1
|
Sgambato V. The Serotonin 4 Receptor Subtype: A Target of Particular Interest, Especially for Brain Disorders. Int J Mol Sci 2024; 25:5245. [PMID: 38791281 PMCID: PMC11121119 DOI: 10.3390/ijms25105245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, particular attention has been paid to the serotonin 4 receptor, which is well expressed in the brain, but also peripherally in various organs. The cerebral distribution of this receptor is well conserved across species, with high densities in the basal ganglia, where they are expressed by GABAergic neurons. The 5-HT4 receptor is also present in the cerebral cortex, hippocampus, and amygdala, where they are carried by glutamatergic or cholinergic neurons. Outside the central nervous system, the 5-HT4 receptor is notably expressed in the gastrointestinal tract. The wide distribution of the 5-HT4 receptor undoubtedly contributes to its involvement in a plethora of functions. In addition, the modulation of this receptor influences the release of serotonin, but also the release of other neurotransmitters such as acetylcholine and dopamine. This is a considerable asset, as the modulation of the 5-HT4 receptor can therefore play a direct or indirect beneficial role in various disorders. One of the main advantages of this receptor is that it mediates a much faster antidepressant and anxiolytic action than classical selective serotonin reuptake inhibitors. Another major benefit of the 5-HT4 receptor is that its activation enhances cognitive performance, probably via the release of acetylcholine. The expression of the 5-HT4 receptor is also altered in various eating disorders, and its activation by the 5-HT4 agonist negatively regulates food intake. Additionally, although the cerebral expression of this receptor is modified in certain movement-related disorders, it is still yet to be determined whether this receptor plays a key role in their pathophysiology. Finally, there is no longer any need to demonstrate the value of 5-HT4 receptor agonists in the pharmacological management of gastrointestinal disorders.
Collapse
Affiliation(s)
- Véronique Sgambato
- Institut des Sciences Cognitives Marc Jeannerod (ISCMJ), Unité Mixte de Recherche 5229 du Centre National de la Recherche Scientifique (CNRS), 69675 Bron, France; ; Tel.: +33-4379-11249
- UFR Biosciences, Université de Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
2
|
Choi IY, Cha JH, Kim SY, Hsieh J, Cho KO. Seizure-induced LIN28A disrupts pattern separation via aberrant hippocampal neurogenesis. JCI Insight 2024; 9:e175627. [PMID: 38193536 PMCID: PMC10906464 DOI: 10.1172/jci.insight.175627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 01/10/2024] Open
Abstract
Prolonged seizures can disrupt stem cell behavior in the adult hippocampus, an important brain structure for spatial memory. Here, using a mouse model of pilocarpine-induced status epilepticus (SE), we characterized spatiotemporal expression of Lin28a mRNA and proteins after SE. Unlike Lin28a transcripts, induction of LIN28A protein after SE was detected mainly in the subgranular zone, where immunoreactivity was found in progenitors, neuroblasts, and immature and mature granule neurons. To investigate roles of LIN28A in epilepsy, we generated Nestin-Cre:Lin28aloxP/loxP (conditional KO [cKO]) and Nestin-Cre:Lin28a+/+ (WT) mice to block LIN28A upregulation in all neuronal lineages after acute seizure. Adult-generated neuron- and hippocampus-associated cognitive impairments were absent in epileptic LIN28A-cKO mice, as evaluated by pattern separation and contextual fear conditioning tests, respectively, while sham-manipulated WT and cKO animals showed comparable memory function. Moreover, numbers of hilar PROX1-expressing ectopic granule cells (EGCs), together with PROX1+/NEUN+ mature EGCs, were significantly reduced in epileptic cKO mice. Transcriptomics analysis and IHC validation at 3 days after pilocarpine administration provided potential LIN28A downstream targets such as serotonin receptor 4. Collectively, our findings indicate that LIN28A is a potentially novel target for regulation of newborn neuron-associated memory dysfunction in epilepsy by modulating seizure-induced aberrant neurogenesis.
Collapse
Affiliation(s)
| | | | - Seong Yun Kim
- Department of Pharmacology, College of Medicine
- Department of Biomedicine & Health Sciences, and
- Catholic Neuroscience Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, and
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Kyung-Ok Cho
- Department of Pharmacology, College of Medicine
- Department of Biomedicine & Health Sciences, and
- Catholic Neuroscience Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Institute for Aging and Metabolic Diseases and
- CMC Institute for Basic Medical Science, the Catholic Medical Center of The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
3
|
Mitroshina EV, Marasanova EA, Vedunova MV. Functional Dimerization of Serotonin Receptors: Role in Health and Depressive Disorders. Int J Mol Sci 2023; 24:16416. [PMID: 38003611 PMCID: PMC10671093 DOI: 10.3390/ijms242216416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Understanding the neurobiological underpinnings of depressive disorder constitutes a pressing challenge in the fields of psychiatry and neurobiology. Depression represents one of the most prevalent forms of mental and behavioral disorders globally. Alterations in dimerization capacity can influence the functional characteristics of serotonin receptors and may constitute a contributing factor to the onset of depressive disorders. The objective of this review is to consolidate the current understanding of interactions within the 5-HT receptor family and between 5-HT receptors and members of other receptor families. Furthermore, it aims to elucidate the role of such complexes in depressive disorders and delineate the mechanisms through which antidepressants exert their effects.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Ekaterina A. Marasanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
- Faculty of Biology and Biotechnology, HSE University, St. Profsoyuznaya, 33, 117418 Moscow, Russia
| |
Collapse
|
4
|
Li S, Huang Q, Yang Q, Peng X, Wu Q. MicroRNAs as promising therapeutic agents: A perspective from acupuncture. Pathol Res Pract 2023; 248:154652. [PMID: 37406378 DOI: 10.1016/j.prp.2023.154652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023]
Abstract
MicroRNAs (miRNAs) are gaining recognition as potential therapeutic agents due to their small size, ability to target a wide range of genes, and significant role in disease progression. However, despite their promising potential, nearly half of the miRNA drugs developed for therapeutic purposes have been discontinued or put on hold, and none have advanced to phase III clinical trials. The development of miRNA therapeutics has faced obstacles such as difficulties in validating miRNA targets, conflicting evidence regarding competition and saturation effects, challenges in miRNA delivery, and determining appropriate dosages. These hurdles primarily arise from the intricate functional complexity of miRNAs. Acupuncture, a distinct, complementary therapy, offers a promising avenue to overcome these barriers, particularly by addressing the fundamental issue of preserving functional complexity through acupuncture regulatory networks. The acupuncture regulatory network consists of three main components: the acupoint network, the neuro-endocrine-immune (NEI) network, and the disease network. These networks represent the processes of information transformation, amplification, and conduction that occur during acupuncture. Notably, miRNAs serve as essential mediators and shared biological language within these interconnected networks. Harnessing the therapeutic potential of acupuncture-derived miRNAs can help reduce the time and economic resources required for miRNA drug development and alleviate the current developmental challenges miRNA therapeutics face. This review provides an interdisciplinary perspective by summarizing the interactions between miRNAs, their targets, and the three acupuncture regulatory networks mentioned earlier. The aim is to illuminate the challenges and opportunities in developing miRNA therapeutics. This review paper presents a comprehensive overview of miRNAs, their interactions with acupuncture regulatory networks, and their potential as therapeutic agents. By bridging the miRNA research and acupuncture fields, we aim to offer valuable insights into the obstacles and prospects of developing miRNA therapeutics.
Collapse
Affiliation(s)
- Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qianhui Huang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qingqing Yang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Xiaohua Peng
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China; Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, China; Institute of Acupuncture and Homeostasis Regulation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| |
Collapse
|
5
|
Roy B, Dwivedi Y. An insight into the sprawling microverse of microRNAs in depression pathophysiology and treatment response. Neurosci Biobehav Rev 2023; 146:105040. [PMID: 36639069 PMCID: PMC9974865 DOI: 10.1016/j.neubiorev.2023.105040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Stress-related neuropathologies are pivotal in developing major depressive disorder (MDD) and are often governed by gene-regulatory changes. Being a stress-responsive gene-regulatory factor, microRNAs (miRNAs) have tremendous biomolecular potential to define an altered gene-regulatory landscape in the MDD brain. MiRNAs' regulatory roles in the MDD brain are closely aligned with changes in plasticity, neurogenesis, and stress-axis functions. MiRNAs act at the epigenetic interface between stress-induced environmental stimuli and cellular pathologies by triggering large-scale gene expression changes in a highly coordinated fashion. The parallel changes in peripheral circulation may provide an excellent opportunity for miRNA to devise more effective treatment strategies and help explore their potential as biomarkers in treatment response. This review discusses the role of miRNAs as epigenetic modifiers in the etiopathogenesis of MDD. Concurrently, key research is highlighted to show the progress in using miRNAs as predictive biomarkers for treatment response.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
6
|
Derakhchan K, Lou Z, Wang H, Baughman R. Tissue distribution and abuse potential of prucalopride: findings from non-clinical and clinical studies. Drugs Context 2023; 12:dic-2022-6-1. [PMID: 36876155 PMCID: PMC9983627 DOI: 10.7573/dic.2022-6-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/28/2022] [Indexed: 03/03/2023] Open
Abstract
Background Prucalopride is a selective serotonin type 4 (5-HT4) receptor agonist indicated for treatment of chronic idiopathic constipation (CIC) in adults (2 mg orally, daily). 5-HT4 receptors are present in the central nervous system; therefore, non-clinical and clinical assessments were performed to evaluate the tissue distribution and abuse potential of prucalopride. Methods In vitro receptor-ligand binding studies were performed to assess the affinity of prucalopride (≤1 mM) for peptide receptors, ion channels, monoamine neurotransmitters and 5-HT receptors. The tissue distribution of 14C-prucalopride (5 mg base-equivalent/kg) was investigated in rats. Behavioural assessments in mice, rats and dogs after treatment with single or repeated (up to 24 months) subcutaneous or oral doses of prucalopride (0.02-640 mg/kg across species) were performed. Treatment-emergent adverse events possibly indicative of abuse potential during prucalopride CIC clinical trials were evaluated. Results Prucalopride showed no appreciable affinity for the receptors and ion channels investigated; its affinity (at ≤100 μM) for other 5-HT receptors was 150-10,000 times lower than that for the 5-HT4 receptor. In rats, <0.1% of the administered dose was found in the brain and concentrations were below the limit of detection within 24 hours. At supratherapeutic doses (≥20 mg/kg), mice and rats exhibited palpebral ptosis, and dogs exhibited salivation, eyelid tremors, decubitis, pedalling movements and sedation. All clinical treatment-emergent adverse events, possibly indicative of abuse potential, except dizziness, occurred in <1% of patients treated with prucalopride or placebo. Conclusion This series of non-clinical and clinical studies suggest low abuse potential for prucalopride.
Collapse
Affiliation(s)
| | - Zhen Lou
- Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Hong Wang
- Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Robert Baughman
- Takeda Development Center Americas, Inc., Lexington, MA, USA
| |
Collapse
|
7
|
Duque-Quintero M, Hooijmans CR, Hurowitz A, Ahmed A, Barris B, Homberg JR, Hen R, Harris AZ, Balsam P, Atsak P. Enduring effects of early-life adversity on reward processes: A systematic review and meta-analysis of animal studies. Neurosci Biobehav Rev 2022; 142:104849. [PMID: 36116576 PMCID: PMC10729999 DOI: 10.1016/j.neubiorev.2022.104849] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 01/06/2023]
Abstract
Two-thirds of individuals experience adversity during childhood such as neglect, abuse or highly-stressful events. Early-life adversity (ELA) increases the life-long risk of developing mood and substance use disorders. Reward-related deficits has emerged as a key endophenotype of such psychiatric disorders. Animal models are invaluable for studying how ELA leads to reward deficits. However, the existing literature is heterogenous with difficult to reconcile findings. To create an overview, we conducted a systematic review containing multiple meta-analyses regarding the effects of ELA on reward processes overall and on specific aspects of reward processing in animal models. A comprehensive search identified 120 studies. Most studies omitted key details resulting in unclear risk of bias. Overall meta-analysis showed that ELA significantly reduced reward behaviors (SMD: -0.42 [-0.60; -0.24]). The magnitude of ELA effects significantly increased with longer exposure. When reward domains were analyzed separately, ELA only significantly dampened reward responsiveness (SMD: -0.525[-0.786; -0.264]) and social reward processing (SMD: -0.374 [-0.663; -0.084]), suggesting that ELA might lead to deficits in specific reward domains.
Collapse
Affiliation(s)
- Mariana Duque-Quintero
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Carlijn R Hooijmans
- Systematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands; Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hurowitz
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Afsana Ahmed
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Ben Barris
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Rene Hen
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Alexander Z Harris
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Peter Balsam
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Piray Atsak
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands; Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
8
|
Aquino GA, Sousa CNS, Medeiros IS, Almeida JC, Cysne Filho FMS, Santos Júnior MA, Vasconcelos SMM. Behavioral alterations, brain oxidative stress, and elevated levels of corticosterone associated with a pressure injury model in male mice. J Basic Clin Physiol Pharmacol 2022; 33:789-801. [PMID: 34390639 DOI: 10.1515/jbcpp-2021-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/17/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Sustained stress can cause physiological disruption in crucial systems like the endocrine, autonomic, and central nervous system. In general, skin damages are physical stress present in hospitalized patients. Also, these pressure injuries lead to pathophysiological mechanisms involved in the neurobiology of mood disorders. Here, we aimed to investigate the behavioral alterations, oxidative stress, and corticosterone levels in the brain areas of mice submitted to the model of pressure injury (PI). METHODS The male mice behaviors were assessed in the open field test (OFT), elevated plus maze test (EPM), tail suspension test (TST), and sucrose preference test (SPT). Then, we isolated the prefrontal cortex (PFC), hippocampus (HP), and striatum (ST) by brain dissection. The nonprotein sulfhydryl groups (NP-SH) and malondialdehyde (MDA) were measured in the brain, and also the plasma corticosterone levels were verified. RESULTS PI model decreased the locomotor activity of animals (p<0.05). Considering the EPM test, the PI group showed a decrease in the open arm activity (p<0.01), and an increase in the closed arm activity (p<0.05). PI group showed an increment in the immobility time (p<0.001), and reduced sucrose consumption (p<0.0001) compared to the control groups. Regarding the oxidative/nitrosative profile, all brain areas from the PI group exhibited a reduction in the NP-SH levels (p<0.0001-p<0.01), and an increase in the MDA level (p<0.001-p<0.01). Moreover, the PI male mice presented increased levels of plasma corticosterone (p<0.05). CONCLUSIONS Our findings suggest that the PI model induces depressive and anxiety-like behaviors. Furthermore, it induces pathophysiological mechanisms like the neurobiology of depression.
Collapse
Affiliation(s)
- Gabriel A Aquino
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Caren N S Sousa
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Ingridy S Medeiros
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Jamily C Almeida
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Francisco M S Cysne Filho
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Manuel A Santos Júnior
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Silvânia M M Vasconcelos
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
9
|
Schell G, Roy B, Prall K, Dwivedi Y. miR-218: A Stress-Responsive Epigenetic Modifier. Noncoding RNA 2022; 8:ncrna8040055. [PMID: 35893238 PMCID: PMC9326663 DOI: 10.3390/ncrna8040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding the epigenetic role of microRNAs (miRNAs) has been a critical development in the field of neuropsychiatry and in understanding their underlying pathophysiology. Abnormalities in miRNA expression are often seen as key to the pathogenesis of many stress-associated mental disorders, including major depressive disorder (MDD). Recent advances in omics biology have further contributed to this understanding and expanded the role of miRNAs in networking a diverse array of molecular pathways, which are essentially related to the stress adaptivity of a healthy brain. Studies have highlighted the role of many such miRNAs in causing maladaptive changes in the brain's stress axis. One such miRNA is miR-218, which is debated as a critical candidate for increased stress susceptibility. miR-218 is expressed throughout the brain, notably in the hippocampus and prefrontal cortex (PFC). It is expressed at various levels through life stages, as seen by adolescent and adult animal models. Until now, a minimal number of studies have been conducted on human subjects to understand its role in stress-related abnormalities in brain circuits. However, several studies, including animal and cell-culture models, have been used to understand the impact of miR-218 on stress response and hypothalamic-pituitary-adrenal (HPA) axis function. So far, expression changes in this miRNA have been found to regulate signaling pathways such as glucocorticoid signaling, serotonergic signaling, and glutamatergic signaling. Recently, the developmental role of miR-218 has generated interest, given its increasing expression from adolescence to adulthood and targeting the Netrin-1/DCC signaling pathway. Since miR-218 expression affects neuronal development and plasticity, it is expected that a change in miR-218 expression levels over the course of development may negatively impact the process and make individuals stress-susceptible in adulthood. In this review, we describe the role of miR-218 in stress-induced neuropsychiatric conditions with an emphasis on stress-related disorders.
Collapse
|
10
|
Tian M, Xia P, Yan L, Gou X, Giesy JP, Dai J, Yu H, Zhang X. Toxicological Mechanism of Individual Susceptibility to Formaldehyde-Induced Respiratory Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6511-6524. [PMID: 35438505 DOI: 10.1021/acs.est.1c07945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the mechanisms of individual susceptibility to exposure to environmental pollutants has been a challenge in health risk assessment. Here, an integrated approach combining a CRISPR screen in human cells and epidemiological analysis was developed to identify the individual susceptibility to the adverse health effects of air pollutants by taking formaldehyde (FA) and the associated chronic obstructive pulmonary disease (COPD) as a case study. Among the primary hits of CRISPR screening of FA in human A549 cells, HTR4 was the only gene genetically associated with COPD susceptibility in global populations. However, the association between HTR4 and FA-induced respiratory toxicity is unknown in the literature. Adverse outcome pathway (AOP) network analysis of CRISPR screen hits provided a potential mechanistic link between activation of HTR4 (molecular initiating event) and FA-induced lung injury (adverse outcome). Systematic toxicology tests (in vitro and animal experiments) were conducted to reveal the HTR4-involved biological mechanisms underlying the susceptibility to adverse health effects of FA. Functionality and enhanced expression of HTR4 were required for susceptibility to FA-induced lung injury, and FA-induced epigenetic changes could result in enhanced expression of HTR4. Specific epigenetic and genetic characteristics of HTR4 were associated with the progression and prevalence of COPD, respectively, and these genetic risk factors for COPD could be potential biomarkers of individual susceptibility to adverse respiratory effects of FA. These biomarkers could be of great significance for defining subpopulations susceptible to exposure to FA and reducing uncertainty in the next-generation health risk assessment of air pollutants. Our study delineated a novel toxicological pathway mediated by HTR4 in FA-induced lung injury, which could provide a mechanistic understanding of the potential biomarkers of individual susceptibility to adverse respiratory effects of FA.
Collapse
Affiliation(s)
- Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan Saskatoon, Saskatoon SK S7N 5B3, Canada
- Zoology Department, Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane Road, East Lansing, Michigan 48824, United States
- Department of Environmental Science, Baylor University, Waco, Texas 76798, United States
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
11
|
Rosa JM, Formolo DA, Yu J, Lee TH, Yau SY. The Role of MicroRNA and Microbiota in Depression and Anxiety. Front Behav Neurosci 2022; 16:828258. [PMID: 35299696 PMCID: PMC8921933 DOI: 10.3389/fnbeh.2022.828258] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Depression and anxiety are devastating disorders. Understanding the mechanisms that underlie the development of depression and anxiety can provide new hints on novel treatments and preventive strategies. Here, we summarize the latest findings reporting the novel roles of gut microbiota and microRNAs (miRNAs) in the pathophysiology of depression and anxiety. The crosstalk between gut microbiota and the brain has been reported to contribute to these pathologies. It is currently known that some miRNAs can regulate bacterial growth and gene transcription while also modulate the gut microbiota composition, suggesting the importance of miRNAs in gut and brain health. Treatment and prevention strategies for neuropsychiatric diseases, such as physical exercise, diet, and probiotics, can modulate the gut microbiota composition and miRNAs expressions. Nonetheless, there are critical questions to be addressed to understand further the mechanisms involved in the interaction between the gut microbiota and miRNAs in the brain. This review summarizes the recent findings of the potential roles of microbiota and miRNA on the neuropathology of depression and anxiety, and its potential as treatment strategies.
Collapse
Affiliation(s)
- Julia M. Rosa
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Douglas A. Formolo
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Thomas H. Lee
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Neurocentre Magendie, INSERM U1215, University of Bordeaux, Bordeaux, France
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
12
|
The GG genotype of the serotonin 4 receptor genetic polymorphism, rs1345697, is associated with lower remission rates after antidepressant treatment: Findings from the METADAP cohort. J Affect Disord 2022; 299:335-343. [PMID: 34906639 DOI: 10.1016/j.jad.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pharmacological studies have yielded valuable insights into the role of the serotonin 4 receptor (HTR4) in major depressive episodes (MDE) and response to antidepressant drugs (AD). A genetic association has been shown between HTR4 and susceptibility to mood disorders. Our study aims at assessing the association between the HTR4 genetic polymorphism, rs1345697, and improvement in depressive symptoms and remission after antidepressant treatment in MDE patients. METHODS 492 depressed patients from the METADAP cohort were treated prospectively for 6 months with ADs. The clinical outcomes according to HTR4 rs1345697 were compared after 1 (M1), 3 (M3), and 6 (M6) months of treatment. Mixed-effects logistic regression and adjusted linear models assessed the association between rs1345697 and 17-item Hamilton Depression Rating Scale (HDRS) score improvement and response/remission. RESULTS Over the 6 months of treatment, mixed-effects regressions showed lower improvements in HDRS scores (Coefficient=1.52; Confident Interval (CI) 95% [0.37-2.67]; p = 0.009) and lower remission rates (Odds Ratio=2.0; CI95% [1.0-4.1]; p = 0.05) in GG homozygous patients as compared to allele A carriers. LIMITATIONS The major limitations of our study are the uncertainty of the rs1345697 effect on HTR4 function, the substantial drop-out rate, and the fact that analysis is not based on randomization between polymorphism groups. CONCLUSIONS In our study, patients who were homozygous carriers of the variant G of the HTR4 rs1345697 had lower depressive symptoms improvement and 2-fold lower remission rates after antidepressant treatment as compared to allele A carriers. Randomization study should be done to confirm these results.
Collapse
|
13
|
Murphy SE, de Cates AN, Gillespie AL, Godlewska BR, Scaife JC, Wright LC, Cowen PJ, Harmer CJ. Translating the promise of 5HT 4 receptor agonists for the treatment of depression. Psychol Med 2021; 51:1111-1120. [PMID: 32241310 PMCID: PMC8188527 DOI: 10.1017/s0033291720000604] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Animal experimental studies suggest that 5-HT4 receptor activation holds promise as a novel target for the treatment of depression and cognitive impairment. 5-HT4 receptors are post-synaptic receptors that are located in striatal and limbic areas known to be involved in cognition and mood. Consistent with this, 5-HT4 receptor agonists produce rapid antidepressant effects in a number of animal models of depression, and pro-cognitive effects in tasks of learning and memory. These effects are accompanied by molecular changes, such as the increased expression of neuroplasticity-related proteins that are typical of clinically useful antidepressant drugs. Intriguingly, these antidepressant-like effects have a fast onset of their action, raising the possibility that 5-HT4 receptor agonists may be a particularly useful augmentation strategy in the early stages of SSRI treatment. Until recently, the translation of these effects to humans has been challenging. Here, we review the evidence from animal studies that the 5-HT4 receptor is a promising target for the treatment of depression and cognitive disorders, and outline a potential pathway for the efficient and cost-effective translation of these effects into humans and, ultimately, to the clinic.
Collapse
Affiliation(s)
- Susannah E Murphy
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Angharad N de Cates
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Amy L Gillespie
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Beata R Godlewska
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Jessica C Scaife
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Lucy C Wright
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Philip J Cowen
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Catherine J Harmer
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| |
Collapse
|
14
|
Luo PX, Manning CE, Fass JN, Williams AV, Hao R, Campi KL, Trainor BC. Sex-specific effects of social defeat stress on miRNA expression in the anterior BNST. Behav Brain Res 2021; 401:113084. [PMID: 33358922 PMCID: PMC7864284 DOI: 10.1016/j.bbr.2020.113084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022]
Abstract
Women are more likely to suffer from stress-related affective disorders than men, but the underlying mechanisms of sex differences remain unclear. Previous works show that microRNA (miRNA) profiles are altered in stressed animals and patients with depression and anxiety disorders. In this study, we investigated how miRNA expression in the anterior bed nucleus of stria terminalis (BNST) was affected by social defeat stress in female and male California mice (Peromyscus californicus). We performed sequencing to identify miRNA transcripts in the whole brain and anterior BNST followed by qPCR analysis to compare miRNA expression between control and stressed animals. The results showed that social defeat stress induced sex-specific miRNA expression changes in the anterior BNST. Let-7a, let-7f and miR-181a-5p were upregulated in stressed female but not male mice. Our study provided evidence that social stress produces distinct molecular responses in the BNST of males and females.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Claire E Manning
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Joe N Fass
- Bioinformatics Core and Genome Center, University of California, Davis, CA, 95616, USA
| | - Alexia V Williams
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Rebecca Hao
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Katharine L Campi
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
15
|
Lages YVM, Rossi AD, Krahe TE, Landeira-Fernandez J. Effect of chronic unpredictable mild stress on the expression profile of serotonin receptors in rats and mice: a meta-analysis. Neurosci Biobehav Rev 2021; 124:78-88. [PMID: 33524415 DOI: 10.1016/j.neubiorev.2021.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Chronic-stress-induced depression is recognized as a widespread public health concern. Selective serotonin reuptake inhibitors (SSRIs) have been the most common treatment for this illness. However, the role of 5-hydroxytryptamine (5-HT) receptor subtypes in stress-induced depression remains unclear. Evidence from Animal studies has reported a variety of results regarding the effects of chronic unpredictable mild stress (CUMS) on serotonin signaling pathways and 5-HT receptor subtypes. This divergence may rely on differences in protocols, methods, and studied pathways. Thus, the aim of this systematic review was to weigh the currently available findings regarding serotonin receptor changes in animal models of CUMS. Overall, our meta-analysis results showed the association of altered expression of 5-HT1A receptors in the frontal cortex and 5-HT2A receptors both in the whole cortex and the hypothalamus of rats following CUMS. Moreover, by using a qualitative-structured analysis and the application of risk-of-bias tools, we identified possible sources of data variation between the studied literature, which should be taken into account in future animal studies of chronic-stress induced depression.
Collapse
Affiliation(s)
- Y V M Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A D Rossi
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T E Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Beversdorf DQ, Shah A, Jhin A, Noel-MacDonnell J, Hecht P, Ferguson BJ, Bruce D, Tilley M, Talebizadeh Z. microRNAs and Gene-Environment Interactions in Autism: Effects of Prenatal Maternal Stress and the SERT Gene on Maternal microRNA Expression. Front Psychiatry 2021; 12:668577. [PMID: 34290629 PMCID: PMC8288023 DOI: 10.3389/fpsyt.2021.668577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Genetics and environment both are critical in autism spectrum disorder (ASD), but their interaction (G × E) is less understood. Numerous studies have shown higher incidence of stress exposures during pregnancies with children later diagnosed with ASD. However, many stress-exposed mothers have unaffected children. The serotonin transporter (SERT) gene affects stress reactivity. Two independent samples have shown that the association between maternal stress exposure and ASD is greatest with maternal presence of the SERT short (S)-allele (deletion in the promoter region). MicroRNAs play a regulatory role in the serotonergic pathway and in prenatal stress and are therefore potential mechanistic targets in this setting. Design/methods: We profiled microRNA expression in blood from mothers of children with ASD, with known stress exposure during pregnancy. Samples were divided into groups based on SERT genotypes (LL/LS/SS) and prenatal stress level (high/low). Results: Two thousand five hundred mature microRNAs were examined. The ANOVA analysis showed differential expression (DE) of 119 microRNAs; 90 were DE in high- vs. low-stress groups (stress-dependent). Two (miR-1224-5p, miR-331-3p) were recently reported by our group to exhibit stress-dependent expression in rodent brain samples from embryos exposed to prenatal stress. Another, miR-145-5p, is associated with maternal stress. Across SERT genotypes, with high stress exposure, 20 significantly DE microRNAs were detected, five were stress-dependent. These microRNAs may be candidates for stress × SERT genotype interactions. This is remarkable as these changes were from mothers several years after stress-exposed pregnancies. Conclusions: Our study provides evidence for epigenetic alterations in relation to a G × E model (prenatal maternal stress × SERT gene) in ASD.
Collapse
Affiliation(s)
- David Q Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri, Columbia, MO, United States.,Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, United States
| | - Ayten Shah
- Children's Mercy Hospital, Kansas City, MO, United States
| | - Allison Jhin
- Kansas City University, Kansas City, MO, United States
| | - Janelle Noel-MacDonnell
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Patrick Hecht
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, United States
| | - Bradley J Ferguson
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, United States.,Health Psychology, Radiology, and Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, Columbia, MO, United States
| | - Danielle Bruce
- Department of Biology, Central Methodist University, Fayette, MO, United States
| | - Michael Tilley
- Department of Biology, Central Methodist University, Fayette, MO, United States
| | - Zohreh Talebizadeh
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| |
Collapse
|
17
|
Costa R, Carvalho MSM, Brandão JDP, Moreira RP, Cunha TS, Casarini DE, Marcondes FK. Modulatory action of environmental enrichment on hormonal and behavioral responses induced by chronic stress in rats: Hypothalamic renin-angiotensin system components. Behav Brain Res 2020; 397:112928. [PMID: 32987059 DOI: 10.1016/j.bbr.2020.112928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Environmental enrichment (EE) has been studied as a protocol that can improve brain plasticity and may protect against negative insults such as chronic stress. The aim of this study was to evaluate the effects of EE on the hormonal and behavioral responses induced by chronic mild unpredictable stress (CMS) in rats, considering the involvement of the renin-angiotensin system. Male adult rats were divided into 4 groups: control, CMS, EE, and CMS + EE, and the experimental protocol lasted for 7 weeks. EE was performed during 7 weeks, 5 days per week, 2 h per day. CMS was applied during weeks 3, 4, and 5. After the CMS (week 6), depression-like behavior was evaluated by forced swimming and sucrose consumption tests, anxiety level was evaluated using the elevated plus-maze test, and memory was evaluated using the Y-maze test. On week 7, the animals were euthanized and basal plasma levels of corticosterone and catecholamines were determined. The hypothalamus was isolated and tissue levels of angiotensin peptides were evaluated. CMS increased plasma corticosterone, norepinephrine, and epinephrine basal concentrations, induced depression-like behaviors, impaired memory, and increased hypothalamic angiotensin I, II, and IV concentrations. EE decreased stress hormones secretion, depression-like behaviors, memory impairment, and hypothalamic angiotensin II induced by stress. Reductions of anxiety-like behavior and norepinephrine secretion were observed in both stressed and unstressed groups. The results indicated that EE seemed to protect adult rats against hormonal and behavioral CMS effects, and that the reduction of angiotensin II could contribute to these effects.
Collapse
Affiliation(s)
- Rafaela Costa
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Maeline Santos Morais Carvalho
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | | | - Roseli Peres Moreira
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Tatiana Sousa Cunha
- Science and Technology Institute, Federal University of São Paulo, São José Dos Campos, SP, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Klein Marcondes
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| |
Collapse
|
18
|
Guo L, Zhu Z, Wang G, Cui S, Shen M, Song Z, Wang JH. microRNA-15b contributes to depression-like behavior in mice by affecting synaptic protein levels and function in the nucleus accumbens. J Biol Chem 2020; 295:6831-6848. [PMID: 32209659 DOI: 10.1074/jbc.ra119.012047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/20/2020] [Indexed: 11/06/2022] Open
Abstract
Major depression is a prevalent affective disorder characterized by recurrent low mood. It presumably results from stress-induced deteriorations of molecular networks and synaptic functions in brain reward circuits of genetically-susceptible individuals through epigenetic processes. Epigenetic regulator microRNA-15b inhibits neuronal progenitor proliferation and is up-regulated in the medial prefrontal cortex of mice that demonstrate depression-like behavior, indicating the contribution of microRNA-15 to major depression. Using a mouse model of major depression induced by chronic unpredictable mild stress (CUMS), here we examined the effects of microRNA-15b on synapses and synaptic proteins in the nucleus accumbens of these mice. The application of a microRNA-15b antagomir into the nucleus accumbens significantly reduced the incidence of CUMS-induced depression and reversed the attenuations of excitatory synapse and syntaxin-binding protein 3 (STXBP3A)/vesicle-associated protein 1 (VAMP1) expression. In contrast, the injection of a microRNA-15b analog into the nucleus accumbens induced depression-like behavior as well as attenuated excitatory synapses and STXBP3A/VAMP1 expression similar to the down-regulation of these processes induced by the CUMS. We conclude that microRNA-15b-5p may play a critical role in chronic stress-induced depression by decreasing synaptic proteins, innervations, and activities in the nucleus accumbens. We propose that the treatment of anti-microRNA-15b-5p may convert stress-induced depression into resilience.
Collapse
Affiliation(s)
- Li Guo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoming Zhu
- School of Pharmacy, Qingdao University, Qingdao Shandong 266021, China
| | - Guangyan Wang
- School of Pharmacy, Qingdao University, Qingdao Shandong 266021, China
| | - Shan Cui
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Shen
- School of Pharmacy, Qingdao University, Qingdao Shandong 266021, China
| | - Zhenhua Song
- School of Pharmacy, Qingdao University, Qingdao Shandong 266021, China
| | - Jin-Hui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Hu Z, Ying X, Huang L, Zhao Y, Zhou D, Liu J, Zhong J, Huang T, Zhang W, Cheng F, Duan S. Association of human serotonin receptor 4 promoter methylation with autism spectrum disorder. Medicine (Baltimore) 2020; 99:e18838. [PMID: 31977880 PMCID: PMC7004686 DOI: 10.1097/md.0000000000018838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human serotonin receptor 4 (HTR4) encodes a 5-HT4 receptor involved in learning, memory, depression, anxiety, and feeding behavior. The aim of this study was to investigate the association between the deoxyribonucleic acid (DNA) methylation of HTR4 promoter and autism spectrum disorder (ASD), a disease characterized by communication disorder and repetitive or restrictive behavior.Peripheral blood DNA was obtained from 61 ASD children and 66 healthy children, and the DNA methylation of HTR4 promoter was assessed by quantitative methylation-specific polymerase chain reaction. We used percentage of methylated reference (PMR) to represent DNA methylation level.Due to significant age differences between ASD cases and controls (3 [2, 5] years and 6 [5, 6] years, P = 3.34E-10), we used binary logistic regression analysis for adjustment. Our results showed that the DNA methylation levels of HTR4 promoter were significantly lower in children with ASD than in healthy children (median PMR: 66.23% vs 94.31%,P = .028, age-adjusted P = .034). In addition, the DNA methylation of HTR4 promoter was inversely associated with age in male ASD cases (total cases: r = -0.283, P = .027; male cases: r = -0.431, P = .002; female cases: r = -0.108, P = .752). Dual-luciferase reporter gene assay showed that the reporter gene expression in the strain with recombinant pGL3-promoter-HTR4 plasmid was significantly higher than that in the strain with pGL3-promoter plasmid (fold change = 2.01, P = .0065), indicating that the HTR4 promoter fragment may contain transcription factors to upregulate promoter activity.Our study suggested that hypomethylation of the HTR4 promoter is a potential biomarker for predicting the risk of male ASD.
Collapse
Affiliation(s)
- Zhenyu Hu
- Ningbo Kangning Hospital, Ningbo Key Laboratory of Behavioral Neuroscience
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Ling Huang
- Ningbo Kangning Hospital, Ningbo Key Laboratory of Behavioral Neuroscience
| | - Yuanzhi Zhao
- Ningbo Kangning Hospital, Ningbo Key Laboratory of Behavioral Neuroscience
| | - Dongsheng Zhou
- Ningbo Kangning Hospital, Ningbo Key Laboratory of Behavioral Neuroscience
| | - Jing Liu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Tianyi Huang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wenwu Zhang
- Ningbo Kangning Hospital, Ningbo Key Laboratory of Behavioral Neuroscience
| | - Fang Cheng
- Ningbo Kangning Hospital, Ningbo Key Laboratory of Behavioral Neuroscience
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
20
|
microRNA and mRNA profiles in the amygdala are associated with stress-induced depression and resilience in juvenile mice. Psychopharmacology (Berl) 2019; 236:2119-2142. [PMID: 30900007 DOI: 10.1007/s00213-019-05209-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/25/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Major depressive disorder characterized as recurrent negative mood is one of the prevalent psychiatric diseases. Chronic stress plus lack of reward may induce long-term imbalance between reward and penalty circuits in the brain, leading to persistent negative mood. Numerous individuals demonstrate resilience to chronic mild stress. Molecular mechanisms for major depression and resilience in the brain remain unclear. METHODS After juvenile mice were treated by the chronic unpredictable mild stress (CUMS) for 4 weeks, they were screened by sucrose preference, Y-maze and forced swimming tests to examine whether their behaviors were depression-like or not. mRNA and miRNA profiles were quantified by high-throughput sequencing in amygdala tissues harvested from control, CUMS-susceptible, and CUMS-resilience mice. RESULTS 1.5-fold ratio in reads per kilo-base per million reads was set to be the threshold to judge the involvement of mRNAs and miRNAs in the CUMS, major depression, or resilience. In the amygdala from CUMS-susceptible mice, the expression of genes relevant to GABAergic, cholinergic, glutamatergic, dopaminergic, and serotonergic synapses was changed, as well as the expression of genes that encoded signal pathways of PI3K-Akt, calcium, cAMP, MAPK, and drug addiction was imbalanced. The expression of these genes in the amygdala form CUMS-resilience mice was less changed. CONCLUSIONS The downregulation of genes relevant to synaptic functions and the imbalance of intra-signaling pathway in the amygdala are associated with major depression. Consistent results through sequencing mRNA and miRNA and using different methods validate our finding and conclusion.
Collapse
|
21
|
Beversdorf DQ, Stevens HE, Margolis KG, Van de Water J. Prenatal Stress and Maternal Immune Dysregulation in Autism Spectrum Disorders: Potential Points for Intervention. Curr Pharm Des 2019; 25:4331-4343. [PMID: 31742491 PMCID: PMC7100710 DOI: 10.2174/1381612825666191119093335] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetics is a major etiological contributor to autism spectrum disorder (ASD). Environmental factors, however, also appear to contribute. ASD pathophysiology due to gene x environment is also beginning to be explored. One reason to focus on environmental factors is that they may allow opportunities for intervention or prevention. METHODS AND RESULTS Herein, we review two such factors that have been associated with a significant proportion of ASD risk, prenatal stress exposure and maternal immune dysregulation. Maternal stress susceptibility appears to interact with prenatal stress exposure to affect offspring neurodevelopment. We also explore how maternal stress may interact with the microbiome in the neurodevelopmental setting. Additionally, understanding of the impact of maternal immune dysfunction on ASD has recently been advanced by recognition of specific fetal brain proteins targeted by maternal autoantibodies, and identification of unique mid-gestational maternal immune profiles. This might also be interrelated with maternal stress exposure. Animal models have been developed to explore pathophysiology targeting each of these factors. CONCLUSION We are beginning to understand the behavioral, pharmacopathological, and epigenetic effects related to these interactions, and we are beginning to explore potential mitigating factors. Continued growth in understanding of these mechanisms may ultimately allow for the identification of multiple potential targets for prevention or intervention for this subset of environmental-associated ASD cases.
Collapse
Affiliation(s)
- David Q. Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, and The Thompson Center for Neurodevelopmental Disorders, University of Missouri, William and Nancy Thompson Endowed Chair in Radiology
| | - Hanna E. Stevens
- Departments of Psychiatry and Pediatrics, Iowa Neuroscience Institute, University of Iowa
| | - Kara Gross Margolis
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Morgan Stanley Children’s Hospital, Columbia University Medical Center
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, And the MIND Institute, University of California, Davis
| |
Collapse
|
22
|
Rebholz H, Friedman E, Castello J. Alterations of Expression of the Serotonin 5-HT4 Receptor in Brain Disorders. Int J Mol Sci 2018; 19:ijms19113581. [PMID: 30428567 PMCID: PMC6274737 DOI: 10.3390/ijms19113581] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 01/12/2023] Open
Abstract
The serotonin 4 receptor, 5-HT₄R, represents one of seven different serotonin receptor families and is implicated in a variety of physiological functions and their pathophysiological variants, such as mood and depression or anxiety, food intake and obesity or anorexia, or memory and memory loss in Alzheimer's disease. Its central nervous system expression pattern in the forebrain, in particular in caudate putamen, the hippocampus and to lesser extent in the cortex, predispose it for a role in executive function and reward-related actions. In rodents, regional overexpression or knockdown in the prefrontal cortex or the nucleus accumbens of 5-HT₄R was shown to impact mood and depression-like phenotypes, food intake and hypophagia; however, whether expression changes are causally involved in the etiology of such disorders is not clear. In this context, more data are emerging, especially based on PET technology and the use of ligand tracers that demonstrate altered 5-HT₄R expression in brain disorders in humans, confirming data stemming from post-mortem tissue and preclinical animal models. In this review, we would like to present the current knowledge of 5-HT₄R expression in brain regions relevant to mood/depression, reward and executive function with a focus on 5-HT₄R expression changes in brain disorders or caused by drug treatment, at both the transcript and protein levels.
Collapse
Affiliation(s)
- Heike Rebholz
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY 10031, USA.
| | - Eitan Friedman
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY 10031, USA.
- Ph.D. Programs in Biochemistry and Biology, The Graduate Center, City University of New York, New York, NY 10031, USA.
| | - Julia Castello
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY 10031, USA.
- Ph.D. Programs in Biochemistry and Biology, The Graduate Center, City University of New York, New York, NY 10031, USA.
| |
Collapse
|
23
|
Riparin II ameliorates corticosterone-induced depressive-like behavior in mice: Role of antioxidant and neurotrophic mechanisms. Neurochem Int 2018; 120:33-42. [DOI: 10.1016/j.neuint.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/15/2018] [Accepted: 07/21/2018] [Indexed: 02/06/2023]
|
24
|
Si Y, Song Z, Sun X, Wang J. microRNA and mRNA profiles in nucleus accumbens underlying depression versus resilience in response to chronic stress. Am J Med Genet B Neuropsychiatr Genet 2018; 177:563-579. [PMID: 30105773 PMCID: PMC6175222 DOI: 10.1002/ajmg.b.32651] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022]
Abstract
Major depression in negative mood is presumably induced by chronic stress with lack of reward. However, most individuals who experience chronic stress demonstrate resilience. Molecular mechanisms underlying stress- induced depression versus resilience remain unknown, which are investigated in brain reward circuits. Mice were treated by chronic unpredictable mild stress (CUMS) for 4 weeks. The tests of sucrose preference, Y-maze, and forced swimming were used to identify depression-like emotion behavior or resilience. High-throughput sequencing was used to analyze mRNA and miRNA quantity in the nucleus accumbens (NAc) harvested from the mice in the groups of control, CUMS-induced depression (CUMS-MDD), and CUMS-resistance to identify molecular profiles of CUMS-MDD versus CUMS-resilience. In data analyses and comparison among three groups, 1.5-fold ratio in reads per kilo-base per million reads (RPKM) was set to judge involvements of mRNA and miRNA in CUMS, MDD, or resilience. The downregulations of serotonergic/dopaminergic synapses, MAPK/calcium signaling pathways, and morphine addiction as well as the upregulations of cAMP/PI3K-Akt signaling pathways and amino acid metabolism are associated with CUMS-MDD. The downregulations of chemokine signaling pathway, synaptic vesicle cycle, and nicotine addiction as well as the upregulations of calcium signaling pathway and tyrosine metabolism are associated with CUMS-resilience. The impairments of serotonergic/dopaminergic synapses and PI3K-Akt/MAPK signaling pathways in the NAc are associated with depression. The upregulation of these entities is associated with resilience. Consistent results from analyzing mRNA/miRNA and using different methods validate our finding and conclusion.
Collapse
Affiliation(s)
- Yawei Si
- Department of PharmacologyQingdao University School of PharmacyQingdao, Shandong266021China
| | - Zhenhua Song
- Department of PharmacologyQingdao University School of PharmacyQingdao, Shandong266021China
| | - Xiaoyan Sun
- Department of PharmacologyQingdao University School of PharmacyQingdao, Shandong266021China,College of Life Science, University of Chinese Academy of SciencesBeijing100049China,Institute of Biophysics, Chinese Academy of SciencesBeijing100101China
| | - Jin‐Hui Wang
- Department of PharmacologyQingdao University School of PharmacyQingdao, Shandong266021China,College of Life Science, University of Chinese Academy of SciencesBeijing100049China,Institute of Biophysics, Chinese Academy of SciencesBeijing100101China
| |
Collapse
|
25
|
Sun X, Song Z, Si Y, Wang JH. microRNA and mRNA profiles in ventral tegmental area relevant to stress-induced depression and resilience. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:150-165. [PMID: 29864451 DOI: 10.1016/j.pnpbp.2018.05.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 10/14/2022]
Abstract
Chronic stress with lack of reward presumably may impair brain reward circuit, leading to major depressive disorder (MDD). Most individuals experiencing chronic stress do not suffer from MDD, i.e., resilience, implying the presence of endogenous anti-depression in the brain. Molecular mechanisms underlying stress-induced depression versus resilience were investigated. Mice were treated by chronic unpredictable mild stress (CUMS) for four weeks. Their mood state was assessed by behavioral tasks, such as sucrose preference, Y-maze and forced swimming testes. To reveal comprehensive molecular profiles of major depression versus resilience, mRNA and microRNA profiles were analyzed by high-throughput sequencing in the ventral tegmental area (VTA) harvested from control, CUMS-susceptible and CUMS-resilience mice. In data analyses of control versus CUMS-susceptible mice as well as control versus CUMS-resilience mice, 1.5 fold ratio in reads per kilo-base per million reads was set as the threshold to judge the involvement of mRNAs and microRNAs in the CUMS, depression or resilience. The downregulation of synaptic vesicle cycle, neurotrophin, GABAergic synapse and morphine addiction as well as the upregulation of transmitter release, calcium signal and cAMP-dependent response element binding are associated to CUMS-susceptibility. The downregulation of tyrosine metabolism and protein process in endoplasmic reticulum as well as the upregulation of amino acid biosynthesis, neuroactive ligand-receptor interaction and dopaminergic synapse are associated to CUMS-resilience. Therefore, the impairment of neurons and GABA/dopaminergic synapses in the VTA is associated with major depression. The upregulation of these entities is associated with resilience. Consistent results obtained from analyzing mRNAs and microRNAs as well as using different approaches strengthen our finding and conclusion.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong 266021, China
| | - Zhenhua Song
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong 266021, China.
| | - Yawei Si
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong 266021, China
| | - Jin-Hui Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong 266021, China; University of Chinese Academy of Sciences, Institute of Biophysics, Beijing 100101, China.
| |
Collapse
|
26
|
Beversdorf DQ, Stevens HE, Jones KL. Prenatal Stress, Maternal Immune Dysregulation, and Their Association With Autism Spectrum Disorders. Curr Psychiatry Rep 2018; 20:76. [PMID: 30094645 PMCID: PMC6369590 DOI: 10.1007/s11920-018-0945-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW While genetic factors are a major etiological contributor to autism spectrum disorder (ASD), evidence also supports a role for environmental factors. Herein, we will discuss two such factors that have been associated with a significant proportion of ASD risk: prenatal stress exposure and maternal immune dysregulation, and how sex and gender relate to these factors. RECENT FINDINGS Recent evidence suggests that maternal stress susceptibility interacts with prenatal stress exposure to affect offspring neurodevelopment. Additionally, understanding of the impact of maternal immune dysfunction on ASD has recently been advanced by recognition of specific fetal brain proteins targeted by maternal autoantibodies, and identification of unique mid-gestational maternal immune profiles. Animal models have been developed to explore pathophysiology targeting both of these factors, with limited sex-specific effects observed. While prenatal stress and maternal immune dysregulation are associated with ASD, most cases of these prenatal exposures do not result in ASD, suggesting interaction with multiple other risks. We are beginning to understand the behavioral, pharmacopathological, and epigenetic effects related to these interactions, as well as potential mitigating factors. Sex differences of these risks have been understudied but are crucial for understanding the higher prevalence of ASD in boys. Continued growth in understanding of these mechanisms may ultimately allow for the identification of multiple potential points for prevention or intervention, and for a personalized medicine approach for this subset of environmental-associated ASD cases.
Collapse
Affiliation(s)
- David Q. Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences And The Thompson Center for Neurodevelopmental Disorders, University of Missouri, Columbia, MO, USA,Department of Radiology, University of Missouri, DC 069.10, One Hospital Drive, Columbia, MO 65212, USA
| | - Hanna E. Stevens
- Departments of Psychiatry and Pediatrics, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Karen L. Jones
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, And the MIND Institute, University of California, Davis, Davis, CA, USA
| |
Collapse
|
27
|
Diamantopoulou A, Kalpachidou T, Aspiotis G, Gampierakis I, Stylianopoulou F, Stamatakis A. An early experience of mild adversity involving temporary denial of maternal contact affects the serotonergic system of adult male rats and leads to a depressive-like phenotype and inability to adapt to a chronic social stress. Physiol Behav 2018; 184:46-54. [DOI: 10.1016/j.physbeh.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/09/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
|
28
|
Bai M, Zhu X, Zhang L, Zhang Y, Xue L, Wang Y, Zhong M, Zhang X. Divergent anomaly in mesocorticolimbic dopaminergic circuits might be associated with different depressive behaviors, an animal study. Brain Behav 2017; 7:e00808. [PMID: 29075568 PMCID: PMC5651392 DOI: 10.1002/brb3.808] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 07/01/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The mesocorticolimbic dopamine system, which originates from the ventral tegmental area (VTA) and projects primarily to the prefrontal cortex (PFC), olfactory tubercle (OT), nucleus accumbens (NAc), dorsal striatum (ST), and the amygdala (AMy), plays a pivotal role in determining individual motivation and sensitivity to rewards, namely, anhedonia. Not all depressive individuals exhibited anhedonia, thus, it is natural to speculate that the heterogenous manifestations of depression might be related to the mesocorticolimbic dopamine system. Maternal deprivation (MD) and chronic unpredictable stress (CUPS) are two well-established depressogenic stressors, and they were proven to induce different depressive phenotypes. METHODS The depressive and anxiety-like behaviors of MD and CUPS-treated rats were measured by classical behavioral tests including open field, forced swimming, and sucrose preference test. The expression of D1-5 dopamine receptors and DAT mRNA and protein in the mesocorticolimbic dopamine system of rats exposed to MD and CUPS were measured by real-time PCR and Western blot, respectively. RESULTS Severe anhedonia was observed in MD but not CUPS rats. Divergent expression of D1 and D2 receptors and DAT mRNA and protein in the mesocorticolimbic dopamine system were found between MD and CUPS rats. Significant correlations between different depressive behaviors and D1-/D2-like receptors and DAT protein levels in the mesocorticolimbic dopamine system were observed. CONCLUSION Different depressive behaviors of rats such as anhedonia, passive coping behavior, and declined exploratory interest might be related to divergent dopaminergic pathways. Anhedonia is associated with the dysfunction of VTA-NAc and VTA-OT dopaminergic pathways, the passive coping behavior is related to the dysregulation of VTA-PFC and VTA-AMy pathways, and individual exploratory interest is associated with abnormal activity of VTA-PFC and VTA-ST pathways.
Collapse
Affiliation(s)
- Mei Bai
- Medical Psychological Institute Second Xiangya Hospital Central South University Changsha Hunan China.,Mental Health Institute of The Second Xiangya Hospital Key Laboratory of Psychiatry and Mental Health of Hunan Province Central South University Changsha Hunan China
| | - Xiongzhao Zhu
- Medical Psychological Institute Second Xiangya Hospital Central South University Changsha Hunan China.,Mental Health Institute of The Second Xiangya Hospital Key Laboratory of Psychiatry and Mental Health of Hunan Province Central South University Changsha Hunan China
| | - Li Zhang
- Medical Psychological Institute Second Xiangya Hospital Central South University Changsha Hunan China
| | - Yi Zhang
- Medical Psychological Institute Second Xiangya Hospital Central South University Changsha Hunan China
| | - Liang Xue
- Medical Psychological Institute Second Xiangya Hospital Central South University Changsha Hunan China
| | - Yuting Wang
- Medical Psychological Institute Second Xiangya Hospital Central South University Changsha Hunan China
| | - Mingtian Zhong
- Medical Psychological Institute Second Xiangya Hospital Central South University Changsha Hunan China
| | - Xiuwu Zhang
- Department of Radiation Oncology School of Medicine University of Maryland Baltimore MD USA
| |
Collapse
|
29
|
Alcántara-Alonso V, Amaya MI, Matamoros-Trejo G, de Gortari P. Altered functionality of the corticotrophin-releasing hormone receptor-2 in the hypothalamic paraventricular nucleus of hyperphagic maternally separated rats. Neuropeptides 2017; 63:75-82. [PMID: 28162848 DOI: 10.1016/j.npep.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 11/28/2022]
Abstract
Early-life stress induces endocrine and metabolic alterations that increase food intake and overweight in adulthood. The stress response activates the corticotropin-releasing hormone (CRH) and urocortins' (Ucns) system in the hypothalamic paraventricular nucleus (PVN). These peptides induce anorexic effects through CRH-R2 receptor activation; however, chronic stressed animals develop hyperphagia despite of high PVN CRH expression. We analyzed this paradoxical behavior in adult rats subjected to maternal separation (MS) for 180min/daily during post-natal days 2-14, evaluating their body weight gain, food intake, serum corticosterone and vasopressin concentrations, PVN mRNA expression of CRH-R1, CRH-R2, CRH, Ucn2, Ucn3, vasopressin and CRH-R2 protein levels. MS adults increased their feeding, weight gain as well as circulating corticosterone and vasopressin levels, evincing chronic hyperactivity of the stress system. MS induced higher PVN CRH, Ucn2 and CRH-R2 mRNA expression and protein levels of CRH-R2 showed a tendency to decrease in the cellular membrane fraction. An intra-PVN injection of the CRH-R2 antagonist antisauvagine-30 in control adults increased receptor's mRNA expression, mimicking the observed PVN receptor's up-regulation of early-life MS adults. An injection of Ucn-2 directly into the PVN reduced food intake and increased PVN pCREB/CREB ratio in control animals; in contrast, Ucn-2 was unable to reduce food intake and enhance phosphorylated-CREB levels in PVN of MS rats. In conclusion, the chronic hyperactivity of the stress axis and PVN CRH-R2 resistance to Ucn2 effects, supported impaired receptor functionality in MS animals, probably due to its chronic stimulation by CRH or Ucn2, induced by early-life stress.
Collapse
Affiliation(s)
- V Alcántara-Alonso
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - M I Amaya
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - G Matamoros-Trejo
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - P de Gortari
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico.
| |
Collapse
|
30
|
Kudryavtseva NN, Smagin DA, Kovalenko IL, Galyamina AG, Vishnivetskaya GB, Babenko VN, Orlov YL. Serotonergic genes in the development of anxiety/depression-like state and pathology of aggressive behavior in male mice: RNA-seq data. Mol Biol 2017. [DOI: 10.1134/s0026893317020133] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Cheng G, Wang X, Li Y, He L. Let-7a-transfected mesenchymal stem cells ameliorate monocrotaline-induced pulmonary hypertension by suppressing pulmonary artery smooth muscle cell growth through STAT3-BMPR2 signaling. Stem Cell Res Ther 2017; 8:34. [PMID: 28187784 PMCID: PMC5303212 DOI: 10.1186/s13287-017-0480-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/05/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022] Open
Abstract
Background Cell-based gene therapy has become a subject of interest for the treatment of pulmonary arterial hypertension (PAH), a devastating disease characterized by pulmonary artery smooth muscle cell (PASMC) hyperplasia. Mesenchymal stem cells (MSCs) have been recently acknowledged as a potential cell vector for gene therapy. Here, we investigated the effect of MSC-based let-7a for PAH. Methods After isolation and identification of MSCs from rat bone marrow, cells were infected with recombinant adenovirus vector Ad-let-7a. Lewis rats were subcutaneously injected with monocrotaline (MCT) to induce PAH, followed by the administration of MSCs, MSCs-NC (miR-control), or MSC-let-7a, respectively. Then, right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and pulmonary vascular remodeling were evaluated. Rat pulmonary artery smooth muscle cells (rPASMCs) under hypoxia were co-cultured with MSCs or MSC-let-7a. Cell proliferation and apoptosis were separately determined by 3H thymidine incorporation and flow cytometry analysis. The underlying mechanism was also investigated. Results MSC transplantation enhanced let-7a levels in MCT-induced PAH rats. After injection with MSC-let-7a, RVSP, right ventricular hypertrophy, and pulmonary vascular remodeling were notably ameliorated, indicating a protective effect of MSC-let-7a against PAH. When co-cultured with MSC-let-7a, hypoxia-triggered PASMC proliferation was obviously attenuated, concomitant with the decrease in cell proliferation-associated proteins. Simultaneously, the resistance of PASMCs to apoptosis was remarkably abrogated by MSC-let-7a administration. A mechanism assay revealed that MSC-let-7a restrained the activation of signal transducers and activators of transcription 3 (STAT3) and increased its downstream bone morphogenetic protein receptor 2 (BMPR2) expression. Importantly, preconditioning with BMPR2 siRNA dramatically abated the suppressive effects of MSC-let-7a on PASMC proliferation and apoptosis resistance. Conclusions Collectively, this study suggests that MSCs modified with let-7a may ameliorate the progression of PAH by inhibiting PASMC growth through the STAT3-BMPR2 signaling, supporting a promising therapeutic strategy for PAH patients.
Collapse
Affiliation(s)
- Gesheng Cheng
- Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xingye Wang
- Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Yongxin Li
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Lu He
- Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| |
Collapse
|
32
|
The absence of 5-HT 4 receptors modulates depression- and anxiety-like responses and influences the response of fluoxetine in olfactory bulbectomised mice: Adaptive changes in hippocampal neuroplasticity markers and 5-HT 1A autoreceptor. Neuropharmacology 2016; 111:47-58. [PMID: 27586007 DOI: 10.1016/j.neuropharm.2016.08.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/15/2016] [Accepted: 08/27/2016] [Indexed: 02/08/2023]
Abstract
Preclinical studies support a critical role of 5-HT4 receptors (5-HT4Rs) in depression and anxiety, but their influence in depression- and anxiety-like behaviours and the effects of antidepressants remain partly unknown. We evaluated 5-HT4R knockout (KO) mice in different anxiety and depression paradigms and mRNA expression of some neuroplasticity markers (BDNF, trkB and Arc) and the functionality of 5-HT1AR. Moreover, the implication of 5-HT4Rs in the behavioural and molecular effects of chronically administered fluoxetine was assessed in naïve and olfactory bulbectomized mice (OBX) of both genotypes. 5-HT4R KO mice displayed few specific behavioural impairments including reduced central activity in the open-field (anxiety), and decreased sucrose consumption and nesting behaviour (anhedonia). In these mice, we measured increased levels of BDNF and Arc mRNA and reduced levels of trkB mRNA in the hippocampus, and a desensitization of 5-HT1A autoreceptors. Chronic administration of fluoxetine elicited similar behavioural effects in WT and 5-HT4R KO mice on anxiety-and depression-related tests. Following OBX, locomotor hyperactivity and anxiety were similar in both genotypes. Interestingly, chronic fluoxetine failed to reverse this OBX-induced syndrome in 5-HT4R KO mice, a response associated with differential effects in hippocampal neuroplasticity biomarkers. Fluoxetine reduced hippocampal Arc and BDNF mRNA expressions in WT but not 5-HT4R KO mice subjected to OBX. These results demonstrate that the absence of 5-HT4Rs triggers adaptive changes that could maintain emotional states, and that the behavioural and molecular effects of fluoxetine under pathological depression appear to be critically dependent on 5-HT4Rs.
Collapse
|
33
|
Luoni A, Riva MA. MicroRNAs and psychiatric disorders: From aetiology to treatment. Pharmacol Ther 2016; 167:13-27. [PMID: 27452338 DOI: 10.1016/j.pharmthera.2016.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
Abstract
The emergence of psychiatric disorders relies on the interaction between genetic vulnerability and environmental adversities. Several studies have demonstrated a crucial role for epigenetics (e.g. DNA methylation, post-translational histone modifications and microRNA-mediated post-transcriptional regulation) in the translation of environmental cues into adult behavioural outcome, which can prove to be harmful thus increasing the risk to develop psychopathology. Within this frame, non-coding RNAs, especially microRNAs, came to light as pivotal regulators of many biological processes occurring in the Central Nervous System, both during the neuronal development as well as in the regulation of adult function, including learning, memory and neuronal plasticity. On these basis, in recent years it has been hypothesised a central role for microRNA modulation and expression regulation in many brain disorders, including neurodegenerative disorders and mental illnesses. Indeed, the aim of the present review is to present the most recent state of the art regarding microRNA involvement in psychiatric disorders. We will first describe the mechanisms that regulate microRNA biogenesis and we will report evidences of microRNA dysregulation in peripheral body fluids, in postmortem brain tissues from patients suffering from psychopathology as well as in animal models. Last, we will discuss the potential to consider microRNAs as putative target for pharmacological intervention, using common psychotropic drugs or more specific tools, with the aim to normalize functions that are disrupted in different psychiatric conditions.
Collapse
Affiliation(s)
- Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
| |
Collapse
|
34
|
Ma K, Guo L, Xu A, Cui S, Wang JH. Molecular Mechanism for Stress-Induced Depression Assessed by Sequencing miRNA and mRNA in Medial Prefrontal Cortex. PLoS One 2016; 11:e0159093. [PMID: 27427907 PMCID: PMC4948880 DOI: 10.1371/journal.pone.0159093] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/27/2016] [Indexed: 01/01/2023] Open
Abstract
Background Major depression is a prevalent mood disorder. Chronic stress is presumably main etiology that leads to the neuron and synapse atrophies in the limbic system. However, the intermediate molecules from stresses to neuronal atrophy remain elusive, which we have studied in the medial prefrontal cortices from depression mice. Methods and Results The mice were treated by the chronic unpredictable mild stress (CUMS) until they expressed depression-like behaviors confirmed by the tests of sucrose preference, forced swimming and Y-maze. High-throughput sequencings of microRNA and mRNA in the medial prefrontal cortices were performed in CUMS-induced depression mice versus control mice to demonstrate the molecular profiles of major depression. In the medial prefrontal cortices of depression-like mice, the levels of mRNAs that translated the proteins for the GABAergic synapses, dopaminergic synapses, myelination, synaptic vesicle cycle and neuronal growth were downregulated. miRNAs of regulating these mRNAs are upregulated. Conclusion The deteriorations of GABAergic and dopaminergic synapses as well as axonal growth are associated with CUMS-induced depression.
Collapse
MESH Headings
- Animals
- Depressive Disorder, Major/etiology
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Gene Regulatory Networks
- Male
- Mice, Inbred C57BL
- MicroRNAs/analysis
- MicroRNAs/genetics
- Prefrontal Cortex/metabolism
- Prefrontal Cortex/pathology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Stress, Psychological/complications
- Stress, Psychological/genetics
- Stress, Psychological/pathology
Collapse
Affiliation(s)
- Ke Ma
- Qingdao University, School of Pharmacy, Shandong, China
| | - Li Guo
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aiping Xu
- College of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Shan Cui
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jin-Hui Wang
- Qingdao University, School of Pharmacy, Shandong, China
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Science and Technology of China, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
35
|
MicroRNA’s impact on neurotransmitter and neuropeptide systems: small but mighty mediators of anxiety. Pflugers Arch 2016; 468:1061-9. [DOI: 10.1007/s00424-016-1814-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 11/26/2022]
|
36
|
Dwivedi Y. Pathogenetic and therapeutic applications of microRNAs in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:341-8. [PMID: 25689819 PMCID: PMC4537399 DOI: 10.1016/j.pnpbp.2015.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 01/08/2023]
Abstract
As a class of noncoding RNAs, microRNAs (miRNAs) regulate gene expression by inhibiting translation of messenger RNAs. These miRNAs have been shown to play a critical role in higher brain functioning and actively participate in synaptic plasticity. Pre-clinical evidence demonstrates that expression of miRNAs is differentially altered during stress. On the other hand, depressed individuals show marked changes in miRNA expression in brain. MiRNAs are also target of antidepressants and electroconvulsive therapy. Moreover, these miRNAs are present in circulating blood and can be easily detected. Profiling of miRNAs in blood plasma/serum provides evidence that determination of miRNAs in blood can be used as possible diagnostic and therapeutic tool. In this review article, these aspects are critically reviewed and the role of miRNAs in possible etiopathogenesis and therapeutic implications in the context of major depressive disorder is discussed.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 2nd Avenue South, Birmingham, AL, USA.
| |
Collapse
|
37
|
de Sousa CNS, Meneses LN, Vasconcelos GS, Silva MCC, da Silva JC, Macêdo D, de Lucena DF, Vasconcelos SMM. Reversal of corticosterone-induced BDNF alterations by the natural antioxidant alpha-lipoic acid alone and combined with desvenlafaxine: Emphasis on the neurotrophic hypothesis of depression. Psychiatry Res 2015; 230:211-9. [PMID: 26350703 DOI: 10.1016/j.psychres.2015.08.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 08/11/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022]
Abstract
Brain derived neurotrophic factor (BDNF) is linked to the pathophysiology of depression. We hypothesized that BDNF is one of the neurobiological pathways related to the augmentation effect of alpha-lipoic acid (ALA) when associated with antidepressants. Female mice were administered vehicle or CORT 20mg/kg during 14 days. From the 15th to 21st days the animals were divided in groups that were further administered: vehicle, desvenlafaxine (DVS) 10 or 20mg/kg, ALA 100 or 200mg/kg or the combinations of DVS10+ALA100, DVS20+ALA100, DVS10+ALA200 or DVS20+ALA200. ALA or DVS alone or in combination reversed CORT-induced increase in immobility time in the forced swimming test and decrease in sucrose preference, presenting, thus, an antidepressant-like effect. DVS10 alone reversed CORT-induced decrease in BDNF in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST). The same was observed in the HC and ST of ALA200 treated animals. The combination of DVS and ALA200 reversed CORT-induced alterations in BDNF and even, in some cases, increased the levels of this neurotrophin when compared to vehicle-treated animals in HC and ST. Taken together, these results suggest that the combination of the DVS+ALA may be valuable for treating conditions in which BDNF levels are decreased, such as depression.
Collapse
Affiliation(s)
- Caren Nádia Soares de Sousa
- Neuropsychopharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - Lucas Nascimento Meneses
- Neuropsychopharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - Germana Silva Vasconcelos
- Neuropsychopharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - Márcia Calheiros Chaves Silva
- Neuropsychopharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | | | - Danielle Macêdo
- Neuropsychopharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - David Freitas de Lucena
- Neuropsychopharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - Silvânia Maria Mendes Vasconcelos
- Neuropsychopharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
38
|
Exposure to sub-chronic unpredictable stress accounts for antidepressant-like effects in hamsters treated with BDNF and CNQX. Brain Res Bull 2015; 118:65-77. [DOI: 10.1016/j.brainresbull.2015.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 11/21/2022]
|
39
|
Blaze J, Asok A, Roth TL. The long-term impact of adverse caregiving environments on epigenetic modifications and telomeres. Front Behav Neurosci 2015; 9:79. [PMID: 25904853 PMCID: PMC4389567 DOI: 10.3389/fnbeh.2015.00079] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/14/2015] [Indexed: 12/18/2022] Open
Abstract
Early childhood is a sensitive period in which infant-caregiver experiences have profound effects on brain development and behavior. Clinical studies have demonstrated that infants who experience stress and adversity in the context of caregiving are at an increased risk for the development of psychiatric disorders. Animal models have helped to elucidate some molecular substrates of these risk factors, but a complete picture of the biological basis remains unknown. Studies continue to indicate that environmentally-driven epigenetic modifications may be an important mediator between adverse caregiving environments and psychopathology. Epigenetic modifications such as DNA methylation, which normally represses gene transcription, and microRNA processing, which interferes with both transcription and translation, show long-term changes throughout the brain and body following adverse caregiving. Recent evidence has also shown that telomeres (TTAGGG nucleotide repeats that cap the ends of DNA) exhibit long-term changes in the brain and in the periphery following exposure to adverse caregiving environments. Interestingly, telomeric enzymes and subtelomeric regions are subject to epigenetic modifications—a factor which may play an important role in regulating telomere length and contribute to future mental health. This review will focus on clinical and animal studies that highlight the long-term epigenetic and telomeric changes produced by adverse caregiving in early-life.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Psychological and Brain Sciences, University of Delaware Newark, DE, USA
| | - Arun Asok
- Department of Psychological and Brain Sciences, University of Delaware Newark, DE, USA
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware Newark, DE, USA
| |
Collapse
|