1
|
Jan A, Shah M, Shah SA, Habib SH, Ehtesham E, Ahmed N. Melatonin rescues pregnant female mice and their juvenile offspring from high fat diet-induced alzheimer disease neuropathy. Heliyon 2024; 10:e36921. [PMID: 39281480 PMCID: PMC11395765 DOI: 10.1016/j.heliyon.2024.e36921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
High fat diet (HFD) is a prime factor, which contributes to the present epidemic of metabolic syndrome. Prolonged intake of HFD induces oxidative stress (OS) that in turn causes neuroinflammation, neurodegeneration, insulin resistance, amyloid burden, synaptic dysfunction and cognitive impairment hence leading to Alzheimer's disease neuropathy. Melatonin (secreted by the Pineal gland) has the potential to nullify the toxic effects of reactive oxygen species (ROS) and have been shown to ameliorate various complications induced by HFD in rodent models. This study aimed to assess the neurotherapeutic effects of melatonin on HFD-induced neuroinflammation and neurodegeneration mediated by OS in pregnant female mice and their offspring. Western blotting, immunohistochemistry and antioxidant enzyme assays were used for quantification of samples from the hippocampal region of the brain of pregnant albino mice and their offspring. Short- and long-term memory was assessed by Y-maze and Morris Water Maze tests. HFD significantly induced OS leading to AD like neuropathology in the pregnant mice and their offspring while melatonin administration simultaneously with the HFD significantly prevented this neuropathy. This study reports that melatonin exerts these effects through the stimulation of SIRT1/Nrf2/HO-1 pathway that in turn reduces the HFD-induced OS and its downstream signaling. In conclusion melatonin prevents HFD-induced multiple complications that ultimately leads to the memory dysfunction in pregnant female mice and their successive generation via activation of SIRT1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Amin Jan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Mohsin Shah
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shahid Ali Shah
- Department of Biochemistry, Haripur University, Haripur, Pakistan
| | - Syed Hamid Habib
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Ehtesham Ehtesham
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Naseer Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
2
|
Smith AM, Ray TJ, Hulitt AA, Vita SM, Warrington JP, Santos CDSE, Grayson BE. High-fat diet consumption negatively influences closed-head traumatic brain injury in a pediatric rodent model. Exp Neurol 2024; 379:114888. [PMID: 39009176 DOI: 10.1016/j.expneurol.2024.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Traumatic brain injury (TBI) is one of the most common causes of emergency room visits in children, and it is a leading cause of death in juveniles in the United States. Similarly, a high proportion of this population consumes diets that are high in saturated fats, and millions of children are overweight or obese. The goal of the present study was to assess the relationship between diet and TBI on cognitive and cerebrovascular outcomes in juvenile rats. In the current study, groups of juvenile male Long Evans rats were subjected to either mild TBI via the Closed-Head Injury Model of Engineered Rotational Acceleration (CHIMERA) or underwent sham procedures. The animals were provided with either a combination of high-fat diet and a mixture of high-fructose corn syrup (HFD/HFCS) or a standard chow diet (CH) for 9 days prior to injury. Prior to injury, the animals were trained on the Morris water maze for three consecutive days, and they underwent a post-injury trial on the day of the injury. Immediately after TBI, the animals' righting reflexes were tested. Four days post-injury, the animals were euthanized, and brain samples and blood plasma were collected for qRT-PCR, immunohistochemistry, and triglyceride assays. Additional subsets of animals were used to investigate cerebrovascular perfusion using Laser Speckle and perform immunohistochemistry for endothelial cell marker RECA. Following TBI, the righting reflex was significantly increased in TBI rats, irrespective of diet. The TBI worsened the rats' performance in the post-injury trial of the water maze at 3 h, p(injury) < 0.05, but not at 4 days post-injury. Reduced cerebrovascular blood flow using Laser Speckle was demonstrated in the cerebellum, p(injury) < 0.05, but not foci of the cerebral cortices or superior sagittal sinus. Immunoreactive staining for RECA in the cortex and corpus callosum was significantly reduced in HFD/HFCS TBI rats, p < 0.05. qRT-PCR showed significant increases in APOE, CREB1, FCGR2B, IL1B, and IL6, particularly in the hippocampus. The results from this study offer robust evidence that HFD/HFCS negatively influences TBI outcomes with respect to cognition and cerebrovascular perfusion of relevant brain regions in the juvenile rat.
Collapse
Affiliation(s)
- Allie M Smith
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Trenton J Ray
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Alicia A Hulitt
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Sydney M Vita
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70116, United States of America.
| | - Junie P Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | | | - Bernadette E Grayson
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America; Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America; Department of Population Health Science, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| |
Collapse
|
3
|
Mo L, Li J, Lu H, Lu S, Fu H, Huang B, Zhao C. Aloe polysaccharides ameliorate obesity-associated cognitive dysfunction in high-fat diet-fed mice by targeting the gut microbiota and intestinal barrier integrity. Food Funct 2024; 15:8070-8086. [PMID: 38989726 DOI: 10.1039/d4fo01844c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Aloe polysaccharides (APs) display cognition-improving properties, but the underlying mechanisms remain unclear. Herein, AP supplementation for 24 weeks significantly improved cognitive behavioral disturbances caused by a high-fat diet. Moreover, APs notably reshaped the structure of the gut microbiota, which was manifested by increasing the relative abundance of Alloprevotella, Alistipes, Romboutsia, Turicibacter, Prevotellaceae_UCG-001, and Akkermansia while reducing the abundance of Parasutterella, Staphylococcus, Helicobacter, Enterococcus, and Erysipelatoclostridium. Notably, the gut barrier damage and LPS leakage caused by HF were recovered by APs. Additionally, with the improvement of intestinal barrier integrity, oxidative stress and inflammation in the brain and jejunum were significantly ameliorated. Furthermore, the expression of genes associated with cognitive impairment and the intestinal tract barrier was up-regulated (CREB, BDNF, TrkB, ZO-1 and occludin), while the expression of genes associated with inflammatory factors was down-regulated (IL-1β, IL-6, and TNF-α). Finally, we observed a significant correlation among cognition-related genes, gut microbiota, oxidative stress, and inflammation in the HF-AP group. Together, our findings suggest that altered gut microbiota composition and improved gut barrier integrity may be important targets for potentially improving high-fat diet-induced cognitive impairment.
Collapse
Affiliation(s)
- Ling Mo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China.
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Jingjing Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China.
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Hangsun Lu
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Shaoda Lu
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Henghui Fu
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Bo Huang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China.
| | - Chaochao Zhao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
4
|
He F, Liu J, Huang Y, Chen L, Rizi EP, Zhang K, Ke L, Loh TP, Niu M, Peng WK. Nutritional load in post-prandial oxidative stress and the pathogeneses of diabetes mellitus. NPJ Sci Food 2024; 8:41. [PMID: 38937488 PMCID: PMC11211471 DOI: 10.1038/s41538-024-00282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Diabetes mellitus affected more than 500 million of people globally, with an annual mortality of 1.5 million directly attributable to diabetic complications. Oxidative stress, in particularly in post-prandial state, plays a vital role in the pathogenesis of the diabetic complications. However, oxidative status marker is generally poorly characterized and their mechanisms of action are not well understood. In this work, we proposed a new framework for deep characterization of oxidative stress in erythrocytes (and in urine) using home-built micro-scale NMR system. The dynamic of post-prandial oxidative status (against a wide variety of nutritional load) in individual was assessed based on the proposed oxidative status of the red blood cells, with respect to the traditional risk-factors such as urinary isoprostane, reveals new insights into our understanding of diabetes. This new method can be potentially important in drafting guidelines for sub-stratification of diabetes mellitus for clinical care and management.
Collapse
Affiliation(s)
- Fangzhou He
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Junshi Liu
- Dongguan Institute of Technology, Dongguan, China
| | | | - Lan Chen
- BioSyM, SMART Centre, Singapore, Singapore
| | | | - Ke Zhang
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Lijing Ke
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Tze Ping Loh
- National University of Health System, Singapore, Singapore
| | - Meng Niu
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, Dongguan, China.
- BioSyM, SMART Centre, Singapore, Singapore.
| |
Collapse
|
5
|
Xu Y, Xue M, Li J, Ma Y, Wang Y, Zhang H, Liang H. Fucoidan Improves D-Galactose-Induced Cognitive Dysfunction by Promoting Mitochondrial Biogenesis and Maintaining Gut Microbiome Homeostasis. Nutrients 2024; 16:1512. [PMID: 38794753 PMCID: PMC11124141 DOI: 10.3390/nu16101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Recent studies have indicated that fucoidan has the potential to improve cognitive impairment. The objective of this study was to demonstrate the protective effect and possible mechanisms of fucoidan in D-galactose (D-gal)-induced cognitive dysfunction. Sprague Dawley rats were injected with D-galactose (200 mg/kg, sc) and administrated with fucoidan (100 mg/kg or 200 mg/kg, ig) for 8 weeks. Our results suggested that fucoidan significantly ameliorated cognitive impairment in D-gal-exposed rats and reversed histopathological changes in the hippocampus. Fucoidan reduced D-gal-induced oxidative stress, declined the inflammation level and improved mitochondrial dysfunction in hippocampal. Fucoidan promoted mitochondrial biogenesis by regulating the PGC-1α/NRF1/TFAM pathway, thereby improving D-gal-induced mitochondrial dysfunction. The regulation effect of fucoidan on PGC-1α is linked to the upstream protein of APN/AMPK/SIRT1. Additionally, the neuroprotective action of fucoidan could be related to maintaining intestinal flora homeostasis with up-regulation of Bacteroidota, Muribaculaceae and Akkermansia and down-regulation of Firmicutes. In summary, fucoidan may be a natural, promising candidate active ingredient for age-related cognitive impairment interventions.
Collapse
Affiliation(s)
- Yan Xu
- School of Public Health, Qingdao University, Qingdao 266071, China; (Y.X.); (J.L.); (Y.M.); (Y.W.); (H.Z.)
| | - Meilan Xue
- Basic Medical College, Qingdao University, Qingdao 266071, China;
| | - Jing Li
- School of Public Health, Qingdao University, Qingdao 266071, China; (Y.X.); (J.L.); (Y.M.); (Y.W.); (H.Z.)
| | - Yiqing Ma
- School of Public Health, Qingdao University, Qingdao 266071, China; (Y.X.); (J.L.); (Y.M.); (Y.W.); (H.Z.)
| | - Yutong Wang
- School of Public Health, Qingdao University, Qingdao 266071, China; (Y.X.); (J.L.); (Y.M.); (Y.W.); (H.Z.)
| | - Huaqi Zhang
- School of Public Health, Qingdao University, Qingdao 266071, China; (Y.X.); (J.L.); (Y.M.); (Y.W.); (H.Z.)
| | - Hui Liang
- School of Public Health, Qingdao University, Qingdao 266071, China; (Y.X.); (J.L.); (Y.M.); (Y.W.); (H.Z.)
| |
Collapse
|
6
|
Jabeen K, Rehman K, Akash MSH, Nadeem A, Mir TM. Neuroprotective and Cardiometabolic Role of Vitamin E: Alleviating Neuroinflammation and Metabolic Disturbance Induced by AlCl 3 in Rat Models. Biomedicines 2023; 11:2453. [PMID: 37760893 PMCID: PMC10525157 DOI: 10.3390/biomedicines11092453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) and neurodegenerative disorders, such as diabetes mellitus and Alzheimer's disease, share a common pathophysiological link involving insulin resistance (IR), inflammation, and hypertension. Aluminium chloride (AlCl3), a known neurotoxicant, has been associated with neurodegeneration, cognitive impairment, and various organ dysfunctions due to the production of reactive oxygen species (ROS) and oxidative stress. In this study, we aimed to investigate the potential protective effects of metformin and vitamin E against AlCl3-induced neuroinflammation and cardiometabolic disturbances in rat models. Rats were divided into five groups: a normal control group, an AlCl3-treated diseased group without any treatment, and three groups exposed to AlCl3 and subsequently administered with metformin (100 mg/kg/day) alone, vitamin E (150 mg/kg/day) orally alone, or a combination of metformin (100 mg/kg/day) and vitamin E (150 mg/kg/day) for 45 days. We analyzed serum biomarkers and histopathological changes in brain, heart, and pancreatic tissues using H&E and Masson's trichrome staining and immunohistochemistry (IHC). Electrocardiogram (ECG) patterns were observed for all groups. The AlCl3-treated group showed elevated levels of inflammatory biomarkers, MDA, and disturbances in glycemic and lipid profiles, along with reduced insulin levels. However, treatment with the combination of metformin and vitamin E resulted in significantly reduced glucose, cholesterol, LDL, and TG levels, accompanied by increased insulin and HDL levels compared to the individual treatment groups. Histopathological analyses revealed that combination therapy preserved neuronal structures, muscle cell nuclei, and normal morphology in the brain, heart, and pancreatic tissues. IHC demonstrated reduced amyloid plaques and neurofibrillary tangles in the combination-treated group compared to the AlCl3-treated group. Moreover, the combination group showed a normal ECG pattern, contrasting the altered pattern observed in the AlCl3-treated group. Overall, our findings suggest that metformin and vitamin E, in combination, possess neuroprotective and cardiometabolic effects, alleviating AlCl3-induced neuroinflammation and metabolic disturbances.
Collapse
Affiliation(s)
- Komal Jabeen
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad 38000, Pakistan
- Department of Pharmacy, Niazi Medical and Dental College, Sargodha 40100, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan 66000, Pakistan
| | | | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahir Maqbool Mir
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
7
|
Hajipour S, Farbood Y, Dianat M, Nesari A, Sarkaki A. Effect of Berberine against Cognitive Deficits in Rat Model of Thioacetamide-Induced Liver Cirrhosis and Hepatic Encephalopathy (Behavioral, Biochemical, Molecular and Histological Evaluations). Brain Sci 2023; 13:944. [PMID: 37371422 DOI: 10.3390/brainsci13060944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Liver cirrhosis (LC) is one of the chronic liver diseases with high disability and mortality accompanying hepatic encephalopathy (HE) followed by cognitive dysfunctions. In this work, the effect of berberine (Ber) on spatial cognition was studied in a rat model of LC induced by thioacetamide (TAA). MATERIALS AND METHODS Male Wistar rats (200-250 g) were divided into six groups: (1) control; (2) TAA, 200 mg/kg/day, i.p.; (3-5) TAA + Ber; received Ber (10, 30, and 60 mg/kg, i.p., daily after last TAA injection); (6) Dizocilpine (MK-801) + TAA, received MK-801 (2 mg/kg/day, i.p.) 30 m before TAA injection. The spatial memory, BBB permeability, brain edema, liver enzymes, urea, serum and brain total bilirubin, oxidative stress and cytokine markers in the hippocampus were measured. Furthermore, a histological examination of the hippocampus was carried out. RESULTS The BBB permeability, brain edema, liver enzymes, urea, total bilirubin levels in serum and hippocampal MDA and TNF-α increased significantly after TAA injection (p < 0.001); the spatial memory was impaired (p < 0.001), and hippocampal IL-10 decreased (p < 0.001). Ber reversed all the above parameters significantly (p < 0.05, p < 0.01 and p < 0.001). MK-801 prevented the development of LC via TAA (p < 0.001). CONCLUSION Results showed that Ber improves spatial learning and memory in TAA-induced LC by improving the BBB function, oxidative stress and neuroinflammation. Ber might be a promising therapeutic agent for cognitive improvement in LC.
Collapse
Affiliation(s)
- Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
| | - Mahin Dianat
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
| | - Ali Nesari
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
- Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
- National Institute for Medical Research Development "NIMAD", Tehran 1419693111, Iran
| |
Collapse
|
8
|
Alzoubi KH, Halboup AM, Khabour OF, Alomari MA. The Protective Effects of the Combination of Vitamin E and Swimming Exercise on Memory Impairment Induced by Exposure to Waterpipe Smoke. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:304-312. [PMID: 35306997 DOI: 10.2174/1871527321666220318113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/12/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Waterpipe smoking (WP) exposure involves a negative health impact, including memory deficit, which is attributed to the elevation of oxidative stress. Vitamin E (VitE) in combination with swimming exercise exerts protective effects that prevent memory impairment. In the current study, the modulation of WP-induced memory impairment by the combined effect of VitE and swimming exercise (SE) was investigated. METHODS Animals were exposed to WP one hour/day, five days per week for four weeks. Simultaneously, VitE (100 mg/kg, six days/week for four weeks) was administered via oral gavage, and the rats were made to swim one hour/day, five days/week for four weeks. Changes in memory were evaluated using radial arm water maze (RAWM), and oxidative stress biomarkers were examined in the hippocampus. RESULTS WP exposure induced short-term/long-term memory impairment (p<0.05). This impairment was prevented by a combination of VitE with SE (p<0.05). Additionally, this combination normalized the hippocampal catalase, GPx, and GSH/GSSG ratios that were modulated by WP (p<0.05). The combination further reduced TBARs levels below those of the control group (p<0.05). CONCLUSION WP-induced memory impairments were prevented by the combination of VitE with SE. This could be attributed to preserving the hippocampal oxidative mechanism by combining VitE and SE during WP exposure.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Abdulsalam M Halboup
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, University of Science and Technology, Sana\'a, Yemen
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Jordan
| | - Mahmoud A Alomari
- Department of Rehabilitation Sciences, Division of Physical Therapy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
9
|
Fadó R, Molins A, Rojas R, Casals N. Feeding the Brain: Effect of Nutrients on Cognition, Synaptic Function, and AMPA Receptors. Nutrients 2022; 14:nu14194137. [PMID: 36235789 PMCID: PMC9572450 DOI: 10.3390/nu14194137] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
In recent decades, traditional eating habits have been replaced by a more globalized diet, rich in saturated fatty acids and simple sugars. Extensive evidence shows that these dietary factors contribute to cognitive health impairment as well as increase the incidence of metabolic diseases such as obesity and diabetes. However, how these nutrients modulate synaptic function and neuroplasticity is poorly understood. We review the Western, ketogenic, and paleolithic diets for their effects on cognition and correlations with synaptic changes, focusing mainly (but not exclusively) on animal model studies aimed at tracing molecular alterations that may contribute to impaired human cognition. We observe that memory and learning deficits mediated by high-fat/high-sugar diets, even over short exposure times, are associated with reduced arborization, widened synaptic cleft, narrowed post-synaptic zone, and decreased activity-dependent synaptic plasticity in the hippocampus, and also observe that these alterations correlate with deregulation of the AMPA-type glutamate ionotropic receptors (AMPARs) that are crucial to neuroplasticity. Furthermore, we explored which diet-mediated mechanisms modulate synaptic AMPARs and whether certain supplements or nutritional interventions could reverse deleterious effects, contributing to improved learning and memory in older people and patients with Alzheimer’s disease.
Collapse
Affiliation(s)
- Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, E-08193 Cerdanyola del Vallès, Spain
- Correspondence: ; Tel.: +34-93-504-20-00
| | - Anna Molins
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Rocío Rojas
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
10
|
Ren Q, Sun J, Xu D, Xie H, Ye M, Zhao Y. A Dietary Supplement Containing Micronutrients, Phosphatidylserine, and Docosahexaenoic Acid Counteracts Cognitive Impairment in D-Galactose-Induced Aged Rats. Front Nutr 2022; 9:931734. [PMID: 35866081 PMCID: PMC9294405 DOI: 10.3389/fnut.2022.931734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
At present, it is a trend to use dietary supplements to prevent age-related cognitive impairment. This study aimed to investigate the effects of a dietary supplement enriched with micronutrients, phosphatidylserine, and docosahexaenoic acid on cognitive performance using a D-galactose (D-gal) induced aging rat model. Seven-month-old male Sprague-Dawley rats were randomly divided into five groups, including the control group, D-gal model group, and low-dose (2 g/kg body weight), medium-dose (6 g/kg body weight), and high-dose (10 g/kg body weight) dietary supplement intervention groups, which were investigated for 13 weeks. The dietary supplement intervention was found to improve cognitive performance in Morris water maze test, increase superoxidase dismutase activity, reduce malondialdehyde activity, decrease tumor necrosis factor-α and interleukin-6 concentrations, inhibit the activation of astrocytes, and elevate brain-derived neurotrophic factor protein and mRNA expression in the brains of D-gal-induced aged rats. This dietary supplement customized for the aged can be applied to the restoration of cognitive performance by enhancing antioxidant and anti-neuroinflammatory abilities, up-regulating neurotrophic factors, and inhibiting the activation of astrocytes. These results will be useful for future studies focused on implementation in humans.
Collapse
Affiliation(s)
- Qian Ren
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Department of Clinical Nutrition, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jianqin Sun
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Jianqin Sun,
| | - Danfeng Xu
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Hua Xie
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Mengyao Ye
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Wenzhou Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou, China
| | - Yanfang Zhao
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
11
|
Yan X, Pan S, Dong X, Tan B, Li T, Huang W, Suo X, Li Z, Yang Y. Vitamin E amelioration of oxidative stress and low immunity induced by high-lipid diets in hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu). FISH & SHELLFISH IMMUNOLOGY 2022; 124:156-163. [PMID: 35395411 DOI: 10.1016/j.fsi.2022.03.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/02/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
The experiment was conducted to investigate the effects of vitamin E (VE) on growth, oxidative stress and immunity for hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu) fed high-lipid diet. Six groups of iso-protein (50.23%) and iso-lipidic high-lipid (15.36%) experimental diets were prepared by adding 0 (basic diet control), 0.01%, 0.02%, 0.03%, 0.04%, 0.05% α-tocopherol respectively in basic diet. Each treatment consisted of 3 replicates and 30 fish (10.20 ± 0.02 g) in each replicate for 8 weeks. The results showed that: 1) compared with the control group, the growth performance of grouper was not affected by the addition of VE in high-lipid diet, but the specific growth rate (SGR) in high VE dose (0.6%) group were significantly decreased compared with 0.02% and 0.03% groups. 2) Adding VE to high-lipid diet can alleviate the hepatic oxidative damage caused by high-lipid diet, and significantly improve the serum and liver antioxidant enzyme activity. 3) Compared with the control group, appropriate VE significantly increased the expression of liver anti-inflammatory factors TGF-β and IL10, and significantly decreased the expression of proinflammatory factors IL8 and IL6. In conclusion, adding appropriate amount of VE into high-lipid diet can improve antioxidant capacity and immunity of grouper, we speculated that VE may alleviate lipid peroxidation by improving antioxidant capacity to reduce the inflammatory response. In combination with the results of the current study, we recommend an additional dose of 0.02%-0.03% of α-tocopherol in this experiment under high-lipid conditions.
Collapse
Affiliation(s)
- Xiaobo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Simiao Pan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China.
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China
| | - Tao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Weibin Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Xiangxiang Suo
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Zhihao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China
| |
Collapse
|
12
|
Som S, Antony J, Dhanabal SP, Ponnusankar S. Neuroprotective role of Diosgenin, a NGF stimulator, against Aβ (1-42) induced neurotoxicity in animal model of Alzheimer's disease. Metab Brain Dis 2022; 37:359-372. [PMID: 35023028 DOI: 10.1007/s11011-021-00880-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/05/2021] [Indexed: 01/24/2023]
Abstract
Diosgenin is a neurosteroid derived from the plants and has been previously reported for its numerous health beneficial properties, such as anti-arrhythmic, hypolipidemic, and antiproliferative effects. Although several studies conducted earlier suggested cognition enhancement actions of diosgenin against neurodegenerative disorders, but the molecular mechanisms underlying are not clearly understood. In the present study, we investigated the neuroprotective effect of diosgenin in the Wistar rats that received an intracerebroventricular injection of Amyloid-β (1-42) peptides, representing a rodent model of Alzheimer's disease (AD). Animals were treated with 100 and 200 mg/kg/p.o of diosgenin for 28 days, followed by Amyloid-β (1-42) peptides infusion. Animals were assessed for the spatial learning and memory by using radial arm maze and passive avoidance task. Subsequently, animals were euthanized and brains were collected for biochemical estimations and histopathological studies. Our results revealed that, diosgenin administration dose dependently improved the spatial learning and memory and protected the animals from Amyloid-β (1-42) peptides induced disrupted cognitive functions. Further, biochemical analysis showed that diosgenin successfully attenuated Amyloid-β (1-42) mediated plaque load, oxidative stress, neuroinflammation and elevated acetylcholinesterase activity. In addition, histopathological evaluation also supported neuroprotective effects of diosgenin in hippocampus of rat brain when assessed using hematoxylin-eosin and Cresyl Violet staining. Thus, the aforementioned effects suggested protective action of diosgenin against Aβ (1-42) induced neuronal damage and thereby can serve as a potential therapeutic candidate for AD.
Collapse
Affiliation(s)
- Swati Som
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, Tamilnadu, India
| | - Justin Antony
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, Tamilnadu, India
| | - SPalanisamy Dhanabal
- Department of Pharmacognosy and Phytochemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, Tamilnadu, India
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, Tamilnadu, India.
| |
Collapse
|
13
|
Erichsen JM, Fadel JR, Reagan LP. Peripheral versus central insulin and leptin resistance: Role in metabolic disorders, cognition, and neuropsychiatric diseases. Neuropharmacology 2022; 203:108877. [PMID: 34762922 PMCID: PMC8642294 DOI: 10.1016/j.neuropharm.2021.108877] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Insulin and leptin are classically regarded as peptide hormones that play key roles in metabolism. In actuality, they serve several functions in both the periphery and central nervous system (CNS). Likewise, insulin and leptin resistance can occur both peripherally and centrally. Metabolic disorders such as diabetes and obesity share several key features including insulin and leptin resistance. While the peripheral effects of these disorders are well-known (i.e. cardiovascular disease, hypertension, stroke, dyslipidemia, etc.), the CNS complications of leptin and insulin resistance have come into sharper focus. Both preclinical and clinical findings have indicated that insulin and leptin resistance are associated with cognitive deficits and neuropsychiatric diseases such as depression. Importantly, these studies also suggest that these deficits in neuroplasticity can be reversed by restoration of insulin and leptin sensitivity. In view of these observations, this review will describe, in detail, the peripheral and central functions of insulin and leptin and explain the role of insulin and leptin resistance in various metabolic disorders, cognition, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA.
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA; Columbia VA Health Care System, Columbia, SC, 29208, USA
| |
Collapse
|
14
|
Hou J, Jeon B, Baek J, Yun Y, Kim D, Chang B, Kim S, Kim S. High fat diet-induced brain damaging effects through autophagy-mediated senescence, inflammation and apoptosis mitigated by ginsenoside F1-enhanced mixture. J Ginseng Res 2022; 46:79-90. [PMID: 35058728 PMCID: PMC8753566 DOI: 10.1016/j.jgr.2021.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/24/2021] [Accepted: 04/11/2021] [Indexed: 01/20/2023] Open
Abstract
Background Herbal medicines are popular approaches to capably prevent and treat obesity and its related diseases. Excessive exposure to dietary lipids causes oxidative stress and inflammation, which possibly induces cellular senescence and contribute the damaging effects in brain. The potential roles of selective enhanced ginsenoside in regulating high fat diet (HFD)-induced brain damage remain unknown. Methods The protection function of Ginsenoside F1-enhanced mixture (SGB121) was evaluated by in vivo and in vitro experiments. Human primary astrocytes and SH-SY5Y cells were treated with palmitic acid conjugated Bovine Serum Albumin, and the effects of SGB121 were determined by MTT and lipid uptake assays. For in vivo tests, C57BL/6J mice were fed with high fat diet for 3 months with or without SGB121 administration. Thereafter, immunohistochemistry, western blot, PCR and ELISA assays were conducted with brain tissues. Results and conclusion SGB121 selectively suppressed HFD-induced oxidative stress and cellular senescence in brain, and reduced subsequent inflammation responses manifested by abrogated secretion of IL-6, IL-1β and TNFα via NF-κB signaling pathway. Interestingly, SGB121 protects against HFD-induced damage by improving mitophagy and endoplasmic reticulum-stress associated autophagy flux and inhibiting apoptosis. In addition, SGB121 regulates lipid uptake and accumulation by FATP4 and PPARα. SGB121 significantly abates excessively phosphorylated tau protein in the cortex and GFAP activation in corpus callosum. Together, our results suggest that SGB121 is able to favor the resistance of brain to HFD-induced damage, therefore provide explicit evidence of the potential to be a functional food. High fat diet induces oxidative stress and subsequent cellular senescence in mice brain. High fat diet induces pathologies in cortex and GFAP activation in corpus callosum. Ginsenoside F1-enhanced mixture ameliorates damaging effect by modulating autophagy flux and inflammation.
Collapse
|
15
|
Alzoubi KH, Al-Dekah AM, Jaradat S, Alrabadi N. L-Carnitine prevents memory impairment induced by post-traumatic stress disorder. Restor Neurol Neurosci 2021; 40:53-61. [PMID: 34974445 DOI: 10.3233/rnn-211191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a genuine obstructing mental disorder. As indicated by the name, it is related to the patients' stress augmented by life-threatening conditions or accidents. The PTSD has linked to oxidative stress that can result in neurodegeneration. L-carnitine (L-CAR) is known for its antioxidant properties, which can protect against neuronal damage. OBJECTIVE In the current study, we investigated the beneficial effects of L-CAR on the memory impairment induced by PTSD using a rat model. METHODS A model of single-prolonged stress (a cycle of restraining, forced swimming, rest, and finally diethyl ether exposure for 2 h, 20 min, 15 min, and 1-2 min, respectively) was used to induce PTSD-like behavior. Intraperitoneal L-CAR treatment (300 mg/kg/day) was introduced for four weeks. Both memory and special learning were evaluated utilizing the radial arm water maze (RAWM). Moreover, the levels of glutathione peroxidase (GPx), glutathione reduced (GSH), and glutathione oxidized (GSSG) were assessed as biomarkers oxidative stress in the hippocampus. RESULTS The results demonstrated that both the short and long-term memories were impaired by PTSD/SPS model (P < 0.05), while L-CAR treatment prevented this memory impairment in PTSD rats. Besides, L-CAR prevented the reduction in GPx activity and increase in GSSG, which were altered in the hippocampus of the PTSD/SPS rats (P < 0.05). Levels of GSH were not changed in PTSD and/or L-CAR rats. CONCLUSIONS L-CAR administration prevented short- and long-term memories' impairments induced in the PTSD/SPS rat model. This is probably related to its antioxidant effects in the hippocampus.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Arwa M Al-Dekah
- Department of Applied Biology, Jordan University of Science and Technology, Irbid, Jordan
| | - Saied Jaradat
- Department of Applied Biology, Jordan University of Science and Technology, Irbid, Jordan
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
16
|
The Role of Vitamin E in Slowing Down Mild Cognitive Impairment: A Narrative Review. Healthcare (Basel) 2021; 9:healthcare9111573. [PMID: 34828619 PMCID: PMC8625211 DOI: 10.3390/healthcare9111573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
With the aging population, dementia emerges as a public health concern. In 2012, the Health and Retirement Study found that 8.8% of adults over 65 years suffered from dementia. The etiopathogenesis and treatment of dementia are not well understood. Antioxidant properties of Vitamin E and its major elements tocopherols and tocotrienols have been reported to be effective in slowing down the progression of dementia from its initial stage of Mild cognitive impairment (MCI). Therefore, the current review aims to explore the role of vitamin E on MCI. A literature search using the key words "Vitamin E, tocopherols, tocotrienols, and mild cognitive impairment" was conducted in MEDLINE (PubMed), CINAHL, and Google Scholar. The inclusion criteria were: (1) articles published in the past ten years; (2) published in English language; (3) published in peer-reviewed journals; and (4) descriptive and epidemiological or evaluation studies. Articles published prior to 2010, focused on other forms of dementia than MCI, grey literature and non-peer-reviewed articles were excluded. A total of 22 studies were included in the narrative synthesis. The results were equivocal. Eleven studies showed some level of the neuroprotective effect of Vitamin E, tocopherols and tocotrienols on the progression of MCI. The mixed results of this review suggest further exploration of the possible protective effects of Vitamin E on the development of dementia. Future studies can be conducted to decipher antioxidant properties of vitamin E and its association with slowing down the cognitive decline.
Collapse
|
17
|
de Leeuw FA, Honer WG, Schneider JA, Morris MC. Brain γ-Tocopherol Levels Are Associated with Presynaptic Protein Levels in Elderly Human Midfrontal Cortex. J Alzheimers Dis 2021; 77:619-627. [PMID: 32741813 PMCID: PMC7592653 DOI: 10.3233/jad-200166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Higher vitamin E intake has been widely related to lower risks of cognitive decline and dementia. Animal models suggest that this relationship might be (partially) explained by the protection of vitamin E against presynaptic protein oxidation. OBJECTIVE In this cross-sectional study, we aimed to examine the associations between brain tocopherols and presynaptic protein levels in elderly humans. METHODS We examined associations of α- and γ-tocopherol brain levels with presynaptic protein levels in 113 deceased participants (age 88.5±6.0 years, 45 (40%) female) from the prospective Memory and Aging project. Three distinct presynaptic proteins, a SNARE protein composite, a synaptotagmin synaptophysin composite and the protein-protein interaction between synaptosomal-associated protein 25 (SNAP-25), and syntaxin were measured in two cortical brain regions. Linear regression models assessed associations of brain tocopherols with presynaptic protein levels. RESULTS Higher brain γ-tocopherol levels were associated with higher levels of the SNARE protein composite, complexin-I, complexin-II, the synaptotagmin synaptophysin composite, and septin-5 in the midfrontal cortex (B(SE) = 0.272 to 0.412 (0.084 to 0.091), p < 0.001 to 0.003). When additionally adjusted for global Alzheimer's disease pathology, cerebral infarcts, and Lewy body disease pathology, these associations remained largely similar. No associations were found between α-tocopherol and presynaptic protein levels. CONCLUSION In this cross-sectional study, we found higher brain γ-tocopherol levels were associated with presynaptic protein levels in the midfrontal cortex. These results are consistent with a proposed role of vitamin E to maintain presynaptic protein levels.
Collapse
Affiliation(s)
- Francisca A de Leeuw
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - William G Honer
- Department of Psychiatry, University of British Colombia, Vancouver, British Colombia, Canada
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Department of Neurological Sciences and Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Martha Clare Morris
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
18
|
Mahdinia R, Goudarzi I, Lashkarbolouki T, Elahdadi Salmani M. Maternal ethanol exposure induces behavioral deficits through oxidative stress and brain-derived neurotrophic factor interrelation in rat offspring. Int J Dev Neurosci 2021; 81:717-730. [PMID: 34427953 DOI: 10.1002/jdn.10148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 11/08/2022] Open
Abstract
Alcohol consumption during pregnancy damages the central nervous system of developing fetus and results in persistent physical and neurobehavioral abnormalities, including learning and memory disorders. The hippocampus which is involved in learning and memory is highly susceptible to the ethanol neurotoxic effects. Oxidative stress is one of the mechanisms in alcohol-induced disorders. Ethanol also interferes with the brain-derived neurotrophic factors (BDNF) expression. Using vitamin E as a potent antioxidant, we studied the possible interrelation between oxidative stress and BDNF on cognition. Ethanol (4 g/kg) and vitamin E (100, 200, and 400 mg/kg) were given to pregnant Wistar rats on first day of gestation (GD) until weaning (28 days). Oxidative stress marker, BDNF expression, and cyclic AMP-response binding-protein (CREB) expression levels were measured on postnatal days (PND) 28. Object location memory (OLM) was evaluated on PND 34. Our results demonstrated that ethanol exposure significantly reduced glutathione peroxidase (GPx) activity, reduced glutathione (GSH), reduced/oxidized glutathione (GSH/GSSG) ratio, and increased superoxide dismutase (SOD) activity, malondialdehyde (MDA) levels, and carbonyl protein content in the hippocampus. Total BDNF, BDNF mRNA, and CREB expression significantly reduced in the hippocampus by ethanol exposure. Also, ethanol significantly reduced the discrimination index (DI) in the OLM test. In addition, vitamin E administration could reduce oxidative stress, increase significantly BDNF and CREB levels, and improve cognitive dysfunction induced by ethanol exposure. Collectively, results suggest that probably oxidative stress can interrelate with the BDNF system for modulating cognitive function in the ethanol-exposed rat.
Collapse
Affiliation(s)
| | - Iran Goudarzi
- School of Biology, Damghan University, Damghan, Iran
| | | | | |
Collapse
|
19
|
Sharma S. High fat diet and its effects on cognitive health: alterations of neuronal and vascular components of brain. Physiol Behav 2021; 240:113528. [PMID: 34260890 DOI: 10.1016/j.physbeh.2021.113528] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
It has been well recognized that intake of diets rich in saturated fats could result in development of metabolic disorders such as type 2 diabetes mellitus, obesity and cardiovascular diseases. Recent studies have suggested that intake of high fat diet (HFD) is also associated with cognitive dysfunction. Various preclinical studies have demonstrated the impact of short and long term HFD feeding on the biochemical and behavioural alterations. This review summarizes studies and the protocols used to assess the impacts of HFD feeding on cognitive performance in rodents. Further, it discuss the key mechanisms that are altered by HFD feeding, such as, insulin resistance, oxidative stress, neuro-inflammation, transcriptional dysregulation and loss of synaptic plasticity. Along with these, HFD feeding also alters the vascular components of brain such as loss of BBB integrity and reduced cerebral blood flow. It is highly possible that these factors are responsible for the development of cognitive deficits as a result of HFD feeding.
Collapse
Affiliation(s)
- Sorabh Sharma
- Division of Medical Sciences, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W2Y2, Canada.
| |
Collapse
|
20
|
Hajipour S, Farbood Y, Dianat M, Rashno M, Khorsandi LS, Sarkaki A. Thymoquinone improves cognitive and hippocampal long-term potentiation deficits due to hepatic encephalopathy in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:881-891. [PMID: 34712417 PMCID: PMC8528250 DOI: 10.22038/ijbms.2021.52824.11913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/22/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that causes brain disturbances. Thymoquinone (TQ) has a wide spectrum of activities such as antioxidant, anti-inflammatory, and anticancer. This study aimed to evaluate the effects of TQ on spatial memory and hippocampal long-term potentiation (LTP) in rats with thioacetamide (TAA)-induced liver injury and hepatic encephalopathy. MATERIALS AND METHODS Adult male Wistar rats were divided into six groups randomly: 1) Control; 2) HE, received TAA (200 mg/kg); 3-5) Treated groups (HE+TQ5, HE+TQ10, and HE+TQ20). TQ (5, 10, and 20 mg/kg) was injected intraperitoneally (IP) for 12 consecutive days from day 18 to 29. Subsequently, spatial memory performance was evaluated by the Morris water maze paradigm and hippocampal LTP was recorded from the dentate gyrus (DG) region. Activity levels of Malondialdehyde (MDA) and superoxide dismutase (SOD) were measured in the hippocampal tissue. RESULTS Data showed that the hippocampal content of MDA was increased while SOD activities were decreased in TAA-induced HE. TQ treatment significantly improved spatial memory and LTP. Moreover, TQ restored the levels of MDA and SOD activities in the hippocampal tissue in HE rats. CONCLUSION Our data confirm that TQ could attenuate cognitive impairment and improve LTP deficit by modulating the oxidative stress parameters in this model of HE, which leads to impairment of spatial cognition and LTP deficit. Thus, these results suggest that TQ may be a promising agent with positive therapeutic effects against liver failure and HE defects.
Collapse
Affiliation(s)
- Somayeh Hajipour
- Persian Gulf Physiology Research Center. Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center. Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Persian Gulf Physiology Research Center. Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of
| | | | - Alireza Sarkaki
- Persian Gulf Physiology Research Center. Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University
| |
Collapse
|
21
|
Sericin protects against acute sleep deprivation-induced memory impairment via enhancement of hippocampal synaptic protein levels and inhibition of oxidative stress and neuroinflammation in mice. Brain Res Bull 2021; 174:203-211. [PMID: 34153383 DOI: 10.1016/j.brainresbull.2021.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 01/07/2023]
Abstract
Sleep deprivation (SD) induces learning and memory deficits via inflammatory responses and oxidative stress. On the other hand, sericin (Ser) possesses potent antioxidant and neuroprotective effects. We investigated the effect of different doses of Ser on the SD-induced cognitive impairment. Ser (100, 200, and 300 mg/kg) was administered to animals via oral gavage for 8 days, 5 days before to SD, and during SD. SD was induced in mice using a modified multiple platform model, starting on the 6th day for 72 h. Spatial learning and memory were assessed using the Lashley III maze. Serum corticosterone level, and hippocampal malondialdehyde (MDA), total antioxidant capacity (TAC), and the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymes were evaluated. The expression of growth-associated protein 43 (GAP-43), post-synaptic density-95 (PSD-95), synapsin 1 (SYN-1), and synaptophysin (SYP), and inflammation markers were detected by western blotting. SD caused cognitive impairment, while Ser pretreatment prevented such an effect. Serum corticosterone also increased with SD, but its levels were suppressed in SD mice receiving Ser. Furthermore, Ser normalized SD-induced reduction in the hippocampus activity of SOD and GPx, increased TAC, and decreased MDA levels. Besides, Ser pretreatment increased GAP-34, SYP, SYN-I, and PSD-95 and reduced IL1-β and TNF-α in the hippocampus. SD induced memory impairment and pretreatment with Ser improved memory via its antioxidant, anti-inflammation, and up-regulation of synaptic proteins in the hippocampus.
Collapse
|
22
|
de França Silva RC, de Souza MA, da Silva JYP, Ponciano CDS, Bordin Viera V, de Menezes Santos Bertozzo CC, Guerra GC, de Souza Araújo DF, da Conceição MM, Querino Dias CDC, Oliveira ME, Soares JKB. Evaluation of the effectiveness of macaíba palm seed kernel (Acrocomia intumescens drude) on anxiolytic activity, memory preservation and oxidative stress in the brain of dyslipidemic rats. PLoS One 2021; 16:e0246184. [PMID: 33730037 PMCID: PMC7968719 DOI: 10.1371/journal.pone.0246184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022] Open
Abstract
Macaíba palm seed kernel is a source of lipids and phenolic compounds. The objective of this study was to evaluate the effects of macaíba palm seed kernel on anxiety, memory, and oxidative stress in the brain of health and dyslipidemic rats. Forty rats were used, divided into 4 groups (n = 10 each): control (CONT), dyslipidemic (DG), kernel (KG), and Dyslipidemic kernel (DKG). Dyslipidemia was induced using a high fat emulsion for 14 days before treatment. KG and DKG received 1000 mg/kg of macaíba palm seed kernel per gavage for 28 days. After treatment, anxiety tests were carried out using the Open Field Test (OFT), Elevated Plus Maze (EPM), and the Object Recognition Test (ORT) to assess memory. In the animals’ brain tissue, levels of malondialdehyde (MDA) and total glutathione (GSH) were quantified to determine oxidative stress. The data were treated with Two Way ANOVA followed by Tukey (p <0.05). Results demonstrated that the animals treated with kernel realized more rearing. DG and KG groomed less compared with CONT and DKG compared with all groups in OFT. KG spent more time in aversive open arms compared with CONT and DKG compared with all groups in EPM. Only DKG spent more time in the central area in EMP. KG and DKG showed a reduction in the exploration rate and MDA values (p <0.05). Data showed that macaíba palm seed kernel consumption induced anxiolytic-like behaviour and decreased lipids peroxidation in rats’ brains. On the other hand, this consumption by healthy and dyslipidemic animals compromises memory.
Collapse
|
23
|
Heshami N, Mohammadali S, Komaki A, Tayebinia H, Karimi J, Abbasi Oshaghi E, Hashemnia M, Khodadadi I. Favorable effects of dill tablets and Ocimum basilicum L. extract on learning, memory, and hippocampal fatty acid composition in hypercholesterolemic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:300-311. [PMID: 33995941 PMCID: PMC8087851 DOI: 10.22038/ijbms.2021.49013.11230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/20/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Hypercholesterolemia is correlated with brain amyloid-β (Aβ) deposition and impaired cognitive functions and contributes to Alzheimer's disease. Effects of cholesterol-lowering dill tablets and aqueous extract of Ocimum basilicum L. (basil) on learning and memory and hippocampus fatty acid composition were examined. mRNA levels of the genes involved in cholesterol homeostasis were also determined in high-cholesterol diet (HCD) fed rats. MATERIALS AND METHODS Forty male Wistar rats were allocated to 4 groups: rats fed chow diet (C); rats fed high-cholesterol (2%) diet (HCD); rats treated with HCD+300 mg/kg dill tablets (HCD+Dill); and finally, rats fed HCD and treated with 400 mg/kg basil aqueous extract (HCD+basil). Treatment was carried out for 16 weeks. Hippocampus Aβ(1-42) level was determined. Spatial and passive avoidance tests were used to examine cognitive functions. Hippocampal FA composition was assessed by gas chromatography. Basil aqueous extract was analyzed by GC-double mass spectroscopy (GC-MS/MS) and expression of LXR-α, LXR-β, and ABCA1 genes was assessed by qRT-PCR. RESULTS Dill tablets and basil extract remarkably ameliorated serum cholesterol (P<0.001), retarded hippocampal accumulation of Aβ, and attenuated HCD-induced memory impairment. Hippocampus FA composition did not change but serum cholesterol was found positively correlated with hippocampus Aβ(1-42) (P<0.001), total n 6 PUFA (P=0.013), and Aβ(1-42) showed correlation with the ratio of n6 to n3 PUFA. At least 70 components were identified in basil aqueous extract. CONCLUSION Dill tablets and aqueous extract of basil attenuated the hypercholesterolemia-induced memory impairment by lowering serum cholesterol and hippocampus amyloid deposits, and probably beneficial in AD adjuvant therapy.
Collapse
Affiliation(s)
- Neda Heshami
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soheila Mohammadali
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tayebinia
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Abbasi Oshaghi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
24
|
Alzoubi KH, Khabour OF, Al-Awad RM, Aburashed ZO. Every-other day fasting prevents memory impairment induced by high fat-diet: Role of oxidative stress. Physiol Behav 2021; 229:113263. [PMID: 33246002 DOI: 10.1016/j.physbeh.2020.113263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/10/2020] [Accepted: 11/21/2020] [Indexed: 01/11/2023]
Abstract
Imbalance of diet consumption results in memory and learning deterioration. High-fat diet (HFD) causes neuronal damage and eventually cognitive impairment, which can be related to increasing oxidative stress in the brain. Using the every other day fasting (EODF) paradigm, as a method of dietary restriction is thought to provide protection of learning and memory in several experimental studies. In the current work, the preventive effect of EODF paradigm on memory impairment-induced by HFD was investigated. Adult male Wistar rats were fed with HFD using the EODF paradigm for six weeks. At the end of these six weeks, and while the previous treatment were continued, rats were examined for learning and memory (both the short-term and the long-term memory) using the radial arm water maze (RAWM). Oxidative stress in the brain, namely in the hippocampus was also assessed. Chronic administration of HFD induced impairment in both, short- and long- term memory that was prevented using EODF paradigm. Furthermore, EODF prevented HFD-induced decrease in the activities of the antioxidant enzymes, SOD and catalase along with reduction of glutathione (GSH) level and the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG ratio). The EODF also inhibited rise in oxidized glutathione (GSSG) and thiobarbituric acid reactive substances (TBARS) seen with HFD. In conclusion, EODF ameliorated oxidative stress and memory impairment induced by chronic HFD. This probably, can be explained by the ability of EODF to normalize mechanisms involved in oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Rafat M Al-Awad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Zainah O Aburashed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
25
|
Agarwal P, Dhana K, Barnes LL, Holland TM, Zhang Y, Evans DA, Morris MC. Unhealthy foods may attenuate the beneficial relation of a Mediterranean diet to cognitive decline. Alzheimers Dement 2021; 17:1157-1165. [DOI: 10.1002/alz.12277] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/07/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Puja Agarwal
- Rush Institute of Healthy Aging, Department of Internal Medicine Rush University Medical Center Chicago Illinois USA
| | - Klodian Dhana
- Rush Institute of Healthy Aging, Department of Internal Medicine Rush University Medical Center Chicago Illinois USA
| | - Lisa L. Barnes
- Rush Alzheimer's Disease Center Rush University Medical Center Chicago Illinois USA
- Department of Neurological Sciences Rush University Medical Center Chicago Illinois USA
| | - Thomas M Holland
- Rush Institute of Healthy Aging, Department of Internal Medicine Rush University Medical Center Chicago Illinois USA
| | - Yanyu Zhang
- Rush Institute of Healthy Aging, Department of Internal Medicine Rush University Medical Center Chicago Illinois USA
| | - Denis A. Evans
- Rush Institute of Healthy Aging, Department of Internal Medicine Rush University Medical Center Chicago Illinois USA
| | - Martha Clare Morris
- Rush Institute of Healthy Aging, Department of Internal Medicine Rush University Medical Center Chicago Illinois USA
| |
Collapse
|
26
|
Diet Rich in Simple Sugars Promotes Pro-Inflammatory Response via Gut Microbiota Alteration and TLR4 Signaling. Cells 2020; 9:cells9122701. [PMID: 33339337 PMCID: PMC7766268 DOI: 10.3390/cells9122701] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diet is a strong modifier of microbiome and mucosal microenvironment in the gut. Recently, components of western-type diets have been associated with metabolic and immune diseases. Here, we studied how high-sugar diet (HSD) consumption influences gut mucosal barrier and immune response under steady state conditions and in a mouse model of acute colitis. We found that HSD significantly increased gut permeability, spleen weight, and neutrophil levels in spleens of healthy mice. Subsequent dextran sodium sulfate administration led to severe colitis. In colon, HSD significantly promoted neutrophil infiltration and increased the levels of IL-6, IL-1β, and TNF-α. Moreover, HSD-fed mice had significantly higher abundance of pathobionts, such as Escherichia coli and Candida, in fecal samples. Although germ-free mice colonized with microbiota of conventionally reared mice that consumed different diets had equally severe colitis, mice colonized with HSD microbiota showed markedly increased infiltration of neutrophils to the gut. The induction of colitis in Toll-like receptor 4 (TLR4)-deficient HSD-fed mice led to significantly milder colitis than in wild-type mice. In conclusion, our results suggested a significant role of HSD in disruption of barrier integrity and balanced mucosal and systemic immune response. In addition, these processes seemed to be highly influenced by resident potentially pathogenic microbiota or metabolites via the TLR4 signaling pathway.
Collapse
|
27
|
Mohammadali S, Heshami N, Komaki A, Tayebinia H, Abbasi Oshaghi E, Karimi J, Hashemnia M, Khodadadi I. Dill tablet and Ocimum basilicum aqueous extract: Promising therapeutic agents for improving cognitive deficit in hypercholesterolemic rats. J Food Biochem 2020; 44:e13485. [PMID: 33015851 DOI: 10.1111/jfbc.13485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/14/2020] [Accepted: 09/06/2020] [Indexed: 01/13/2023]
Abstract
High-cholesterol diet (HCD) is correlated with Alzheimer's disease (AD) and impairment of memory. This study investigated beneficial therapeutic effects of Dill tablet and Ocimum basilicum (Basil) aqueous extract on hypercholesterolemia-induced cognitive deficits and oxidative stress in hippocampus tissues of rats. Hippocampal Aβ(1-42) level was measured. The gene expression levels of superoxide dismutase and inducible-nitric oxide synthase were determined in hippocampus. Cognitive functions were examined and oxidative status was evaluated in serum and hippocampus. Phytochemical properties and in vitro antioxidant activity of Basil extract were assessed. HCD significantly increased serum cholesterol, induced deposition of Aβ plaque, altered hippocampus morphology, and impaired memory function, whereas receiving Basil extract or Dill tablet increased antioxidant potency in serum and hippocampus and normalized HCD-induced deleterious effects. Basil extract and Dill tablet may exhibit their beneficial effects in AD by lowering serum cholesterol and evoking antioxidant system in the brain. PRACTICAL APPLICATIONS: Dill tablet and Basil aqueous extract lowered serum cholesterol in hypercholesterolemic animal models, therefore, they can be used as hypocholesterolemic agents. These edible herbs significantly retarded deposition of Aβ plaque and normalized hippocampal morphology, thus, they favorably protected hippocampus tissue from deleterious effects-induced by hypercholesterolemia. Dill tablet and Basil aqueous extract also corrected oxide-redox balance and normalized HCD-induced oxidative stress to some extent and significantly improved impairments in learning and memory suggesting that these medicinal plants can be considered as surrogate therapeutic agents for the synthetic medicines in the treatment of AD and in postponement of its complications.
Collapse
Affiliation(s)
- Soheila Mohammadali
- Faculty of Medicine, Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Neda Heshami
- Faculty of Medicine, Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tayebinia
- Faculty of Medicine, Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Abbasi Oshaghi
- Faculty of Medicine, Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Faculty of Medicine, Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Hashemnia
- Faculty of Veterinary Medicine, Department of Pathobiology, Razi University, Kermanshah, Iran
| | - Iraj Khodadadi
- Faculty of Medicine, Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Nutrition Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
28
|
The effects of exercise treatment on learning and memory ability, and cognitive performance in diet-induced prediabetes animals. Sci Rep 2020; 10:15048. [PMID: 32929110 PMCID: PMC7490284 DOI: 10.1038/s41598-020-72098-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/18/2020] [Indexed: 11/20/2022] Open
Abstract
Changes associated with cognitive function in the high-fat high-carbohydrate diet-induced prediabetes animal model and effect of exercise remain unclear. Rats were randomly assigned to the following groups (n = 6): non-diabetic (ND), prediabetic (PD), intermittent exercising PD (PD + IE) and regular exercising PD (PD + RE). After exercise cessation, oral glucose tolerance (OGT), Novel Object Recognition Test (NORT) and Morris-Water Maze (MWM) tests were performed to assess cognitive function. After sacrifice, malonaldehyde, glutathione peroxidase, interleukin-1β and dopamine concentration in the prefrontal cortex (PFC) and hippocampus were measured. Impaired OGT response in PD animals was accompanied by poor performance on behavioural tasks. This was associated with increased oxidative stress markers and impaired dopamine neurotransmission as evidence by elevated dopamine concentration in the PFC and hippocampal tissue. Improved OGT response by exercise was coupled with improved performance on behavioural tasks, oxidative stress markers and increased interleukin-1β concentration. In regular exercise, this was further coupled with improved dopamine neurotransmission. Cognitive function was affected during prediabetes in animals. This was partly due to oxidative stress and impaired dopamine neurotransmission. Both intermittent and regular exercise improved cognitive function. This was partly mediated by improved glucose tolerance and oxidative stress as well as a subclinical increase in interleukin-1β concentration. In regular exercise, this was further mediated by improved dopamine neurotransmission.
Collapse
|
29
|
Sugiyama A, Kato H, Takakura H, Osawa S, Maeda Y, Izawa T. Effects of physical activity and melatonin on brain-derived neurotrophic factor and cytokine expression in the cerebellum of high-fat diet-fed rats. Neuropsychopharmacol Rep 2020; 40:291-296. [PMID: 32681810 PMCID: PMC7722650 DOI: 10.1002/npr2.12125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS Obesity suppresses brain-derived neurotrophic factor (BDNF) expression and increases the expression of pro-inflammatory cytokines. Herein, we assessed whether exercise training (ET), melatonin administration (MT), or their combination can affect the expressions of BDNF and cytokines in the cerebellum of high-fat diet (HFD)-fed rats. METHODS Wistar rats (4 weeks old) were divided into five groups: normal diet (ND)-fed control (ND-SED), HFD-fed control (HFD-SED), HFD-fed ET (HFD-ET), HFD-fed MT (HFD-MT), and HFD-fed MT plus ET (HFD-ETMT) group. The rats were fed ND or HFD for 17 weeks. Rats were subjected to ET (running on a treadmill) and/or MT (melatonin 5 mg/kg body weight, i.p.) for 9 weeks, 8 weeks after beginning the diet intervention. Changes in BDNF and cytokine expression levels were determined using immunoblotting and cytokine arrays, respectively, 36 hours following the last bout of ET. RESULTS Neither HFD-ET nor HFD-MT rats exhibited enhanced BDNF expression in the cerebellum, but HFD-ETMT rats had higher level of BDNF expression compared with the others. The expression of TrkB, a BDNF receptor, was higher in HFD-ETMT rats than in HFD-ET and HFD-MT rats. HFD enhanced the expression of interleukin (IL)-1, IL-2, and interferon-γ but reduced the expression of IL-4, IL-6, and IL13. ET and ET plus MT counteracted these HFD-induced changes in cytokine expressions. CONCLUSION Exercise in combination with melatonin confers the potential benefits of increasing BDNF and improving HFD-induced dysregulations of cytokines in the cerebellum.
Collapse
Affiliation(s)
- Ai Sugiyama
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe City, Japan
| | - Hisashi Kato
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe City, Japan
| | - Hisashi Takakura
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe City, Japan
| | - Seita Osawa
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe City, Japan
| | - Yuki Maeda
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe City, Japan
| | - Tetsuya Izawa
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe City, Japan
| |
Collapse
|
30
|
Kato Y, Aoki Y, Fukui K. Tocotrienols Influence Body Weight Gain and Brain Protein Expression in Long-Term High-Fat Diet-Treated Mice. Int J Mol Sci 2020; 21:ijms21124533. [PMID: 32630592 PMCID: PMC7352730 DOI: 10.3390/ijms21124533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 06/20/2020] [Indexed: 01/28/2023] Open
Abstract
Obesity induces serious diseases such as diabetes and cardiovascular disease. It has been reported that obesity increases the risk of cognitive dysfunction. Cognitive dysfunction is a characteristic symptom of Alzheimer’s and Parkinson’s diseases. However, the detailed mechanisms of obesity-induced cognitive dysfunction have not yet been elucidated. The onset and progression of obesity-induced severe secondary diseases such as diabetes, cardiovascular events, and hypertension are deeply connected to oxidative stress. We hypothesized that obesity induces cognitive dysfunction via acceleration of reactive oxygen species (ROS) production. Vitamin E, which is a lipophilic vitamin, has strong antioxidative effects and consists of two groups: tocopherols and tocotrienols. Recently, it has been demonstrated that tocotrienols have strong neuroprotective and anti-obesity effects. In this study, we fed mice a high-fat diet (HFD) from 9 to 14 months of age and assessed the effect of tocotrienols treatment on body weight, brain oxidation levels, and cognitive function. The results revealed that treatment with tocotrienols inhibited body weight gain; further, tocotrienols reached the brain and attenuated oxidation in HFD-treated mice. These results indicate that tocotrienols have anti-obesity effects and inhibit obesity-induced brain oxidation.
Collapse
Affiliation(s)
- Yugo Kato
- Molecular Cell Biology Laboratory, Department of Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337–8570, Japan;
| | - Yoshinori Aoki
- Mitsubishi-Chemical Foods Corporation, Marunouchi 1–1–1, Chiyoda-ku, Tokyo 100–8251, Japan;
| | - Koji Fukui
- Molecular Cell Biology Laboratory, Department of Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337–8570, Japan;
- Correspondence: ; Tel.: +81-48-720-6033
| |
Collapse
|
31
|
Alzoubi KH, Al-Jamal FF, Mahasneh AF. Cerebrolysin prevents sleep deprivation induced memory impairment and oxidative stress. Physiol Behav 2020; 217:112823. [DOI: 10.1016/j.physbeh.2020.112823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
|
32
|
Omidi G, Rezvani-Kamran A, Ganji A, Komaki S, Etaee F, Asadbegi M, Komaki A. Effects of Hypericum scabrum extract on dentate gyrus synaptic plasticity in high fat diet-fed rats. J Physiol Sci 2020; 70:19. [PMID: 32209056 PMCID: PMC7093352 DOI: 10.1186/s12576-020-00747-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 03/09/2020] [Indexed: 01/09/2023]
Abstract
High-fat diet (HFD) can induce deficits in neural function, oxidative stress, and decrease hippocampal neurogenesis. Hypericum (H.) scabrum extract (Ext) contains compounds that could treat neurological disorders. This study aimed to examine the neuroprotective impacts of the H. scabrum Ext on hippocampal synaptic plasticity in rats that were fed HFD. Fifty-four male Wistar rats (220 ± 10 g) were randomly arranged in six groups: (1) HFD group; (2) HFD + Ext300 group; (3) HFD + Ext100 group; (4) Control group; (5) Ext 300 mg/kg group; (6) Ext 100 mg/kg group. These protocols were administrated for 3 months. After this stage, a stimulating electrode was implanted in the perforant pathway (PP), and a bipolar recording electrode was embedded into the dentate gyrus (DG). Long-term potentiation (LTP) was provoked by high-frequency stimulation (HFS) of the PP. Field excitatory postsynaptic potentials (EPSP) and population spikes (PS) were recorded at 5, 30, and 60 min after HFS. The HFD group exhibited a large and significant decrease in their PS amplitude and EPSP slope as compared to the control and extract groups. In reverse, H. scabrum administration in the HFD + Ext rats reversed the effect of HFD on the PS amplitude and EPSP slope. The results of the study support that H. scabrum Ext can inhibit diminished synaptic plasticity caused by the HFD. These effects are probably due to the extreme antioxidant impacts of the Ext and its capability to scavenge free radicals.
Collapse
Affiliation(s)
- Ghazaleh Omidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezoo Rezvani-Kamran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Ganji
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Somayeh Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farshid Etaee
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Rahe Sabz Addiction Rehabilitation Clinic, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Asadbegi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. .,Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178/518, Hamadan, Iran.
| |
Collapse
|
33
|
Alzoubi KH, Shatnawi AF, Al-Qudah MA, Alfaqih MA. Vitamin C attenuates memory loss induced by post-traumatic stress like behavior in a rat model. Behav Brain Res 2020; 379:112350. [PMID: 31711893 DOI: 10.1016/j.bbr.2019.112350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 01/01/2023]
Abstract
Oxidative stress is associated with neuronal damage in many brain regions including the hippocampus; an area in the brain responsible of memory processing. Oxidative stress is also linked with many psychiatric conditions including post-traumatic stress disorder (PTSD). PTSD is triggered by traumatic experience and many PTSD patients show signs of memory impairment. Vitamin C is a water-soluble vitamin with antioxidant properties. Herein, we hypothesized that memory impairment observed during PTSD could be a result of oxidative stress in hippocampal tissues and that prophylactic vitamin C administration may reduce oxidative stress in the hippocampus and prevent memory impairment. The above hypothesis was tested in a rat model where PTSD-like behavior was induced through single prolonged stress (SPS). Short and long-term memory was tested using a radial arm water maze (RAWM). We found that SPS induced a significant increase in the oxidized glutathione levels of the hippocampus. This reduction was accompanied with a significant decrease in glutathione peroxidase and catalase enzyme activity, and a significant increase in lipid peroxidation. Intriguingly, vitamin C administration successfully attenuated memory impairment and all of the changes observed in oxidative stress markers. Our findings demonstrate that vitamin C could prevent oxidative stress and memory impairment induced by SPS model of PTSD-like behavior in rat.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Alaa F Shatnawi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad A Al-Qudah
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mahmoud A Alfaqih
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
34
|
Ahmed M, Alzoubi KH, Khabour OF. Vitamin E prevents the cognitive impairments in post-traumatic stress disorder rat model: behavioral and molecular study. Psychopharmacology (Berl) 2020; 237:599-607. [PMID: 31734707 DOI: 10.1007/s00213-019-05395-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
RATIONALE Post-traumatic stress disorder (PTSD) is a psychiatric disorder developed after an exposure to severe traumatic events. Patients with PTSD suffer from different symptoms including memory impairment. In addition, PTSD is associated with oxidative stress. Vitamin E, a fat-soluble vitamin, possesses cognition protective effects via its antioxidative properties. OBJECTIVES To investigate the impact of vitamin E on memory impairment induced by PTSD in animals. METHODS A rat model of PTSD-like behavior and the radial arm water maze (RAWM) for testing of learning and memory paradigm were used. Rats were divided into 4 groups: control, vitamin E, PTSD, and vitamin E + PTSD. RESULTS In the learning phase, results showed no significant differences among experimental groups, indicating that PTSD-like behavior did not impair learning ability in rats. However, memory tests in the RAWM showed that PTSD-like animals had impairment in both short-term and long-term memories. Vitamin E, on the other hand, prevented this impairment of memory. With respect to oxidative stress, significant decreases were detected in reduced glutathione/oxidized glutathione (GSH/GSSG) ratio, glutathione peroxidase (GPx) and catalase enzyme activities, global histone 3 acetylation, and brain derived neurotrophic factor (BDNF) levels in the PTSD-like animals group compared with other groups (P < 0.05). Vitamin E protected the reduction of these oxidative stress biomarkers, global histone 3 acetylation, and BDNF levels. CONCLUSIONS Vitamin E prevented memory impairment associated with PTSD-like behavior in animals, probably via its antioxidative properties, and preservation of epigenetic changes induced in PTSD-like animals.
Collapse
Affiliation(s)
- Mohammed Ahmed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), F-75013, Paris, France
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
35
|
Gong L, Guo S, Zou Z. Resveratrol ameliorates metabolic disorders and insulin resistance in high-fat diet-fed mice. Life Sci 2020; 242:117212. [DOI: 10.1016/j.lfs.2019.117212] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022]
|
36
|
Shekarian M, Komaki A, Shahidi S, Sarihi A, Salehi I, Raoufi S. The protective and therapeutic effects of vinpocetine, a PDE1 inhibitor, on oxidative stress and learning and memory impairment induced by an intracerebroventricular (ICV) injection of amyloid beta (aβ) peptide. Behav Brain Res 2020; 383:112512. [PMID: 31991177 DOI: 10.1016/j.bbr.2020.112512] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease leading to cognitive and memory impairment. This study aimed at investigating the therapeutic and preserving effects of vinpocetine on amyloid beta (Aβ)-induced rat model of AD. Sixty male adult Wistar rats were randomly divided into 6 groups (n = 10 per group) as follows: 1; control, 2; sham, 3; Aβ, 4; pre-treatment (vinpocetine + Aβ): oral gavage administration of vinpocetine at 4 mg/kg for 30 days followed by intracerebroventricular (ICV) injection of Aβ, 5; treatment (Aβ + vinpocetine): Aβ ICV injection followed by vinpocetine administration for 30 days, 6; pre-treatment + treatment (vinpocetine + Aβ + vinpocetine): vinpocetine administration for 30 days before and 30 days after AD induction. Following treatments, the animals' learning and memory were investigated using passive avoidance learning (PAL) task, Morris water maze (MWM), and novel object recognition (NOR) tests. The results demonstrated that Aβ significantly enhanced escape latency and the distance traveled in the MWM, decreased step-through latency, and increased time spent in the dark compartment in PAL. Vinpocetine ameliorated the Aβ-infused memory deficits in both MWM and PAL tests. Administration of vinpocetine in the Aβ rats increased the discrimination index of the NOR test. It also significantly diminished the nitric oxide and malondialdehyde levels and restored the reduced glutathione (GSH) levels. Vinpocetine can improve memory and learning impairment following Aβ infusion due to its different properties, including antioxidant effects, which indicates that vinpocetine administration can lead to the amelioration of cognitive dysfunction in AD.
Collapse
Affiliation(s)
- Meysam Shekarian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
37
|
Rababa'h SY, Alzoubi KH, Hammad HM, Alquraan L, El-Salem K. Memory Impairment Induced by Chronic Psychosocial Stress Is Prevented by L-Carnitine. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 13:4341-4350. [PMID: 31908419 PMCID: PMC6927795 DOI: 10.2147/dddt.s225264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Introduction Psychosocial stress (STS) negatively influences memory. This might be associated to oxidative stress-induced progressive destruction of numerous brain structures and functions. L-carnitine (L-CAR) is a widely used antioxidant compound that is endogenously made in mammalian species. The current study investigated the effect of L-CAR on STS-induced memory impairment in the rat hippocampus. Methods The STS was induced using intruder model, where two rats were randomly switched from each one cage to another, once/day for 6 weeks. Concurrently, L-CAR (300mg/kg/day) was intraperitoneally administered for 6 weeks. After that, radial arm water maze (RAWM) was used to assess spatial learning memory in rats. Hippocampal biomarkers of oxidative stress, including thiobarbituric acid reactive substance (TBARs), oxidized glutathione (GSSG), reduced glutathione (GSH), glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD), and Brain-derived neurotrophic factor (BDNF) were examined. Results The results showed impairment of short-term memory (P < 0.05) during STS, whereas L-CAR treatment protected against this effect. Furthermore, while no change was observed in GSH, GSSG, GPx, catalase, and SOD, L-carnitine normalized STS-induced reduction in the hippocampal BDNF levels and increase in TBARS levels. Discussion Chronic psychosocial stress-induced memory impairment was prevented via L-CAR administration, which could have been achieved via normalizing changes in lipid peroxidation (TBARs) and BDNF levels in the hippocampus.
Collapse
Affiliation(s)
- Suzie Y Rababa'h
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan.,Department of Medical Science, Irbid Faculty, Al-Balqa Applied University (BAU), Irbid 21110, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Hana M Hammad
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Laiali Alquraan
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan.,Department of Biology, Yarmouk University, Irbid 21163, Jordan
| | - Khalid El-Salem
- Department of Neurosciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
38
|
Effects of DCM Leaf Extract of Gnidia glauca (Fresen) on Locomotor Activity, Anxiety, and Exploration-Like Behaviors in High-Fat Diet-Induced Obese Rats. Behav Neurol 2019; 2019:7359235. [PMID: 31933694 PMCID: PMC6942765 DOI: 10.1155/2019/7359235] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 11/03/2019] [Accepted: 12/07/2019] [Indexed: 11/30/2022] Open
Abstract
Obesity is the main component of metabolic syndromes involving distinct etiologies that target different underlying behavioral and physiological functions within the brain structures and neuronal circuits. An alteration in the neuronal circuitry stemming from abdominal or central obesity stimulates a cascade of changes in neurochemical signaling that directly or indirectly mediate spontaneously emitted behaviors such as locomotor activity patterns, anxiety, and exploration. Pharmacological agents available for the treatment of neurologic disorders have been associated with limited potency and intolerable adverse effects. These have necessitated the upsurge in the utilization of herbal prescriptions due to their affordability and easy accessibility and are firmly embedded within wider belief systems of many people. Gnidia glauca has been used in the management of many ailments including obesity and associated symptomatic complications. However, its upsurge in use has not been accompanied by empirical determination of these folkloric claims. The present study, therefore, is aimed at determining the modulatory effects of dichloromethane leaf extract of Gnidia glauca on locomotor activity, exploration, and anxiety-like behaviors in high-fat diet-induced obese rats in an open-field arena. Obesity was experimentally induced by feeding the rats with prepared high-fat diet and water ad libitum for 6 weeks. The in vivo antiobesity effects were determined by oral administration of G. glauca at dosage levels of 200, 250, and 300 mg/kg body weight in high-fat diet-induced obese rats from the 6th to 12th week. Phytochemical analysis was done using gas chromatography linked to mass spectroscopy. Results indicated that Gnidia glauca showed anxiolytic effects and significantly increased spontaneous locomotor activity and exploration-like behaviors in HFD-induced obese rats. The plant extract also contained phytocompounds that have been associated with amelioration of the main neurodegenerative mediators, viz., inflammation and oxidative stress. These findings provide “qualified leads” for the synthesis of new alternative therapeutic agents for the management of neurologic disorders. However, there is a need to conduct toxicity studies of Gnidia glauca to establish its safety profiles.
Collapse
|
39
|
The effect of high fat, high sugar, and combined high fat-high sugar diets on spatial learning and memory in rodents: A meta-analysis. Neurosci Biobehav Rev 2019; 107:399-421. [DOI: 10.1016/j.neubiorev.2019.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 12/29/2022]
|
40
|
Arika WM, Kibiti CM, Njagi JM, Ngugi MP. Modulation of Cognition: The Role of Gnidia glauca on Spatial Learning and Memory Retention in High-Fat Diet-Induced Obese Rats. Neural Plast 2019; 2019:2867058. [PMID: 31565046 PMCID: PMC6745098 DOI: 10.1155/2019/2867058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/22/2019] [Accepted: 08/13/2019] [Indexed: 11/26/2022] Open
Abstract
Chronic exposures to high-fat diets are linked to neuropathological changes that culminate in obesity-related cognitive dysfunction and brain alteration. Learning, memory performance, and executive function are the main domains affected by an obesogenic diet. There are limited effective therapies for addressing cognitive deficits. Thus, it is important to identify additional and alternative therapies. In African traditional medicine, Gnidia glauca has putative efficacy in the management of obesity and associated complications. The use of Gnidia glauca is largely based on its long-term traditional use. Its therapeutic application has not been accompanied by sufficient scientific evaluation to validate its use. Therefore, the current study sought to explore the modulatory effects of dichloromethane leaf extracts of Gnidia glauca on cognitive function in the high-fat diet- (HFD-) induced obese rats. Obesity was induced by feeding the rats with prepared HFD and water ad libitum for 6 weeks. The in vivo antiobesity effects were determined by oral administration of G. glauca at dosage levels of 200, 250, and 300 mg/kg body weight in HFD-induced obese rats from the 6th to the 12th weeks. The Lee obesity index was used as a diagnostic criterion of obesity. The Morris water maze was employed to test spatial learning and memory retention in rats. The results indicated that Gnidia glauca showed potent antiobesity effects as indicated in the reduction of body weight and obesity index in extract-treated rats. Moreover, Gnidia glauca exhibited cognitive-enhancing effects in obese rats. The positive influences on cognitive functions might be attributed to the extracts' phytochemicals that have been suggested to confer protection against obesity-induced oxidative damage, reduction of central inflammation, and increased neurogenesis. The therapeutic effects observed suggest that Gnidia glauca might be an alternative to current medications for the symptomatic complications of obesity, such as learning and memory loss. Further studies are therefore needed to establish its toxicity profiles.
Collapse
Affiliation(s)
- Wycliffe Makori Arika
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Cromwell Mwiti Kibiti
- Department of Pure and Applied Sciences, Technical University of Mombasa, P.O. Box 90420-80100, Mombasa, Kenya
| | - Joan Murugi Njagi
- Department of Environmental and Occupational Health, School of Environmental Sciences, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Mathew Piero Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
41
|
Pakdel R, Vatanchian M, Niazmand S, Beheshti F, Rahimi M, Aghaee A, Hadjzadeh MAR. Comparing the effects of Portulaca oleracea seed hydro-alcoholic extract, valsartan, and vitamin E on hemodynamic changes, oxidative stress parameters and cardiac hypertrophy in thyrotoxic rats. Drug Chem Toxicol 2019; 45:14-21. [DOI: 10.1080/01480545.2019.1651330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Roghayeh Pakdel
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehran Vatanchian
- Department of Anatomical Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Saeed Niazmand
- Cardiovascular Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rahimi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azita Aghaee
- Department of Pharmacology, Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mousa-Al-Reza Hadjzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Erfani M, Ghazi Tabatabaei Z, Sadigh-Eteghad S, Farokhi-Sisakht F, Farajdokht F, Mahmoudi J, Karimi P, Nasrolahi A. Rosa canina L. methanolic extract prevents heat stress-induced memory dysfunction in rats. Exp Physiol 2019; 104:1544-1554. [PMID: 31297904 DOI: 10.1113/ep087535] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Heat stress has harmful effects on the brain structure and synaptic density via induction of oxidative stress and neuroinflammation, which result in neuronal damage in the hippocampus and thereby cognitive impairments. In this study, we investigate the effect of Rosa canina treatment on cognitive function in heat stress-exposed rats and its underlying mechanisms. What is the main finding and its importance? We show that R. canina improves cognitive deficits induced by heat stress by attenuation of oxidative stress and neuroinflammation and by upregulation of synaptic proteins in the hippocampus. ABSTRACT The aim of the study was to evaluate the effects of aqueous methanolic extract of Rosa canina (RC) dried fruits on oxidative stress, inflammation, synaptic degeneration and memory dysfunction induced by heat stress (HS) in rats. Sixty adult male Wistar rats were randomly divided into five groups as follows: the control group received normal saline (NS); the HS group was exposed to heat stress (43°C) for 15 min once a day for 2 weeks; and HS+R groups were exposed to heat stress and received one of three doses (250, 500 or 1000 mg kg-1 ) of RC methanolic extract for 2 weeks. A passive avoidance test and a Y-maze test were performed to assess learning and memory. The levels of reactive oxygen species were assessed. The serum cortisol concentration and hippocampal total antioxidant capacity, superoxide dismutase and glutathione peroxidase were also detected using spectrophotometry. The protein expressions of c-Fos, heat-shock protein-70, tumour necrosis factor-α, growth-associated protein 43, post-synaptic density-95 and synaptophysin were evaluated in the hippocampal tissue. The results showed that RC significantly improved cognitive dysfunction induced by HS, which was accompanied by downregulation of tumour necrosis factor-α and upregulation of growth-associated protein 43 and synaptophysin proteins in the hippocampus of HS-exposed rats. Furthermore, RC significantly attenuated serum cortisol concentrations and upregulated heat shock protein-70 and c-Fos in the hippocampus. In addition, the administration of RC attenuated reactive oxygen species levels and enhanced antioxidant defense in the hippocampus. These findings indicate that RC attenuated the deleterious effect of HS on cognition through its antioxidant properties and by enhancing synaptic function and plasticity.
Collapse
Affiliation(s)
- Marjan Erfani
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ava Nasrolahi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Molecular Medicine, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
43
|
Vitamin E modifies high-fat diet-induced reduction of seizure threshold in rats: Role of oxidative stress. Physiol Behav 2019; 206:200-205. [DOI: 10.1016/j.physbeh.2019.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
|
44
|
Alzoubi KH, Mayyas F, Abu Zamzam HI. Omega-3 fatty acids protects against chronic sleep-deprivation induced memory impairment. Life Sci 2019; 227:1-7. [PMID: 30998938 DOI: 10.1016/j.lfs.2019.04.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 12/17/2022]
Abstract
AIMS The current study aims to evaluate the possible protective effect of omega-3 fatty acids on memory impairment induced by sleep-deprivation in rats. MATERIALS AND METHODS Animals were chronically sleep deprived using the modified multiple platform model (8 h/day for 8 weeks). Omega-3 fatty acids were administered as fish oil via oral gavage at a daily dose of 100 mg omega-3 PUFA/100 g BWT. The spatial learning and memory were evaluated using the radial arm water maze (RAWM). Additionally, the following oxidative stress biomarkers were measured in the hippocampus: glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG, glutathione peroxidase (GPx), catalase, superoxide dismutase (SOD), and thiobarbituric acid reactive substance (TBARS). KEY FINDINGS Animals in the SD group committed significantly more errors in both short- and long- term memory tests of the RAWM compared to other groups. On the other hand, animals that were sleep deprived and treated with omega-3 fatty acids committed similar number of errors compared to the control group. This indicates that SD impaired both short- and long- term memories, and that chronic omega-3 fatty acids administration prevented these effects. Omega-3 fatty acids also prevented the decreases in hippocampal GPx, catalase and GSH/GSSG ratio and normalized the increases in GSSG levels, which were impaired by SD model. No changes were observed on hippocampal TBARS levels, or activity of SOD among experimental groups. SIGNIFICANCE In conclusion, a protective effect of omega-3 fatty acids administration has been observed against chronic SD-induced memory impairment probably via improving hippocampus antioxidant effects.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Fadia Mayyas
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Hamza I Abu Zamzam
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
45
|
Alzoubi KH, Halboup AM, Alomari MA, Khabour OF. The neuroprotective effect of vitamin E on waterpipe tobacco smoking-induced memory impairment: The antioxidative role. Life Sci 2019; 222:46-52. [DOI: 10.1016/j.lfs.2019.02.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/31/2022]
|
46
|
Alquraan L, Alzoubi KH, Hammad H, Rababa'h SY, Mayyas F. Omega-3 Fatty Acids Prevent Post-Traumatic Stress Disorder-Induced Memory Impairment. Biomolecules 2019; 9:biom9030100. [PMID: 30871113 PMCID: PMC6468674 DOI: 10.3390/biom9030100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder that can happen after exposure to a traumatic event. Post-traumatic stress disorder is common among mental health disorders that include mood and anxiety disorders. Omega-3 fatty acids (OMGs) are essential for the maintenance of brain function and prevention of cognition dysfunctions. However, the possible effect of OMG on memory impairment induced by PTSD has not been studied. In here, such an effect was explored using a rat model of PTSD. The PTSD-like behavior was induced in animals using a single-prolonged stress (SPS) rat model of PTSD (2 h restraint, 20 min forced swimming, 15 min rest, 1–2 min diethyl ether exposure). The OMG was administered orally at a dose of 100 mg omega-3 polyunsaturated fatty acid (PUFA)/100 g body weight/day. Spatial learning and memory were assessed using the radial arm water maze (RAWM) method. Changes in oxidative stress biomarkers, thiobarbituric acid reactive substances (TBARS), and brain derived neuroptrophic factor (BDNF) in the hippocampus following treatments were measured. The results revealed that SPS impaired both short- and long-term memory (p < 0.05). Use of OMG prevented memory impairment induced by SPS. Furthermore, OMG normalized SPS induced changes in the hippocampus that reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG ratios, the activity of catalase, glutathione peroxidase (GPx), and TBARSs levels. In conclusion, the SPS model of PTSD-like behavior generated memory impairment, whereas OMG prevented this impairment, possibly through normalizing antioxidant mechanisms in the hippocampus.
Collapse
Affiliation(s)
- Laiali Alquraan
- Department of Biological Sciences, School of Science, University of Jordan, Amman 11942, Jordan.
- Department of Biology, Yarmouk University, Irbid 21163, Jordan.
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Hana Hammad
- Department of Biological Sciences, School of Science, University of Jordan, Amman 11942, Jordan.
| | - Suzie Y Rababa'h
- Department of Biological Sciences, School of Science, University of Jordan, Amman 11942, Jordan.
- Department of Medical Science, Irbid Faculty, Al-Balqa Applied University, Irbid 21110, Jordan.
| | - Fadia Mayyas
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
47
|
Takahashi K, Yanai S, Takisawa S, Kono N, Arai H, Nishida Y, Yokota T, Endo S, Ishigami A. Vitamin C and vitamin E double-deficiency increased neuroinflammation and impaired conditioned fear memory. Arch Biochem Biophys 2019; 663:120-128. [DOI: 10.1016/j.abb.2019.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/25/2018] [Accepted: 01/05/2019] [Indexed: 12/15/2022]
|
48
|
Kim HJ, Joe Y, Chen Y, Park GH, Kim UH, Chung HT. Carbon monoxide attenuates amyloidogenesis via down-regulation of NF-κB-mediated BACE1 gene expression. Aging Cell 2019; 18:e12864. [PMID: 30411846 PMCID: PMC6351829 DOI: 10.1111/acel.12864] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β (Aβ) peptides, the major constituent of plaques, are generated by sequential proteolytic cleavage of the amyloid precursor protein (APP) via β-secretase (BACE1) and the γ-secretase complex. It has been proposed that the abnormal secretion and accumulation of Aβ are the initial causative events in the development of Alzheimer's disease (AD). Drugs modulating this pathway could be used for AD treatment. Previous studies indicated that carbon monoxide (CO), a product of heme oxygenase (HO)-1, protects against Aβ-induced toxicity and promotes neuroprotection. However, the mechanism underlying the mitigative effect of CO on Aβ levels and BACE1 expression is unclear. Here, we show that CO modulates cleavage of APP and Aβ production by decreasing BACE1 expression in vivo and in vitro. CO reduces Aβ levels and improves memory deficits in AD transgenic mice. The regulation of BACE1 expression by CO is dependent on nuclear factor-kappa B (NF-κB). Consistent with the negative role of SIRT1 in the NF-κB activity, CO fails to evoke significant decrease in BACE1 expression in the presence of the SIRT1 inhibitor. Furthermore, CO attenuates elevation of BACE1 level in brains of 3xTg-AD mouse model as well as mice fed high-fat, high-cholesterol diets. CO reduces the NF-κB-mediated transcription of BACE1 induced by the cholesterol oxidation product 27-hydroxycholesterol or hydrogen peroxide. These data suggest that CO reduces the NF-κB-mediated BACE1 transcription and consequently decreases Aβ production. Our study provides novel mechanisms by which CO reduces BACE1 expression and Aβ production and may be an effective agent for AD treatment.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| | - Yeonsoo Joe
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| | - Yingqing Chen
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| | - Gyu Hwan Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Uh-Hyun Kim
- National Creative Research Laboratory for Ca Signaling Network, Medical School; Chonbuk National University; Jeonju South Korea
| | - Hun Taeg Chung
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| |
Collapse
|
49
|
Nagib MM, Tadros MG, Rahmo RM, Sabri NA, Khalifa AE, Masoud SI. Ameliorative Effects of α-Tocopherol and/or Coenzyme Q10 on Phenytoin-Induced Cognitive Impairment in Rats: Role of VEGF and BDNF-TrkB-CREB Pathway. Neurotox Res 2019; 35:451-462. [PMID: 30374909 DOI: 10.1007/s12640-018-9971-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022]
Abstract
Phenytoin is one of the most well-known antiepileptic drugs that cause cognitive impairment which is closely related to cAMP response element-binding protein (CREB) brain-derived neurotrophic factor (BDNF) signaling pathway. Moreover, vascular endothelial growth factor (VEGF), an endothelial growth factor, has a documented role in neurogenesis and neuronal survival and cognitive impairment. Therefore, this study aimed to investigate the influence of powerful antioxidants: α-Toc and CoQ10 alone or combined in the preservation of brain tissues and the maintenance of memory formation in phenytoin-induced cognitive impairment in rats. The following behavioral test novel object recognition and elevated plus maze were assessed after 14 days of treatment. Moreover, VEGF, BDNF, TrkB, and CREB gene expression levels in the hippocampus and prefrontal cortex were estimated using RT-PCR. Both α-Toc and CoQ10 alone or combined with phenytoin showed improvement in behavioral tests compared to phenytoin. Mechanistically, α-Toc and/or CoQ10 decreases the VEGF mRNA expression, while increases BDNF-TrKB-CREB mRNA levels in hippocampus and cortex of phenytoin-treated rats. Collectively, α-Toc and/or CoQ10 alleviated the phenytoin-induced cognitive impairment through suppressing oxidative damage. The underlying molecular mechanism of the treating compounds is related to the VEGF and enhancing BDNF-TrkB-CREB signaling pathway. Our study indicated the usefulness α-Toc or CoQ10 as an adjuvant to antiepileptic drugs with an advantage of preventing cognitive impairment and oxidative stress.
Collapse
Affiliation(s)
- Marwa M Nagib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, KM 28 Cairo - Ismailia Road Ahmed Orabi District, Cairo, Egypt.
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M Rahmo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, KM 28 Cairo - Ismailia Road Ahmed Orabi District, Cairo, Egypt
| | - Nagwa Ali Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amani E Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University seconded to 57357 Children Cancer Hospital, Cairo, Egypt
| | - Somaia I Masoud
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
50
|
Alzoubi KH, Al-Ibbini AM, Nuseir KQ. Prevention of memory impairment induced by post-traumatic stress disorder by cerebrolysin. Psychiatry Res 2018; 270:430-437. [PMID: 30316170 DOI: 10.1016/j.psychres.2018.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Post-traumatic stress disorder (PTSD) may occur after exposure to stressful, fearful or troubling events. Until now, there is no curable medication for this disorder. Cerebrolysin is a neuropeptide, which has an important role in the treatment of vascular dementia. In this study, the probable protective effect of cerebrolysin on PTSD-induced memory impairment was investigated. To induce PTSD, the single prolonged stress (SPS) model was used. Rats were allocated into four groups: control (vehicle-treated), CBL (administrated cerebrolysin 2.5 ml/kg by intraperitoneal route for 4 weeks), SPS (as a model of PTSD and administered vehicle), and CBL-SPS (exposed to SPS and administered cerebrolysin for 4 weeks). Learning and memory were assessed using the radial arm water maze (RAWM). Results showed that SPS impaired both short- and long- term memories; and chronic cerebrolysin administration prevented such effect. Cerebrolysin also prevented decreases in hippocampal GSH levels and GSH/GSSG ratios, and increased GSSG and TBARs, levels induced by PTSD. In conclusion, a protective effect of cerebrolysin administration against SPS model of PTSD induced short- and long- term memory impairment was characterized. This protection could be accomplished, at least partly, by prevention of PTSD induced increase in oxidative stress in the hippocampus via the use of cerebrolysin.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Alaa M Al-Ibbini
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Khawla Q Nuseir
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|