1
|
Glendinning JI, Williams N. Chronic sugar exposure increases daily intake of sugars but decreases avidity for sweeteners in mice. Appetite 2023; 191:107077. [PMID: 37813162 DOI: 10.1016/j.appet.2023.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Little is known about how chronic sugar consumption impacts avidity for and daily intake of sugars. This issue is topical because modern humans exhibit high daily intakes of sugar. Here, we exposed sugar-naïve C57BL/6 mice (across two 28-day exposure periods, EP1 and EP2) to a control (chow and water) or experimental (chow, water and a 11 or 34% sugar solution) diet. The sugar solutions contained sucrose, glucose syrups, or high-fructose syrups. We used brief-access tests to measure appetitive responses to sucralose and sucrose solutions at three time points: baseline (before EP1), after EP1, and after EP2. We used lick rates to infer palatability, and number of trials initiated/test to infer motivation. Exposure to the control diet had no impact on lick rates or number of trials initiated for sucralose and sucrose. In contrast, exposure to the experimental diets reduced licking for the sweeteners to varying degrees. Lick rates were reduced by exposure to sugar solutions containing the 11% glucose syrups, 34% sucrose, 34% glucose syrups and 34% high-fructose syrups. The number of trials initiated was reduced by exposure to all of the sugar solutions. Despite the exposure-induced reductions in avidity for the sweetener solutions, daily intakes of virtually all of the sugar solutions increased across the exposure periods. We conclude that (i) chronic consumption of sugar solutions reduced avidity for the sweetened solutions, (ii) the extent of this effect depended on the concentration and type of sugar, and (iii) avidity for sweet-tasting solutions could not explain the persistently high daily intake of sugar solutions in mice.
Collapse
Affiliation(s)
- John I Glendinning
- Departments of Biology and Neuroscience & Behavior, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA.
| | - Niki Williams
- Departments of Biology and Neuroscience & Behavior, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| |
Collapse
|
2
|
Wulfridge P, Davidovich A, Salvador AC, Manno GC, Tryggvadottir R, Idrizi A, Huda MN, Bennett BJ, Adams LG, Hansen KD, Threadgill DW, Feinberg AP. Precision pharmacological reversal of strain-specific diet-induced metabolic syndrome in mice informed by epigenetic and transcriptional regulation. PLoS Genet 2023; 19:e1010997. [PMID: 37871105 PMCID: PMC10621921 DOI: 10.1371/journal.pgen.1010997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/02/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023] Open
Abstract
Diet-related metabolic syndrome is the largest contributor to adverse health in the United States. However, the study of gene-environment interactions and their epigenomic and transcriptomic integration is complicated by the lack of environmental and genetic control in humans that is possible in mouse models. Here we exposed three mouse strains, C57BL/6J (BL6), A/J, and NOD/ShiLtJ (NOD), to a high-fat, high-carbohydrate diet, leading to varying degrees of metabolic syndrome. We then performed transcriptomic and genome-wide DNA methylation analyses for each strain and found overlapping but also highly divergent changes in gene expression and methylation upstream of the discordant metabolic phenotypes. Strain-specific pathway analysis of dietary effects revealed a dysregulation of cholesterol biosynthesis common to all three strains but distinct regulatory networks driving this dysregulation. This suggests a strategy for strain-specific targeted pharmacologic intervention of these upstream regulators informed by epigenetic and transcriptional regulation. As a pilot study, we administered the drug GW4064 to target one of these genotype-dependent networks, the farnesoid X receptor pathway, and found that GW4064 exerts strain-specific protection against dietary effects in BL6, as predicted by our transcriptomic analysis. Furthermore, GW4064 treatment induced inflammatory-related gene expression changes in NOD, indicating a strain-specific effect in its associated toxicities as well as its therapeutic efficacy. This pilot study demonstrates the potential efficacy of precision therapeutics for genotype-informed dietary metabolic intervention and a mouse platform for guiding this approach.
Collapse
Affiliation(s)
- Phillip Wulfridge
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Adam Davidovich
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anna C. Salvador
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, United States of America
- Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - Gabrielle C. Manno
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Rakel Tryggvadottir
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - M. Nazmul Huda
- Department of Nutrition, University of California, Davis, California, United States of America
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, United States of America
| | - Brian J. Bennett
- Department of Nutrition, University of California, Davis, California, United States of America
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Kasper D. Hansen
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - David W. Threadgill
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, United States of America
- Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Andrew P. Feinberg
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Costa KA, Oliveira MCD, Cordeiro LMDS, Val CH, Machado FS, Fernandes SOA, Cardoso VN, Teixeira MM, Silveira ALM, Ferreira AVM. Effect of high-refined carbohydrate diet on intestinal integrity. Nutrition 2023; 113:112084. [PMID: 37354649 DOI: 10.1016/j.nut.2023.112084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVES One of the leading causes of obesity is the consumption of excess nutrients. Obesity is characterized by adipose tissue expansion, chronic low-grade inflammation, and metabolic alterations. Although consumption of a high-fat diet has been demonstrated to be a diet-induced obesity model associated with gut disorders, the same effect is not well explored in a mild-obesity model induced by high-refined carbohydrate (HC) diet intake. The intestinal tract barrier comprises mucus, epithelial cells, tight junctions, immune cells, and gut microbiota. This system is susceptible to dysfunction by excess dietary components that could increase intestinal permeability and bacterial translocation. The aim of this study was to evaluate whether an HC diet and the alterations resulting from its intake are linked to small intestine changes. METHODS Male BALB/c mice were fed a chow or an HC diet for 8 wk. RESULTS Although differences in body weight gain were not observed between the groups, mice fed the HC diet showed increased adiposity associated with metabolic alterations. The interferon-γ expression and myeloperoxidase levels were increased in the small intestine in mice fed an HC diet. However, the intestinal villi length, the expression of tight junctions (zonula occludens-1 and claudin-4) and tumor necrosis factor-α cytokine, and the percentage of intraepithelial lymphocytes did not differ in the jejunum or ileum between the groups. We did not observe differences in intestinal permeability and bacterial translocation. CONCLUSION Metabolic alterations caused by consumption of an HC diet lead to a mild obesity state that does not necessarily involve significant changes in intestinal integrity.
Collapse
Affiliation(s)
- Kátia Anunciação Costa
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marina Chaves de Oliveira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Cynthia Honorato Val
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Valbert Nascimento Cardoso
- Department of Clinical Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Letícia Malheiros Silveira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adaliene Versiani Matos Ferreira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
4
|
Sclafani A, Castillo A, Carata I, Pines R, Berglas E, Joseph S, Sarker J, Nashed M, Roland M, Arzayus S, Williams N, Glendinning JI, Bodnar RJ. Conditioned preference and avoidance induced in mice by the rare sugars isomaltulose and allulose. Physiol Behav 2023; 267:114221. [PMID: 37146897 DOI: 10.1016/j.physbeh.2023.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Isomaltulose, a slowly digested isocaloric analog of sucrose, and allulose, a noncaloric fructose analog, are promoted as "healthful" sugar alternatives in human food products. Here we investigated the appetite and preference conditioning actions of these sugar analogs in inbred mouse strains. In brief-access lick tests (Experiment 1), C57BL/6 (B6) mice showed similar concentration dependent increases in licking for allulose and fructose, but less pronounced concentration-dependent increases in licking for isomaltulose than sucrose. In Experiment 2, B6 male were given one-bottle training with a CS+ flavor (e.g., grape) mixed with 8% isomaltulose or allulose and a CS- flavor (e.g., cherry) mixed in water followed by two-bottle CS flavor tests. The isomaltulose mice showed only a weak CS+ flavor preference but a strong preference for the sugar over water. The allulose mice strongly preferred the CS- flavor and water over the sugar. The allulose avoidance may be due to gut discomfort as reported in humans consuming high amounts of the sugar. Experiment 3 found that the preference for 8% sucrose over 8% isomaltulose could be reversed or blocked by adding different concentrations of a noncaloric sweetener mixture (sucralose + saccharin, SS) to the isomaltulose. Experiment 4 revealed that the preference of B6 or FVB/N mice for isomaltulose+0.01%SS or sucrose over 0.1%SS increased after separate experience with the sugars and SS. This indicates that isomaltulose, like sucrose, has postoral appetition effects that enhances the appetite for the sugar. In Experiments 5 and 6, the appetition actions of the two sugars were directly compared by giving mice isomaltulose+0.05%SS vs. sucrose choice tests before and after separate experience with the two sugars. In general, the initial preference the mice displayed for isomaltulose+0.05%SS was reduced or reversed after separate experience with the two sugars although some strain and sex differences were obtained. This indicates that isomaltulose has weaker postoral appetition effects than sucrose.
Collapse
|
5
|
Wulfridge P, Davidovich A, Salvador AC, Manno GC, Tryggvadottir R, Idrizi A, Huda MN, Bennett BJ, Adams LG, Hansen KD, Threadgill DW, Feinberg AP. Precision pharmacological reversal of genotype-specific diet-induced metabolic syndrome in mice informed by transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538156. [PMID: 37163127 PMCID: PMC10168252 DOI: 10.1101/2023.04.25.538156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Diet-related metabolic syndrome is the largest contributor to adverse health in the United States. However, the study of gene-environment interactions and their epigenomic and transcriptomic integration is complicated by the lack of environmental and genetic control in humans that is possible in mouse models. Here we exposed three mouse strains, C57BL/6J (BL6), A/J, and NOD/ShiLtJ (NOD), to a high-fat high-carbohydrate diet, leading to varying degrees of metabolic syndrome. We then performed transcriptomic and genomic DNA methylation analyses and found overlapping but also highly divergent changes in gene expression and methylation upstream of the discordant metabolic phenotypes. Strain-specific pathway analysis of dietary effects reveals a dysregulation of cholesterol biosynthesis common to all three strains but distinct regulatory networks driving this dysregulation. This suggests a strategy for strain-specific targeted pharmacologic intervention of these upstream regulators informed by transcriptional regulation. As a pilot study, we administered the drug GW4064 to target one of these genotype-dependent networks, the Farnesoid X receptor pathway, and found that GW4064 exerts genotype-specific protection against dietary effects in BL6, as predicted by our transcriptomic analysis, as well as increased inflammatory-related gene expression changes in NOD. This pilot study demonstrates the potential efficacy of precision therapeutics for genotype-informed dietary metabolic intervention, and a mouse platform for guiding this approach.
Collapse
|
6
|
Inci MK, Park SH, Helsley RN, Attia SL, Softic S. Fructose impairs fat oxidation: Implications for the mechanism of western diet-induced NAFLD. J Nutr Biochem 2023; 114:109224. [PMID: 36403701 PMCID: PMC11042502 DOI: 10.1016/j.jnutbio.2022.109224] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Increased fructose intake from sugar-sweetened beverages and highly processed sweets is a well-recognized risk factor for the development of obesity and its complications. Fructose strongly supports lipogenesis on a normal chow diet by providing both, a substrate for lipid synthesis and activation of lipogenic transcription factors. However, the negative health consequences of dietary sugar are best observed with the concomitant intake of a HFD. Indeed, the most commonly used obesogenic research diets, such as "Western diet", contain both fructose and a high amount of fat. In spite of its common use, how the combined intake of fructose and fat synergistically supports development of metabolic complications is not fully elucidated. Here we present the preponderance of evidence that fructose consumption decreases oxidation of dietary fat in human and animal studies. We provide a detailed review of the mitochondrial β-oxidation pathway. Fructose affects hepatic activation of fatty acyl-CoAs, decreases acylcarnitine production and impairs the carnitine shuttle. Mechanistically, fructose suppresses transcriptional activity of PPARα and its target CPT1α, the rate limiting enzyme of acylcarnitine production. These effects of fructose may be, in part, mediated by protein acetylation. Acetylation of PGC1α, a co-activator of PPARα and acetylation of CPT1α, in part, account for fructose-impaired acylcarnitine production. Interestingly, metabolic effects of fructose in the liver can be largely overcome by carnitine supplementation. In summary, fructose decreases oxidation of dietary fat in the liver, in part, by impairing acylcarnitine production, offering one explanation for the synergistic effects of these nutrients on the development of metabolic complications, such as NAFLD.
Collapse
Affiliation(s)
| | - Se-Hyung Park
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Robert N Helsley
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Suzanna L Attia
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Samir Softic
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Petersen N, Adank DN, Raghavan R, Winder DG, Doyle MA. LIQ HD (Lick Instance Quantifier Home Cage Device): An Open-Source Tool for Recording Undisturbed Two-Bottle Drinking Behavior in a Home Cage Environment. eNeuro 2023; 10:ENEURO.0506-22.2023. [PMID: 36997312 PMCID: PMC10112549 DOI: 10.1523/eneuro.0506-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023] Open
Abstract
Investigation of rodent drinking behavior has provided insight into drivers of thirst, circadian rhythms, anhedonia, and drug and ethanol consumption. Traditional methods of recording fluid intake involve weighing bottles, which is cumbersome and lacks temporal resolution. Several open-source devices have been designed to improve drink monitoring, particularly for two-bottle choice tasks. However, beam-break sensors lack the ability to detect individual licks for bout microstructure analysis. Thus, we designed LIQ HD (Lick Instance Quantifier Home cage Device) with the goal of using capacitive sensors to increase accuracy and analyze lick microstructure, building a device compatible with ventilated home cages, increasing scale with prolonged undisturbed recordings, and creating a design that is easy to build and use with an intuitive touchscreen graphical user interface. The system tracks two-bottle choice licking behavior in up to 18 rodent cages, or 36 single bottles, on a minute-to-minute timescale controlled by a single Arduino microcontroller. The data are logged to a single SD card, allowing for efficient downstream analysis. LIQ HD accuracy was validated with sucrose, quinine, and ethanol two-bottle choice tasks. The system measures preference over time and changes in bout microstructure, with undisturbed recordings tested up to 7 d. All designs and software are open-source to allow other researchers to build on the system and adapt LIQ HD to their animal home cages.
Collapse
Affiliation(s)
- Nicholas Petersen
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Danielle N Adank
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Ritika Raghavan
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Danny G Winder
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Marie A Doyle
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
8
|
Letsinger AC, Yang F, Menon R, Little-Letsinger SE, Granados JZ, Breidenbach B, Iyer AR, Padovani TC, Nagel EC, Jayaraman A, Lightfoot JT. Reduced Wheel Running via a High-Fat Diet Is Reversed by a Chow Diet with No Added Benefit from Fecal Microbial Transplants. Med Sci Sports Exerc 2022; 54:1437-1447. [PMID: 35969165 DOI: 10.1249/mss.0000000000002941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Chronic overfeeding via a high-fat/high-sugar (HFHS) diet decreases wheel running and substantially alters the gut metabolome of C57BL/6J mice. In this study, we tested the hypothesis that fecal microbial transplants can modulate the effect of diet on wheel running. METHODS Singly housed, 6-wk-old male C57BL/6J mice were fed either a grain-based diet (CHOW) or HFHS diet and provided a running wheel for 13 wk. Low-active, HFHS-exposed mice were then either switched to a CHOW diet and given an oral fecal microbial transplant from mice fed the CHOW diet, switched to a CHOW diet and given a sham transplant, or remained on the HFHS diet and given a fecal microbial transplant from mice fed the CHOW diet. Total wheel running, nutrient intake, body composition, fecal microbial composition, fecal metabolite composition, and liver steatosis were measured at various times throughout the study. RESULTS We found that an HFHS diet decreases wheel running activity, increases body fat, and decreases microbial alpha diversity compared with a CHOW diet. Improvements in wheel running, body composition, and microbial alpha diversity were accomplished within 2 wk for mice switched from an HFHS diet to a CHOW diet with no clear evidence of an added benefit from fecal transplants. A fecal transplant from mice fed a CHOW diet without altering diet did not improve wheel running or body composition. Wheel running, body composition, fecal microbial composition, fecal metabolite composition, and liver steatosis percentage were primarily determined by diet. CONCLUSIONS Our results suggest that diet is a primary mediator of wheel running with no clear effect from fecal microbial transplants.
Collapse
Affiliation(s)
- Ayland C Letsinger
- The Department of Health Kinesiology, Texas A&M University, College Station, TX
| | - Fang Yang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
| | - Rani Menon
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
| | | | - Jorge Z Granados
- The Department of Health Kinesiology, Texas A&M University, College Station, TX
| | - Brianne Breidenbach
- The Department of Health Kinesiology, Texas A&M University, College Station, TX
| | - Anjushree R Iyer
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
| | | | - Edward C Nagel
- The Department of Health Kinesiology, Texas A&M University, College Station, TX
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
| | - J Timothy Lightfoot
- The Department of Health Kinesiology, Texas A&M University, College Station, TX
| |
Collapse
|
9
|
Strober JW, Fernandez S, Ye H, Brady MJ. Differential effects of acute versus chronic dietary fructose consumption on metabolic responses in FVB/N mice. Am J Physiol Regul Integr Comp Physiol 2022; 323:R255-R266. [PMID: 35580305 PMCID: PMC9306790 DOI: 10.1152/ajpregu.00174.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased human consumption of hgh fructose corn syrup has been linked to the marked increase in obesity and metabolic syndrome. Previous studies on the rapid effects of a high fructose diet in mice have largely been confined to the C57Bl6 strains. In the current studied, the FVB/N strain of mice that are resistant to diet induced weight gain were utilized and fed a control or high fructose diet for 48 hours or 12 weeks. Many of the previously reported changes that occurred upon high fructose feeding for 48 hours in C57Bl6 mice were recapitulated in the FVB/N mice. However, the acute increases in fructolytic and lipogenic gene expression were completely lost during the 12 week dietary intervention protocol. Furthermore, there was no significant weight gain in FVB/N mice fed a high fructose diet for 12 weeks, despite an overall increase in caloric consumption and an increase in average epididymal adipocyte cell size. These findings may be in part explained by a commensurate increase in energy expenditure and in carbohydrate utilization in high fructose fed animals. Overall, these findings demonstrate that FVB/N mice are a suitable model for the study of the effects of dietary intervention on metabolic and molecular parameters. Furthermore, the rapid changes in hepatic gene expression that have been widely reported were not sustained over a longer time course. Compensatory changes in energy expenditure and utilization may be in part responsible for the differences obtained between acute and chronic high fructose feeding protocols.
Collapse
Affiliation(s)
- Jordan W Strober
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago IL, United States
| | - Sully Fernandez
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago IL, United States
| | - Honggang Ye
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago IL, United States
| | - Matthew J Brady
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago IL, United States.,Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago IL, United States
| |
Collapse
|
10
|
Huang Y, Osorio Mendoza J, Li M, Jin Z, Li B, Wu Y, Togo J, Speakman JR. Impact of graded maternal dietary fat content on offspring susceptibility to high-fat diet in mice. Obesity (Silver Spring) 2021; 29:2055-2067. [PMID: 34813173 DOI: 10.1002/oby.23270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/19/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Maternal high-fat diet (HFD) increases offspring obesity, yet the impacts of different levels of maternal dietary fat have seldom been addressed. In mice, the impact of graded maternal dietary fat on offspring adiposity and offspring's later susceptibility to HFD were assessed. METHODS Lactating mice were fed diets with graded fat content from 8.3% to 66.6%. One male and one female pup from each litter were weaned onto a low-fat diet for 15 weeks. HFD (41.7%) was then introduced to half of the offspring for 12 weeks. RESULTS Offspring body weight and adiposity were positively related to maternal dietary fat content and were higher when mothers were exposed to HFD. The maternal diet effect was nonlinear and sex dependent. A maternal dietary fat of 41.7% and above exaggerated the offspring body weight gain in males but was not significant in females. Maternal 8.3% fat and 25% fat diets led to the highest daily energy expenditure and respiratory exchange ratio in offspring. Offspring fed a low-fat diet had higher daily energy expenditure and respiratory exchange ratio than those fed an HFD. CONCLUSIONS Increasing maternal dietary fat during lactation, and HFD in later life, had significant and interacting impacts on offspring obesity. Maternal diet had a bigger impact on male offspring. The effects of maternal dietary fat content were nonlinear.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | - Min Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zengguang Jin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- School of Basic Medical Science, Dali University, Dali, Yunnan, China
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingga Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jacques Togo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Center for Excellence in Animal Evolution and Genetics, Kunming, Yunnan, China
| |
Collapse
|
11
|
Iizuka K. Protein Amount, Quality, and Physical Activity. Nutrients 2021; 13:nu13113720. [PMID: 34835977 PMCID: PMC8621249 DOI: 10.3390/nu13113720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Katsumi Iizuka
- The Department of Clinical Nutrition, Faculty of Medicine, Fujita Health University, Toyoake 470-1192, Japan;
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institution, Kobe 650-0047, Japan
| |
Collapse
|
12
|
Ahn IS, Yoon J, Diamante G, Cohn P, Jang C, Yang X. Disparate Metabolomic Responses to Fructose Consumption between Different Mouse Strains and the Role of Gut Microbiota. Metabolites 2021; 11:metabo11060342. [PMID: 34073358 PMCID: PMC8228112 DOI: 10.3390/metabo11060342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023] Open
Abstract
High fructose consumption has been linked to metabolic syndrome, yet the fructose-induced phenotypes, gene expression, and gut microbiota alterations are distinct between mouse strains. In this study, we aim to investigate how fructose consumption shapes the metabolomic profiles of mice with different genetic background and microbiome. We used fructose-sensitive DBA/2J (DBA) and fructose-resistant C57BL/6J (B6) mice given 8% fructose or regular water for 12 weeks. Plasma and fecal metabolites were profiled using a liquid chromatography-tandem mass spectrometry based global metabolomic approach. We found that the baseline metabolomic profiles were different between DBA and B6 mice, particularly plasma metabolites involved in lipid metabolism and fecal metabolites related to dipeptide/amino acid metabolism. In response to fructose, DBA mice showed a distinct decrease of plasma branched chain fatty acids with concordantly increased branched chain amino acids, which were correlated with adiposity; B6 mice had significantly increased plasma cholesterol and total bile acids, accompanied by decreased fecal levels of farnesoid X receptor antagonist tauro-β-muricholate, which were correlated with fructose-responsive bacteria Dehalobacterium, Magibacteriaceae, and/or Akkermansia. Our results demonstrate that baseline metabolomic profiles differ and respond differentially to fructose between mice with different genetic background and gut microbiota, which may play a role in individualized risks to fructose-induced metabolic syndrome.
Collapse
Affiliation(s)
- In-Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; (I.-S.A.); (J.Y.); (G.D.); (P.C.)
| | - Justin Yoon
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; (I.-S.A.); (J.Y.); (G.D.); (P.C.)
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; (I.-S.A.); (J.Y.); (G.D.); (P.C.)
| | - Peter Cohn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; (I.-S.A.); (J.Y.); (G.D.); (P.C.)
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA;
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; (I.-S.A.); (J.Y.); (G.D.); (P.C.)
- Brain Research Institute, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-310-206-1812
| |
Collapse
|
13
|
Lin C, Tordoff MG, Li X, Bosak NP, Inoue M, Ishiwatari Y, Chen L, Beauchamp GK, Bachmanov AA, Reed DR. Genetic controls of Tas1r3-independent sucrose consumption in mice. Mamm Genome 2021; 32:70-93. [PMID: 33710367 DOI: 10.1007/s00335-021-09860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/11/2021] [Indexed: 10/21/2022]
Abstract
We have previously used crosses between C57BL/6ByJ (B6) and 129P3/J (129) inbred strains to map a quantitative trait locus (QTL) on mouse chromosome (Chr) 4 that affects behavioral and neural responses to sucrose. We have named it the sucrose consumption QTL 2 (Scon2), and shown that it corresponds to the Tas1r3 gene, which encodes a sweet taste receptor subunit TAS1R3. To discover other sucrose consumption QTLs, we have intercrossed B6 inbred and 129.B6-Tas1r3 congenic mice to produce F2 hybrids, in which Scon2 (Tas1r3) does not segregate, and hence does not contribute to phenotypical variation. Chromosome mapping using this F2 intercross identified two main-effect QTLs, Scon3 (Chr9) and Scon10 (Chr14), and an epistatically interacting QTL pair Scon3 (Chr9)-Scon4 (Chr1). Using serial backcrosses, congenic and consomic strains, we conducted high-resolution mapping of Scon3 and Scon4 and analyzed their epistatic interactions. We used mice with different Scon3 or Scon4 genotypes to understand whether these two QTLs influence sucrose intake via gustatory or postoral mechanisms. These studies found no evidence for involvement of the taste mechanisms, but suggested involvement of energy metabolism. Mice with the B6 Scon4 genotype drank less sucrose in two-bottle tests, and also had a higher respiratory exchange ratio and lower energy expenditure under basal conditions (when they had only chow and water available). Our results provide evidence that Scon3 and Scon4 influence mouse-to-mouse variation in sucrose intake and that both likely act through a common postoral mechanism.
Collapse
Affiliation(s)
- Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | - Xia Li
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Sonora Quest Laboratories, Phoenix, AZ, USA
| | | | - Masashi Inoue
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Laboratory of Cellular Neurobiology, School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Yutaka Ishiwatari
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Ajinomoto Co. Inc, Tokyo, Japan
| | - Longhui Chen
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Tannbach Capital, Hong Kong, China
| | | | - Alexander A Bachmanov
- Monell Chemical Senses Center, Philadelphia, PA, USA.,GlaxoSmithKline, Collegeville, PA, USA
| | | |
Collapse
|
14
|
Kendig MD, Martire SI, Boakes RA, Rooney KB. Comparable metabolic effects of isocaloric sucrose and glucose solutions in rats. Physiol Behav 2021; 229:113239. [PMID: 33152355 DOI: 10.1016/j.physbeh.2020.113239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 10/23/2022]
Abstract
Much of the global increase in sugar intake is attributable to rising consumption of sugar-sweetened beverages (SSBs). Because people compensate poorly for liquid calories, SSB consumption increases total energy intake, raising the risk of harmful metabolic effects in addition to possible effects of sugars per se. Glucose and fructose, the constituent sugars in sucrose, can exert distinct effects on metabolism and also differ in their satiating properties, suggesting that compensation for the calories in these sugars may also vary. In light of claims that the fructose within sucrose is particularly harmful, the present study compared the effects of giving rats access to either a sucrose or an isoenergetic glucose solution. Adult male rats were fed standard chow and water supplemented with 95 ml of 10% glucose (Glucose group; n = 10), 9% sucrose solution (Sucrose group; n = 10) or water only (Control group; n = 10) daily for 7 weeks. Sugar-fed groups had higher total energy intakes than the Control group, but the extent of this incomplete compensation did not vary between Sucrose and Glucose groups. In a short-term compensation test, sugar groups were less sensitive to the effects of a sweet pre-meal, with no differences between the Glucose and Sucrose groups. Relative to water, both sugars reduced insulin sensitivity after 4 weeks on the diets and elevated fat mass at 7 weeks. Results suggest that sucrose and glucose induce comparable metabolic impairments and alter the homeostatic regulation of food intake even under conditions where daily access is capped.
Collapse
Affiliation(s)
- Michael D Kendig
- School of Psychology, University of Sydney, NSW, 2006, Australia.
| | - Sarah I Martire
- School of Psychology, University of Sydney, NSW, 2006, Australia.
| | - Robert A Boakes
- School of Psychology, University of Sydney, NSW, 2006, Australia.
| | - Kieron B Rooney
- Faculty of Medicine and Healthy, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
15
|
Pan JH, Cha H, Tang J, Lee S, Lee SH, Le B, Redding MC, Kim S, Batish M, Kong BC, Lee JH, Kim JK. The role of microRNA-33 as a key regulator in hepatic lipogenesis signaling and a potential serological biomarker for NAFLD with excessive dietary fructose consumption in C57BL/6N mice. Food Funct 2021; 12:656-667. [PMID: 33404569 DOI: 10.1039/d0fo02286a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Limited studies reported mechanisms by which microRNAs (miRNA) are interlinked in the etiology of fructose-induced non-alcoholic fatty liver disease (NAFLD). Here, we aimed to investigate the significance of miRNAs in fructose-induced NAFLD pathogenesis through unbiased approaches. In experiment I, C57BL/6N mice were fed either water or 34% fructose for six weeks ad libitum. In experiment II, time course effects of fructose intervention were monitored using the same conditions; mice were killed at the baseline, fourth, and sixth weeks. Bioinformatic analyses for hepatic proteomics revealed that SREBP1 is the most significant upstream regulator influenced by fructose; miR-33-5p (miR-33) was identified as the key miRNA responsible for SREBP1 regulation upon fructose intake, which was validated by in vitro transfection assay. In experiment II, we confirmed that the longer mice consumed fructose, the more severe liver injury markers (e.g., serum AST) appeared. Moreover, hepatic Srebp1 mRNA expression was increased depending upon the duration of fructose consumption. Hepatic miR-33 was time-dependently decreased by fructose while serum miR-33 expression was increased; these observations indicated that miR-33 from the liver might be released upon cell damage. Finally we observed that fructose-induced ferroptosis might be a cause of liver toxicity, resulting from oxidative damage. Collectively, our findings suggest that fructose-induced oxidative damage induces ferroptosis, and miR-33 could be used as a serological biomarker of fructose-induced NAFLD.
Collapse
Affiliation(s)
- Jeong Hoon Pan
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Aravani D, Kassi E, Chatzigeorgiou A, Vakrou S. Cardiometabolic Syndrome: An Update on Available Mouse Models. Thromb Haemost 2020; 121:703-715. [PMID: 33280078 DOI: 10.1055/s-0040-1721388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiometabolic syndrome (CMS), a disease entity characterized by abdominal obesity, insulin resistance (IR), hypertension, and hyperlipidemia, is a global epidemic with approximately 25% prevalence in adults globally. CMS is associated with increased risk for cardiovascular disease (CVD) and development of diabetes. Due to its multifactorial etiology, the development of several animal models to simulate CMS has contributed significantly to the elucidation of the disease pathophysiology and the design of therapies. In this review we aimed to present the most common mouse models used in the research of CMS. We found that CMS can be induced either by genetic manipulation, leading to dyslipidemia, lipodystrophy, obesity and IR, or obesity and hypertension, or by administration of specific diets and drugs. In the last decade, the ob/ob and db/db mice were the most common obesity and IR models, whereas Ldlr-/- and Apoe-/- were widely used to induce hyperlipidemia. These mice have been used either as a single transgenic or combined with a different background with or without diet treatment. High-fat diet with modifications is the preferred protocol, generally leading to increased body weight, hyperlipidemia, and IR. A plethora of genetically engineered mouse models, diets, drugs, or synthetic compounds that are available have advanced the understanding of CMS. However, each researcher should carefully select the most appropriate model and validate its consistency. It is important to consider the differences between strains of the same animal species, different animals, and most importantly differences to human when translating results.
Collapse
Affiliation(s)
- Dimitra Aravani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Styliani Vakrou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Cardiology, "Laiko" General Hospital, Athens, Greece
| |
Collapse
|
17
|
A High Fat/High Sugar Diet Alters the Gastrointestinal Metabolome in a Sex Dependent Manner. Metabolites 2020; 10:metabo10100421. [PMID: 33092034 PMCID: PMC7589395 DOI: 10.3390/metabo10100421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/02/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
The gut metabolome offers insight for identifying the source of diet related pathology. As such, the purpose of this study was to characterize alterations of the gut metabolome in female and male C57BL/6J mice randomly assigned to a standard "chow" diet (CHOW) or a high fat/high sugar diet (HFHS; 45% fat and 20% fructose drinking solution) for nine weeks. Cecal metabolites were extracted and an untargeted analysis via LC-MS/MS was performed. Partial Least Sums Discriminate Analysis (PLS-DA) presented significant differences between the two diet groups in a sex-dependent manner. Mann-Whitney U-tests revealed 2443 and 1669 features to be significantly different between diet groups in the females and males, respectively. The majority of altered metabolites were depleted within the cecum of the HFHS fed mice. Metabolic pathways associated with galactose metabolism, leukotriene metabolism, and androgen and estrogen biosynthesis and metabolism were differentially altered with an HFHS diet between sexes. We concluded the immense metabolite depletion and elevation of adverse metabolites associated with the HFHS diet is suggestive of poor gut health. Further, the differential alterations between female and male mice suggests that sex plays an important role in determining the effect of diet on the metabolome and host health.
Collapse
|
18
|
Ahn IS, Lang JM, Olson CA, Diamante G, Zhang G, Ying Z, Byun HR, Cely I, Ding J, Cohn P, Kurtz I, Gomez-Pinilla F, Lusis AJ, Hsiao EY, Yang X. Host Genetic Background and Gut Microbiota Contribute to Differential Metabolic Responses to Fructose Consumption in Mice. J Nutr 2020; 150:2716-2728. [PMID: 32856048 PMCID: PMC7549307 DOI: 10.1093/jn/nxaa239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It is unclear how high fructose consumption induces disparate metabolic responses in genetically diverse mouse strains. OBJECTIVE We aimed to investigate whether the gut microbiota contributes to differential metabolic responses to fructose. METHODS Eight-week-old male C57BL/6J (B6), DBA/2J (DBA), and FVB/NJ (FVB) mice were given 8% fructose solution or regular water (control) for 12 wk. The gut microbiota composition in cecum and feces was analyzed using 16S ribosomal DNA sequencing, and permutational multivariate ANOVA (PERMANOVA) was used to compare community across mouse strains, treatments, and time points. Microbiota abundance was correlated with metabolic phenotypes and host gene expression in hypothalamus, liver, and adipose tissues using Biweight midcorrelation. To test the causal role of the gut microbiota in determining fructose response, we conducted fecal transplants from B6 to DBA mice and vice versa for 4 wk, as well as gavaged antibiotic-treated DBA mice with Akkermansia for 9 wk, accompanied with or without fructose treatment. RESULTS Compared with B6 and FVB, DBA mice had significantly higher Firmicutes to Bacteroidetes ratio and lower baseline abundance of Akkermansia and S24-7 (P < 0.05), accompanied by metabolic dysregulation after fructose consumption. Fructose altered specific microbial taxa in individual mouse strains, such as a 7.27-fold increase in Akkermansia in B6 and 0.374-fold change in Rikenellaceae in DBA (false discovery rate <5%), which demonstrated strain-specific correlations with host metabolic and transcriptomic phenotypes. Fecal transplant experiments indicated that B6 microbes conferred resistance to fructose-induced weight gain in DBA mice (F = 43.1, P < 0.001), and Akkermansia colonization abrogated the fructose-induced weight gain (F = 17.8, P < 0.001) and glycemic dysfunctions (F = 11.8, P = 0.004) in DBA mice. CONCLUSIONS Our findings support that differential microbiota composition between mouse strains is partially responsible for host metabolic sensitivity to fructose, and that Akkermansia is a key bacterium that confers resistance to fructose-induced metabolic dysregulation.
Collapse
Affiliation(s)
- In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Jennifer M Lang
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Christine A Olson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Hyae Ran Byun
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Jessica Ding
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Peter Cohn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Ira Kurtz
- Department of Medicine, Division of Nephrology, University of California, Los Angeles, CA, USA,Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA,Department of Neurosurgery, University of California, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Xia Yang
- Address correspondence to XY (e-mail: )
| |
Collapse
|
19
|
Hepatic transcriptomics analysis reveals that fructose intervention down-regulated xenobiotics-metabolising enzymes through aryl hydrocarbon receptor signalling suppression in C57BL/6N mice. Br J Nutr 2020; 122:769-779. [PMID: 31262372 DOI: 10.1017/s0007114519001612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For decades, fructose intake has been recognised as an environmental risk for metabolic syndromes and diseases. Here we comprehensively examined the effects of fructose intake on mice liver transcriptomes. Fructose-supplemented water (34 %; w/v) was fed to both male and female C57BL/6N mice at their free will for 6 weeks, followed by hepatic transcriptomics analysis. Based on our criteria, differentially expressed genes (DEG) were selected and subjected to further computational analyses to predict key pathways and upstream regulator(s). Subsequently, predicted genes and pathways from the transcriptomics dataset were validated via quantitative RT-PCR analyses. As a result, we identified eighty-nine down-regulated and eighty-eight up-regulated mRNA in fructose-fed mice livers. These DEG were subjected to bioinformatics analysis tools in which DEG were mainly enriched in xenobiotic metabolic processes; further, in the Ingenuity Pathway Analysis software, it was suggested that the aryl hydrocarbon receptor (AhR) is an upstream regulator governing overall changes, while fructose suppresses the AhR signalling pathway. In our quantitative RT-PCR validation, we confirmed that fructose suppressed AhR signalling through modulating expressions of transcription factor (AhR nuclear translocator; Arnt) and upstream regulators (Ncor2, and Rb1). Altogether, we demonstrated that ad libitum fructose intake suppresses the canonical AhR signalling pathway in C57BL/6N mice liver. Based on our current observations, further studies are warranted, especially with regard to the effects of co-exposure to fructose on (1) other types of carcinogens and (2) inflammation-inducing agents (or even diets such as a high-fat diet), to find implications of fructose-induced AhR suppression.
Collapse
|
20
|
Choe WH, Lee KA, Goto Y, Lee YA. Concurrent and Delayed Behavioral and Monoamine Alterations by Excessive Sucrose Intake in Juvenile Mice. Front Neurosci 2020; 14:504. [PMID: 32508582 PMCID: PMC7248345 DOI: 10.3389/fnins.2020.00504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/22/2020] [Indexed: 01/21/2023] Open
Abstract
Our daily diet in the modern society has substantially changed from that in the ancient past. Consequently, new disorders associated with such dietary changes have emerged. For instance, excessive intake of compounds, such as sucrose (SUC), has recently been reported to induce pathological neuronal changes in adults, such as food addiction. It is still largely unclear whether and how excessive intake of such nutrients affects neurodevelopment. We investigated changes in behavior and monoamine signaling caused by excessive, semi-chronic intake of SUC and the non-caloric sweetener saccharin (SAC) in juvenile mice, using a battery of behavioral tests and high-performance liquid chromatography. Both SUC and SAC intake induced behavioral alterations such as altered amphetamine responses, sucrose preference, stress response, and anxiety, but did not affect social behavior and cognitive function such as attention in juvenile and adult mice. Moreover, SUC and SAC also altered dopamine and serotonin transmission in mesocorticolimbic regions. Some of these behavioral and neural alterations were triggered by SAC and SUC but others were distinct between the treatments. Moreover, alterations induced in juvenile mice were also different from those observed in adult mice. These results suggest that excessive SUC and SAC intake during the juvenile period may cause concurrent and delayed behavioral and monoamine signaling alterations in juvenile and adult mice, respectively.
Collapse
Affiliation(s)
- Won-Hui Choe
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, South Korea
| | - Kyung-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, South Korea
| | - Yukiori Goto
- Primate Research Institute, Kyoto University, Kyoto, Japan
| | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, South Korea
| |
Collapse
|
21
|
Glendinning JI, Maleh J, Ortiz G, Touzani K, Sclafani A. Olfaction contributes to the learned avidity for glucose relative to fructose in mice. Am J Physiol Regul Integr Comp Physiol 2020; 318:R901-R916. [DOI: 10.1152/ajpregu.00340.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When offered glucose and fructose solutions, rodents consume more glucose solution because it produces stronger postoral reinforcement. Intake of these sugars also conditions a higher avidity for glucose relative to fructose. We asked which chemosensory cue mediates the learned avidity for glucose. We subjected mice to 18 days of sugar training, offering them 0.3, 0.6, and 1 M glucose and fructose solutions. Before and after training, we measured avidity for 0.3 and 0.6 M glucose and fructose in brief-access lick tests. First, we replicated prior work in C57BL/6 mice. Before training, the mice licked at a slightly higher rate for 0.6 M fructose; after training, they licked at a higher rate for 0.6 M glucose. Second, we assessed the necessity of the glucose-specific ATP-sensitive K+(KATP) taste pathway for the learned avidity for glucose, using mice with a nonfunctional KATPchannel [regulatory sulfonylurea receptor (SUR1) knockout (KO) mice]. Before training, SUR1 KO and wild-type mice licked at similar rates for 0.6 M glucose and fructose; after training, both strains licked at a higher rate for 0.6 M glucose, indicating that the KATPpathway is not necessary for the learned discrimination. Third, we investigated the necessity of olfaction by comparing sham-treated and anosmic mice. The mice were made anosmic by olfactory bulbectomy or ZnSO4treatment. Before training, sham-treated and anosmic mice licked at similar rates for 0.6 M glucose and fructose; after training, sham-treated mice licked at a higher rate for 0.6 M glucose, whereas anosmic mice licked at similar rates for both sugars. This demonstrates that olfaction contributes significantly to the learned avidity for glucose.
Collapse
Affiliation(s)
- John I. Glendinning
- Departments of Biology and Neuroscience and Behavior, Barnard College, Columbia University, New York, New York
| | - Jennifer Maleh
- Departments of Biology and Neuroscience and Behavior, Barnard College, Columbia University, New York, New York
| | - Gabriella Ortiz
- Departments of Biology and Neuroscience and Behavior, Barnard College, Columbia University, New York, New York
| | - Khalid Touzani
- Department of Psychology, Brooklyn College of City University of New York, Brooklyn, New York
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College of City University of New York, Brooklyn, New York
| |
Collapse
|
22
|
Weiskirchen S, Weiper K, Tolba RH, Weiskirchen R. All You Can Feed: Some Comments on Production of Mouse Diets Used in Biomedical Research with Special Emphasis on Non-Alcoholic Fatty Liver Disease Research. Nutrients 2020; 12:nu12010163. [PMID: 31936026 PMCID: PMC7019265 DOI: 10.3390/nu12010163] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
The laboratory mouse is the most common used mammalian research model in biomedical research. Usually these animals are maintained in germ-free, gnotobiotic, or specific-pathogen-free facilities. In these facilities, skilled staff takes care of the animals and scientists usually don’t pay much attention about the formulation and quality of diets the animals receive during normal breeding and keeping. However, mice have specific nutritional requirements that must be met to guarantee their potential to grow, reproduce and to respond to pathogens or diverse environmental stress situations evoked by handling and experimental interventions. Nowadays, mouse diets for research purposes are commercially manufactured in an industrial process, in which the safety of food products is addressed through the analysis and control of all biological and chemical materials used for the different diet formulations. Similar to human food, mouse diets must be prepared under good sanitary conditions and truthfully labeled to provide information of all ingredients. This is mandatory to guarantee reproducibility of animal studies. In this review, we summarize some information on mice research diets and general aspects of mouse nutrition including nutrient requirements of mice, leading manufacturers of diets, origin of nutrient compounds, and processing of feedstuffs for mice including dietary coloring, autoclaving and irradiation. Furthermore, we provide some critical views on the potential pitfalls that might result from faulty comparisons of grain-based diets with purified diets in the research data production resulting from confounding nutritional factors.
Collapse
Affiliation(s)
- Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (S.W.); (K.W.)
| | - Katharina Weiper
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (S.W.); (K.W.)
- Institute of Laboratory Animal Science and Experimental Surgery, RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - René H. Tolba
- Institute of Laboratory Animal Science and Experimental Surgery, RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (S.W.); (K.W.)
- Correspondence: ; Tel.: +49-(0)241-80-88683
| |
Collapse
|
23
|
MOLZ PATRÍCIA, MOLZ WALTERA, DALLEMOLE DANIELIR, SANTOS LUCIANAF, SALVADOR MIRIAN, CRUZ DENNISB, PRÁ DANIEL, FRANKE SILVIAI. Invert sugar induces glucose intolerance but does not cause injury to the pancreas nor permanent DNA damage in rats. AN ACAD BRAS CIENC 2020; 92:e20191423. [DOI: 10.1590/0001-3765202020191423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/07/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- PATRÍCIA MOLZ
- Universidade de Santa Cruz do Sul/UNISC, Brazil; Universidade de Santa Cruz do Sul/UNISC, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul/PUCRS, Brazil
| | | | - DANIELI R. DALLEMOLE
- Universidade de Santa Cruz do Sul/UNISC, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | | - DANIEL PRÁ
- Universidade de Santa Cruz do Sul/UNISC, Brazil
| | - SILVIA I.R. FRANKE
- Universidade de Santa Cruz do Sul/UNISC, Brazil; Universidade de Santa Cruz do Sul/UNISC, Brazil
| |
Collapse
|
24
|
Zhang G, Byun HR, Ying Z, Blencowe M, Zhao Y, Hong J, Shu L, Chella Krishnan K, Gomez-Pinilla F, Yang X. Differential metabolic and multi-tissue transcriptomic responses to fructose consumption among genetically diverse mice. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165569. [PMID: 31669422 PMCID: PMC6993985 DOI: 10.1016/j.bbadis.2019.165569] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Understanding how individuals react differently to the same treatment is a major concern in precision medicine. Metabolic challenges such as the one posed by high fructose intake are important determinants of disease mechanisms. We embarked on studies to determine how fructose affects differential metabolic dysfunctions across genetically dissimilar mice, namely, C57BL/6 J (B6), DBA/2 J (DBA) and FVB/NJ (FVB), by integrating physiological and gene regulatory mechanisms. We report that fructose has strain-specific effects, involving tissue-specific gene regulatory cascades in hypothalamus, liver, and white adipose tissues. DBA mice showed the largest numbers of genes associated with adiposity, congruent with their highest susceptibility to adiposity gain and glucose intolerance across the three tissues. In contrast, B6 and FVB mainly exhibited cholesterol phenotypes, accompanying the largest number of adipose genes correlating with total cholesterol in B6, and liver genes correlating with LDL in FVB mice. Tissue-specific network modeling predicted strain-and tissue-specific regulators such as Fgf21 (DBA) and Lss (B6), which were subsequently validated in primary hepatocytes. Strain-specific fructose-responsive genes revealed susceptibility for human diseases such that genes in liver and adipose tissue in DBA showed strong enrichment for human type 2 diabetes and obesity traits. Liver and adipose genes in FVB were mostly related to lipid traits, and liver and adipose genes in B6 showed relevance to most cardiometabolic traits tested. Our results show that fructose induces gene regulatory pathways that are tissue specific and dependent on the genetic make-up, which may underlie interindividual variability in cardiometabolic responses to high fructose consumption.
Collapse
Affiliation(s)
- Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Hyae Ran Byun
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Jason Hong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Le Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Karthick Chella Krishnan
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
25
|
Microglia Play an Active Role in Obesity-Associated Cognitive Decline. J Neurosci 2018; 38:8889-8904. [PMID: 30201764 DOI: 10.1523/jneurosci.0789-18.2018] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/26/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022] Open
Abstract
Obesity affects >600 million people worldwide, a staggering number that appears to be on the rise. One of the lesser known consequences of obesity is its deleterious effects on cognition, which have been well documented across many cognitive domains and age groups. To investigate the cellular mechanisms that underlie obesity-associated cognitive decline, we used diet-induced obesity in male mice and found memory impairments along with reductions in dendritic spines, sites of excitatory synapses, increases in the activation of microglia, the brain's resident immune cells, and increases in synaptic profiles within microglia, in the hippocampus, a brain region linked to cognition. We found that partial knockdown of the receptor for fractalkine, a chemokine that can serve as a "find me" cue for microglia, prevented microglial activation and cognitive decline induced by obesity. Furthermore, we found that pharmacological inhibition of microglial activation in obese mice was associated with prevention of both dendritic spine loss and cognitive degradation. Finally, we observed that pharmacological blockade of microglial phagocytosis lessened obesity-associated cognitive decline. These findings suggest that microglia play an active role in obesity-associated cognitive decline by phagocytosis of synapses that are important for optimal function.SIGNIFICANCE STATEMENT Obesity in humans correlates with reduced cognitive function. To investigate the cellular mechanisms underlying this, we used diet-induced obesity in mice and found impaired performance on cognitive tests of hippocampal function. These deficits were accompanied by reduced numbers of dendritic spines, increased microglial activation, and increased synaptic profiles within microglia. Inhibition of microglial activation by transgenic and pharmacological methods prevented cognitive decline and dendritic spine loss in obese mice. Moreover, pharmacological inhibition of the phagocytic activity of microglia was also sufficient to prevent cognitive degradation. This work suggests that microglia may be responsible for obesity-associated cognitive decline and dendritic spine loss.
Collapse
|
26
|
FRANKE SILVIAI, MOLZ PATRÍCIA, MAI CAMILA, ELLWANGER JOELH, ZENKNER FERNANDAF, HORTA JORGEA, PRÁ DANIEL. Influence of hesperidin and vitamin C on glycemic parameters, lipid profile, and DNA damage in rats treated with sucrose overload. ACTA ACUST UNITED AC 2018; 90:2203-2210. [DOI: 10.1590/0001-3765201820170751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/26/2017] [Indexed: 11/22/2022]
Affiliation(s)
- SILVIA I.R. FRANKE
- Universidade de Santa Cruz do Sul, Brazil; Universidade de Santa Cruz do Sul, Brazil
| | - PATRÍCIA MOLZ
- Universidade de Santa Cruz do Sul, Brazil; Universidade de Santa Cruz do Sul, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | - CAMILA MAI
- Universidade de Santa Cruz do Sul, Brazil
| | | | | | - JORGE A. HORTA
- Universidade de Santa Cruz do Sul, Brazil; Universidade de Santa Cruz do Sul, Brazil
| | - DANIEL PRÁ
- Universidade de Santa Cruz do Sul, Brazil; Universidade de Santa Cruz do Sul, Brazil; Universidade de Santa Cruz do Sul, Brazil
| |
Collapse
|
27
|
Pan JH, Kim HS, Beane KE, Montalbano AM, Lee JH, Kim YJ, Kim JH, Kong BC, Kim S, Park JW, Shin EC, Kim JK. IDH2 Deficiency Aggravates Fructose-Induced NAFLD by Modulating Hepatic Fatty Acid Metabolism and Activating Inflammatory Signaling in Female Mice. Nutrients 2018; 10:E679. [PMID: 29861476 PMCID: PMC6024877 DOI: 10.3390/nu10060679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/19/2018] [Accepted: 05/24/2018] [Indexed: 12/28/2022] Open
Abstract
Fructose is a strong risk factor for non-alcoholic fatty liver disease (NAFLD), resulting from the disruption of redox systems by excessive reactive oxygen species production in the liver cells. Of note, recent epidemiological studies indicated that women are more prone to developing metabolic syndrome in response to fructose-sweetened beverages. Hence, we examined whether disruption of the redox system through a deletion of NADPH supplying mitochondrial enzyme, NADP⁺-dependent isocitrate dehydrogenase (IDH2), exacerbates fructose-induced NAFLD conditions in C57BL/6 female mice. Wild-type (WT) and IDH2 knockout (KO) mice were treated with either water or 34% fructose water over six weeks. NAFLD phenotypes and key proteins and mRNAs involved in the inflammatory pathway (e.g., NF-κB p65 and IL-1β) were assessed. Hepatic lipid accumulation was significantly increased in IDH2 KO mice fed fructose compared to the WT counterpart. Neutrophil infiltration was observed only in IDH2 KO mice fed fructose. Furthermore, phosphorylation of NF-κB p65 and expression of IL-1β was remarkably upregulated in IDH2 KO mice fed fructose, and expression of IκBα was decreased by fructose treatment in both WT and IDH2 KO groups. For the first time, we report our novel findings that IDH2 KO female mice may be more susceptible to fructose-induced NAFLD and the associated inflammatory response, suggesting a mechanistic role of IDH2 in metabolic diseases.
Collapse
Affiliation(s)
- Jeong Hoon Pan
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Hoe-Sung Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea.
| | - Kaleigh Elizabeth Beane
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea.
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea.
| | - Jun Ho Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea.
| | | | - Sangyub Kim
- Department of Pharmacology, Penn State University, Hershey, PA 17033, USA.
| | - Jeen-Woo Park
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative Bio-Research Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Eui-Cheol Shin
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea.
| | - Jae Kyeom Kim
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
28
|
Franke SIR, Molz P, Mai C, Ellwanger JH, Zenkner FF, Horta JA, Prá D. High consumption of sucrose induces DNA damage in male Wistar rats. AN ACAD BRAS CIENC 2018; 89:2657-2662. [PMID: 29267792 DOI: 10.1590/0001-3765201720160659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the effects of the high consumption of sucrose on the levels of DNA damage in blood, hippocampus and bone marrow of rats. Male Wistar rats were treated for 4 months with sucrose (10% for 60 initial days and 34% for the following 60 days) in drinking water, and then, glycemia and glycated hemoglobin (A1C) were measured. Levels of DNA damage in blood and hippocampus were evaluated by the comet assay. The micronucleus test was used to evaluate chromosomal damages in the bone marrow. The sucrose treatment significantly increased (p<0.01) the serum glucose levels (~20%) and A1C (~60%). The level of primary DNA damage was significantly increased (p<0.05) in hippocampal cells (~60%) but not in peripheral blood leukocytes (p>0.05). Additionally, it was observed a significative increase (p<0.05) in the markers of chromosomal breaks/losses in bone marrow, as indicated by the micronucleus test. This is the first study that evaluated DNA damage induced by high sucrose concentration in the hippocampus and bone marrow of rats. Sucrose-induced DNA damage was observed in both tissues. However, the mechanism of sucrose toxicity on DNA remains unknown.
Collapse
Affiliation(s)
- Silvia I R Franke
- Programa de Pós-Graduação em Promoção da Saúde, Departamento de Educação Física e Saúde, Universidade de Santa Cruz do Sul/UNISC, Av. Independência, 2293, Sala 4206, Universitário, 96815-900 Santa Cruz do Sul, RS, Brazil.,Laboratório de Nutrição Experimental, Departamento de Educação Física e Saúde, Universidade de Santa Cruz do Sul/UNISC, Av. Independência, 2293, Sala 3031, Universitário, 96815-900 Santa Cruz do Sul, RS, Brazil
| | - Patrícia Molz
- Programa de Pós-Graduação em Promoção da Saúde, Departamento de Educação Física e Saúde, Universidade de Santa Cruz do Sul/UNISC, Av. Independência, 2293, Sala 4206, Universitário, 96815-900 Santa Cruz do Sul, RS, Brazil.,Laboratório de Nutrição Experimental, Departamento de Educação Física e Saúde, Universidade de Santa Cruz do Sul/UNISC, Av. Independência, 2293, Sala 3031, Universitário, 96815-900 Santa Cruz do Sul, RS, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Faculdade de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul/PUCRS, Av. Ipiranga, 6681, Partenon, 90619-900 Porto Alegre, RS, Brazil
| | - Camila Mai
- Laboratório de Nutrição Experimental, Departamento de Educação Física e Saúde, Universidade de Santa Cruz do Sul/UNISC, Av. Independência, 2293, Sala 3031, Universitário, 96815-900 Santa Cruz do Sul, RS, Brazil
| | - Joel H Ellwanger
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul/UFRGS, Av. Bento Gonçalves, 9500, Prédio 43323M, 91501-970 Porto Alegre, RS, Brazil
| | - Fernanda F Zenkner
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul/UFRGS, Av. Bento Gonçalves, 9500, Prédio 43323M, 91501-970 Porto Alegre, RS, Brazil
| | - Jorge A Horta
- Programa de Pós-Graduação em Promoção da Saúde, Departamento de Educação Física e Saúde, Universidade de Santa Cruz do Sul/UNISC, Av. Independência, 2293, Sala 4206, Universitário, 96815-900 Santa Cruz do Sul, RS, Brazil.,Departamento de Biologia e Farmácia, Universidade de Santa Cruz do Sul/UNISC, Av. Independência, 2293, Sala 3529, Universitário, 96815-900 Santa Cruz do Sul, RS, Brazil
| | - Daniel Prá
- Programa de Pós-Graduação em Promoção da Saúde, Departamento de Educação Física e Saúde, Universidade de Santa Cruz do Sul/UNISC, Av. Independência, 2293, Sala 4206, Universitário, 96815-900 Santa Cruz do Sul, RS, Brazil.,Laboratório de Nutrição Experimental, Departamento de Educação Física e Saúde, Universidade de Santa Cruz do Sul/UNISC, Av. Independência, 2293, Sala 3031, Universitário, 96815-900 Santa Cruz do Sul, RS, Brazil.,Departamento de Biologia e Farmácia, Universidade de Santa Cruz do Sul/UNISC, Av. Independência, 2293, Sala 3529, Universitário, 96815-900 Santa Cruz do Sul, RS, Brazil
| |
Collapse
|
29
|
Espinosa-Zurutuza M, González-Villalva A, Albarrán-Alonso JC, Colín-Barenque L, Bizarro-Nevares P, Rojas-Lemus M, López-Valdéz N, Fortoul TI. Oxidative Stress as a Mechanism Involved in Kidney Damage After Subchronic Exposure to Vanadium Inhalation and Oral Sweetened Beverages in a Mouse Model. Int J Toxicol 2017; 37:45-52. [PMID: 29254395 DOI: 10.1177/1091581817745504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Kidney diseases have notably increased in the last few years. This is partially explained by the increase in metabolic syndrome, diabetes, and systemic blood hypertension. However, there is a segment of the population that has neither of the previous risk factors, yet suffers kidney damage. Exposure to atmospheric pollutants has been suggested as a possible risk factor. Air-suspended particles carry on their surface a variety of fuel combustion-related residues such as metals, and vanadium is one of these. Vanadium might produce oxidative stress resulting in the damage of some organs such as the kidney. Additionally, in countries like Mexico, the ingestion of sweetened beverages is a major issue; whether these beverages alone are responsible for direct kidney damage or whether their ingestion promotes the progression of an existing renal damage generates controversy. In this study, we report the combined effect of vanadium inhalation and sweetened beverages ingestion in a mouse model. Forty CD-1 male mice were distributed in 4 groups: control, vanadium inhalation, 30% sucrose in drinking water, and vanadium inhalation plus sucrose 30% in drinking water. Our results support that vanadium inhalation and the ingestion of 30% sucrose induce functional and histological kidney damage and an increase in oxidative stress biomarkers, which were higher in the combined effect of vanadium plus 30% sucrose. The results also support that the ingestion of 30% sucrose alone without hyperglycemia also produces kidney damage.
Collapse
Affiliation(s)
- Maribel Espinosa-Zurutuza
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Adriana González-Villalva
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Juan Carlos Albarrán-Alonso
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | | | - Patricia Bizarro-Nevares
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Marcela Rojas-Lemus
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Nelly López-Valdéz
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Teresa I Fortoul
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| |
Collapse
|
30
|
Bourie F, Olsson K, Iskhakov B, Buras A, Fazilov G, Shenouda M, Zhezherya J, Bodnar RJ. Murine genetic variance in muscarinic cholinergic receptor antagonism of sucrose and saccharin solution intakes in three inbred mouse strains. Pharmacol Biochem Behav 2017; 163:50-56. [PMID: 29042247 DOI: 10.1016/j.pbb.2017.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
Nutritive (e.g., sucrose) and non-nutritive (e.g., saccharin) sweeteners stimulate intake in inbred mouse strains. BALB/c, SWR and C57BL/6 mice differ in the ability of dopamine (DA) D1 (SCH23390) and opioid (naltrexone) receptor antagonism to alter sucrose intake. Whereas SCH23390 comparably reduced cumulative sucrose intake in all three strains, naltrexone reduced cumulative sucrose intake maximally in C57/BL/6 mice, in intermediate fashion in BALB/c mice, but not in SWR mice. Whereas cumulative saccharin intake was reduced by DA D1 receptor antagonism in BALB/c and SWR mice, naltrexone was more potent in SWR relative to BALB/c mice. The present study first examined whether SCH23390 (50-1600nmol/kg) and naltrexone (0.01-5mg/kg) altered saccharin intake in C57BL/6 mice. Given that scopolamine (SCOP), a muscarinic cholinergic receptor antagonist, reduces sweet intake in outbred rats, a second experiment examined whether SCOP (0.1-10mg/kg) altered 0.2% saccharin and 10% sucrose intakes in BALB/c, SWR and C57BL/6 mice. Cumulative saccharin intake was significantly reduced by SCH23390 (200-1600nmol/kg; ID40=175nmol/kg) and naltrexone (0.1-5mg/kg; ID40>5mg/kg) in C57BL/6 mice. Cumulative sucrose intake was significantly reduced following SCOP in C57BL/6 (0.1-10mg/kg; ID40=2.32mg/kg) and BALB/c (2.5-10mg/kg; ID40=0.52mg/kg) mice. In contrast, SWR mice (ID40=41.61mg/kg) only displayed transient (15min) reductions in sucrose intake following SCOP (2.5-10mg/kg). Cumulative saccharin intake was significantly reduced following SCOP in C57BL/6 and BALB/c mice (0.1-10mg/kg; ID40<0.1mg/kg). In contrast, SWR mice (ID40=2.28mg/kg) displayed smaller significant reductions in saccharin intake following SCOP (0.1-10mg/kg). These data indicate that although both nutritive and non-nutritive sweet intakes are governed by muscarinic cholinergic receptor signaling, this process is subject to murine genetic variance with greater sensitivity observed in C57BL/6 and BALB/c relative to SWR inbred mouse strains.
Collapse
Affiliation(s)
- Faye Bourie
- Department of Psychology, Queens College, CUNY, USA
| | | | - Ben Iskhakov
- Department of Psychology, Queens College, CUNY, USA
| | - Agata Buras
- Department of Psychology, Queens College, CUNY, USA
| | | | | | | | - Richard J Bodnar
- Department of Psychology, Queens College, CUNY, USA; CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA.
| |
Collapse
|
31
|
Burgeiro A, Cerqueira MG, Varela-Rodríguez BM, Nunes S, Neto P, Pereira FC, Reis F, Carvalho E. Glucose and Lipid Dysmetabolism in a Rat Model of Prediabetes Induced by a High-Sucrose Diet. Nutrients 2017. [PMID: 28635632 PMCID: PMC5490617 DOI: 10.3390/nu9060638] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glucotoxicity and lipotoxicity are key features of type 2 diabetes mellitus, but their molecular nature during the early stages of the disease remains to be elucidated. We aimed to characterize glucose and lipid metabolism in insulin-target organs (liver, skeletal muscle, and white adipose tissue) in a rat model treated with a high-sucrose (HSu) diet. Two groups of 16-week-old male Wistar rats underwent a 9-week protocol: HSu diet (n = 10)-received 35% of sucrose in drinking water; Control (n = 12)-received vehicle (water). Body weight, food, and beverage consumption were monitored and glucose, insulin, and lipid profiles were measured. Serum and liver triglyceride concentrations, as well as the expression of genes and proteins involved in lipid biosynthesis were assessed. The insulin-stimulated glucose uptake and isoproterenol-stimulated lipolysis were also measured in freshly isolated adipocytes. Even in the absence of obesity, this rat model already presented the main features of prediabetes, with fasting normoglycemia but reduced glucose tolerance, postprandial hyperglycemia, compensatory hyperinsulinemia, as well as decreased insulin sensitivity (resistance) and hypertriglyceridemia. In addition, impaired hepatic function, including altered gluconeogenic and lipogenic pathways, as well as increased expression of acetyl-coenzyme A carboxylase 1 and fatty acid synthase in the liver, were observed, suggesting that liver glucose and lipid dysmetabolism may play a major role at this stage of the disease.
Collapse
Affiliation(s)
- Ana Burgeiro
- Center of Neuroscience and Cell Biology (CNC) and CNC.IBILI Research Consortium, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Manuela G Cerqueira
- Center of Neuroscience and Cell Biology (CNC) and CNC.IBILI Research Consortium, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Bárbara M Varela-Rodríguez
- Center of Neuroscience and Cell Biology (CNC) and CNC.IBILI Research Consortium, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Sara Nunes
- Center of Neuroscience and Cell Biology (CNC) and CNC.IBILI Research Consortium, University of Coimbra, 3004-504 Coimbra, Portugal.
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Paula Neto
- Service of Anatomical Pathology, Coimbra University Hospital Centre (CHUC), 3000-075 Coimbra, Portugal.
| | - Frederico C Pereira
- Center of Neuroscience and Cell Biology (CNC) and CNC.IBILI Research Consortium, University of Coimbra, 3004-504 Coimbra, Portugal.
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Flávio Reis
- Center of Neuroscience and Cell Biology (CNC) and CNC.IBILI Research Consortium, University of Coimbra, 3004-504 Coimbra, Portugal.
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Eugénia Carvalho
- Center of Neuroscience and Cell Biology (CNC) and CNC.IBILI Research Consortium, University of Coimbra, 3004-504 Coimbra, Portugal.
- The Portuguese Diabetes Association (APDP), 1250-203 Lisbon, Portugal.
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
- Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA.
| |
Collapse
|
32
|
Rosas-Villegas A, Sánchez-Tapia M, Avila-Nava A, Ramírez V, Tovar AR, Torres N. Differential Effect of Sucrose and Fructose in Combination with a High Fat Diet on Intestinal Microbiota and Kidney Oxidative Stress. Nutrients 2017; 9:nu9040393. [PMID: 28420148 PMCID: PMC5409732 DOI: 10.3390/nu9040393] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/04/2017] [Accepted: 04/13/2017] [Indexed: 12/18/2022] Open
Abstract
There is controversial information about the adverse effect of sucrose (S) or fructose (F) in the development of obesity. Thus, the purpose of the study was to evaluate the effect of S or F in a high fat diet (HF) on gut microbiota and renal oxidative stress. Rats were fed for four months with either high-fat + sucrose (HFS) or high-fat + fructose (HFF) or a control diet (C). Half of the HFS or HFF groups were maintained with the same diet and the other half were switched to the consumption of C. HFS and HFF groups increased 51% and 19% body weight, respectively, compared with the C group. Body fat mass, metabolic inflexibility, glucose intolerance, lipopolysaccharide (LPS), insulin, renal reactive oxygen species (ROS), malondialdehyde (MDA), Nadphox, and Srebp-1 were significantly higher and antioxidant enzymes and lean body mass were significantly lower in the HFS group with respect to the HF-F group. Change in the consumption of HFS or HFF to a C diet ameliorated the insulin and glucose intolerance. The type of carbohydrate differentially modified the microbiota composition, however, both groups significantly decreased C. eutactus with respect to the C group. Thus, metabolic alterations with the HFS diet had a more detrimental effect than HFF.
Collapse
Affiliation(s)
- Adriana Rosas-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14080, Mexico.
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14080, Mexico.
| | - Azalia Avila-Nava
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14080, Mexico.
| | - Victoria Ramírez
- Departamento de Nefrologia, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14080, Mexico.
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14080, Mexico.
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F. 14080, Mexico.
| |
Collapse
|
33
|
MOLZ P, RAEL AN, FISCHER MDQ, LIMBERGER LB, PRÁ D, FRANKE SIR. Vitamin C decreases the obesogenic and hyperglycemic effect of invert sugar in prediabetic rats. REV NUTR 2017. [DOI: 10.1590/1678-98652017000100003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ABSTRACT Objective: To evaluate whether vitamin C can help to prevent obesity and hyperglycemia in Wistar rats treated with excess invert sugar to induce prediabetes. Methods: One hundred-day-old Male Wistar rats with a mean weight of 336.58±23.43g were randomly assigned to the following groups: (1) control, receiving water (C); (2) invert sugar control, receiving a 32% watery solution of invert sugar; (3) vitamin C control, receiving a watery solution of vitamin C (60mg/L), and (4) vitamin C plus invert sugar, receiving a watery solution of vitamin C and invert sugar. All animals had access to chow and water ad libitum and were treated for 17 weeks. Prediabetes was assessed according to two criteria: obesity (based on body mass indexand peritoneal fat content) and impaired glucose tolerance (assessed by the intraperitoneal glucose tolerance test and expressed as area under the curve) . Results: Group invert sugar control gained significantly more weight (p=0.035) and visceral fat (p<0.001) than groups vitamin C control and vitamin C plus invert sugar. Consequently, groups vitamin C control and vitamin C plus invert sugar had gained as little body mass index as group C by the end of the experiment. Vitamin C decreased the fasting glycemia of both groups supplemented with vitamin C and normalized the glucose tolerance of group vitamin C plus invert sugar, whose area under the curve matched that of group C. Conclusion: Vitamin C has anti-obesogenic and glycemia-lowering effects in Wistar rats, which might be promising to prediabetics. Future studies are needed to understand the anti-obesogenic and anti-hyperglycemic mechanisms of vitamin C in prediabetes.
Collapse
Affiliation(s)
| | | | | | | | - Daniel PRÁ
- Universidade de Santa Cruz do Sul, Brazil; Universidade de Santa Cruz do Sul, Brazil; Universidade de Santa Cruz do Sul, Brazil
| | | |
Collapse
|
34
|
Abstract
In this article we review the scientific contributions of Anthony Sclafani, with specific emphasis on his early work on the neural substrate of the ventromedial hypothalamic (VMH) hyperphagia-obesity syndrome, and on the development of diet-induced obesity (DIO). Over a period of 20 years Sclafani systematically investigated the neuroanatomical basis of the VMH hyperphagia-obesity syndrome, and ultimately identified a longitudinal oxytocin-containing neural tract contributing to its expression. This tract has since been implicated in mediating the effects of at least two gastrointestinal satiety factors. Sclafani was one of the first investigators to demonstrate DIO in rats as a result of exposure to multiple palatable food items (the "supermarket diet"), and concluded that diet palatability was the primary factor responsible for DIO. Sclafani went on to investigate the potency of specific carbohydrate and fat stimuli for inducing hyperphagia, and in so doing discovered that post-ingestive nutrient effects contribute to the elevated intake of palatable food items. To further investigate this effect, he devised an intragastric infusion system which allowed the introduction of nutrients into the gut paired with the oral intake of flavored solutions, an apparatus her termed the "electronic esophagus". Sclafani coined the term "appetition" to describe the effect of intestinal nutrient sensing on post-ingestive appetite stimulation. Sclafani's productivity in the research areas he chose to investigate has been nothing short of extraordinary, and his studies are characterized by inventive hypothesizing and meticulous experimental design. His results and conclusions, to our knowledge, have never been contradicted.
Collapse
Affiliation(s)
- Joseph R Vasselli
- New York Obesity-Nutrition Research Center, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Gerard P Smith
- Department of Psychiatry, Weill Cornell Medicine, Payne Whitney Westchester, New York-Presbyterian Hospital, 21 Bloomingdale Road, White Plains, NY, USA
| |
Collapse
|
35
|
Chen LC, Xie NN, Deng SP. Sweetness-induced activation of membrane dipole potential in STC-1 taste cells. Food Chem 2016; 212:768-77. [DOI: 10.1016/j.foodchem.2016.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 05/18/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022]
|
36
|
Impact of high-fat diet on the proteome of mouse liver. J Nutr Biochem 2016; 31:10-9. [DOI: 10.1016/j.jnutbio.2015.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 10/06/2015] [Accepted: 12/22/2015] [Indexed: 11/22/2022]
|
37
|
Montgomery MK, Fiveash CE, Braude JP, Osborne B, Brown SHJ, Mitchell TW, Turner N. Disparate metabolic response to fructose feeding between different mouse strains. Sci Rep 2015; 5:18474. [PMID: 26690387 PMCID: PMC4686880 DOI: 10.1038/srep18474] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Diets enriched in fructose (FR) increase lipogenesis in the liver, leading to hepatic lipid accumulation and the development of insulin resistance. Previously, we have shown that in contrast to other mouse strains, BALB/c mice are resistant to high fat diet-induced metabolic deterioration, potentially due to a lack of ectopic lipid accumulation in the liver. In this study we have compared the metabolic response of BALB/c and C57BL/6 (BL6) mice to a fructose-enriched diet. Both strains of mice increased adiposity in response to FR-feeding, while only BL6 mice displayed elevated hepatic triglyceride (TAG) accumulation and glucose intolerance. The lack of hepatic TAG accumulation in BALB/c mice appeared to be linked to an altered balance between lipogenic and lipolytic pathways, while the protection from fructose-induced glucose intolerance in this strain was likely related to low levels of ER stress, a slight elevation in insulin levels and an altered profile of diacylglycerol species in the liver. Collectively these findings highlight the multifactorial nature of metabolic defects that develop in response to changes in the intake of specific nutrients and the divergent response of different mouse strains to dietary challenges.
Collapse
Affiliation(s)
- M K Montgomery
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - C E Fiveash
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - J P Braude
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - B Osborne
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - S H J Brown
- School of Health Sciences, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - T W Mitchell
- School of Health Sciences, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - N Turner
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| |
Collapse
|
38
|
Burke MV, Small DM. Physiological mechanisms by which non-nutritive sweeteners may impact body weight and metabolism. Physiol Behav 2015; 152:381-8. [PMID: 26048305 DOI: 10.1016/j.physbeh.2015.05.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/08/2015] [Accepted: 05/29/2015] [Indexed: 01/03/2023]
Abstract
Evidence linking sugar-sweetened beverage (SSB) consumption to weight gain and other negative health outcomes has prompted many individuals to resort to artificial, non-nutritive sweetener (NNS) substitutes as a means of reducing SSB intake. However, there is a great deal of controversy regarding the biological consequences of NNS use, with accumulating evidence suggesting that NNS consumption may influence feeding and metabolism via a variety of peripheral and central mechanisms. Here we argue that NNSs are not physiologically inert compounds and consider the potential biological mechanisms by which NNS consumption may impact energy balance and metabolic function, including actions on oral and extra-oral sweet taste receptors, and effects on metabolic hormone secretion, cognitive processes (e.g. reward learning, memory, and taste perception), and gut microbiota.
Collapse
Affiliation(s)
- Mary V Burke
- Yale Interdepartmental Neuroscience Program, Yale Medical School, New Haven, CT, USA; John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT, USA.
| | - Dana M Small
- Yale Interdepartmental Neuroscience Program, Yale Medical School, New Haven, CT, USA; John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT, USA; Department of Psychiatry, Yale Medical School, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA; Center for Excellence, University of Cologne, Cologne, Germany.
| |
Collapse
|
39
|
Kraft TT, Huang D, Natanova E, Lolier M, Yakubov Y, La Magna S, Warshaw D, Sclafani A, Bodnar RJ. Dopamine D1 and opioid receptor antagonist-induced reductions of fructose and saccharin intake in BALB/c and SWR inbred mice. Pharmacol Biochem Behav 2015; 131:13-8. [DOI: 10.1016/j.pbb.2015.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 11/15/2022]
|
40
|
Soto M, Chaumontet C, Even PC, Nadkarni N, Piedcoq J, Darcel N, Tomé D, Fromentin G. Intermittent access to liquid sucrose differentially modulates energy intake and related central pathways in control or high-fat fed mice. Physiol Behav 2015; 140:44-53. [DOI: 10.1016/j.physbeh.2014.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 12/12/2022]
|
41
|
Sclafani A, Zukerman S, Ackroff K. Postoral glucose sensing, not caloric content, determines sugar reward in C57BL/6J mice. Chem Senses 2015; 40:245-58. [PMID: 25715333 DOI: 10.1093/chemse/bjv002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recent studies suggest that because of their energy value, sugars are more rewarding than non-caloric sweeteners. However, intragastric infusion data indicate that sugars differ in their postoral appetite-stimulating effects. We therefore compared the preference for isocaloric 8% sucrose, glucose, and fructose solutions with that of a non-caloric sweetener solution (0.8% sucralose) in C57BL/6J mice. Brief 2-bottle tests indicated that sucralose was isopreferred to sucrose but more preferred than glucose or fructose. Yet, in long-term tests, the mice preferred sucrose and glucose, but not fructose to sucralose. Additional experiments were conducted with a non-caloric 0.1% sucralose + 0.1% saccharin mixture (S + S), which does not have the postoral inhibitory effects of 0.8% sucralose. The S + S was preferred to fructose in brief and long-term choice tests. S + S was also preferred to glucose and sucrose in brief tests, but the sugars were preferred in long-term tests. In progressive ratio tests, non-deprived and food-deprived mice licked more for glucose but not fructose than for S + S. These findings demonstrate that the nutrient-specific postoral actions, not calories per se, determine the avidity for sugar versus non-caloric sweeteners. Furthermore, sweet taste intensity and potential postoral inhibitory actions must be considered in comparing non-caloric and caloric sweeteners.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College of CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Steven Zukerman
- Department of Psychology, Brooklyn College of CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Karen Ackroff
- Department of Psychology, Brooklyn College of CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
42
|
Wargent ET, Zaibi MS, O'Dowd JF, Cawthorne MA, Wang SJ, Arch JRS, Stocker CJ. Evidence from studies in rodents and in isolated adipocytes that agonists of the chemerin receptor CMKLR1 may be beneficial in the treatment of type 2 diabetes. PeerJ 2015; 3:e753. [PMID: 25699203 PMCID: PMC4327305 DOI: 10.7717/peerj.753] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/18/2015] [Indexed: 12/13/2022] Open
Abstract
The literature is unclear on whether the adipokine chemerin has pro- or anti-inflammatory properties or plays any role in the aetiology of type 2 diabetes or obesity. To address these questions, and in particular the potential of agonists or antagonists of the chemerin receptor CMKLR1 in the treatment of type 2 diabetes and obesity, we studied the metabolic phenotypes of both male and female, CMKLR1 knockout and heterozygote mice. We also investigated changes in plasma chemerin levels and chemerin gene mRNA content in adipose tissue in models of obesity and diabetes, and in response to fasting or administration of the insulin sensitizing drug rosiglitazone, which also has anti-inflammatory properties. The effects of murine chemerin and specific C-terminal peptides on glucose uptake in wild-type and CMKLR1 knockout adipocytes were investigated as a possible mechanism by which chemerin affects the blood glucose concentration. Both male and female CMKLR1 knockout and heterozygote mice displayed a mild tendency to obesity and impaired glucose homeostasis, but only when they were fed on a high-fat died, rather than a standard low-fat diet. Obesity and impaired glucose homeostasis did not occur concurrently, suggesting that obesity was not the sole cause of impaired glucose homeostasis. Picomolar concentrations of chemerin and its C15- and C19-terminal peptides stimulated glucose uptake in the presence of insulin by rat and mouse wild-type epididymal adipocytes, but not by murine CMKLR1 knockout adipocytes. The insulin concentration-response curve was shifted to the left in the presence of 40 pM chemerin or its C-15 terminal peptide. The plasma chemerin level was raised in diet-induced obesity and ob/ob but not db/db mice, and was reduced by fasting and, in ob/ob mice, by treatment with rosiglitazone. These findings suggest that an agonist of CMKLR1 is more likely than an antagonist to be of value in the treatment of type 2 diabetes and to have associated anti-obesity and anti-inflammatory activities. One mechanism by which an agonist of CMKLR1 might improve glucose homeostasis is by increasing insulin-stimulated glucose uptake by adipocytes.
Collapse
Affiliation(s)
- Edward T Wargent
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| | - Mohamed S Zaibi
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| | - Jacqueline F O'Dowd
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| | - Michael A Cawthorne
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| | - Steven J Wang
- AstraZeneca R & D, Alderley Park , Macclesfield , UK
| | - Jonathan R S Arch
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| | - Claire J Stocker
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| |
Collapse
|
43
|
Schultz A, Barbosa-da-Silva S, Aguila MB, Mandarim-de-Lacerda CA. Differences and similarities in hepatic lipogenesis, gluconeogenesis and oxidative imbalance in mice fed diets rich in fructose or sucrose. Food Funct 2015; 6:1684-91. [DOI: 10.1039/c5fo00251f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in feeding habits are the primary environmental factors (though modifiable) commonly correlated with increase in diseases such as obesity and associated comorbidities.
Collapse
Affiliation(s)
- Alini Schultz
- Laboratory of Morphometry
- Metabolism
- and Cardiovascular Disease
- Biomedical Center
- Institute of Biology
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry
- Metabolism
- and Cardiovascular Disease
- Biomedical Center
- Institute of Biology
| | - Marcia B. Aguila
- Laboratory of Morphometry
- Metabolism
- and Cardiovascular Disease
- Biomedical Center
- Institute of Biology
| | | |
Collapse
|
44
|
Sclafani A, Zukerman S, Ackroff K. Fructose- and glucose-conditioned preferences in FVB mice: strain differences in post-oral sugar appetition. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1448-57. [PMID: 25320345 DOI: 10.1152/ajpregu.00312.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies indicate that, unlike glucose, fructose has little or no post-oral preference conditioning actions in C57BL/6J (B6) mice. The present study determined whether this is also the case for FVB mice, which overconsume fructose relative to B6 mice. In experiment 1, FVB mice strongly preferred a noncaloric 0.1% sucralose + 0.1% saccharin (S+S) solution to 8% fructose in a 2-day choice test but switched their preference to fructose after separate experience with the two sweeteners. Other FVB mice displayed a stronger preference for 8% glucose over S+S. In a second experiment, ad libitum-fed FVB mice trained 24 h/day acquired a significant preference for a flavor (CS+) paired with intragastric (IG) self-infusions of 16% fructose over a different flavor (CS-) paired with IG water infusions. IG fructose infusions also conditioned flavor preferences in food-restricted FVB mice trained 1 h/day. IG infusions of 16% glucose conditioned stronger preferences in FVB mice trained 24- or 1 h/day. Thus, fructose has post-oral flavor conditioning effects in FVB mice, but these effects are less pronounced than those produced by glucose. Further studies of the differential post-oral conditioning effects of fructose and glucose in B6 and FVB mice should enhance our understanding of the physiological processes involved in sugar reward.
Collapse
Affiliation(s)
- Anthony Sclafani
- Brooklyn College and the Graduate School, City University of New York, Brooklyn, New York
| | - Steven Zukerman
- Brooklyn College and the Graduate School, City University of New York, Brooklyn, New York
| | - Karen Ackroff
- Brooklyn College and the Graduate School, City University of New York, Brooklyn, New York
| |
Collapse
|
45
|
Dietary sugars: their detection by the gut-brain axis and their peripheral and central effects in health and diseases. Eur J Nutr 2014; 54:1-24. [PMID: 25296886 PMCID: PMC4303703 DOI: 10.1007/s00394-014-0776-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022]
Abstract
Background Substantial increases in dietary sugar intake together with the increasing prevalence of obesity worldwide, as well as the parallels found between sugar overconsumption and drug abuse, have motivated research on the adverse effects of sugars on health and eating behaviour. Given that the gut–brain axis depends on multiple interactions between peripheral and central signals, and because these signals are interdependent, it is crucial to have a holistic view about dietary sugar effects on health. Methods Recent data on the effects of dietary sugars (i.e. sucrose, glucose, and fructose) at both peripheral and central levels and their interactions will be critically discussed in order to improve our understanding of the effects of sugars on health and diseases. This will contribute to the development of more efficient strategies for the prevention and treatment for obesity and associated co-morbidities. Results This review highlights opposing effects of glucose and fructose on metabolism and eating behaviour. Peripheral glucose and fructose sensing may influence eating behaviour by sweet-tasting mechanisms in the mouth and gut, and by glucose-sensing mechanisms in the gut. Glucose may impact brain reward regions and eating behaviour directly by crossing the blood–brain barrier, and indirectly by peripheral neural input and by oral and intestinal sweet taste/sugar-sensing mechanisms, whereas those promoted by fructose orally ingested seem to rely only on these indirect mechanisms. Conclusions Given the discrepancies between studies regarding the metabolic effects of sugars, more studies using physiological experimental conditions and in animal models closer to humans are needed. Additional studies directly comparing the effects of sucrose, glucose, and fructose should be performed to elucidate possible differences between these sugars on the reward circuitry.
Collapse
|
46
|
Kendig MD, Lin CS, Beilharz JE, Rooney KB, Boakes RA. Maltodextrin can produce similar metabolic and cognitive effects to those of sucrose in the rat☆. Appetite 2014; 77:1-12. [DOI: 10.1016/j.appet.2014.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 01/18/2023]
|
47
|
Kendig MD, Rooney KB, Corbit LH, Boakes RA. Persisting adiposity following chronic consumption of 10% sucrose solution: Strain differences and behavioural effects. Physiol Behav 2014; 130:54-65. [DOI: 10.1016/j.physbeh.2014.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 02/24/2014] [Accepted: 03/13/2014] [Indexed: 11/24/2022]
|
48
|
Ackroff K, Sclafani A. Flavor Preferences Conditioned by Oral Monosodium Glutamate in Mice. Chem Senses 2013; 38:745-58. [DOI: 10.1093/chemse/bjt049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Glendinning JI, Gillman J, Zamer H, Margolskee RF, Sclafani A. The role of T1r3 and Trpm5 in carbohydrate-induced obesity in mice. Physiol Behav 2012; 107:50-8. [PMID: 22683548 PMCID: PMC3409339 DOI: 10.1016/j.physbeh.2012.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/16/2012] [Accepted: 05/30/2012] [Indexed: 12/13/2022]
Abstract
We examined the role of T1r3 and Trpm5 taste signaling proteins in carbohydrate-induced overeating and obesity. T1r3, encoded by Tas1r3, is part of the T1r2+T1r3 sugar taste receptor, while Trpm5 mediates signaling for G protein-coupled receptors in taste cells. It is known that C57BL/6 wild-type (WT) mice are attracted to the tastes of both Polycose (a glucose polymer) and sucrose, whereas Tas1r3 KO mice are attracted to the taste of Polycose but not sucrose. In contrast, Trpm5 KO mice are not attracted to the taste of sucrose or Polycose. In Experiment 1, we maintained the WT, Tas1r3 KO and Trpm5 KO mice on one of three diets for 38days: lab chow plus water (Control diet); chow, water and 34% Polycose solution (Polycose diet); or chow, water and 34% sucrose solution (Sucrose diet). The WT and Tas1r3 KO mice overconsumed the Polycose diet and became obese. The WT and Tas1r3 KO mice also overconsumed the Sucrose diet, but only the WT mice became obese. The Trpm5 KO mice, in contrast, showed little or no overeating on the Sucrose and Polycose diets, and gained less weight than WT mice on these diets. In Experiment 2, we asked whether the Tas1r3 KO mice exhibited impaired weight gain on the Sucrose diet because it was insipid. To test this hypothesis, we maintained the WT and Tas1r3 KO mice on one of two diets for 38 days: chow, water and a dilute (1%) but highly palatable Intralipid emulsion (Control diet); or chow, water and a 34% sucrose+1% Intralipid solution (Suc+IL diet). The WT and Tas1r3 KO mice both exhibited little or no overeating but became obese on the Suc+IL diet. Our results suggest that nutritive solutions must be highly palatable to cause carbohydrate-induced obesity in mice, and that palatability produces this effect in part by enhancing nutrient utilization.
Collapse
Affiliation(s)
- John I Glendinning
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Obesity has become a major health and economic burden, and the development of new treatments is urgently needed. Initially, such treatments involve use of animal models, and the purpose of this chapter is to describe some of the most useful models, why one might be chosen over another to address a particular question, and any procedural pitfalls. I restrict the discussion to rats and mice, used in the overwhelming majority of preclinical studies, and more specifically to protocols of diet-induced obesity and those that emulate binge eating.
Collapse
Affiliation(s)
- Neil E Rowland
- Department of Psychology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|