulting in apoptosis and impaired immune function. The current study mainly focused on how Isoliquiritigenin (ISL) and Licochalcone B (LCB) might protect against BDE-47's immunotoxic effects on RAW264.7 cells. The results show that ISL and LCB could increase phagocytosis, increase the production of MHC-II, and decrease the production of inflammatory factors (TNF-α, IL-6, and IL-1β) and co-stimulatory factors (CD40, CD80, and CD86), alleviating the immune function impairment caused by BDE-47. Secondly, both ISL and LCB could reduce the expressions of the proteins Bax and Caspase-3, promote the expression of the protein Bcl-2, and reduce the apoptotic rate, alleviating the apoptosis initiated by BDE-47. Additionally, ISL and LCB could increase the levels of antioxidant substances (SOD, CAT, and GSH) and decrease the production of reactive oxygen species (ROS), thereby counteracting the oxidative stress induced by BDE-47. Ultimately, ISL and LCB suppress the NF-κB pathway by down-regulating IKBKB and up-regulating IκB-Alpha in addition to activating the Nrf2 pathway and promoting the production of HO-1 and NQO1. To summarize, BDE-47 causes oxidative damage that can be mitigated by ISL and LCB through the activation of the Nrf2 pathway and inhibition of the NF-κB pathway, which in turn prevents immune function impairment and apoptosis. These findings enrich the current understanding of the toxicological molecular mechanism of BDE-47 and the detoxification mechanism of licorice.
Collapse
Affiliation(s)
- Minghui Dong
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China; (M.D.); (Z.Y.); (Q.G.); (Q.D.); (L.L.)
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Ziying Yang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China; (M.D.); (Z.Y.); (Q.G.); (Q.D.); (L.L.)
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Qian Gao
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China; (M.D.); (Z.Y.); (Q.G.); (Q.D.); (L.L.)
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Qingyuan Deng
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China; (M.D.); (Z.Y.); (Q.G.); (Q.D.); (L.L.)
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Le Li
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China; (M.D.); (Z.Y.); (Q.G.); (Q.D.); (L.L.)
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Hongmei Chen
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China; (M.D.); (Z.Y.); (Q.G.); (Q.D.); (L.L.)
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi 832002, China
| |
Collapse
|
17
|
Yao J, Peng T, Shao C, Liu Y, Lin H, Liu Y. The Antioxidant Action of Astragali radix: Its Active Components and Molecular Basis. Molecules 2024; 29:1691. [PMID: 38675511 PMCID: PMC11052376 DOI: 10.3390/molecules29081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Astragali radix is a traditional medicinal herb with a long history and wide application. It is frequently used in prescriptions with other medicinal materials to replenish Qi. According to the classics of traditional Chinese medicine, Astragali radix is attributed with properties such as Qi replenishing and surface solidifying, sore healing and muscle generating, and inducing diuresis to reduce edema. Modern pharmacological studies have demonstrated that some extracts and active ingredients in Astragali radix function as antioxidants. The polysaccharides, saponins, and flavonoids in Astragali radix offer beneficial effects in preventing and controlling diseases caused by oxidative stress. However, there is still a lack of comprehensive research on the effective components and molecular mechanisms through which Astragali radix exerts antioxidant activity. In this paper, we review the active components with antioxidant effects in Astragali radix; summarize the content, bioavailability, and antioxidant mechanisms; and offer a reference for the clinical application of Astragalus and the future development of novel antioxidants.
Collapse
Affiliation(s)
- Juan Yao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Ting Peng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Changxin Shao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Yuanyuan Liu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730013, China;
| | - Huanhuan Lin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Yongqi Liu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730013, China;
| |
Collapse
|
18
|
Li X, Xu X, Tao S, Su Y, Wen L, Wang D, Liu J, Feng Q. Gut microbes combined with metabolomics reveal the protective effects of Qijia Rougan decoction against CCl 4-induced hepatic fibrosis. Front Pharmacol 2024; 15:1347120. [PMID: 38606180 PMCID: PMC11007057 DOI: 10.3389/fphar.2024.1347120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Background: The occurrence and development of Hepatic fibrosis (HF) are closely related to the gut microbial composition and alterations in host metabolism. Qijia Rougan decoction (QJ) is a traditional Chinese medicine compound utilized clinically for the treatment of HF with remarkable clinical efficacy. However, its effect on the gut microbiota and metabolite alterations is unknown. Therefore, our objective was to examine the impact of QJ on the gut microbiota and metabolism in Carbon tetrachloride (CCl4)-induced HF. Methods: 40% CCl4 was used to induce HF, followed by QJ administration for 6 weeks. Serum biochemical analyses, histopathology, immunohistochemistry, RT-PCR, 16S rRNA gene sequencing, and non-targeted metabolomics techniques were employed in this study to investigate the interventional effects of QJ on a CCl4-induced HF model in rats. Results: This study demonstrated that QJ could effectively ameliorate CCl4-induced hepatic inflammation and fibrosis. Moreover, QJ upregulated the expression of intestinal tight junction proteins (TJPs) and notably altered the abundance of some gut microbes, for example, 10 genera closely associated with HF-related indicators and TJPs. In addition, metabolomics found 37 key metabolites responded to QJ treatment and strongly associated with HF-related indices and TJPs. Furthermore, a tight relation between 10 genera and 37 metabolites was found post correlation analysis. Among them, Turicibacter, Faecalibaculum, Prevotellaceae UCG 001, and unclassified Peptococcaceae may serve as the core gut microbes of QJ that inhibit HF. Conclusion: These results suggest that QJ ameliorates hepatic inflammation and fibrosis, which may be achieved by improving intestinal tight junctions and modulating gut microbiota composition as well as modulating host metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Dong Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Shree Harini K, Ezhilarasan D. Flavonoids-based nanomedicines for the treatment of liver fibrosis: A recent progress. J Drug Deliv Sci Technol 2024; 93:105467. [DOI: 10.1016/j.jddst.2024.105467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Chen YL, Xiong LA, Ma LF, Fang L, Zhan ZJ. Natural product-derived ferroptosis mediators. PHYTOCHEMISTRY 2024; 219:114002. [PMID: 38286199 DOI: 10.1016/j.phytochem.2024.114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
It has been 11 years since ferroptosis, a new mode of programmed cell death, was first proposed. Natural products are an important source of drug discovery. In the past five years, natural product-derived ferroptosis regulators have been discovered in an endless stream. Herein, 178 natural products discovered so far to trigger or resist ferroptosis are classified into 6 structural classes based on skeleton type, and the mechanisms of action that have been reported are elaborated upon. If pharmacodynamic data are sufficient, the structure and bioactivity relationship is also presented. This review will provide medicinal chemists with some effective ferroptosis regulators, which will promote the research of natural product-based treatment of ferroptosis-related diseases in the future.
Collapse
Affiliation(s)
- Yi-Li Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lin-An Xiong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lie-Feng Ma
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, PR China.
| | - Zha-Jun Zhan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
21
|
Lai W, Wang B, Huang R, Zhang C, Fu P, Ma L. Ferroptosis in organ fibrosis: From mechanisms to therapeutic medicines. J Transl Int Med 2024; 12:22-34. [PMID: 38525436 PMCID: PMC10956731 DOI: 10.2478/jtim-2023-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Fibrosis occurs in many organs, and its sustained progress can lead to organ destruction and malfunction. Although numerous studies on organ fibrosis have been carried out, its underlying mechanism is largely unknown, and no ideal treatment is currently available. Ferroptosis is an iron-dependent process of programmed cell death that is characterized by lipid peroxidation. In the past decade, a growing body of evidence demonstrated the association between ferroptosis and fibrotic diseases, while targeting ferroptosis may serve as a potential therapeutic strategy. This review highlights recent advances in the crosstalk between ferroptosis and organ fibrosis, and discusses ferroptosis-targeted therapeutic approaches against fibrosis that are currently being explored.
Collapse
Affiliation(s)
- Weijing Lai
- Department of Nephrology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan Province, China
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Bo Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Rongshuang Huang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Chuyue Zhang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Ping Fu
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Liang Ma
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
22
|
Hu Y, Lang Z, Li X, Lin L, Li Y, Zhang R, Zheng J, Yu Z. Ginsenoside Rg3 promotes hepatic stellate cell ferroptosis by epigenetically regulating ACSL4 to suppress liver fibrosis progression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155289. [PMID: 38176269 DOI: 10.1016/j.phymed.2023.155289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Ginsenoside Rg3 (G-Rg3), extracted from Panax notoginseng, possesses hepatoprotective properties. Hepatic stellate cells (HSCs) activation is responsible for liver fibrosis. Recent studies have reported the suppressive effects of G-Rg3 on HSC activation and proliferation. Ferroptosis is a novel iron regulated cell death. ACSL4, a key indicator of ferroptosis, is commonly methylated in various diseases. PURPOSE However, the role of ACSL4 methylation-mediated HSC ferroptosis in G-Rg3 inhibition of hepatic fibrosis needs to be explored. METHODS Effects of G-Rg3 on inhibiting fibrosis were evaluated in vivo and in vitro. The impact of G-Rg3 on HSC ferroptosis was assessed in vitro. Furthermore, the expression of ACSL4, ACSL4 methylation and microRNA-6945-3p (miR-6945-3p) levels were determined. RESULTS G-Rg3 significantly alleviated CCl4-induced liver fibrosis, accompanied by collagen downregulation. In vitro, G-Rg3 contributed to HSC inactivation, leading to decreased collagen production. G-Rg3 induced HSC ferroptosis, characterized by increased iron accumulation, depletion of glutathione, malondialdehyde levels, and generation of lipid reactive oxygen species. Moreover, G-Rg3 promoted ACSL4 demethylation and restored its expression. Notably, DNMT3B counteracted the effect of G-Rg3-mediated inhibition of ACSL4 methylation and was targeted by miR-6945-3p. Further investigations revealed that G-Rg3 suppressed ACSL4 methylation through miR-6945-3p-mediated DNMT3B inhibition. Consistent with this, miR-6945-3p inhibition reversed G-Rg3-induced ACSL4 expression and HSC ferroptosis. CONCLUSION G-Rg3 inhibits ACSL4 methylation by miR-6945-3p-mediated DNMT3B inhibition, thereby promoting HSC ferroptosis and mitigating liver fibrosis.
Collapse
Affiliation(s)
- Yuhang Hu
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou 325000, Zhejiang, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, Zhejiang, PR China
| | - Zhichao Lang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou 325000, Zhejiang, PR China
| | - Xinmiao Li
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou 325000, Zhejiang, PR China
| | - Lifan Lin
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou 325000, Zhejiang, PR China
| | - Yifei Li
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou 325000, Zhejiang, PR China
| | - Rongrong Zhang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou 325000, Zhejiang, PR China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou 325000, Zhejiang, PR China.
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou 325000, Zhejiang, PR China.
| |
Collapse
|
23
|
Huang W, Wen F, Yang P, Li Y, Li Q, Shu P. Yi-qi-hua-yu-jie-du decoction induces ferroptosis in cisplatin-resistant gastric cancer via the AKT/GSK3β/NRF2/GPX4 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155220. [PMID: 38056149 DOI: 10.1016/j.phymed.2023.155220] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Resistance to chemotherapy in gastric cancer (GC) is a ubiquitous challenge for its treatment. Yi-qi-hua-yu-jie-du decoction (YJD), an empirical formula in Traditional Chinese Medicine (TCM), demonstrated survival-prolonging functions in patients with GC. Previous research has shown that YJD could also inhibit drug resistance in GC. However, the precise mechanisms for how YJD accomplishes this remain incompletely explained. PURPOSE The research aimed to identify differential metabolic characteristics in cisplatin-resistant GC and investigate whether YJD can target these differences to suppress GC drug resistance. METHODS Metabolomic analysis was conducted to identify metabolic disparities between cisplatin-resistant and parental GC cells, as well as metabolic modifications resulting from YJD intervention in cisplatin-resistant GC cells. The effect of YJD on ferroptosis stimulation was assessed by measuring the levels of reactive oxygen species (ROS), malondialdehyde (MDA), iron ions, the reduced glutathione (GSH) to oxidised glutathione (GSSG) ratio, and alterations in mitochondrial morphology. Western blotting and quantitative real-time polymerase chain reaction (Q-PCR) were employed to verity the mechanisms of YJD-triggered ferroptosis through GPX4 and NRF2 overexpression models, alongside the AKT activator SC79. In vivo validation was conducted using nude mouse xenograft models. RESULTS Cisplatin-resistant GC exhibited altered GSH/GPX4 metabolism, and ferroptosis was a significantly enriched cell death pattern with YJD treatment in cisplatin-resistant GC cells. Ferroptosis biomarkers, including ROS, MDA, iron ions, the GSH/GSSG ratio, and mitochondrial morphology, were remarkably changed with the YJD intervention. Mechanistic experiments demonstrated that YJD inhibited the phosphorylation cascade activity of the AKT/GSK3β pathway, thereby reducing NRF2 expression. The level of GPX4, a crucial enzyme involved in glutathione metabolism, was attenuated, facilitating ferroptosis induction in cisplatin-resistant GC. CONCLUSION The research reveals, for the first time, changes in GSH/GPX4 metabolism in cisplatin-resistant GC cells based on metabolomic analysis. YJD induced ferroptosis in cisplatin-resistant GC by inhibiting GPX4 through the AKT/GSK3β/NRF2 pathway, thus attenuating the cisplatin drug resistance in GC. Our findings identify metabolic changes in cisplatin-resistant GC and establish a theoretical framework for YJD on tackling drug resistance in GC through ferroptosis.
Collapse
Affiliation(s)
- Wenjie Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Fang Wen
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Peipei Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Ye Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Qiurong Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Peng Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
24
|
Wang T, Lu Z, Sun GF, He KY, Chen ZP, Qu XH, Han XJ. Natural Products in Liver Fibrosis Management: A Five-year Review. Curr Med Chem 2024; 31:5061-5082. [PMID: 38362686 DOI: 10.2174/0109298673288458240203064112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Liver fibrosis, characterized by the overproduction of extracellular matrix proteins within liver tissue, poses a rising global health concern. However, no approved antifibrotic drugs are currently available, highlighting the critical need for understanding the molecular mechanisms of liver fibrosis. This knowledge could not only aid in developing therapies but also enable early intervention, enhance disease prediction, and improve our understanding of the interaction between various underlying conditions and the liver. Notably, natural products used in traditional medicine systems worldwide and demonstrating diverse biochemical and pharmacological activities are increasingly recognized for their potential in treating liver fibrosis. This review aims to comprehensively understand liver fibrosis, emphasizing the molecular mechanisms and advancements in exploring natural products' antifibrotic potential over the past five years. It also acknowledges the challenges in their development and seeks to underscore their potency in enhancing patient prognosis and reducing the global burden of liver disease.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Zhuo Lu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Gui-Feng Sun
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Kai-Yi He
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Zhi-Ping Chen
- Department of Critical Care Medicine, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Xin-Hui Qu
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| |
Collapse
|
25
|
Liu C, Li S, Zhang C, Jin CH. Recent Advances in Research on Active Compounds Against Hepatic Fibrosis. Curr Med Chem 2024; 31:2571-2628. [PMID: 37497688 DOI: 10.2174/0929867331666230727102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Almost all chronic liver diseases cause fibrosis, which can lead to cirrhosis and eventually liver cancer. Liver fibrosis is now considered to be a reversible pathophysiological process and suppression of fibrosis is necessary to prevent liver cancer. At present, no specific drugs have been found that have hepatic anti-fibrotic activity. OBJECTIVE The research progress of anti-hepatic fibrosis compounds in recent ten years was reviewed to provide a reference for the design and development of anti-hepatic fibrosis drugs. METHODS According to the structure of the compounds, they are divided into monocyclic compounds, fused-heterocyclic compounds, and acyclic compounds. RESULTS In this article, the natural products and synthetic compounds with anti-fibrotic activity in recent ten years were reviewed, with emphasis on their pharmacological activity and structure-activity relationship (SAR). CONCLUSION Most of these compounds are natural active products and their derivatives, and there are few researches on synthetic compounds and SAR studies on natural product.
Collapse
Affiliation(s)
- Chuang Liu
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Changhao Zhang
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
26
|
Yuan Hsieh DJ, Islam MN, Kuo WW, Shibu MA, Lai CH, Lin PY, Lin SZ, Chen MYC, Huang CY. A combination of isoliquiritigenin with Artemisia argyi and Ohwia caudata water extracts attenuates oxidative stress, inflammation, and apoptosis by modulating Nrf2/Ho-1 signaling pathways in SD rats with doxorubicin-induced acute cardiotoxicity. ENVIRONMENTAL TOXICOLOGY 2023; 38:3026-3042. [PMID: 37661764 DOI: 10.1002/tox.23936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Ohwia caudata (Thunb.) H. Ohashi (Leguminosae) also called as "Evergreen shrub" and Artemisia argyi H.Lév. and Vaniot (Compositae) also named as "Chinese mugwort" those two-leaf extracts frequently used as herbal medicine, especially in south east Asia and eastern Asia. Anthracyclines such as doxorubicin (DOX) are commonly used as effective chemotherapeutic drugs in anticancer therapy around the world. However, chemotherapy-induced cardiotoxicity, dilated cardiomyopathy, and congestive heart failure are seen in patients who receive DOX therapy, with the mechanisms underlying DOX-induced cardiac toxicity remaining unclear. Mitochondrial dysfunction, oxidative stress, inflammatory response, and cardiomyocytes have been shown to play crucial roles in DOX-induced cardiotoxicity. Isoliquiritigenin (ISL, 10 mg/kg) is a bioactive flavonoid compound with protective effects against inflammation, neurodegeneration, cancer, and diabetes. Here, in this study, our aim is to find out the Artemisia argyi (AA) and Ohwia caudata (OC) leaf extract combination with Isoliquiritigenin in potentiating and complementing effect against chemo drug side effect to ameliorate cardiac damage and improve the cardiac function. In this study, we showed that a combination of low (AA 300 mg/kg; OC 100 mg/kg) and high-dose(AA 600 mg/kg; OC 300 mg/kg) AA and OC water extract with ISL activated the cell survival-related AKT/PI3K signaling pathway in DOX-treated cardiac tissue leading to the upregulation of the antioxidant markers SOD, HO-1, and Keap-1 and regulated mitochondrial dysfunction through the Nrf2 signaling pathway. Moreover, the water extract of AA and OC with ISL inhibited the inflammatory response genes IL-6 and IL-1β, possibly through the NFκB/AKT/PI3K/p38α/NRLP3 signaling pathways. The water extract of AA and OC with ISL could be a potential herbal drug treatment for cardiac hypertrophy, inflammatory disease, and apoptosis, which can lead to sudden heart failure.
Collapse
Affiliation(s)
- Dennis Jine Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Md Nazmul Islam
- Cardiovascular and Mitochondria Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | | | - Chin-Hu Lai
- Division of Cardiovascular Surgery, Department of Surgery, Taichung Armed Force General Hospital, Taichung City, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Michael Yu-Chih Chen
- Department of Cardiology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan
| |
Collapse
|
27
|
Zhang XD, Liu ZY, Wang MS, Guo YX, Wang XK, Luo K, Huang S, Li RF. Mechanisms and regulations of ferroptosis. Front Immunol 2023; 14:1269451. [PMID: 37868994 PMCID: PMC10587589 DOI: 10.3389/fimmu.2023.1269451] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Regulation of cell mortality for disease treatment has been the focus of research. Ferroptosis is an iron-dependent regulated cell death whose mechanism has been extensively studied since its discovery. A large number of studies have shown that regulation of ferroptosis brings new strategies for the treatment of various benign and malignant diseases. Iron excess and lipid peroxidation are its primary metabolic features. Therefore, genes involved in iron metabolism and lipid metabolism can regulate iron overload and lipid peroxidation through direct or indirect pathways, thereby regulating ferroptosis. In addition, glutathione (GSH) is the body's primary non-enzymatic antioxidants and plays a pivotal role in the struggle against lipid peroxidation. GSH functions as an auxiliary substance for glutathione peroxidase 4 (GPX4) to convert toxic lipid peroxides to their corresponding alcohols. Here, we reviewed the researches on the mechanism of ferroptosis in recent years, and comprehensively analyzed the mechanism and regulatory process of ferroptosis from iron metabolism and lipid metabolism, and then described in detail the metabolism of GPX4 and the main non-enzymatic antioxidant GSH in vivo.
Collapse
Affiliation(s)
- Xu-Dong Zhang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhong-Yuan Liu
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mao-Sen Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Xiang Guo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiang-Kun Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Luo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Huang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ren-Feng Li
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Tang R, Luo J, Zhu X, Miao P, Tang H, Jian Y, Ruan S, Ling F, Tang M. Recent progress in the effect of ferroptosis of HSCs on the development of liver fibrosis. Front Mol Biosci 2023; 10:1258870. [PMID: 37860583 PMCID: PMC10584331 DOI: 10.3389/fmolb.2023.1258870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/04/2023] [Indexed: 10/21/2023] Open
Abstract
Fibrosis is a common pathological process that must take place for multiple chronic liver diseases to develop into cirrhosis and liver cancer. Liver fibrosis (LF) is regulated by various cytokines and signaling pathways in its occurrence and development. Ferroptosis is an important mode of cell death caused by iron-dependent oxidative damage and is regulated by iron metabolism and lipid peroxidation signaling pathways. In recent years, numerous studies have shown that ferroptosis is closely related to LF. As the main material secreted by the extracellular matrix, hepatic stellate cells (HSCs) are a general concern in the development of LF. Therefore, targeting HSC ferroptosis against LF is crucial. This review describes the current status of treating LF by inducing HSC ferroptosis that would aid studies in better understanding the current knowledge on ferroptosis in HSCs and the future research direction in this field.
Collapse
Affiliation(s)
- Rui Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Luo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoxia Zhu
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Pengyu Miao
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hong Tang
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Jian
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Sibei Ruan
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Feng Ling
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxi Tang
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
29
|
Lu Y, Hu J, Chen L, Li S, Yuan M, Tian X, Cao P, Qiu Z. Ferroptosis as an emerging therapeutic target in liver diseases. Front Pharmacol 2023; 14:1196287. [PMID: 37256232 PMCID: PMC10225528 DOI: 10.3389/fphar.2023.1196287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Ferroptosis is an iron-dependently nonapoptotic cell death characterized by excessive accumulation of lipid peroxides and cellular iron metabolism disturbances. Impaired iron homeostasis and dysregulation of metabolic pathways are contributors to ferroptosis. As a major metabolic hub, the liver synthesizes and transports plasma proteins and endogenous fatty acids. Also, it acts as the primary location of iron storage for hepcidin generation and secretion. To date, although the intricate correlation between ferroptosis and liver disorders needs to be better defined, there is no doubt that ferroptosis participates in the pathogenesis of liver diseases. Accordingly, pharmacological induction and inhibition of ferroptosis show significant potential for the treatment of hepatic disorders involved in lipid peroxidation. In this review, we outline the prominent features, molecular mechanisms, and modulatory networks of ferroptosis and its physiopathologic functions in the progression of liver diseases. Further, this review summarizes the underlying mechanisms by which ferroptosis inducers and inhibitors ameliorate liver diseases. It is noteworthy that natural active ingredients show efficacy in preclinical liver disease models by regulating ferroptosis. Finally, we analyze crucial concepts and urgent issues concerning ferroptosis as a novel therapeutic target in the diagnosis and therapy of liver diseases.
Collapse
Affiliation(s)
- Yuzhen Lu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Liang Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shan Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
- Department of Biochemistry, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Ming Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xianxiang Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
30
|
Zheng Y, Xie L, Yang D, Luo K, Li X. Small-molecule natural plants for reversing liver fibrosis based on modulation of hepatic stellate cells activation: An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154721. [PMID: 36870824 DOI: 10.1016/j.phymed.2023.154721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Liver fibrosis (LF) is a trauma repair process carried out by the liver in response to various acute and chronic liver injuries. Its primary pathological characteristics are excessive proliferation and improper dismissal of the extracellular matrix, and if left untreated, it will progress into cirrhosis, liver cancer, and other diseases. Hepatic stellate cells (HSCs) activation is intimately associated to the onset of LF, and it is anticipated that addressing HSCs proliferation can reverse LF. Plant-based small-molecule medications have anti-LF properties, and their mechanisms of action involve suppression of extracellular matrix abnormally accumulating as well as anti-inflammation and anti-oxidative stress. New targeting HSC agents will therefore be needed to provide a potential curative response. PURPOSE The most recent HSC routes and small molecule natural plants that target HSC described domestically and internationally in recent years were examined in this review. METHODS The data was looked up using resources including ScienceDirect, CNKI, Web of Science, and PubMed. Keyword searches for information on hepatic stellate cells included "liver fibrosis", "natural plant", "hepatic stellate cells", "adverse reaction", "toxicity", etc. RESULTS: We discovered that plant monomers can target and control various pathways to prevent the activation and proliferation of HSC and promote the apoptosis of HSC in order to achieve the anti-LF effect in this work by compiling the plant monomers that influence many common pathways of HSC in recent years. It demonstrates the wide-ranging potential of plant monomers targeting different routes to combat LF, with a view to supplying new concepts and new strategies for natural plant therapy of LF as well as research and development of novel pharmaceuticals. The investigation of kaempferol, physalin B, and other plant monomers additionally motivated researchers to focus on the structure-activity link between the main chemicals and LF. CONCLUSION The creation of novel pharmaceuticals can benefit greatly from the use of natural components. They are often harmless for people, non-target creatures, and the environment because they are found in nature, and they can be employed as the starting chemicals for the creation of novel medications. Natural plants are valuable resources for creating new medications with fresh action targets because they feature original and distinctive action mechanisms.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
31
|
Zhou Z, Li J, Zhang X. Natural Flavonoids and Ferroptosis: Potential Therapeutic Opportunities for Human Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37027486 DOI: 10.1021/acs.jafc.2c08128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Flavonoids are a class of bioactive phytochemicals containing a core 2-phenylchromone skeleton and are widely found in fruits, vegetables, and herbs. Such natural compounds have gained significant attention due to their various health benefits. Ferroptosis is a recently discovered unique iron-dependent mode of cell death. Unlike traditional regulated cell death (RCD), ferroptosis is associated with excessive lipid peroxidation on cellular membranes. Accumulating evidence suggests that this form of RCD is involved in a variety of physiological and pathological processes. Notably, multiple flavonoids have been shown to be effective in preventing and treating diverse human diseases by regulating ferroptosis. In this review, we introduce the key molecular mechanisms of ferroptosis, including iron metabolism, lipid metabolism, and several major antioxidant systems. Additionally, we summarize the promising flavonoids targeting ferroptosis, which provides novel ideas for the management of diseases such as cancer, acute liver injury, neurodegenerative diseases, and ischemia/reperfusion (I/R) injury.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Jiye Li
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiaochuan Zhang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
32
|
Liu N, Liu M, Jiang M, Li Z, Chen W, Wang W, Fu X, Qi M, Ali MH, Zou N, Liu Q, Tang H, Chu S. Isoliquiritigenin alleviates the development of alcoholic liver fibrosis by inhibiting ANXA2. Biomed Pharmacother 2023; 159:114173. [PMID: 36680814 DOI: 10.1016/j.biopha.2022.114173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
The study aimed to investigate the effect of isoliquiritigenin (ISL) on model of alcoholic liver fibrosis (ALF). C57BL/6 mice were used to establish animal model of ALF, HSC-T6 cells were used to establish alcohol-activated cell model, and tandem mass tag (TMT) assays were used to analyze the proteome. The results showed that ISL obviously alleviated hepatic fibrosis in model mice. ISL visually improved the area of liver pathological stasis and deposition of fibrillar collagen (Sirius Red staining, Masson staining), inhibited the mRNA expression levels of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) in liver tissues. ISL down-regulated the mRNA expression levels of IL-6 and transforming growth factor-β1(TGF-β1) in activated hepatic stellate cells (HSCs). And ISL significantly reduced annexin A2 (ANXA2) in vitro detected by TMT proteomics technology. Interestingly, it was found for the first time that ISL could inhibit ANXA2 expression both in vivo and in vitro, block the sphingosine kinases (SPHKs)/sphingosine-1-phosphate (S1P)/interleukin 17 (IL-17) signaling pathway and regulate the expression of α-smooth muscle actin (α-SMA) by inhibiting the phosphorylation of signal transducer and activator of transcription 3 (STAT3) at the downstream signal to finally reverse HSCs activation and hepatic fibrosis. Thus, we demonstrated that ISL is a drug monomer with notable anti-hepatic fibrosis activity.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Min Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Mengwei Jiang
- Alcohol Research Center, University of Louisville, Louisville, KY, USA
| | - Zhenwei Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Weijun Chen
- School of Traditional Chinese Medicine, Xinjiang Second Medical College, Shengli Road 12, Karamay, China
| | - Wenxuan Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Xianglei Fu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Man Qi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Md Hasan Ali
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Nan Zou
- First Affiliated Hospital, School of Medicine, Shihezi University, North 2nd Road 107, Shihezi, China
| | - Qingguang Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Hui Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China.
| | - Shenghui Chu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China.
| |
Collapse
|
33
|
Li L, Zhu Z. Pharmacological modulation of ferroptosis as a therapeutic target for liver fibrosis. Front Pharmacol 2023; 13:1071844. [PMID: 36703745 PMCID: PMC9871257 DOI: 10.3389/fphar.2022.1071844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Liver fibrosis, which is characterized by the excessive deposition of extracellular matrix (ECM) materials (primarily fibrillar collagen-I), is an abnormal repair reaction and pathological outcome of chronic liver diseases caused by alcohol abuse, non-alcoholic fatty liver disease, and chronic hepatitis B and C virus infections. Liver fibrosis often progresses to liver cirrhosis and hepatocellular carcinoma. Ferroptosis, characterized by lipid peroxidation, is a form of iron-dependent non-apoptotic cell death, and recent studies have reported that ferroptosis contribute to the development of liver fibrosis. Moreover, several agents have demonstrated therapeutic effects in experimental liver fibrosis models by inducing hepatic stellate cell (HSCs) ferroptosis. This review delineates the specific mechanism by which ferroptosis contributes to the development of liver fibrosis. Specifically, we focused on the different types of therapeutic agents that can induce HSCs ferroptosis and summarize their pharmacological effectiveness for liver fibrosis treatment. We suggest that HSCs ferroptosis may be a potential useful target of novel therapies for preventing and treating liver fibrosis.
Collapse
Affiliation(s)
- Le Li
- Liver Transplantation Center, Clinical Research Center for Pediatric Liver Transplantation, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China,Department of hepatobiliary surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Zhijun Zhu
- Liver Transplantation Center, Clinical Research Center for Pediatric Liver Transplantation, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China,*Correspondence: Zhijun Zhu,
| |
Collapse
|
34
|
Role of Ferroptosis in Regulating the Epithelial-Mesenchymal Transition in Pulmonary Fibrosis. Biomedicines 2023; 11:biomedicines11010163. [PMID: 36672671 PMCID: PMC9856078 DOI: 10.3390/biomedicines11010163] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic interstitial lung disease whose pathogenesis involves a complex interaction of cell types and signaling pathways. Lung epithelial cells responding to repeated injury experience persistent inflammation and sustained epithelial-mesenchymal transition (EMT). The persistence of EMT-induced signals generates extracellular matrix accumulation, thereby causing fibrosis. Ferroptosis is a newly characterized iron-dependent non-apoptotic regulated cell death. Increased iron accumulation can increase iron-induced oxidant damage in alveolar epithelial cells. Studies have demonstrated that iron steady states and oxidation steady states play an important role in the iron death regulation of EMT. This review summarizes the role of ferroptosis in regulating EMT in pulmonary fibrosis, aiming to provide a new idea for the prevention and treatment of this disease.
Collapse
|
35
|
Zhang L, Zhang H, Gu J, Xu W, Yuan N, Sun J, Li H. Glabridin inhibits liver fibrosis and hepatic stellate cells activation through suppression of inflammation and oxidative stress by activating PPARγ in carbon tetrachloride-treated mice. Int Immunopharmacol 2022; 113:109433. [DOI: 10.1016/j.intimp.2022.109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
|
36
|
Xu C, Ou E, Li Z, Chen Z, Jia Q, Xu X, Luo L, Xu G, Liu J, Yuan Z, Zhao Y. Synthesis and in vivo evaluation of new steviol derivatives that protect against cardiomyopathy by inhibiting ferroptosis. Bioorg Chem 2022; 129:106142. [PMID: 36150232 DOI: 10.1016/j.bioorg.2022.106142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/02/2022]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death globally. Inhibiting ferroptosis and thus preventing cardiac cell death is a promising and effective strategy for cardiomyopathy prevention and therapy. Steviol, an ent-kaurene diterpenoid, possesses broad-spectrum bioactivity. In the present study, with the aim to discover new agents for CVDs treatment, 30 derivatives of steviol, including 22 new ones, were synthesized, and evaluated their protective activity in vivo using the doxorubicin (DOX) induced zebrafish cardiomyopathy model. Our results firstly demonstrated that steviol has promising cardioprotective activity and further modification of steviol can greatly improve the activity. Among the new derivatives, 16d and 16e show the most potent activity. Both 16d (1 μM) and 16e (0.1 μM) effectively maintain the normal heart shape and prevent the cardiac dysfunction impaired by DOX in zebrafish. Their therapeutic efficacy is much superior to the parent natural product, steviol, and positive drug, levosimendan. Further study demonstrated that 16d and 16e inhibit DOX-induced ferroptosis and thus protect cardiomyopathy, by suppressing the glutathione depletion, iron accumulation, and lipid peroxidation, decreasing reactive oxygen species overaccumulation, and restoring the mitochondrial membrane potential. Consequently, due to their unique structure and significant cardioprotective activity with ferroptosis inhibition, new steviol derivatives 16d and 16e merit further research for the development of new cardioprotective drug candidates.
Collapse
Affiliation(s)
- Chao Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - E Ou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiyin Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenyu Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Qi Jia
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaojia Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Liping Luo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Geng Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiansong Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yu Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
37
|
Liu J, Li X, Cheng Y, Liu K, Zou H, You Z. Identification of potential ferroptosis-related biomarkers and a pharmacological compound in diabetic retinopathy based on machine learning and molecular docking. Front Endocrinol (Lausanne) 2022; 13:988506. [PMID: 36506045 PMCID: PMC9729554 DOI: 10.3389/fendo.2022.988506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR), a neurovascular disease, is a leading cause of visual loss worldwide and severely affects quality of life. Several studies have shown that ferroptosis plays an important role in the pathogenesis of DR; however, its molecule mechanism remains incompletely elucidated. Hence, this study aimed to investigate the pathogenesis of ferroptosis and explore potential ferroptosis-related gene biomarkers and a pharmacological compound for treating DR. METHODS Ferroptosis-related differentially expressed genes (DEGs) were identified in the GSE102485 dataset. Functional enrichment analyses were then performed and a protein-protein interaction (PPI) network was constructed to screen candidates of ferroptosis-related hub genes (FRHGs). FRHGs were further screened based on least absolute shrinkage and selection operator (LASSO) regression and random forest algorithms, and were then validated with the GSE60436 dataset and previous studies. A receiver operating characteristic (ROC) curve monofactor analysis was conducted to evaluate the diagnostic performance of the FRHGs, and immune infiltration analysis was performed. Moreover, the pharmacological compound targeting the FRHGs were verified by molecular docking. Finally, the FRHGs were validated using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS The 40 ferroptosis-related DEGs were extracted, and functional enrichment analyses mainly implicated apoptotic signaling, response to oxidative stress, ferroptosis, and lipid and atherosclerosis pathways. By integrating the PPI, LASSO regression, and random forest analyses to screen the FRHGs, and through validation, we identified five FRHGs that performed well in the diagnosis (CAV1, CD44, NOX4, TLR4, and TP53). Immune infiltration analysis revealed that immune microenvironment changes in DR patients may be related to these five FRHGs. Molecular docking also showed that glutathione strongly bound the CAV1 and TLR4 proteins. Finally, the upregulated expression of FRHGs (CD44, NOX4, TLR4, and TP53) was validated by qRT-PCR analysis in human retinal capillary endothelial cells cultured under high-glucose environment. CONCLUSIONS CAV1, CD44, NOX4, TLR4, and TP53 are potential biomarkers for DR and may be involved in its occurrence and progression by regulating ferroptosis and the immune microenvironment. Further, glutathione exhibits potential therapeutic efficacy on DR by targeting ferroptosis. Our study provides new insights into the ferroptosis-related pathogenesis of DR, as well as its diagnosis and treatment.
Collapse
|