1
|
Savva A, Dijkman R, Bulik CM, Seubert J. Behavioral separation of liking and wanting in response to olfactory and visual food cues. Appetite 2025; 204:107717. [PMID: 39423862 DOI: 10.1016/j.appet.2024.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
In real-world settings, food rewards are processed in parallel across several sensory modalities, but paradigms that compare contributions of different modalities are lacking. While odor perception in particular is frequently implicated in appetite regulation, the mechanisms by which food odors differentially evoke experiences of wanting and liking remain poorly understood. This study addressed this gap by dissociating liking from wanting responses for olfactory stimuli, and establishing commonalities and differences relative to the visual modality. In two separate experiments, participants (n1 = 37, n2 = 43) rated content-matched batteries of odors and pictures, respectively, for their ability to elicit pleasure (liking) and desire to eat (wanting). A third experiment (n3 = 39) utilized a combined olfactory-visual paradigm to test the separation of these dimensions in a multisensory context. Our results show that participants differentiated clearly and reliably between liking and wanting for both odors and pictures, as demonstrated by a high difference score between the two in non-food (high liking, low wanting), but not in food (both high) or disgusting stimuli (both low), and high within-session retest reliability. Higher variability for olfactory relative to visual assessments was observed and likely reflects well-established difficulties with odor object identification. Taken together, our study demonstrates that olfactory stimuli can be used in experimental settings to evoke separable experiences of liking and wanting for food and non-food stimuli. Manipulating these components independently across sensory modalities in experimental studies could generate novel insights into how olfactory and visual cues differentially contribute to anticipatory and consummatory food reward processing, in healthy and disordered eating.
Collapse
Affiliation(s)
- Androula Savva
- Department of Clinical Neuroscience, Psychology Division, Karolinska Institutet, Stockholm, Sweden; Department of Medical Epidemiology and Biostatistics, Centre for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden.
| | - Renee Dijkman
- Department of Bioscience and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Centre for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janina Seubert
- Department of Clinical Neuroscience, Psychology Division, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Kim DI, Kang SJ, Jhang J, Jo YS, Park S, Ye M, Pyeon GH, Im GH, Kim SG, Han S. Encoding opposing valences through frequency-dependent transmitter switching in single peptidergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622790. [PMID: 39574736 PMCID: PMC11581014 DOI: 10.1101/2024.11.09.622790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Peptidergic neurons often co-express fast transmitters and neuropeptides in separate vesicles with distinct release properties. However, the release dynamics of each transmitter in various contexts have not been fully understood in behaving animals. Here, we demonstrate that calcitonin gene-related peptide (CGRP) neurons in the external lateral subdivision of the parabrachial nucleus (CGRPPBel) encode opposing valence via differential release, rather than co-release, of glutamate and neuropeptides, according to firing rate. Glutamate is released preferentially at lower firing rates with minimal release at higher firing rates, whereas neuropeptides are released at higher firing rates, resulting in frequency-dependent switching of transmitters. Aversive stimuli evoke high frequency responses with accompanying neuropeptide release to encode negative valence, whereas appetitive stimuli evoke low frequency responses with glutamate release to encode positive valence. Our study reveals a previously unknown capability of single CGRPPBel neurons to bidirectionally encode valence via frequency-dependent differential release of transmitters in vivo.
Collapse
Affiliation(s)
- Dong-Il Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies; La Jolla, CA 92037, USA
| | - Sukjae J. Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies; La Jolla, CA 92037, USA
| | - Jinho Jhang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies; La Jolla, CA 92037, USA
| | - Yong S. Jo
- School of Psychology, Korea University; Seoul, Republic of Korea
| | - Seahyung Park
- Peptide Biology Laboratory, The Salk Institute for Biological Studies; La Jolla, CA 92037, USA
| | - Mao Ye
- Peptide Biology Laboratory, The Salk Institute for Biological Studies; La Jolla, CA 92037, USA
| | - Gyeong Hee Pyeon
- School of Psychology, Korea University; Seoul, Republic of Korea
| | - Geun-Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science; Suwon, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science; Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University; Suwon, Republic of Korea
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies; La Jolla, CA 92037, USA
- Center for Neuroscience Imaging Research, Institute for Basic Science; Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University; Suwon, Republic of Korea
| |
Collapse
|
3
|
Hildebrandt BA, Mikhail ME, Gearhardt AN, Culbert KM, Burt SA, Neale MC, Keel PK, Katzman DK, Klump KL. Self-reported food liking and wanting: A factor analytic study of ratings across 49 consecutive days. Appetite 2024; 201:107601. [PMID: 38986815 PMCID: PMC11330718 DOI: 10.1016/j.appet.2024.107601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Reward responses to food are thought to play an important role in highly palatable food overconsumption. In animal models, food reward responses can be decoupled into unique "liking" (in the moment enjoyment) and "wanting" (motivation/craving) components. However, research on liking and wanting has been hampered by uncertainty regarding whether liking and wanting can be reliably separated in humans. We used factor analysis to test whether ratings of liking and wanting could be empirically separated in women assessed across 49 consecutive days. Female participants (N = 688; ages 15-30) from the Michigan State University Twin Registry reported liking and wanting of foods consumed that day, and wanting of foods not consumed that day, separately for sweets (e.g., cookies), fast food (e.g., French fries), carbohydrates (e.g., bread), and whole foods (fruit, plain chicken) each evening for 49 consecutive days. We examined both average levels and daily levels of liking/wanting across the 49-day period that captured individual differences in liking/wanting over time. Across both types of analyses, liking and wanting for foods that were eaten formed a single factor rather than separate, dissociable factors, while wanting of foods not eaten formed an independent factor. At the daily level, a liking/wanting factor emerged for each individual food category (e.g., liking/wanting sweets), whereas in average analyses, a single factor emerged that collapsed across all food types (i.e., liking/wanting of all foods). Results suggest individuals have difficulty distinguishing between liking and wanting of foods they have eaten on that day but may be able to more reliably separate wanting of foods they have not consumed.
Collapse
Affiliation(s)
- Britny A Hildebrandt
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Megan E Mikhail
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | | | - Kristen M Culbert
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Michael C Neale
- Departments of Psychiatry, Human Genetics, and Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - Pamela K Keel
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Debra K Katzman
- Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Kelly L Klump
- Department of Psychology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Runyon K, Bui T, Mazanek S, Hartle A, Marschalko K, Howe WM. Distinct cholinergic circuits underlie discrete effects of reward on attention. Front Mol Neurosci 2024; 17:1429316. [PMID: 39268248 PMCID: PMC11390659 DOI: 10.3389/fnmol.2024.1429316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Attention and reward are functions that are critical for the control of behavior, and massive multi-region neural systems have evolved to support the discrete computations associated with each. Previous research has also identified that attention and reward interact, though our understanding of the neural mechanisms that mediate this interplay is incomplete. Here, we review the basic neuroanatomy of attention, reward, and cholinergic systems. We then examine specific contexts in which attention and reward computations interact. Building on this work, we propose two discrete neural circuits whereby acetylcholine, released from cell groups located in different parts of the brain, mediates the impact of stimulus-reward associations as well as motivation on attentional control. We conclude by examining these circuits as a potential shared loci of dysfunction across diseases states associated with deficits in attention and reward.
Collapse
Affiliation(s)
- Kelly Runyon
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Tung Bui
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Sarah Mazanek
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Alec Hartle
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Katie Marschalko
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
5
|
Marinescu AM, Labouesse MA. The nucleus accumbens shell: a neural hub at the interface of homeostatic and hedonic feeding. Front Neurosci 2024; 18:1437210. [PMID: 39139500 PMCID: PMC11319282 DOI: 10.3389/fnins.2024.1437210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Feeding behavior is a complex physiological process regulated by the interplay between homeostatic and hedonic feeding circuits. Among the neural structures involved, the nucleus accumbens (NAc) has emerged as a pivotal region at the interface of these two circuits. The NAc comprises distinct subregions and in this review, we focus mainly on the NAc shell (NAcSh). Homeostatic feeding circuits, primarily found in the hypothalamus, ensure the organism's balance in energy and nutrient requirements. These circuits monitor peripheral signals, such as insulin, leptin, and ghrelin, and modulate satiety and hunger states. The NAcSh receives input from these homeostatic circuits, integrating information regarding the organism's metabolic needs. Conversely, so-called hedonic feeding circuits involve all other non-hunger and -satiety processes, i.e., the sensory information, associative learning, reward, motivation and pleasure associated with food consumption. The NAcSh is interconnected with hedonics-related structures like the ventral tegmental area and prefrontal cortex and plays a key role in encoding hedonic information related to palatable food seeking or consumption. In sum, the NAcSh acts as a crucial hub in feeding behavior, integrating signals from both homeostatic and hedonic circuits, to facilitate behavioral output via its downstream projections. Moreover, the NAcSh's involvement extends beyond simple integration, as it directly impacts actions related to food consumption. In this review, we first focus on delineating the inputs targeting the NAcSh; we then present NAcSh output projections to downstream structures. Finally we discuss how the NAcSh regulates feeding behavior and can be seen as a neural hub integrating homeostatic and hedonic feeding signals, via a functionally diverse set of projection neuron subpopulations.
Collapse
Affiliation(s)
- Alina-Măriuca Marinescu
- Brain, Wire and Behavior Group, Translational Nutritional Biology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marie A. Labouesse
- Brain, Wire and Behavior Group, Translational Nutritional Biology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Chen X, Bao Y, Zhao J, Wang Z, Gao Q, Ma M, Xie Z, He M, Deng X, Ran J. Associations of Triglycerides and Atherogenic Index of Plasma with Brain Structure in the Middle-Aged and Elderly Adults. Nutrients 2024; 16:672. [PMID: 38474800 DOI: 10.3390/nu16050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Triglyceride (TG) and atherogenic index of plasma (AIP) have been acknowledged to be risk factors for vascular insults, but their impacts on the brain system remain elusive. To fill in some gaps, we investigated associations of TG and AIP with brain structure, leveraging the UK Biobank database. TG and high-density lipoprotein cholesterol (HDL-C) were examined at baseline and AIP was calculated as log (TG/HDL-C). We build several linear regression models to estimate associations of TG and AIP with volumes of brain grey matter phenotypes. Significant inverse associations of TG and AIP with volumes of specific subcortical traits were observed, among which TG and AIP were most significantly associated with caudate nucleus (TG: β [95% confidence interval CI] = -0.036 [-0.051, -0.022], AIP: -0.038 [-0.053, -0.023]), thalamus (-0.029 [-0.042, -0.017], -0.032 [-0.045, -0.019]). Higher TG and AIP were also considerably related with reduced cortical structure volumes, where two most significant associations of TG and AIP were with insula (TG: -0.035 [-0.048, -0.022], AIP: -0.038 [-0.052, -0.025]), superior temporal gyrus (-0.030 [-0.043, -0.017], -0.033 [-0.047, -0.020]). Modification effects of sex and regular physical activity on the associations were discovered as well. Our findings show adverse associations of TG and AIP with grey matter volumes, which has essential public health implications for early prevention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Xixi Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yujia Bao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiahao Zhao
- Department of Foundational Mathematics, Xi'an Jiaotong-Liverpool University, Suzhou 215000, China
| | - Ziyue Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qijing Gao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingyang Ma
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ziwen Xie
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mu He
- Department of Foundational Mathematics, Xi'an Jiaotong-Liverpool University, Suzhou 215000, China
| | - Xiaobei Deng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
7
|
Asir B, Boscutti A, Fenoy AJ, Quevedo J. Deep Brain Stimulation (DBS) in Treatment-Resistant Depression (TRD): Hope and Concern. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:161-186. [PMID: 39261429 DOI: 10.1007/978-981-97-4402-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this chapter, we explore the historical evolution, current applications, and future directions of Deep Brain Stimulation (DBS) for Treatment-Resistant Depression (TRD). We begin by highlighting the early efforts of neurologists and neurosurgeons who laid the foundations for today's DBS techniques, moving from controversial lobotomies to the precision of stereotactic surgery. We focus on the advent of DBS, emphasizing its emergence as a significant breakthrough for movement disorders and its extension to psychiatric conditions, including TRD. We provide an overview of the neural networks implicated in depression, detailing the rationale for the choice of common DBS targets. We also cover the technical aspects of DBS, from electrode placement to programming and parameter selection. We then critically review the evidence from clinical trials and open-label studies, acknowledging the mixed outcomes and the challenges posed by placebo effects and trial design. Safety and ethical considerations are also discussed. Finally, we explore innovative directions for DBS research, including the potential of closed-loop systems, dual stimulation strategies, and noninvasive alternatives like ultrasound neuromodulation. In the last section, we outline recommendations for future DBS studies, including the use of alternative designs for placebo control, the collection of neural and behavioral recordings, and the application of machine-learning approaches.
Collapse
Affiliation(s)
- Bashar Asir
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA.
| | - Andrea Boscutti
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Joao Quevedo
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA
| |
Collapse
|
8
|
McReynolds JR, Wolf CP, Starck DM, Mathy JC, Schaps R, Krause LA, Hillard CJ, Mantsch JR. Role of mesolimbic cannabinoid receptor 1 in stress-driven increases in cocaine self-administration in male rats. Neuropsychopharmacology 2023; 48:1121-1132. [PMID: 37188846 PMCID: PMC10267161 DOI: 10.1038/s41386-023-01589-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Stress is prevalent in the lives of those with substance use disorders (SUDs) and influences SUD outcomes. Understanding the neurobiological mechanisms through which stress promotes drug use is important for the development of effective SUD interventions. We have developed a model wherein exposure to a stressor, uncontrollable electric footshock, daily at the time of cocaine self-administration escalates intake in male rats. Here we test the hypothesis that stress-induced escalation of cocaine self-administration requires the CB1 cannabinoid receptor. Male Sprague-Dawley rats self-administered cocaine (0.5 mg/kg/inf, i.v.) during 2-h sessions comprised of four 30-min self-administration components separated by 5-min shock sequences or 5-min shock-free periods for 14 days. Footshock produced an escalation of cocaine self-administration that persisted following shock removal. Systemic administration of the cannabinoid receptor type 1 (CB1R) antagonist/inverse agonist, AM251, attenuated cocaine intake only in rats with a history of stress. This effect was localized to the mesolimbic system, as intra-nucleus accumbens (NAc) shell and intra-ventral tegmental area (VTA) micro-infusions of AM251 attenuated cocaine intake only in stress-escalated rats. Cocaine self-administration, regardless of stress history, increased CB1R binding site density in the VTA, but not NAc shell. Following extinction, cocaine-primed reinstatement (10 mg/kg, ip) was increased in rats with prior footshock during self-administration. AM251 attenuated reinstatement only in rats with a stress history. Altogether, these data demonstrate that mesolimbic CB1Rs are required to escalate intake and heighten relapse susceptibility and suggest that repeated stress at the time of cocaine use regulates mesolimbic CB1R activity through a currently unknown mechanism.
Collapse
Affiliation(s)
- Jayme R McReynolds
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
- Department of Pharmacology & Systems Physiology and Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Colten P Wolf
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Dylan M Starck
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Jacob C Mathy
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Rebecca Schaps
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Leslie A Krause
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cecilia J Hillard
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
Marinelli S, Basile G, Manfredini R, Zaami S. Sex- and Gender-Specific Drug Abuse Dynamics: The Need for Tailored Therapeutic Approaches. J Pers Med 2023; 13:965. [PMID: 37373954 DOI: 10.3390/jpm13060965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Sex and gender have been gaining ever greater attention due to their associated risks, dynamics, patterns and protective factors underlying substance abuse and addiction. Such differentiations and the clarification of complexities thereof take on even greater relevance in light of drug abuse scope worldwide. According to the 2022 World Drug Report released by the United Nations Office on Drugs and Crime (UNODC), in 2020 an estimated 284 million people worldwide aged 15-64 had used a drug within the last 12 months. The authors have set out to shed a light on determinants and contributing factors of drug abuse based on sex and gender and outline policy and medicolegal remarks aimed at delineating sex- and gender-based approaches towards drug abuse therapeutic interventions that are both therapeutically and ethically/legally viable and grounded in an evidence-based set of standards. Neurobiological data suggest that estrogen may facilitate drug taking by interacting with reward- and stress-related systems. In animal research, the administration of estrogen increases drug taking and facilitates the acquisition, escalation, and reinstatement of cocaine-seeking behavior. From a medicolegal perspective, it is of utmost importance to take into account the whole picture constituting each patient profile, which certainly includes gender factors and contributors, when outlining a therapeutic approach. Failure to do so could lead to negligence-based malpractice allegations, in light of the scientific findings representing best practices with which clinicians need to comply when caring for SUD patients.
Collapse
Affiliation(s)
- Susanna Marinelli
- School of Law, Università Politecnica delle Marche, 60121 Ancona, Italy
| | | | - Roberto Manfredini
- University Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| |
Collapse
|
10
|
Kislov A, Shestakova A, Ushakov V, Martinez-Saito M, Beliaeva V, Savelo O, Vasilchuk A, Klucharev V. The prediction of market-level food choices by the neural valuation signal. PLoS One 2023; 18:e0286648. [PMID: 37267322 PMCID: PMC10237376 DOI: 10.1371/journal.pone.0286648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Neuroimaging studies have demonstrated the ability to use the brain activity of a group of individuals to forecast the behavior of an independent group. In the current study, we attempted to forecast aggregate choices in a popular restaurant chain. During our functional magnetic resonance imaging (fMRI) study, 22 participants were exposed to 78 photos of dishes from a new menu of a popular restaurant chain. In addition to self-reported preferences, fMRI data was extracted from an a priori domain-general and task-specific region of interest-the ventral striatum. We investigated the relationship between the neural activity and real one-year sales provided by the restaurant chain. Activity in the ventral striatum, which was defined using the task-specific region of interest, significantly correlated (r = 0.28, p = 0.01) with one-year sales. A regression analysis, which included ventral striatum activity together with the objective characteristics of the products (price and weight), behavioral, and survey data, showed R2 values of 0.33. Overall, our results confirm prior studies, which have suggested, that brain activity in the reward system of a relatively small number of individuals can forecast the aggregate choice of a larger independent group of people.
Collapse
Affiliation(s)
- Andrew Kislov
- International Laboratory of Social Neurobiology, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
| | - Anna Shestakova
- International Laboratory of Social Neurobiology, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
| | - Vadim Ushakov
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, Russia
| | - Mario Martinez-Saito
- International Laboratory of Social Neurobiology, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
| | - Valeria Beliaeva
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
| | - Olga Savelo
- International Laboratory of Social Neurobiology, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
| | | | - Vasily Klucharev
- International Laboratory of Social Neurobiology, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
| |
Collapse
|
11
|
Verharen JPH, de Jong JW, Zhu Y, Lammel S. A computational analysis of mouse behavior in the sucrose preference test. Nat Commun 2023; 14:2419. [PMID: 37105954 PMCID: PMC10140068 DOI: 10.1038/s41467-023-38028-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The sucrose preference test (SPT) measures the relative preference of sucrose over water to assess hedonic behaviors in rodents. Yet, it remains uncertain to what extent the SPT reflects other behavioral components, such as learning, memory, motivation, and choice. Here, we conducted an experimental and computational decomposition of mouse behavior in the SPT and discovered previously unrecognized behavioral subcomponents associated with changes in sucrose preference. We show that acute and chronic stress have sex-dependent effects on sucrose preference, but anhedonia was observed only in response to chronic stress in male mice. Additionally, reduced sucrose preference induced by optogenetics is not always indicative of anhedonia but can also reflect learning deficits. Even small variations in experimental conditions influence behavior, task outcome and interpretation. Thus, an ostensibly simple behavioral task can entail high levels of complexity, demonstrating the need for careful dissection of behavior into its subcomponents when studying the underlying neurobiology.
Collapse
Affiliation(s)
- Jeroen P H Verharen
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Johannes W de Jong
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Yichen Zhu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
12
|
Nguyen NPK, Tran KN, Nguyen LTH, Shin HM, Yang IJ. Effects of Essential Oils and Fragrant Compounds on Appetite: A Systematic Review. Int J Mol Sci 2023; 24:ijms24097962. [PMID: 37175666 PMCID: PMC10178777 DOI: 10.3390/ijms24097962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Appetite dysregulation is one of the factors contributing to anorexia, bulimia nervosa, obesity, and diabetes. Essential oils or fragrant compounds have been proven to regulate food intake and energy expenditure; hence, this study aimed to summarize their effects on appetite and the underlying mechanisms. The PubMed and Web of Science databases were searched until July 2022. Only two of the 41 studies were performed clinically, and the remaining 39 used animal models. Oral administration was the most common route, and a dosage range of 100-2000 mg/kg for mice or 2-32 mg/kg for rats was applied, with a duration of 12 days to 4 weeks, followed by inhalation (10-6-10-3 mg/cage or 10-9-10-2 mg/cm3 within 1 h). Approximately 11 essential oil samples and 22 fragrant compounds were found to increase appetite, while 12 essential oils and seven compounds decreased appetite. These fragrant components can exert appetite-regulating effects via leptin resistance, the activity of sympathetic/parasympathetic nerves, or the mRNA expression of neuropeptide Y (NPY)/agouti-related protein (AgRP), cocaine- and amphetamine-regulated transcript (CART)/proopiomelanocortin (POMC) in the hypothalamus. Fragrance memory and cognitive processes may also play roles in appetite regulation. The findings of this study accentuate the potential of essential oils and fragrant compounds to regulate appetite and eating disorders.
Collapse
Affiliation(s)
- Nhi Phuc Khanh Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Khoa Nguyen Tran
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
13
|
Cuitavi J, Torres-Pérez JV, Lorente JD, Campos-Jurado Y, Andrés-Herrera P, Polache A, Agustín-Pavón C, Hipólito L. Crosstalk between Mu-Opioid receptors and neuroinflammation: Consequences for drug addiction and pain. Neurosci Biobehav Rev 2023; 145:105011. [PMID: 36565942 DOI: 10.1016/j.neubiorev.2022.105011] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/29/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Mu-Opioid Receptors (MORs) are well-known for participating in analgesia, sedation, drug addiction, and other physiological functions. Although MORs have been related to neuroinflammation their biological mechanism remains unclear. It is suggested that MORs work alongside Toll-Like Receptors to enhance the release of pro-inflammatory mediators and cytokines during pathological conditions. Some cytokines, including TNF-α, IL-1β and IL-6, have been postulated to regulate MORs levels by both avoiding MOR recycling and enhancing its production. In addition, Neurokinin-1 Receptor, also affected during neuroinflammation, could be regulating MOR trafficking. Therefore, inflammation in the central nervous system seems to be associated with altered/increased MORs expression, which might regulate harmful processes, such as drug addiction and pain. Here, we provide a critical evaluation on MORs' role during neuroinflammation and its implication for these conditions. Understanding MORs' functioning, their regulation and implications on drug addiction and pain may help elucidate their potential therapeutic use against these pathological conditions and associated disorders.
Collapse
Affiliation(s)
- Javier Cuitavi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain.
| | - Jose Vicente Torres-Pérez
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Jesús David Lorente
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Yolanda Campos-Jurado
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Paula Andrés-Herrera
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Ana Polache
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Carmen Agustín-Pavón
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain.
| |
Collapse
|
14
|
Waclawek T, Park SQ. Potential mechanisms and modulators of food intake during pregnancy. Front Nutr 2023; 10:1032430. [PMID: 36742431 PMCID: PMC9895105 DOI: 10.3389/fnut.2023.1032430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Dietary choice during pregnancy is crucial not only for fetal development, but also for long-term health outcomes of both mother and child. During pregnancy, dramatic changes in endocrine, cognitive, and reward systems have been shown to take place. Interestingly, in different contexts, many of these mechanisms play a key role in guiding food intake. Here, we review how food intake may be impacted as a function of pregnancy-induced changes across species. We first summarize changes in endocrine and metabolic signaling in the course of pregnancy. Then, we show how these may be related to cognitive function and reward processing in humans. Finally, we link these to potential drivers of change in eating behavior throughout the course of pregnancy.
Collapse
Affiliation(s)
- Theresa Waclawek
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam, Germany
| | - Soyoung Q. Park
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam, Germany,Charité–Universitätsmedizin Berlin, Neuroscience Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany,*Correspondence: Soyoung Q. Park,
| |
Collapse
|
15
|
Serafini M, Ilarraz C, Laurito M, Cuenya L. Increment in the consummatory response induced by reward delay: An animal model of binge-like eating episodes. LEARNING AND MOTIVATION 2022. [DOI: 10.1016/j.lmot.2022.101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Morales I. Brain regulation of hunger and motivation: The case for integrating homeostatic and hedonic concepts and its implications for obesity and addiction. Appetite 2022; 177:106146. [PMID: 35753443 DOI: 10.1016/j.appet.2022.106146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Obesity and other eating disorders are marked by dysregulations to brain metabolic, hedonic, motivational, and sensory systems that control food intake. Classic approaches in hunger research have distinguished between hedonic and homeostatic processes, and have mostly treated these systems as independent. Hindbrain structures and a complex network of interconnected hypothalamic nuclei control metabolic processes, energy expenditure, and food intake while mesocorticolimbic structures are though to control hedonic and motivational processes associated with food reward. However, it is becoming increasingly clear that hedonic and homeostatic brain systems do not function in isolation, but rather interact as part of a larger network that regulates food intake. Incentive theories of motivation provide a useful route to explore these interactions. Adapting incentive theories of motivation can enable researchers to better how motivational systems dysfunction during disease. Obesity and addiction are associated with profound alterations to both hedonic and homeostatic brain systems that result in maladaptive patterns of consumption. A subset of individuals with obesity may experience pathological cravings for food due to incentive sensitization of brain systems that generate excessive 'wanting' to eat. Further progress in understanding how the brain regulates hunger and appetite may depend on merging traditional hedonic and homeostatic concepts of food reward and motivation.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109-1043, USA.
| |
Collapse
|
17
|
Pflanz CP, Tozer DJ, Harshfield EL, Tay J, Farooqi S, Markus HS. Central obesity is selectively associated with cerebral gray matter atrophy in 15,634 subjects in the UK Biobank. Int J Obes (Lond) 2022; 46:1059-1067. [PMID: 35145215 PMCID: PMC9050590 DOI: 10.1038/s41366-021-00992-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/20/2021] [Accepted: 10/11/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Obesity is a risk factor for both cardiovascular disease and dementia, but the mechanisms underlying this association are not fully understood. We examined associations between obesity, including estimates of central obesity using different modalities, with brain gray matter (GM) volume in the UK Biobank, a large population-based cohort study. METHODS To determine relationships between obesity and the brain we used brain MRI, abdominal MRI, dual-energy X-ray absorptiometry (DXA), and bioelectric whole-body impedance. We determined whether obesity was associated with any change in brain gray matter (GM) and white matter (WM) volumes, and brain network efficiency derived from the structural connectome (wiring of the brain) as determined from diffusion-tensor MRI tractography. Using Waist-Hip Ratio (WHR), abdominal MRI and DXA we determined whether any associations were primarily with central rather than peripheral obesity, and whether associations were mediated by known cardiovascular risk factors. We analyzed brain MRI data from 15,634. RESULTS We found that central obesity, was associated with decreased GM volume (anthropometric data: p = 6.7 × 10-16, DXA: p = 8.3 × 10-81, abdominal MRI: p = 0.0006). Regional associations were found between central obesity and with specific GM subcortical nuclei (thalamus, caudate, pallidum, nucleus accumbens). In contrast, no associations were found with WM volume or structure, or brain network efficiency. The effects of central obesity on GM volume were not mediated by C-reactive protein or blood pressure, glucose, lipids. CONCLUSIONS Central body-fat distribution rather than the overall body-fat percentage is associated with gray matter changes in people with obesity. Further work is required to identify the factors that mediate the association between central obesity and GM atrophy.
Collapse
Affiliation(s)
- Chris-Patrick Pflanz
- University of Cambridge Stroke Research Group, Neurology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Daniel J Tozer
- University of Cambridge Stroke Research Group, Neurology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| | - Eric L Harshfield
- University of Cambridge Stroke Research Group, Neurology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jonathan Tay
- University of Cambridge Stroke Research Group, Neurology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Welcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Hugh S Markus
- University of Cambridge Stroke Research Group, Neurology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| |
Collapse
|
18
|
Fenoy AJ, Schulz PE, Sanches M, Selvaraj S, Burrows CL, Asir B, Conner CR, Quevedo J, Soares JC. Deep brain stimulation of the "medial forebrain bundle": sustained efficacy of antidepressant effect over years. Mol Psychiatry 2022; 27:2546-2553. [PMID: 35288633 DOI: 10.1038/s41380-022-01504-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Deep brain stimulation (DBS) to the superolateral branch of the medial forebrain bundle (MFB) has emerged as a quite efficacious therapy for treatment resistant depression (TRD), leading to rapid antidepressant effects. In this study, we complete our assessment of our first 10 enrolled patients throughout one year post-implantation, showing sustained antidepressant effect up to 5 years. The primary outcome measure was a 50% reduction in Montgomery-Åsberg Depression Rating Scale (MADRS) score, which was interpreted as a response. Deterministic fiber tracking was used to individually map the target area. An insertional effect was seen during the 4-week sham stimulation phase (29% mean MADRS reduction, p = 0.02). However, after 2 weeks of initiating stimulation, five patients met response criteria (47% mean MADRS reduction, p < 0.001). One patient withdrew from study participation at 6 weeks. Twelve weeks after initiating stimulation, six of nine remaining patients had a >50% decrease in MADRS scores relative to baseline (52% mean MADRS reduction, p = 0.001); these same six patients continued to meet response criteria at 52 weeks (63% overall mean MADRS reduction, p < 0.001). Four of five patients who achieved the 5-year time point analysis continued to be responders (81% mean MADRS reduction, p < 0.001). Evaluation of modulated fiber tracts reveals significant common prefrontal/orbitofrontal connectivity to the target region in all responders. Key points learned from this study that we can incorporate in future protocols to better elucidate the effect of this therapy are a longer blinded sham stimulation phase and use of scheduled discontinuation concomitant with functional imaging.
Collapse
Affiliation(s)
- Albert J Fenoy
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA. .,Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, (UT Health), Houston, TX, USA.
| | - Paul E Schulz
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Marsal Sanches
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, (UT Health), Houston, TX, USA
| | - Sudhakar Selvaraj
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, (UT Health), Houston, TX, USA
| | - Christina L Burrows
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Bashar Asir
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, (UT Health), Houston, TX, USA
| | - Christopher R Conner
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Joao Quevedo
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, (UT Health), Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, (UT Health), Houston, TX, USA
| |
Collapse
|
19
|
Abstract
Psychological and neural distinctions between the technical concepts of "liking" and "wanting" pose important problems for motivated choice for goods. Why could we "want" something that we do not "like," or "like" something but be unwilling to exert effort to acquire it? Here, we suggest a framework for answering these questions through the medium of reinforcement learning. We consider "liking" to provide immediate, but preliminary and ultimately cancellable, information about the true, long-run worth of a good. Such initial estimates, viewed through the lens of what is known as potential-based shaping, help solve the temporally complex learning problems faced by animals.
Collapse
Affiliation(s)
- Peter Dayan
- MPI for Biological Cybernetics, Tübingen, Germany
- University of Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Deep brain stimulation of the "medial forebrain bundle": a strategy to modulate the reward system and manage treatment-resistant depression. Mol Psychiatry 2022; 27:574-592. [PMID: 33903731 DOI: 10.1038/s41380-021-01100-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/21/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023]
Abstract
The medial forebrain bundle-a white matter pathway projecting from the ventral tegmental area-is a structure that has been under a lot of scrutinies recently due to its implications in the modulation of certain affective disorders such as major depression. In the following, we will discuss major depression in the context of being a disorder dependent on multiple relevant networks, the pathological performance of which is responsible for the manifestation of various symptoms of the disease which extend into emotional, motivational, physiological, and also cognitive domains of daily living. We will focus on the reward system, an evolutionarily conserved pathway whose underperformance leads to anhedonia and lack of motivation, which are key traits in depression. In the field of deep brain stimulation (DBS), different "hypothesis-driven" targets have been chosen as the subject of clinical trials on efficacy in the treatment-resistant depressed patient. The "medial forebrain bundle" is one such target for DBS, and has had remarkably rapid success in alleviating depressive symptoms, improving anhedonia and motivation. We will review what we have learned from pre-clinical animal studies on defining this white matter tract, its connectivity, and the complex molecular (i.e., neurotransmitter) mechanisms by which its modulation exerts its effects. Imaging studies in the form of tractographic depictions have elucidated its presence in the human brain. Such has led to ongoing clinical trials of DBS targeting this pathway to assess efficacy, which is promising yet still lack in sufficient numbers. Ultimately, one must confirm the mechanism of action and validate proof of antidepressant effect in order to have such treatment become mainstream, to promote widespread improvement in the quality of life of suffering patients.
Collapse
|
21
|
Prahalathan SV, Baird D, Hendrie GA, Rebuli MA, Cox DN. Sensory swap: Modelling the impact of swapping discretionary choices for similar tasting core foods on the energy, nutrients and sensory properties of Australian diets. Appetite 2021; 169:105866. [PMID: 34915107 DOI: 10.1016/j.appet.2021.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 11/02/2022]
Abstract
Food choice is strongly driven by the sensory characteristics of foods with sweet, salty and fatty mouthfeel considered highly palatable and rewarding. Attempts to improve diet quality have not addressed sensory characteristics of diets before. This report describes a data modelling exercise that could underpin a dietary strategy to help support consumption of higher quality diets without compromising sensory preferences. This study used the Australian National Nutrition and Physical Activity Survey data (in 9341 adults) and the CSIRO sensory-diet database. A method was developed to find core food swaps which had a similar sensory profile as discretionary foods. This study investigated the impact of such swaps on energy and nutrient intake and the impact of the swaps on servings of food groups. The modelling resulted in a similar sensory profile of core foods to that of discretionary foods with hardness, sweetness and fatty mouthfeel all within 1-3% but the saltiness approached a 4% change. There was a small (3.6%) increase in energy intake. This swap strategy decreased the intake of risk nutrients such as saturated fat and added sugars, but not sodium, while increasing the intake of beneficial nutrients like calcium, zinc and vitamin C. Results also show that there was an increase in the intake of servings of core food groups such as fruits, grains, and dairy products but little change in vegetables. In conclusion, similar sensory swaps are possible and could underpin a diet strategy, that could be further refined through food appropriateness, to improve quality.
Collapse
Affiliation(s)
- Sanju V Prahalathan
- CSIRO Health and Biosecurity, PO Box 10041, Adelaide, 5001, Australia; Wageningen University and Research, Wageningen, 6708PB, the Netherlands.
| | - Danielle Baird
- CSIRO Health and Biosecurity, PO Box 10041, Adelaide, 5001, Australia.
| | - Gilly A Hendrie
- CSIRO Health and Biosecurity, PO Box 10041, Adelaide, 5001, Australia.
| | - Megan A Rebuli
- CSIRO Health and Biosecurity, PO Box 10041, Adelaide, 5001, Australia.
| | - David N Cox
- CSIRO Health and Biosecurity, PO Box 10041, Adelaide, 5001, Australia.
| |
Collapse
|
22
|
Zbozinek TD, Wise T, Perez OD, Qi S, Fanselow MS, Mobbs D. Pavlovian occasion setting in human fear and appetitive conditioning: Effects of trait anxiety and trait depression. Behav Res Ther 2021; 147:103986. [PMID: 34740100 DOI: 10.1016/j.brat.2021.103986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/19/2021] [Accepted: 10/05/2021] [Indexed: 02/08/2023]
Abstract
Contexts and discrete stimuli often hierarchically influence the association between a stimulus and outcome. This phenomenon, called occasion setting, is central to modulation-based Pavlovian learning. We conducted two experiments with humans in fear and appetitive conditioning paradigms, training stimuli in differential conditioning, feature-positive discriminations, and feature-negative discriminations. We also investigated the effects of trait anxiety and trait depression on these forms of learning. Results from both experiments showed that participants were able to successfully learn which stimuli predicted the electric shock and monetary reward outcomes. Additionally, as hypothesized, the stimuli trained as occasion setters had little-to-no effect on simple reinforced or non-reinforced stimuli, suggesting the former were indeed occasion setters. Lastly, in fear conditioning, trait anxiety was associated with increases in fear of occasion setter/conditional stimulus compounds; in appetitive conditioning, trait depression was associated with lower expectations of monetary reward for the trained negative occasion setting compound and transfer of the negative occasion setter to the simple reinforced stimulus. These results suggest that clinically anxious individuals may have enhanced fear of occasion setting compounds, and clinically depressed individuals may expect less reward with compounds involving the negative occasion setter.
Collapse
Affiliation(s)
- Tomislav D Zbozinek
- California Institute of Technology, Humanities and Social Sciences, 1200 E. California Blvd., MC 228-77, Pasadena, CA, 91125, USA.
| | - Toby Wise
- California Institute of Technology, Humanities and Social Sciences, 1200 E. California Blvd., MC 228-77, Pasadena, CA, 91125, USA
| | - Omar D Perez
- California Institute of Technology, Humanities and Social Sciences, 1200 E. California Blvd., MC 228-77, Pasadena, CA, 91125, USA; University of Santiago of Chile (USACH), Faculty of Business and Economics, Santiago, Chile
| | - Song Qi
- National Institute of Mental Health, 6001 Executive Boulevard, Room 6200, MSC 9663, Bethesda, MD, 20892, USA
| | - Michael S Fanselow
- University of California, Department of Psychology, 502 Portola Plaza, Los Angeles, CA, 90025, USA
| | - Dean Mobbs
- California Institute of Technology, Humanities and Social Sciences, 1200 E. California Blvd., MC 228-77, Pasadena, CA, 91125, USA
| |
Collapse
|
23
|
Review of Changes in the Reinforcing Effects of Alcohol in Weight Loss Surgery Patients. Curr Psychiatry Rep 2021; 23:69. [PMID: 34613467 DOI: 10.1007/s11920-021-01281-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The reinforcing effects of alcohol are well documented, and they have been shown to play a role in the development of alcohol use disorders (AUDs). Also well established is the fact that post-weight loss surgery (WLS) patients are at an increased risk for AUDs. In the current manuscript, we review the notion that the reinforcing effects of alcohol may change from before to after WLS and discuss a number of determinants of alcohol reinforcement change in WLS patients. RECENT FINDINGS It has been increasingly well understood that WLS patients are at an increased risk for AUD, but empirical support for the mechanisms that may cause this phenomenon have been lacking. Recently, a model was proposed that offered a number of different potentially causal variables as mechanisms that result in increased risk for AUD in these surgical patients. Change in the extent to which alcohol is reinforcing to WLS patients may be key in determining the likelihood of AUDs in this group. We review a host of biological, psychological, and social variables that ultimately impact how reinforcing alcohol is to WLS patients.
Collapse
|
24
|
Cuitavi J, Lorente JD, Campos-Jurado Y, Polache A, Hipólito L. Neuroimmune and Mu-Opioid Receptor Alterations in the Mesocorticolimbic System in a Sex-Dependent Inflammatory Pain-Induced Alcohol Relapse-Like Rat Model. Front Immunol 2021; 12:689453. [PMID: 34616393 PMCID: PMC8488159 DOI: 10.3389/fimmu.2021.689453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Evidence concerning the role of alcohol-induced neuroinflammation in alcohol intake and relapse has increased in the last few years. It is also proven that mu-opioid receptors (MORs) mediate the reinforcing properties of alcohol and, interestingly, previous research suggests that neuroinflammation and MORs could be related. Our objective is to study neuroinflammatory states and microglial activation, together with adaptations on MOR expression in the mesocorticolimbic system (MCLS) during the abstinence and relapse phases. To do so, we have used a sex-dependent rat model of complete Freund's adjuvant (CFA)-induced alcohol deprivation effect (ADE). Firstly, our results confirm that only CFA-treated female rats, the only experimental group that showed relapse-like behavior, exhibited specific alterations in the expression of phosphorylated NFκB, iNOS, and COX2 in the PFC and VTA. More interestingly, the analysis of the IBA1 expression revealed a decrease of the microglial activation in PFC during abstinence and an increase of its expression in the relapse phase, together with an augmentation of this activation in the NAc in both phases that only occur in female CFA-treated rats. Additionally, the expression of IL1β also evidenced these dynamic changes through these two phases following similar expression patterns in both areas. Furthermore, the expression of the cytokine IL10 showed a different profile than that of IL1β, indicating anti-inflammatory processes occurring only during abstinence in the PFC of CFA-female rats but neither during the reintroduction phase in PFC nor in the NAc. These data indicate a downregulation of microglial activation and pro-inflammatory processes during abstinence in the PFC, whereas an upregulation can be observed in the NAc during abstinence that is maintained during the reintroduction phase only in CFA-female rats. Secondly, our data reveal a correlation between the alterations observed in IL1β, IBA1 levels, and MOR levels in the PFC and NAc of CFA-treated female rats. Although premature, our data suggest that neuroinflammatory processes, together with neural adaptations involving MOR, might play an important role in alcohol relapse in female rats, so further investigations are warranted.
Collapse
Affiliation(s)
| | | | | | | | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, Spain
| |
Collapse
|
25
|
Chen Y. Neural Representation of Costs and Rewards in Decision Making. Brain Sci 2021; 11:1096. [PMID: 34439715 PMCID: PMC8391424 DOI: 10.3390/brainsci11081096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Decision making is crucial for animal survival because the choices they make based on their current situation could influence their future rewards and could have potential costs. This review summarises recent developments in decision making, discusses how rewards and costs could be encoded in the brain, and how different options are compared such that the most optimal one is chosen. The reward and cost are mainly encoded by the forebrain structures (e.g., anterior cingulate cortex, orbitofrontal cortex), and their value is updated through learning. The recent development on dopamine and the lateral habenula's role in reporting prediction errors and instructing learning will be emphasised. The importance of dopamine in powering the choice and accounting for the internal state will also be discussed. While the orbitofrontal cortex is the place where the state values are stored, the anterior cingulate cortex is more important when the environment is volatile. All of these structures compare different attributes of the task simultaneously, and the local competition of different neuronal networks allows for the selection of the most appropriate one. Therefore, the total value of the task is not encoded as a scalar quantity in the brain but, instead, as an emergent phenomenon, arising from the computation at different brain regions.
Collapse
Affiliation(s)
- Yixuan Chen
- Queens' College, University of Cambridge, Cambridgeshire CB3 9ET, UK
| |
Collapse
|
26
|
Akouri-Shan L, Schiffman J, Millman ZB, Demro C, Fitzgerald J, Rakhshan Rouhakhtar PJ, Redman S, Reeves GM, Chen S, Gold JM, Martin EA, Corcoran C, Roiser JP, Buchanan RW, Rowland LM, Waltz JA. Relations Among Anhedonia, Reinforcement Learning, and Global Functioning in Help-seeking Youth. Schizophr Bull 2021; 47:1534-1543. [PMID: 34240217 PMCID: PMC8530392 DOI: 10.1093/schbul/sbab075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dysfunction in the neural circuits underlying salience signaling is implicated in symptoms of psychosis and may predict conversion to a psychotic disorder in youth at clinical high risk (CHR) for psychosis. Additionally, negative symptom severity, including consummatory and anticipatory aspects of anhedonia, may predict functional outcome in individuals with schizophrenia-spectrum disorders. However, it is unclear whether anhedonia is related to the ability to attribute incentive salience to stimuli (through reinforcement learning [RL]) and whether measures of anhedonia and RL predict functional outcome in a younger, help-seeking population. We administered the Salience Attribution Test (SAT) to 33 participants who met criteria for either CHR or a recent-onset psychotic disorder and 29 help-seeking youth with nonpsychotic disorders. In the SAT, participants must identify relevant and irrelevant stimulus dimensions and be sensitive to different reinforcement probabilities for the 2 levels of the relevant dimension ("adaptive salience"). Adaptive salience attribution was positively related to both consummatory pleasure and functioning in the full sample. Analyses also revealed an indirect effect of adaptive salience on the relation between consummatory pleasure and both role (αβ = .22, 95% CI = 0.02, 0.48) and social functioning (αβ = .14, 95% CI = 0.02, 0.30). These findings suggest a distinct pathway to poor global functioning in help-seeking youth, via impaired reward sensitivity and RL.
Collapse
Affiliation(s)
- LeeAnn Akouri-Shan
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD, USA
| | - Jason Schiffman
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD, USA,Department of Psychological Science, University of California, Irvine, 4201 Social and Behavioral Sciences Gateway, Irvine, CA, USA
| | - Zachary B Millman
- Center of Excellence in Psychotic Disorders, McLean Hospital, Belmont, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Caroline Demro
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - John Fitzgerald
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD, USA
| | | | - Samantha Redman
- Department of Psychology, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD, USA
| | - Gloria M Reeves
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA,Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James M Gold
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth A Martin
- Department of Psychological Science, University of California, Irvine, 4201 Social and Behavioral Sciences Gateway, Irvine, CA, USA
| | - Cheryl Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, 1 Gustave L. Levy Place, New York, NY4, USA
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London, England, UK
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James A Waltz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA,To whom correspondence should be addressed; Maryland Psychiatric Research Center, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA; tel: 410-402-6044, fax: 410-402-7198, e-mail:
| |
Collapse
|
27
|
Cuitavi J, Hipólito L, Canals M. The Life Cycle of the Mu-Opioid Receptor. Trends Biochem Sci 2021; 46:315-328. [PMID: 33127216 DOI: 10.1016/j.tibs.2020.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Opioid receptors (ORs) are undisputed targets for the treatment of pain. Unfortunately, targeting these receptors therapeutically poses significant challenges including addiction, dependence, tolerance, and the appearance of side effects, such as respiratory depression and constipation. Moreover, misuse of prescription and illicit narcotics has resulted in the current opioid crisis. The mu-opioid receptor (MOR) is the cellular mediator of the effects of most commonly used opioids, and is a prototypical G protein-coupled receptor (GPCR) where new pharmacological, signalling and cell biology concepts have been coined. This review summarises the knowledge of the life cycle of this therapeutic target, including its biogenesis, trafficking to and from the plasma membrane, and how the regulation of these processes impacts its function and is related to pathophysiological conditions.
Collapse
Affiliation(s)
- Javier Cuitavi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, the Midlands, UK.
| |
Collapse
|
28
|
Liu R, Wang Y, Chen X, Zhang Z, Xiao L, Zhou Y. Anhedonia correlates with functional connectivity of the nucleus accumbens subregions in patients with major depressive disorder. Neuroimage Clin 2021; 30:102599. [PMID: 33662708 PMCID: PMC7930634 DOI: 10.1016/j.nicl.2021.102599] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND The nucleus accumbens (NAc) is an important region in reward circuit that has been linked with anhedonia, which is a characteristic symptom of major depressive disorder (MDD). However, the relationship between the functional connectivity of the NAc subregions and anhedonia in MDD patients remains unclear. METHODS We acquired resting-state functional magnetic resonance imaging (fMRI) scans from fifty-one subjects (23 MDD patients and 28 healthy controls). We assessed subjects' trait anhedonia with the Temporal Experience of Pleasure Scale (TEPS). Seed-based resting-state functional connectivity (rsFC) was conducted for each of the NAc subregions (bilateral core-like and shell-like subdivisions) separately to identify regions whose rsFCs with the NAc subregions were altered in the MDD patients and regions whose rsFCs with the NAc subregions showed different correlates with anhedonia between the MDD patients and the healthy controls. RESULTS Compared with the health controls, the MDD patients showed decreased rsFCs of the right NAc core-like subdivision with the left mid-anterior orbital prefrontal cortex and the right inferior parietal lobe as well as decreased rsFC of the left NAc core-like subdivision with the right middle frontal gyrus. Moreover, the severity of anhedonia by the group interaction was significant for the rsFC of the right NAc shell-like subdivision with the subgenual/pregenual anterior cingulate cortex and the rsFC of the right NAc core-like subdivision with the precuneus. CONCLUSIONS We found that the neural correlates of anhedonia indicated by the rsFCs of the NAc subregions were modulated by depression. The modulation effect was regionally-dependent. These findings enrich our understanding of the neural basis of anhedonia in MDD.
Collapse
Affiliation(s)
- Rui Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yun Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Zhifang Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Le Xiao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yuan Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; CAS Key Laboratory of Behavioral Science, Institute of Psychology & Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Yao Y, Gao G, Liu K, Shi X, Cheng M, Xiong Y, Song S. Projections from D2 Neurons in Different Subregions of Nucleus Accumbens Shell to Ventral Pallidum Play Distinct Roles in Reward and Aversion. Neurosci Bull 2021; 37:623-640. [PMID: 33548029 DOI: 10.1007/s12264-021-00632-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
The nucleus accumbens shell (NAcSh) plays an important role in reward and aversion. Traditionally, NAc dopamine receptor 2-expressing (D2) neurons are assumed to function in aversion. However, this has been challenged by recent reports which attribute positive motivational roles to D2 neurons. Using optogenetics and multiple behavioral tasks, we found that activation of D2 neurons in the dorsomedial NAcSh drives preference and increases the motivation for rewards, whereas activation of ventral NAcSh D2 neurons induces aversion. Stimulation of D2 neurons in the ventromedial NAcSh increases movement speed and stimulation of D2 neurons in the ventrolateral NAcSh decreases movement speed. Combining retrograde tracing and in situ hybridization, we demonstrated that glutamatergic and GABAergic neurons in the ventral pallidum receive inputs differentially from the dorsomedial and ventral NAcSh. All together, these findings shed light on the controversy regarding the function of NAcSh D2 neurons, and provide new insights into understanding the heterogeneity of the NAcSh.
Collapse
Affiliation(s)
- Yun Yao
- Laboratory of Brain and Intelligence, Department of Biomedical Engineering, and McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.,Center for Brain-Inspired Computing Research, Beijing Innovation Center for Future Chips, Tsinghua University, Beijing, 100084, China.,Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ge Gao
- Laboratory of Brain and Intelligence, Department of Biomedical Engineering, and McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.,School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Kai Liu
- Laboratory of Brain and Intelligence, Department of Biomedical Engineering, and McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.,School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Xin Shi
- Laboratory of Brain and Intelligence, Department of Biomedical Engineering, and McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Mingxiu Cheng
- School of Life Science, Tsinghua University, Beijing, 100084, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Yan Xiong
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Sen Song
- Laboratory of Brain and Intelligence, Department of Biomedical Engineering, and McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China. .,Center for Brain-Inspired Computing Research, Beijing Innovation Center for Future Chips, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
30
|
Dvořáček J, Kodrík D. Drosophila reward system - A summary of current knowledge. Neurosci Biobehav Rev 2021; 123:301-319. [PMID: 33421541 DOI: 10.1016/j.neubiorev.2020.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 01/19/2023]
Abstract
The fruit fly Drosophila melanogaster brain is the most extensively investigated model of a reward system in insects. Drosophila can discriminate between rewarding and punishing environmental stimuli and consequently undergo associative learning. Functional models, especially those modelling mushroom bodies, are constantly being developed using newly discovered information, adding to the complexity of creating a simple model of the reward system. This review aims to clarify whether its reward system also includes a hedonic component. Neurochemical systems that mediate the 'wanting' component of reward in the Drosophila brain are well documented, however, the systems that mediate the pleasure component of reward in mammals, including those involving the endogenous opioid and endocannabinoid systems, are unlikely to be present in insects. The mushroom body components exhibit differential developmental age and different functional processes. We propose a hypothetical hierarchy of the levels of reinforcement processing in response to particular stimuli, and the parallel processes that take place concurrently. The possible presence of activity-silencing and meta-satiety inducing levels in Drosophila should be further investigated.
Collapse
Affiliation(s)
- Jiří Dvořáček
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
31
|
Murphy CF, Stratford N, Docherty NG, Moran B, Elliott JA, Healy ML, McMorrow JP, Ravi N, Goldstone AP, Reynolds JV, le Roux CW. A Pilot Study of Gut-Brain Signaling After Octreotide Therapy for Unintentional Weight Loss After Esophagectomy. J Clin Endocrinol Metab 2021; 106:e204-e216. [PMID: 33000149 DOI: 10.1210/clinem/dgaa697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/24/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Recurrence-free patients after esophageal cancer surgery face long-term nutritional consequences, occurring in the context of an exaggerated postprandial gut hormone response. Acute gut hormone suppression influences brain reward signaling and eating behavior. This study aimed to suppress gut hormone secretion and characterize reward responses and eating behavior among postesophagectomy patients with unintentional weight loss. METHODS This pilot study prospectively studied postoperative patients with 10% or greater body weight loss (BWL) beyond 1 year who were candidates for clinical treatment with long-acting octreotide (LAR). Before and after 4 weeks of treatment, gut hormone secretion, food cue reactivity (functional magnetic resonance imaging), eating motivation (progressive ratio task), ad libitum food intake, body composition, and symptom burden were assessed. RESULTS Eight patients (7 male, age: mean ± SD 62.8 ± 9.4 years, postoperative BWL: 15.5 ± 5.8%) participated. Octreotide LAR did not significantly suppress total postprandial plasma glucagon-like peptide-1 response at 4 weeks (P = .08). Postprandial symptom burden improved after treatment (Sigstad score median [range]: 12 [2-28] vs 8 [3-18], P = .04) but weight remained stable (pre: 68.6 ± 12.8 kg vs post: 69.2 ± 13.4 kg, P = .13). There was no significant change in brain reward system responses, during evaluation of high-energy or low-energy food pictures, nor their appeal rating. Moreover, treatment did not alter motivation to eat (P = .41) nor ad libitum food intake(P = .46). CONCLUSION The protocol used made it feasible to characterize the gut-brain axis and eating behavior in this cohort. Inadequate suppression of gut hormone responses 4 weeks after octreotide LAR administration may explain the lack of gut-brain pathway alterations. A higher dose or shorter interdose interval may be required to optimize the intervention.
Collapse
Affiliation(s)
- Conor F Murphy
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
- National Oesophageal and Gastric Centre, Trinity Centre for Health Sciences, Trinity College Dublin and St. James's Hospital, Dublin, Ireland
| | - Nicholas Stratford
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Brendan Moran
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Jessie A Elliott
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
- National Oesophageal and Gastric Centre, Trinity Centre for Health Sciences, Trinity College Dublin and St. James's Hospital, Dublin, Ireland
| | | | | | - Narayanasamy Ravi
- National Oesophageal and Gastric Centre, Trinity Centre for Health Sciences, Trinity College Dublin and St. James's Hospital, Dublin, Ireland
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Centre for Neuropsychopharmacology, Division of Psychiatry, and Computational, Cognitive, and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - John V Reynolds
- National Oesophageal and Gastric Centre, Trinity Centre for Health Sciences, Trinity College Dublin and St. James's Hospital, Dublin, Ireland
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
32
|
Baumann P, Schriever SC, Kullmann S, Zimprich A, Peter A, Gailus-Durner V, Fuchs H, Hrabe de Angelis M, Wurst W, Tschöp MH, Heni M, Hölter SM, Pfluger PT. Diabetes type 2 risk gene Dusp8 is associated with altered sucrose reward behavior in mice and humans. Brain Behav 2021; 11:e01928. [PMID: 33131190 PMCID: PMC7821601 DOI: 10.1002/brb3.1928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/28/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dusp8 is the first GWAS-identified gene that is predominantly expressed in the brain and has previously been linked with the development of diabetes type 2 in humans. In this study, we unravel how Dusp8 is involved in the regulation of sucrose reward behavior. METHODS Female, chow-fed global Dusp8 WT and KO mice were tested in an observer-independent IntelliCage setup for self-administrative sucrose consumption and preference followed by a progressive ratio task with restricted sucrose access to monitor seeking and motivation behavior. Sixty-three human carriers of the major C and minor T allele of DUSP8 SNP rs2334499 were tested for their perception of food cues by collecting a rating score for sweet versus savory high caloric food. RESULTS Dusp8 KO mice showed a comparable preference for sucrose, but consumed more sucrose compared to WT mice. In a progressive ratio task, Dusp8 KO females switched to a "trial and error" strategy to find sucrose while control Dusp8 WT mice kept their previously established seeking pattern. Nonetheless, the overall motivation to consume sucrose, and the levels of dopaminergic neurons in the brain areas NAcc and VTA were comparable between genotypes. Diabetes-risk allele carriers of DUSP8 SNP rs2334499 preferred sweet high caloric food compared to the major allele carriers, rating scores for savory food remained comparable between groups. CONCLUSION Our data suggest a novel role for Dusp8 in the perception of sweet high caloric food as well as in the control of sucrose consumption and foraging in mice and humans.
Collapse
Affiliation(s)
- Peter Baumann
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sonja C Schriever
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stephanie Kullmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Annemarie Zimprich
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Technische Universität München-Weihenstephan, Neuherberg, Germany
| | - Andreas Peter
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Technische Universität München-Weihenstephan, Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE) Site Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Martin Heni
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Technische Universität München-Weihenstephan, Neuherberg, Germany
| | - Paul T Pfluger
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
33
|
Morales I, Berridge KC. 'Liking' and 'wanting' in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav 2020; 227:113152. [PMID: 32846152 PMCID: PMC7655589 DOI: 10.1016/j.physbeh.2020.113152] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/02/2023]
Abstract
It is becoming clearer how neurobiological mechanisms generate 'liking' and 'wanting' components of food reward. Mesocorticolimbic mechanisms that enhance 'liking' include brain hedonic hotspots, which are specialized subregions that are uniquely able to causally amplify the hedonic impact of palatable tastes. Hedonic hotspots are found in nucleus accumbens medial shell, ventral pallidum, orbitofrontal cortex, insula cortex, and brainstem. In turn, a much larger mesocorticolimbic circuitry generates 'wanting' or incentive motivation to obtain and consume food rewards. Hedonic and motivational circuitry interact together and with hypothalamic homeostatic circuitry, allowing relevant physiological hunger and satiety states to modulate 'liking' and 'wanting' for food rewards. In some conditions such as drug addiction, 'wanting' is known to dramatically detach from 'liking' for the same reward, and this may also occur in over-eating disorders. Via incentive sensitization, 'wanting' selectively becomes higher, especially when triggered by reward cues when encountered in vulnerable states of stress, etc. Emerging evidence suggests that some cases of obesity and binge eating disorders may reflect an incentive-sensitization brain signature of cue hyper-reactivity, causing excessive 'wanting' to eat. Future findings on the neurobiological bases of 'liking' and 'wanting' can continue to improve understanding of both normal food reward and causes of clinical eating disorders.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States.
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States
| |
Collapse
|
34
|
Projections from the nucleus accumbens shell to the ventral pallidum are involved in the control of sucrose intake in adult female rats. Brain Struct Funct 2020; 225:2815-2839. [PMID: 33124673 DOI: 10.1007/s00429-020-02161-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
In rodents, stimulation of the nucleus accumbens shell (AcbSh) directly or via its projection to the lateral hypothalamus (LH) attenuates food intake. The ventral pallidum (VP) receives dense projections from the AcbSh and is sensitive to the hedonic aspect of food and motivation for reward. However, the role of accumbal projections to the VP in the regulation of food intake was not well investigated. In the present study conducted on female rats, we examined the effects of stimulation of the AcbSh using optogenetics, or pharmacological inhibition of the rostral VP, or stimulation of projections from the AcbSh to the rostral VP using optogenetics on the consumption of 10% sucrose, lick microstructure and the expression of c-fos mRNA. Stimulation of the AcbSh, inhibition of the rostral VP with muscimol, or stimulation of axonal terminals from the AcbSh to the rostral VP resulted in a decrease in sucrose intake, meal duration, and total number of licks. The licking microstructure analysis showed that optogenetic stimulation of AcbSh or axonal terminals from the AcbSh to the rostral VP decreased the hedonic value of the sucrose. However, inhibition of the rostral VP decreased the motivation, whereas stimulation of the accumbal projections in the rostral VP increased the motivation to drink. This difference could be due to differential involvement of GABAergic and glutamatergic VP neurons. Stimulation of the AcbSh resulted in a decrease of c-fos mRNA expression in the LH and rostral VP, and stimulation of axonal terminals from the AcbSh to the rostral VP decreased c-fos mRNA expression only in the rostral VP. This study demonstrates that in adult female rats, in addition to the already known role of the AcbSh projections to the LH, AcbSh projections to the VP play a major role in the regulation of sucrose intake.
Collapse
|
35
|
Ren JN, Yin KJ, Fan G, Li X, Zhao L, Li Z, Zhang LL, Xie DY, Pan SY, Yuan F. Effect of short-term intake of high- and low-concentrations of sucrose solution on the neurochemistry of male and female mice. Food Funct 2020; 11:9103-9113. [PMID: 33026021 DOI: 10.1039/d0fo02214d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of short-term intake of high- and low-concentrations of sucrose solution on the neurochemistry of male and female mice was studied. The body weight, feed intake, sucrose solution consumption and brain monoamine neurotransmitters were determined after 34 days' intake of 1% and 8% sucrose solutions. The gene expression and protein levels related to dopamine and opioids were also determined. The results showed that the intake of 1% and 8% sucrose solution for 34 days did not cause significant changes in the weight development of both male and female mice. The preference for sucrose varies with sex. Both males and females had greater preference for the high concentration sucrose solution than the low concentration sucrose solution. The continuous intake of sucrose stimulated the release of monoamine neurotransmitters (DA, 5-HT, NE) in the brains of mice, and the reward effect of 8% sucrose solution is significantly higher than that of 1% sucrose solution. The sex of mice did not affect the release of neurotransmitters. The gene expressions of D1 and D2 were up-regulated in the 1% sucrose group of male mice, while the OPRM1 gene expression was down-regulated. The expression of these three genes in the 8% sucrose group of male mice was all down-regulated, while the gene expressions of D1 and D2 in the 1% and 8% sucrose group (p < 0.05) of female mice were both up-regulated.
Collapse
Affiliation(s)
- Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| | - Kai-Jing Yin
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| | - Lei Zhao
- Food and Agriculture Standardization Institute, China National Institute of Standardization, Beijing 102200, China
| | - Zhi Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| | - Lu-Lu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| | - Ding-Yuan Xie
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| | - Si-Yi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| | - Fang Yuan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
36
|
Avalos B, Argueta DA, Perez PA, Wiley M, Wood C, DiPatrizio NV. Cannabinoid CB 1 Receptors in the Intestinal Epithelium Are Required for Acute Western-Diet Preferences in Mice. Nutrients 2020; 12:nu12092874. [PMID: 32962222 PMCID: PMC7551422 DOI: 10.3390/nu12092874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/12/2023] Open
Abstract
The endocannabinoid system plays an important role in the intake of palatable food. For example, endocannabinoid signaling in the upper small-intestinal epithelium is increased (i) in rats after tasting dietary fats, which promotes intake of fats, and (ii) in a mouse model of diet-induced obesity, which promotes overeating via impaired nutrient-induced gut-brain satiation signaling. We now utilized a combination of genetic, pharmacological, and behavioral approaches to identify roles for cannabinoid CB1Rs in upper small-intestinal epithelium in preferences for a western-style diet (WD, high-fat/sucrose) versus a standard rodent diet (SD, low-fat/no sucrose). Mice were maintained on SD in automated feeding chambers. During testing, mice were given simultaneous access to SD and WD, and intakes were recorded. Mice displayed large preferences for the WD, which were inhibited by systemic pretreatment with the cannabinoid CB1R antagonist/inverse agonist, AM251, for up to 3 h. We next used our novel intestinal epithelium-specific conditional cannabinoid CB1R-deficient mice (IntCB1-/-) to investigate if intestinal CB1Rs are necessary for WD preferences. Similar to AM251 treatment, preferences for WD were largely absent in IntCB1-/- mice when compared to control mice for up to 6 h. Together, these data suggest that CB1Rs in the murine intestinal epithelium are required for acute WD preferences.
Collapse
Affiliation(s)
- Bryant Avalos
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Donovan A. Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
- Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Pedro A. Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Mark Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Courtney Wood
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; (B.A.); (D.A.A.); (P.A.P.); (M.W.); (C.W.)
- Correspondence: ; Tel.: +1-951-827-7252
| |
Collapse
|
37
|
Döbrössy MD, Ramanathan C, Ashouri Vajari D, Tong Y, Schlaepfer T, Coenen VA. Neuromodulation in Psychiatric disorders: Experimental and Clinical evidence for reward and motivation network Deep Brain Stimulation: Focus on the medial forebrain bundle. Eur J Neurosci 2020; 53:89-113. [PMID: 32931064 DOI: 10.1111/ejn.14975] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/28/2022]
Abstract
Deep brain stimulation (DBS) in psychiatric illnesses has been clinically tested over the past 20 years. The clinical application of DBS to the superolateral branch of the medial forebrain bundle in treatment-resistant depressed patients-one of several targets under investigation-has shown to be promising in a number of uncontrolled open label trials. However, there are remain numerous questions that need to be investigated to understand and optimize the clinical use of DBS in depression, including, for example, the relationship between the symptoms, the biological substrates/projections and the stimulation itself. In the context of precision and customized medicine, the current paper focuses on clinical and experimental research of medial forebrain bundle DBS in depression or in animal models of depression, demonstrating how clinical and scientific progress can work in tandem to test the therapeutic value and investigate the mechanisms of this experimental treatment. As one of the hypotheses is that depression engenders changes in the reward and motivational networks, the review looks at how stimulation of the medial forebrain bundle impacts the dopaminergic system.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany
| | - Chockalingam Ramanathan
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Danesh Ashouri Vajari
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Yixin Tong
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Thomas Schlaepfer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
Wright RL, Gilmour G, Dwyer DM. Wistar Kyoto Rats Display Anhedonia In Consumption but Retain Some Sensitivity to the Anticipation of Palatable Solutions. Front Behav Neurosci 2020; 14:70. [PMID: 32581735 PMCID: PMC7283460 DOI: 10.3389/fnbeh.2020.00070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
The Wistar Kyoto (WKY) rat has been proposed as a model of depression-like symptoms. However, anhedonia-a reduction in the response to normatively rewarding events-as a central depression symptom has yet to be fully assessed in this model. We compared WKY rats and Wistar controls, with stress-susceptibility examined by applying mild unpredictable stress to a subset of each group. Anhedonia-like behavior was assessed using microstructural analysis of licking behavior, where mean lick cluster size reflects hedonic responses. This was combined with tests of anticipatory contrast, where the consumption of a moderately palatable solution (4% sucrose) is suppressed in anticipation of a more palatable solution (32% sucrose). WKY rats displayed greatly attenuated hedonic reactions to sucrose overall, although their reactions retained some sensitivity to differences in sucrose concentration. They displayed normal reductions in consumption in anticipatory contrast, although the effect of contrast on hedonic reactions was greatly blunted. Mild stress produced overall reductions in sucrose consumption, but this was not exacerbated in WKY rats. Moreover, mild stress did not affect hedonic reactions or the effects of contrast. These results confirm that the WKY substrain expresses a direct behavioral analog of anhedonia, which may have utility for increasing mechanistic understanding of depression symptoms.
Collapse
Affiliation(s)
- Rebecca L Wright
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Gary Gilmour
- Lilly Research Centre, Eli Lilly & Co. Ltd., Erl Wood Manor, United Kingdom
| | - Dominic M Dwyer
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
39
|
Cromwell HC, Abe N, Barrett KC, Caldwell-Harris C, Gendolla GH, Koncz R, Sachdev PS. Mapping the interconnected neural systems underlying motivation and emotion: A key step toward understanding the human affectome. Neurosci Biobehav Rev 2020; 113:204-226. [DOI: 10.1016/j.neubiorev.2020.02.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/22/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
|
40
|
Hankir MK, Al-Bas S, Rullmann M, Chakaroun R, Seyfried F, Pleger B. Homeostatic, reward and executive brain functions after gastric bypass surgery. Appetite 2020; 146:104419. [DOI: 10.1016/j.appet.2019.104419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/01/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
|
41
|
Nogi Y, Ahasan MM, Murata Y, Taniguchi M, Sha MFR, Ijichi C, Yamaguchi M. Expression of feeding-related neuromodulatory signalling molecules in the mouse central olfactory system. Sci Rep 2020; 10:890. [PMID: 31964903 PMCID: PMC6972952 DOI: 10.1038/s41598-020-57605-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022] Open
Abstract
Various neural systems cooperate in feeding behaviour, and olfaction plays crucial roles in detecting and evaluating food objects. While odour-mediated feeding behaviour is highly adaptive and influenced by metabolic state, hedonic cues and learning processes, the underlying mechanism is not well understood. Feeding behaviour is regulated by orexigenic and anorexigenic neuromodulatory molecules. However, knowledge of their roles especially in higher olfactory areas is limited. Given the potentiation of feeding behaviour in hunger state, we systemically examined the expression of feeding-related neuromodulatory molecules in food-restricted mice through quantitative PCR, in the olfactory bulb (OB), olfactory tubercle (OT), and remaining olfactory cortical area (OC). The OT was further divided into attraction-related anteromedial, aversion-related lateral and remaining central regions. Examination of 23 molecules including neuropeptides, opioids, cannabinoids, and their receptors as well as signalling molecules showed that they had different expression patterns, with many showing elevated expression in the OT, especially in the anteromedial and central OT. Further, in mice trained with odour-food association, the expression was significantly altered and the increase or decrease of a given molecule varied among areas. These results suggest that different olfactory areas are regulated separately by feeding-related molecules, which contributes to the adaptive regulation of feeding behaviour.
Collapse
Affiliation(s)
- Yasuko Nogi
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kanagawa, Japan
| | - Md Monjurul Ahasan
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Yoshihiro Murata
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Mutsuo Taniguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Md Fazley Rabbi Sha
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Chiori Ijichi
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kanagawa, Japan
| | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan.
| |
Collapse
|
42
|
Dess NK, Chapman CD. Parametric Characterization of a Taste Phenotype in Rats Selectively Bred for High Versus Low Saccharin Intake. Chem Senses 2019; 45:85-96. [DOI: 10.1093/chemse/bjz072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Taste signals food quality and reflects energy status and associated processes. Occidental high- and low-saccharin consuming rats (HiS, LoS) have been selectively bred for nearly 60 generations on intake of 0.1% saccharin in a 23-h two-bottle test, as a tool for studying individual differences in taste and its correlates in the domains of feeding, defensive, and social behavior. The saccharin phenotype itself has not been well characterized until now. The present series of parametric studies examined suprathreshold saccharin concentration-intake functions (Experiment 1), saccharin preference threshold (Experiments 2A and 2B), and intra- and inter-sweetener carryforward effects (Experiments 2B, 3A–3D). Results indicate high stability in line differences in behavior toward saccharin and also line-specific mutability of intake of saccharin and certain other sweeteners. Methodological and conceptual implications are discussed.
Collapse
Affiliation(s)
- Nancy K Dess
- Department of Psychology, Occidental College, Los Angeles, CA, USA
| | | |
Collapse
|
43
|
Cassie N, Anderson R, Wilson D, Mercer JG, Barrett P. Fat, carbohydrate and protein by oral gavage in the rat can be equally effective for satiation. Physiol Behav 2019; 207:41-47. [PMID: 31034840 DOI: 10.1016/j.physbeh.2019.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/28/2023]
Abstract
This study aimed to determine the relative efficacy of the macronutrients, protein, fat and carbohydrate to induce satiation and satiety in rats in relation to macronutrient activation of neurons in the nucleus of the solitary tract (NTS). Male Sprague Dawley rats were schedule-fed twice a day for 2 h, receiving 100% of daily ad-libitum energy intake. On test day 1, 30 min before the first scheduled meal of the day, rats were gavaged with an 8 kcal isocaloric, isovolumetric solution of a glucose, lipid or peptone macronutrient solution or a non-caloric saline solution. To assess satiation, thirty minutes later rats were given access to food for 2 h and food intake determined. A second 2 h food access period 3 h later was used for assessment of satiety. On the second test day, rats were gavaged as before and killed 90 min after food presentation. Blood was collected for measurement of circulating metabolic markers. Brains were removed for analysis of c-Fos expression by in situ hybridization in the NTS. Rats which received saline consumed a similar amount of food compared to pre-gavage intakes. However, rats gavaged with a caloric macronutrient solution all reduced food intake by 18-20 kcal. Interestingly, the reduction in caloric intake was greater than the caloric value of the macronutrient solution gavaged and was sustained following the second scheduled meal. Quantification by in situ hybridization of c-Fos mRNA expression in the NTS 90 min post-gavage, showed a significant increase with each macronutrient, but was 24-29% higher with a lipid or peptone gavage compared to a glucose gavage. In conclusion, when delivered directly to the stomach, all macronutrients can be equally effective in inducing satiation with significant neuronal activation in the NTS of the hindbrain.
Collapse
Affiliation(s)
- Nikki Cassie
- Rowett Institute, University of Aberdeen, Foresterhill Campus, Aberdeen AB25 2ZB, UK
| | - Richard Anderson
- Rowett Institute, University of Aberdeen, Foresterhill Campus, Aberdeen AB25 2ZB, UK
| | - Dana Wilson
- Rowett Institute, University of Aberdeen, Foresterhill Campus, Aberdeen AB25 2ZB, UK
| | - Julian G Mercer
- Rowett Institute, University of Aberdeen, Foresterhill Campus, Aberdeen AB25 2ZB, UK
| | - Perry Barrett
- Rowett Institute, University of Aberdeen, Foresterhill Campus, Aberdeen AB25 2ZB, UK.
| |
Collapse
|
44
|
Effect of amphetamine dose on wheel-running functioning as reinforcement or operant behavior on a multiple schedule of reinforcement. Behav Pharmacol 2019; 30:588-595. [PMID: 31206370 DOI: 10.1097/fbp.0000000000000493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Does the effect of amphetamine on behavior (wheel running) differ depending on the functional role (operant, reinforcement) of that behavior? This study addressed this question using a multiple schedule of reinforcement in which wheel running served as reinforcement for lever pressing in one component and as operant behavior for sucrose reinforcement in the other component. Seven female Long-Evans rats were exposed to a multiple schedule in which pressing a lever on a variable ratio 10 schedule produced the opportunity to run for 15 revolutions in one component and running 15 revolutions produced a drop of 15% sucrose solution in the other component. Doses of 0.5, 1.0, and 2.0 mg/kg D-amphetamine were administered by intraperitoneal injection 20 min prior to a session. As amphetamine dose increased, wheel running decreased in both components - showing no evidence that the effect of the drug on wheel running depended on the function of wheel activity. Notably, lever pressing for wheel-running reinforcement also decreased with amphetamine dose. Drug dose increased the initiation of operant lever pressing, but not the initiation of operant wheel running. We propose that amphetamine dose had common effects on wheel running regardless of its function (reinforcement vs. operant) because wheel-running generates automatic reinforcement and the automatic-reinforcement value of wheel activity is modulated by drug dose.
Collapse
|
45
|
Castro DC, Bruchas MR. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron 2019; 102:529-552. [PMID: 31071288 PMCID: PMC6528838 DOI: 10.1016/j.neuron.2019.03.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
The mesocorticolimbic pathway is canonically known as the "reward pathway." Embedded within the center of this circuit is the striatum, a massive and complex network hub that synthesizes motivation, affect, learning, cognition, stress, and sensorimotor information. Although striatal subregions collectively share many anatomical and functional similarities, it has become increasingly clear that it is an extraordinarily heterogeneous region. In particular, the nucleus accumbens (NAc) medial shell has repeatedly demonstrated that the rules dictated by more dorsal aspects of the striatum do not apply or are even reversed in functional logic. These discrepancies are perhaps most easily captured when isolating the functions of various neuromodulatory peptide systems within the striatum. Endogenous peptides are thought to play a critical role in modulating striatal signals to either amplify or dampen evoked behaviors. Here we describe the anatomical-functional backdrop upon which several neuropeptides act within the NAc to modulate behavior, with a specific emphasis on nucleus accumbens medial shell and stress responsivity. Additionally, we propose that, as the field continues to dissect fast neurotransmitter systems within the NAc, we must also provide considerable contextual weight to the roles local peptides play in modulating these circuits to more comprehensively understand how this important subregion gates motivated behaviors.
Collapse
Affiliation(s)
- Daniel C Castro
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Michael R Bruchas
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
46
|
Lonstein JS, Linning-Duffy K, Yan L. Low Daytime Light Intensity Disrupts Male Copulatory Behavior, and Upregulates Medial Preoptic Area Steroid Hormone and Dopamine Receptor Expression, in a Diurnal Rodent Model of Seasonal Affective Disorder. Front Behav Neurosci 2019; 13:72. [PMID: 31031606 PMCID: PMC6473160 DOI: 10.3389/fnbeh.2019.00072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/25/2019] [Indexed: 01/11/2023] Open
Abstract
Seasonal affective disorder (SAD) involves a number of psychological and behavioral impairments that emerge during the low daytime light intensity associated with winter, but which remit during the high daytime light intensity associated with summer. One symptom frequently reported by SAD patients is reduced sexual interest and activity, but the endocrine and neural bases of this particular impairment during low daylight intensity is unknown. Using a diurnal laboratory rodent, the Nile grass rat (Arvicanthis niloticus), we determined how chronic housing under a 12:12 h day/night cycle involving dim low-intensity daylight (50 lux) or bright high-intensity daylight (1,000 lux) affects males’ copulatory behavior, reproductive organ weight, and circulating testosterone. We also examined the expression of mRNAs for the aromatase enzyme, estrogen receptor 1 (ESR1), and androgen receptor (AR) in the medial preoptic area (mPOA; brain site involved in the sensory and hormonal control of copulation), and mRNAs for the dopamine (DA) D1 and D2 receptors in both the mPOA and nucleus accumbens (NAC; brain site involved in stimulus salience and motivation to respond to reward). Compared to male grass rats housed in high-intensity daylight, males in low-intensity daylight displayed fewer mounts and intromissions when interacting with females, but the groups did not differ in their testes or seminal vesicle weights, or in their circulating levels of testosterone. Males in low-intensity daylight unexpectedly had higher ESR1, AR and D1 receptor mRNA in the mPOA, but did not differ from high-intensity daylight males in D1 or D2 mRNA expression in the NAC. Reminiscent of humans with SAD, dim winter-like daylight intensity impairs aspects of sexual behavior in a male diurnal rodent. This effect is not due to reduced circulating testosterone and is associated with upregulation of mPOA steroid and DA receptors that may help maintain some sexual motivation and behavior under winter-like lighting conditions.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Katrina Linning-Duffy
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Lily Yan
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
47
|
Brain Stimulation as a Method for Understanding, Treating, and Preventing Disorders of Indulgent Food Consumption. CURRENT ADDICTION REPORTS 2019. [DOI: 10.1007/s40429-019-00241-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Byrne JEM, Tremain H, Leitan ND, Keating C, Johnson SL, Murray G. Circadian modulation of human reward function: Is there an evidentiary signal in existing neuroimaging studies? Neurosci Biobehav Rev 2019; 99:251-274. [PMID: 30721729 DOI: 10.1016/j.neubiorev.2019.01.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
Reward functioning in animals is modulated by the circadian system, but such effects are poorly understood in the human case. The aim of this study was to address this deficit via a systematic review of human fMRI studies measuring one or more proxies for circadian function and a neural reward outcome. A narrative synthesis of 15 studies meeting inclusion criteria identified 13 studies that show a circadian impact on the human reward system, with four types of proxy (circadian system biology, downstream circadian rhythms, circadian challenge, and time of day) associated with neural reward activation. Specific reward-related regions/networks subserving this effect included the medial prefrontal cortex, ventral striatum, putamen and default mode network. The circadian effect was observed in measures of both reward anticipation and reward receipt, with more consistent evidence for the latter. Findings are limited by marked heterogeneity across study designs. We encourage a systematic program of research investigating circadian-reward interactions as an adapted biobehavioural feature and as an aetiological mechanism in reward-related pathologies.
Collapse
Affiliation(s)
- Jamie E M Byrne
- Centre for Mental Health, Swinburne University of Technology, PO Box 312 John St Hawthorn, VIC, 3122, Australia
| | - Hailey Tremain
- Centre for Mental Health, Swinburne University of Technology, PO Box 312 John St Hawthorn, VIC, 3122, Australia
| | - Nuwan D Leitan
- Centre for Mental Health, Swinburne University of Technology, PO Box 312 John St Hawthorn, VIC, 3122, Australia
| | - Charlotte Keating
- Centre for Mental Health, Swinburne University of Technology, PO Box 312 John St Hawthorn, VIC, 3122, Australia
| | - Sheri L Johnson
- Department of Psychology, University of California, Berkeley, 3210, Tolman Hall, Berkeley, CA, 94720-1650, USA
| | - Greg Murray
- Centre for Mental Health, Swinburne University of Technology, PO Box 312 John St Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
49
|
Song RR, Chung SJ, Cho SA, Shin HW, Harmayani E. Learning to know what you like: A case study of repeated exposure to ethnic flavors. Food Qual Prefer 2019. [DOI: 10.1016/j.foodqual.2018.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Luquet SH, Vaudry H, Granata R. Editorial: Neuroendocrine Control of Feeding Behavior. Front Endocrinol (Lausanne) 2019; 10:399. [PMID: 31297088 PMCID: PMC6593060 DOI: 10.3389/fendo.2019.00399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/05/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Serge H. Luquet
- Paris Diderot University, Paris, France
- *Correspondence: Serge H. Luquet
| | - Hubert Vaudry
- Université de Rouen, Mont-Saint-Aignan, France
- Hubert Vaudry
| | - Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy
- Riccarda Granata
| |
Collapse
|