1
|
Ardinger CE, Chen Y, Kimbrough A, Grahame NJ, Lapish CC. Sex differences in neural networks recruited by frontloaded binge alcohol drinking. Addict Biol 2024; 29:e13434. [PMID: 39256902 PMCID: PMC11387202 DOI: 10.1111/adb.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024]
Abstract
Frontloading is an alcohol drinking pattern where intake is skewed towards the onset of access. This study aimed to identify brain regions involved in frontloading. Whole brain imaging was performed in 63 C57Bl/6J (32 female, 31 male) mice that underwent 8 days of binge drinking using drinking-in-the-dark (DID). On Days 1-7 mice received 20% (v/v) alcohol or water for 2 h. Intake was measured in 1-min bins using volumetric sippers. On Day 8 mice were perfused 80 min into the DID session and brains were extracted. Brains were processed to stain for Fos protein using iDISCO+. Following light sheet imaging, ClearMap2.1 was used to register brains to the Allen Brain Atlas and detect Fos+ cells. For network analyses, Day 8 drinking patterns were used to characterize mice as frontloaders or non-frontloaders using a change-point analysis. Functional correlation matrices were calculated for each group from log10 Fos values. Euclidean distances were calculated from these R values and clustering was used to determine modules (highly connected groups of brain regions). In males, alcohol access decreased modularity (three modules in both frontloaders and non-frontloaders) as compared to water (seven modules). In females, an opposite effect was observed. Alcohol access (nine modules for frontloaders) increased modularity as compared to water (five modules). Further, different brain regions served as hubs in frontloaders as compared to control groups. In conclusion, alcohol consumption led to fewer, but more densely connected, groups of brain regions in males but not females and we identify several brain-wide signatures of frontloading.
Collapse
Affiliation(s)
- Cherish E. Ardinger
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary MedicinePurdue UniversityWest LafayetteIndianaUSA
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary MedicinePurdue UniversityWest LafayetteIndianaUSA
- Weldon School of Biomedical Engineering, College of EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute of Inflammation, Immunology, and Infectious DiseasePurdue UniversityWest LafayetteIndianaUSA
| | - Nicholas J. Grahame
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| | - Christopher C. Lapish
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
- Stark Neuroscience Research InstituteIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| |
Collapse
|
2
|
D'Aquila PS. Dopamine, activation of ingestion and evaluation of response efficacy: a focus on the within-session time-course of licking burst number. Psychopharmacology (Berl) 2024; 241:1111-1124. [PMID: 38702473 PMCID: PMC11106101 DOI: 10.1007/s00213-024-06600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
RATIONALE Evidence on the effect of dopamine D1-like and D2-like receptor antagonists on licking microstructure and the forced swimming response led us to suggest that (i) dopamine on D1-like receptors plays a role in activating reward-directed responses and (ii) the level of response activation is reboosted based on a process of evaluation of response efficacy requiring dopamine on D2-like receptors. A main piece of evidence in support of this hypothesis is the observation that the dopamine D2-like receptor antagonist raclopride induces a within-session decrement of burst number occurring after the contact with the reward. The few published studies with a detailed analysis of the time-course of this measure were conducted in our laboratory. OBJECTIVES The aim of this review is to recapitulate and discuss the evidence in support of the analysis of the within-session burst number as a behavioural substrate for the study of the mechanisms governing ingestion, behavioural activation and the related evaluation processes, and its relevance in the analysis of drug effects on ingestion. CONCLUSIONS The evidence gathered so far suggests that the analysis of the within-session time-course of burst number provides an important behavioural substrate for the study of the mechanisms governing ingestion, behavioural activation and the related evaluation processes, and might provide decisive evidence in the analysis of the effects of drugs on ingestion. However, further evidence from independent sources is necessary to validate the use and the proposed interpretation of this measure.
Collapse
Affiliation(s)
- Paolo S D'Aquila
- Dipartimento di Scienze Biomediche, Università di Sassari, Viale S. Pietro 43/b, Sassari, 07100, Italy.
| |
Collapse
|
3
|
Becker HC, Lopez MF. Animal Models of Excessive Alcohol Consumption in Rodents. Curr Top Behav Neurosci 2024. [PMID: 38340255 DOI: 10.1007/7854_2024_461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The development of animal models that demonstrate excessive levels of alcohol consumption has played an important role in advancing our knowledge about neurobiological underpinnings and environmental circumstances that engender such maladaptive behavior. The use of these preclinical models has also provided valuable opportunities for discovering new and novel therapeutic targets that may be useful in the treatment of alcohol use disorder (AUD). While no single model can fully capture the complexities of AUD, the goal is to develop animal models that closely approximate characteristics of heavy alcohol drinking in humans to enhance their translational value and utility. A variety of experimental approaches have been employed to produce the desired phenotype of interest-robust and reliable excessive levels of alcohol drinking. Here we provide an updated review of five animal models that are commonly used. The models entail procedural manipulations of scheduled access to alcohol (time of day, duration, frequency), periods of time when access to alcohol is withheld, and history of alcohol exposure. Specially, the models involve (a) scheduled access to alcohol, (b) scheduled periods of alcohol deprivation, (c) scheduled intermittent access to alcohol, (d) scheduled-induced polydipsia, and (e) chronic alcohol (dependence) and withdrawal experience. Each of the animal models possesses unique experimental features that engender excessive levels of alcohol consumption. Both advantages and disadvantages of each model are described along with discussion of future work to be considered in developing more optimal models. Ultimately, the validity and utility of these models will lie in their ability to aid in the discovery of new and novel potential therapeutic targets as well as serve as a platform to evaluate treatment strategies that effectively reduce excessive levels of alcohol consumption associated with AUD.
Collapse
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA.
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
- Departments of Psychiatry and Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- RHJ Veterans Administration Health Care System, Medical University of South Carolina, Charleston, SC, USA.
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
4
|
Ardinger CE, Chen Y, Kimbrough A, Grahame NJ, Lapish CC. Sex Differences in Neural Networks Recruited by Frontloaded Binge Alcohol Drinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579387. [PMID: 38370732 PMCID: PMC10871329 DOI: 10.1101/2024.02.08.579387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Frontloading is an alcohol drinking pattern where intake is skewed toward the onset of access. The goal of the current study was to identify brain regions involved in frontloading. Whole brain imaging was performed in 63 C57Bl/6J (32 female and 31 male) mice that underwent 8 days of binge drinking using the drinking-in-the-dark (DID) model. On days 1-7, three hours into the dark cycle, mice received 20% (v/v) alcohol or water for two hours. Intake was measured in 1-minute bins using volumetric sippers, which facilitated analyses of drinking patterns. On day 8 mice were perfused 80 minutes into the DID session and brains were extracted. Brains were then processed to stain for Fos protein using iDISCO+. Following light sheet imaging, ClearMap2.1 was used to register brains to the Allen Brain Atlas and detect Fos+ cells. For brain network analyses, day 8 drinking patterns were used to characterize mice as frontloaders or non-frontloaders using a recently developed change-point analysis. Based on this analysis the groups were female frontloaders (n = 20), female non-frontloaders (n = 2), male frontloaders (n = 13) and male non-frontloaders (n = 8). There were no differences in total alcohol intake in animals that frontloaded versus those that did not. Only two female mice were characterized as non-frontloaders, thus preventing brain network analysis of this group. Functional correlation matrices were calculated for each group from log10 Fos values. Euclidean distances were calculated from these R values and hierarchical clustering was used to determine modules (highly connected groups of brain regions). In males, alcohol access decreased modularity (3 modules in both frontloaders and non-frontloaders) as compared to water drinkers (7 modules). In females, an opposite effect was observed. Alcohol access (9 modules for frontloaders) increased modularity as compared to water drinkers (5 modules). These results suggest sex differences in how alcohol consumption reorganizes the functional architecture of neural networks. Next, key brain regions in each network were identified. Connector hubs, which primarily facilitate communication between modules, and provincial hubs, which facilitate communication within modules, were of specific interest for their important and differing roles. In males, 4 connector hubs and 17 provincial hubs were uniquely identified in frontloaders (i.e., were brain regions that did not have this status in male non-frontloaders or water drinkers). These represented a group of hindbrain regions (e.g., locus coeruleus and the pontine gray) functionally connected to striatal/cortical regions (e.g., cortical amygdalar area) by the paraventricular nucleus of the thalamus. In females, 16 connector and 17 provincial hubs were uniquely identified which were distributed across 8 of the 9 modules in the female frontloader alcohol drinker network. Only one brain region (the nucleus raphe pontis) was a connector hub in both sexes, suggesting that frontloading in males and females may be driven by different brain regions. In conclusion, alcohol consumption led to fewer, but more densely connected, groups of brain regions in males but not females, and recruited different hub brain regions between the sexes. These results suggest that alcohol frontloading leads to a reduction in network efficiency in male mice.
Collapse
Affiliation(s)
- Cherish E Ardinger
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN
| | - Nicholas J Grahame
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN
| | - Christopher C Lapish
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN
- Stark Neuroscience Research Institute, Indiana University - Purdue University Indianapolis, Indianapolis, IN
| |
Collapse
|
5
|
Kohen CB, Cofresí RU, Piasecki TM, Bartholow BD. Predictive utility of the P3 event-related potential (ERP) response to alcohol cues for ecologically assessed alcohol craving and use. Addict Biol 2024; 29:e13368. [PMID: 38380714 PMCID: PMC10882185 DOI: 10.1111/adb.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 02/22/2024]
Abstract
Neural measures of alcohol cue incentive salience have been associated with retrospective reports of riskier alcohol use behaviour and subjective response profiles. This study tested whether the P3 event-related potential (ERP) elicited by alcohol-related cues (ACR-P3) can forecast alcohol use and craving during real-world drinking episodes. Participants (N = 262; Mage = 19.53; 56% female) completed a laboratory task in which they viewed images of everyday objects (Neutral), non-alcohol drinks (NonAlc) and alcohol beverages (Alc) while EEG was recorded and then completed a 21-day ecological momentary assessment (EMA) protocol in which they recorded alcohol craving and consumption. Anthropometrics were used to derive estimated blood alcohol concentration (eBAC) throughout drinking episodes. Multilevel modelling indicated positive associations between P3 amplitudes elicited by all stimuli and within-episode alcohol use measures (e.g., eBAC, cumulative drinks). Focal follow-up analyses indicated a positive association between AlcP3 amplitude and eBAC within episodes: Larger AlcP3 was associated with a steeper rise in eBAC. This association was robust to controlling for the association between NonAlcP3 and eBAC. AlcP3 also was positively associated with episode-level measures (e.g., max drinks, max eBAC). There were no associations between any P3 variables and EMA-based craving measures. Thus, individual differences in neural measures of alcohol cue incentive salience appear to predict the speed and intensity of alcohol consumption but not reports of craving during real-world alcohol use episodes.
Collapse
Affiliation(s)
- Casey B. Kohen
- Department of Psychological SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Roberto U. Cofresí
- Department of Psychological SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Thomas M. Piasecki
- Department of Medicine and Center for Tobacco Research and InterventionUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Bruce D. Bartholow
- Department of Psychological SciencesUniversity of MissouriColumbiaMissouriUSA
- Department of Psychological and Brain SciencesUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
6
|
Starski PA, De Oliveira Sergio T, Hopf FW. Using lickometry to infer differential contributions of salience network regions during compulsion-like alcohol drinking. ADDICTION NEUROSCIENCE 2023; 7:100102. [PMID: 38736902 PMCID: PMC11086682 DOI: 10.1016/j.addicn.2023.100102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Alcohol use disorder extracts substantial personal, social and clinical costs, and continued intake despite negative consequences (compulsion-like consumption) can contribute strongly. Here we discuss lickometry, a simple method where lick times are determined across a session, while analysis across many aspects of licking can offer important insights into underlying psychological and action strategies, including their brain mechanisms. We first describe studies implicating anterior insula (AIC) and dorsal medial prefrontal cortex (dMPF) in compulsion-like responding for alcohol, then review work suggesting that AIC/ventral frontal cortex versus dMPF regulate different aspects of behavior (oral control and overall response strategy, versus moment-to-moment action organization). We then detail our lickometer work comparing alcohol-only drinking (AOD) and compulsion-like drinking under moderate- or higher-challenge (ModChD or HiChD, using quinine-alcohol). Many studies have suggested utilization of one of two main strategies, with higher motivation indicated by more bouts, and greater palatability suggested by longer, faster bouts. Instead, ModChD shows decreased variability in many lick measures, which is unexpected but consistent with the suggested importance of automaticity for addiction. Also surprising is that HiChD retains several behavior changes seen with ModChD, reduced tongue variability and earlier bout start, even though intake is otherwise disrupted. Since AIC-related measures are retained under both moderate- and higher-challenge, we propose a novel hypothesis that AIC sustains overall commitment regardless of challenge level, while disordered licking during HiChD mirrors the effects of dMPF inhibition. Thus, while AIC provides overall drive despite challenge, the ability to act is ultimately determined within the dMPF.
Collapse
Affiliation(s)
- Phillip A. Starski
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis IN, USA
| | | | - Frederic W. Hopf
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis IN, USA
- Stark Neurosciences Research Institute, Indianapolis IN, USA
| |
Collapse
|
7
|
Guillaumin MCC, Viskaitis P, Bracey E, Burdakov D, Peleg-Raibstein D. Disentangling the role of NAc D1 and D2 cells in hedonic eating. Mol Psychiatry 2023; 28:3531-3547. [PMID: 37402855 PMCID: PMC10618099 DOI: 10.1038/s41380-023-02131-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
Overeating is driven by both the hedonic component ('liking') of food, and the motivation ('wanting') to eat it. The nucleus accumbens (NAc) is a key brain center implicated in these processes, but how distinct NAc cell populations encode 'liking' and 'wanting' to shape overconsumption remains unclear. Here, we probed the roles of NAc D1 and D2 cells in these processes using cell-specific recording and optogenetic manipulation in diverse behavioral paradigms that disentangle reward traits of 'liking' and 'wanting' related to food choice and overeating in healthy mice. Medial NAc shell D2 cells encoded experience-dependent development of 'liking', while D1 cells encoded innate 'liking' during the first food taste. Optogenetic control confirmed causal links of D1 and D2 cells to these aspects of 'liking'. In relation to 'wanting', D1 and D2 cells encoded and promoted distinct aspects of food approach: D1 cells interpreted food cues while D2 cells also sustained food-visit-length that facilitates consumption. Finally, at the level of food choice, D1, but not D2, cell activity was sufficient to switch food preference, programming subsequent long-lasting overconsumption. By revealing complementary roles of D1 and D2 cells in consumption, these findings assign neural bases to 'liking' and 'wanting' in a unifying framework of D1 and D2 cell activity.
Collapse
Affiliation(s)
- Mathilde C C Guillaumin
- Institute for Neuroscience, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Paulius Viskaitis
- Institute for Neuroscience, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Eva Bracey
- Institute for Neuroscience, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Denis Burdakov
- Institute for Neuroscience, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Daria Peleg-Raibstein
- Institute for Neuroscience, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, ETH Zurich, 8603, Schwerzenbach, Switzerland.
| |
Collapse
|
8
|
Ardinger CE, Lapish CC, Czachowski CL, Grahame NJ. A critical review of front-loading: A maladaptive drinking pattern driven by alcohol's rewarding effects. Alcohol Clin Exp Res 2022; 46:1772-1782. [PMID: 36239713 PMCID: PMC9588658 DOI: 10.1111/acer.14924] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 01/31/2023]
Abstract
Front-loading is a drinking pattern in which alcohol intake is skewed toward the onset of reward access. This phenomenon has been reported across several different alcohol self-administration protocols in a wide variety of species, including humans. The hypothesis of the current review is that front-loading emerges in response to the rewarding effects of alcohol and can be used to measure the motivation to consume alcohol. Alternative or additional hypotheses that we consider and contrast with the main hypothesis are that: (1) front-loading is directed at overcoming behavioral and/or metabolic tolerance and (2) front-loading is driven by negative reinforcement. Evidence for each of these explanations is reviewed. We also consider how front-loading has been evaluated statistically in previous research and make recommendations for defining this intake pattern in future studies. Because front-loading may predict long-term maladaptive alcohol drinking patterns leading to the development of alcohol use disorder (AUD), several future directions are proposed to elucidate the relationship between front-loading and AUD.
Collapse
Affiliation(s)
- Cherish E. Ardinger
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| | - Christopher C. Lapish
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA,Stark Neuroscience Research InstituteIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| | - Cristine L. Czachowski
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| | - Nicholas J. Grahame
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| |
Collapse
|
9
|
Bryant KG, Singh B, Barker JM. Reinforcement History Dependent Effects of Low Dose Ethanol on Reward Motivation in Male and Female Mice. Front Behav Neurosci 2022; 16:875890. [PMID: 35481242 PMCID: PMC9036521 DOI: 10.3389/fnbeh.2022.875890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol use disorders (AUDs) are more prevalent in men than in women, though AUD diagnoses in women are growing rapidly, making an understanding of sex differences in alcohol-related behaviors increasingly important. The development of AUDs involves the transition from casual, low levels of alcohol drinking to higher, maladaptive levels. The ability of low dose alcohol to drive reward and drug seeking may differ in males and females, and this could underlie differences in susceptibility to AUD. In this study we sought to determine whether a history of chronic, low dose ethanol exposure (0.5 g/kg; i.p.) could drive sucrose reward seeking and motivation, and whether this differed between male and female mice. Adult mice were trained to lever press for a liquid sucrose reward on two reinforcement schedules: a random interval (RI) schedule and a variable ratio (VR) schedule. After training, mice were tested on each of these levers for reward motivation using a progressive ratio test. We found that a history of low dose ethanol exposure increased sucrose reward motivation in male mice, but only on the RI lever and only when exposure occurred proximal to learning. Female mice were more motivated for sucrose on the RI lever than the VR lever regardless of ethanol exposure condition. These findings indicate that training on different reinforcement schedules affects reward motivation. Further, we show that males are more susceptible to the effects of low dose ethanol on sucrose reward motivation than females. These data broaden our understanding of sex differences in reward seeking as a result of ethanol exposure.
Collapse
|
10
|
Patwell R, Yang H, Pandey SC, Glover EJ. An operant ethanol self-administration paradigm that discriminates between appetitive and consummatory behaviors reveals distinct behavioral phenotypes in commonly used rat strains. Neuropharmacology 2021; 201:108836. [PMID: 34648771 PMCID: PMC8578460 DOI: 10.1016/j.neuropharm.2021.108836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
Alcohol use disorder (AUD) constitutes a major burden to global health. Recently, the translational success of animal models of AUD has come under increased scrutiny. Efforts to refine models to gain a more precise understanding of the neurobiology of addiction are warranted. Appetitive responding for ethanol (seeking) and its consumption (taking) are governed by distinct neurobiological mechanisms. However, consumption is often inferred from appetitive responding in operant ethanol self-administration paradigms, preventing identification of distinct experimental effects on seeking and taking. In the present study, male Long-Evans, Wistar, and Sprague-Dawley rats were trained to lever press for ethanol using a lickometer-equipped system that precisely measures both appetitive and consummatory behavior. Three distinct operant phenotypes emerged during training: 1) Drinkers, who lever press and consume ethanol; 2) Responders, who lever press but consume little to no ethanol; and 3) Non-responders, who do not lever press. While the prevalence of each phenotype differed across strains, appetitive and consummatory behavior was similar across strains within each phenotype. Appetitive and consummatory behaviors were significantly correlated in Drinkers, but not Responders. Analysis of drinking microstructure showed that greater consumption in Drinkers relative to Responders is due to increased incentive for ethanol rather than increased palatability. Importantly, withdrawal from chronic ethanol exposure resulted in a significant increase in appetitive responding in both Drinkers and Responders, but only Drinkers exhibited a concomitant increase in ethanol consumption. Together, these data reveal important strain differences in appetitive and consummatory responding for ethanol and uncover the presence of distinct operant phenotypes.
Collapse
Affiliation(s)
- Ryan Patwell
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hyerim Yang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
11
|
Flores-Bonilla A, De Oliveira B, Silva-Gotay A, Lucier KW, Richardson HN. Shortening time for access to alcohol drives up front-loading behavior, bringing consumption in male rats to the level of females. Biol Sex Differ 2021; 12:51. [PMID: 34526108 PMCID: PMC8444481 DOI: 10.1186/s13293-021-00395-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Background Incentives to promote drinking (“happy hour”) can encourage faster rates of alcohol consumption, especially in women. Sex differences in drinking dynamics may underlie differential health vulnerabilities relating to alcohol in women versus men. Herein, we used operant procedures to model the happy hour effect and gain insight into the alcohol drinking dynamics of male and female rats. Methods Adult male and female Wistar rats underwent operant training to promote voluntary drinking of 10% (w/v) alcohol (8 rats/sex). We tested how drinking patterns changed after manipulating the effort required for alcohol (fixed ratio, FR), as well as the length of time in which rats had access to alcohol (self-administration session length). Rats were tested twice within the 12 h of the dark cycle, first at 2 h (early phase of the dark cycle, “early sessions”) and then again at 10 h into the dark cycle (late phase of the dark cycle, “late sessions”) with an 8-h break between the two sessions in the home cage. Results Adult females consumed significantly more alcohol (g/kg) than males in the 30-min sessions with the FR1 schedule of reinforcement when tested late in the dark cycle. Front-loading of alcohol was the primary factor driving higher consumption in females. Changing the schedule of reinforcement from FR1 to FR3 reduced total consumption. Notably, this manipulation had minimal effect on front-loading behavior in females, whereas front-loading behavior was significantly reduced in males when more effort was required to access alcohol. Compressing drinking access to 15 min to model a happy hour drove up front-loading behavior, generating alcohol drinking patterns in males that were similar to patterns in females (faster drinking and higher intake). Conclusions This strategy could be useful for exploring sex differences in the neural mechanisms underlying alcohol drinking and related health vulnerabilities. Our findings also highlight the importance of the time of testing for detecting sex differences in drinking behavior. Voluntary alcohol drinking is higher in adult female rats compared to adult male rats. This sex difference is most pronounced in the later phase of the dark cycle, and when the operant effort is minimal (when 1 lever press gives 1 reward: fixed ratio 1, FR1). Higher alcohol intake in females is primarily due to “front-loading”, or the rapid consumption of alcohol within the first 5 min of access. Increasing the effort required to obtain alcohol from FR1 to FR3 dampens front-loading drinking behavior, resulting in similar levels of total intake in males and females. Compressing the time of access to 15 min drives up front-loading to such a degree that rats end up consuming more alcohol in total than they do in 30-min sessions. In males, this increase in drinking is large enough that it eliminates the sex difference in total alcohol intake.
Collapse
Affiliation(s)
- Annabelle Flores-Bonilla
- Neuroscience and Behavior Program, The University of Massachusetts Amherst, Amherst, MA, 01003, USA.,Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Barbara De Oliveira
- Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Andrea Silva-Gotay
- Neuroscience and Behavior Program, The University of Massachusetts Amherst, Amherst, MA, 01003, USA.,Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kyle W Lucier
- Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Heather N Richardson
- Neuroscience and Behavior Program, The University of Massachusetts Amherst, Amherst, MA, 01003, USA. .,Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
12
|
Thompson JB, Conrad SE, Peterman JL, Papini MR. Reinforcing properties of alcohol in rats: Progressive ratio licking performance reinforced with 66% alcohol. Physiol Behav 2021; 235:113393. [PMID: 33757779 DOI: 10.1016/j.physbeh.2021.113393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Rodents are generally reluctant to consume high concentrations of alcohol. However, few experiments have reported the behavior of rats when they are given access to high alcohol concentrations. Four experiments with food-deprived Wistar rats were designed to determine whether 66% alcohol could be used as a positive reinforcer for operant responses. In Experiment 1, animals learned to lick an empty sipper to gain access to 66% alcohol in a second tube; licking extinguished after it if provided a only access to water (operant licking task, OL). Experiment 2 used the OL task combined with a progressive ratio (PR) schedule in a within-subject design with the order of alcohol concentrations counterbalanced across subjects. The breakpoint (the last completed ratio in the PR schedule) was higher for 10% and 66% alcohol concentrations than for water. In Experiment 3, animals trained in the same PR task gained access to water, 10%, or 66% alcohol in a between-subject design. Breakpoints were higher for 66% alcohol than for water, but not for 10% alcohol relative to water. Experiment 4 tested the effects of the orexin-1 receptor antagonist SB-334,867 on licking reinforced with access to 66% alcohol in the PR task. The antagonist reduced the breakpoint at 1- and 5-mg/kg doses, but not at 10 mg/kg. These results suggest that 66% alcohol can be used to reinforce operant behavior. Although the effects were modest, they were reliable. The estimated amount of alcohol consumed in the OL task suggests that these reinforcing effects were not dependent on the pharmacological effects of 66% alcohol, but could perhaps reflect a sensation-seeking effect.
Collapse
Affiliation(s)
- Joanna B Thompson
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Shannon E Conrad
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Julia L Peterman
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Mauricio R Papini
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, United States.
| |
Collapse
|
13
|
Altered Activity of Lateral Orbitofrontal Cortex Neurons in Mice following Chronic Intermittent Ethanol Exposure. eNeuro 2021; 8:ENEURO.0503-20.2021. [PMID: 33593732 PMCID: PMC7932186 DOI: 10.1523/eneuro.0503-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 02/03/2023] Open
Abstract
The lateral orbitofrontal cortex (LOFC) is thought to encode information associated with consumption of rewarding substances and is essential for flexible decision-making. Indeed, firing patterns of LOFC neurons are modulated following changes in reward value associated with an action outcome relationship. Damage to the LOFC impairs behavioral flexibility in humans and is associated with suboptimal performance in reward devaluation protocols in rodents. As chronic intermittent ethanol (CIE) exposure also impairs OFC-dependent behaviors, we hypothesized that CIE exposure would alter LOFC neuronal activity during alcohol drinking, especially under conditions when the reward value of ethanol was modulated by aversive or appetitive tastants. To test this hypothesis, we monitored LOFC activity using GCaMP6f fiber photometry in mice receiving acute injections of ethanol and in those trained in operant ethanol self-administration. In naive mice, an acute injection of ethanol caused a dose-dependent decrease in the frequency but not amplitude of GCaMP6f transients. In operant studies, mice were trained on a fixed ratio one schedule of reinforcement and were then separated into CIE or Air groups. Following four cycles of CIE exposure, GCaMP6f activity was recorded during self-administration of alcohol, alcohol+quinine (aversive), or alcohol+sucrose (appetitive) solutions. LOFC neurons showed discrete patterns of activity surrounding lever presses and surrounding drinking bouts. Responding for and consumption of ethanol was greatly enhanced by CIE exposure, was aversion resistant, and was associated with signs of LOFC hyperexcitability. CIE-exposed mice also showed altered patterns of LOFC activity that varied with the ethanol solution consumed.
Collapse
|
14
|
Robinson SL, Dornellas APS, Burnham NW, Houck CA, Luhn KL, Bendrath SC, Companion MA, Brewton HW, Thomas RD, Navarro M, Thiele TE. Distinct and Overlapping Patterns of Acute Ethanol-Induced C-Fos Activation in Two Inbred Replicate Lines of Mice Selected for Drinking to High Blood Ethanol Concentrations. Brain Sci 2020; 10:brainsci10120988. [PMID: 33333877 PMCID: PMC7765285 DOI: 10.3390/brainsci10120988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
The inbred high drinking in the dark (iHDID1 and iHDID2) strains are two replicate lines bred from the parent HS/Npt (HS) line for achieving binge levels of blood ethanol concentration (≥80 mg/dL BEC) in a four-hour period. In this work, we sought to evaluate differences in baseline and ethanol-induced c-Fos activation between the HS, iHDID1, and iHDID2 genetic lines in brain regions known to process the aversive properties of ethanol. Methods: Male and female HS, iHDID1, and iHDID2 mice underwent an IP saline 2 3 g/kg ethanol injection. Brain sections were then stained for c-Fos expression in the basolateral/central amygdala (BLA/CeA), bed nucleus of the stria terminals (BNST), A2, locus coeruleus (LC), parabrachial nucleus (PBN), lateral/medial habenula (LHb/MHb), paraventricular nucleus of the thalamus (PVT), periaqueductal gray (PAG), Edinger–Westphal nuclei (EW), and rostromedial tegmental nucleus (RMTg). Results: The iHDID1 and iHDID2 lines showed similar and distinct patterns of regional c-Fos; however, in no region did the two both significantly differ from the HS line together. Conclusions: Our findings lend further support to the hypothesis the iHDID1 and the iHDID2 lines arrive at a similar behavior phenotype through divergent genetic mechanisms.
Collapse
Affiliation(s)
- Stacey L. Robinson
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ana Paula S. Dornellas
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nathan W. Burnham
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA;
| | - Christa A. Houck
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kendall L. Luhn
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
| | - Sophie C. Bendrath
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michel A. Companion
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Honoreé W. Brewton
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rhiannon D. Thomas
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Montserrat Navarro
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Todd E. Thiele
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-966-1519; Fax: +1-919-962-2537
| |
Collapse
|
15
|
D'Aquila PS. Microstructure analysis of the effects of the cannabinoid agents HU-210 and rimonabant in rats licking for sucrose. Eur J Pharmacol 2020; 887:173468. [DOI: 10.1016/j.ejphar.2020.173468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
|
16
|
Siciliano CA, Noamany H, Chang CJ, Brown AR, Chen X, Leible D, Lee JJ, Wang J, Vernon AN, Vander Weele CM, Kimchi EY, Heiman M, Tye KM. A cortical-brainstem circuit predicts and governs compulsive alcohol drinking. Science 2020; 366:1008-1012. [PMID: 31754002 DOI: 10.1126/science.aay1186] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022]
Abstract
What individual differences in neural activity predict the future escalation of alcohol drinking from casual to compulsive? The neurobiological mechanisms that gate the transition from moderate to compulsive drinking remain poorly understood. We longitudinally tracked the development of compulsive drinking across a binge-drinking experience in male mice. Binge drinking unmasked individual differences, revealing latent traits in alcohol consumption and compulsive drinking despite equal prior exposure to alcohol. Distinct neural activity signatures of cortical neurons projecting to the brainstem before binge drinking predicted the ultimate emergence of compulsivity. Mimicry of activity patterns that predicted drinking phenotypes was sufficient to bidirectionally modulate drinking. Our results provide a mechanistic explanation for individual variance in vulnerability to compulsive alcohol drinking.
Collapse
Affiliation(s)
- Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Habiba Noamany
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chia-Jung Chang
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alex R Brown
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Xinhong Chen
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Leible
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jennifer J Lee
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joyce Wang
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amanda N Vernon
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Caitlin M Vander Weele
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eyal Y Kimchi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Myriam Heiman
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
17
|
Renteria R, Cazares C, Gremel CM. Habitual Ethanol Seeking and Licking Microstructure of Enhanced Ethanol Self-Administration in Ethanol-Dependent Mice. Alcohol Clin Exp Res 2020; 44:880-891. [PMID: 32020644 DOI: 10.1111/acer.14302] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/26/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND A significant component of ethanol (EtOH) dependence is the disruption to decision-making processes. Prior work has shown EtOH dependence biases habitual seeking of EtOH and disrupts neural mechanisms supporting decision-making. This has contributed to the hypothesis that habitual EtOH seeking in EtOH dependence may promote excessive habitual or compulsive EtOH consumption. However, decision-making and behavioral processes underlying seeking and consummatory behaviors differ. Here, we examine the microstructure of EtOH consummatory behavior in the context of habitual EtOH seeking. METHODS Following home cage pre-exposure to EtOH, C57Bl/6J mice underwent 4 rounds of chronic intermittent EtOH (CIE) or air exposure. Following acute withdrawal, mice began training for operant self-administration of 15% EtOH. Training consisted of 16-hour sessions in which mice were trained in a random ratio (RR) schedule of reinforcement for 30-second access to the EtOH sipper. To test for CIE-induced changes in action control, we used sensory-specific satiation and assessed the effect of outcome devaluation on EtOH seeking. Importantly, the use of a lickometer during operant training allowed us to measure the microstructure of lick behavior. RESULTS Prior induction of EtOH dependence led to increased EtOH seeking, consumption, and an insensitivity to outcome devaluation, the latter indicative of habitual EtOH seeking. We also found altered consummatory lick patterns in CIE-exposed mice compared to Air controls. While CIE mice had significantly more licks in a burst and a longer burst duration, there were no differences in the total number of bursts compared to Air controls. Furthermore, these EtOH consummatory behaviors correlated with blood EtOH concentrations (BECs), while EtOH-seeking responses did not. CONCLUSIONS Our results confirm that EtOH dependence can produce habitual EtOH seeking and suggests the increased EtOH consummatory behaviors following EtOH dependence are separable from decision-making processes controlling EtOH seeking.
Collapse
Affiliation(s)
- Rafael Renteria
- From the, Department of Psychology, (RR, CMG), University of California San Diego, La Jolla, California
| | - Christian Cazares
- The Neurosciences Graduate Program, (CC, CMG), University of California San Diego, La Jolla, California
| | - Christina M Gremel
- From the, Department of Psychology, (RR, CMG), University of California San Diego, La Jolla, California.,The Neurosciences Graduate Program, (CC, CMG), University of California San Diego, La Jolla, California
| |
Collapse
|
18
|
Reward Processing under Chronic Pain from the Perspective of "Liking" and "Wanting": A Narrative Review. Pain Res Manag 2019; 2019:6760121. [PMID: 31149319 PMCID: PMC6501242 DOI: 10.1155/2019/6760121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/06/2019] [Accepted: 04/04/2019] [Indexed: 11/29/2022]
Abstract
The therapeutic goals of patients with chronic pain are not only to relieve pain but also to improve the quality of life. Chronic pain negatively affects various aspects of daily life, such as by decreasing the motivation to work and reward sensitivity, which may lead to difficulties in daily life or even unemployment. Human and animal studies have shown that chronic pain damages reward processing; the exploration of associated internal mechanisms may aid the development of treatments to repair this damage. Incentive salience theory, used widely to describe reward processing, divides this processing into “liking” (reward-induced hedonic sensory impact) and “wanting” (reward-induced motivation) components. It has been employed to explain pathological changes in reward processing induced by psychiatric disorders. In this review, we summarize the findings of studies of reward processing under chronic pain and examine the effects of chronic pain on “liking” and “wanting.” Evidence indicates that chronic pain compromises the “wanting” component of reward processing; we also discuss the neural mechanisms that may mediate this effect. We hope that this review aids the development of therapies to improve the quality of life of patients with chronic pain.
Collapse
|
19
|
Darevsky D, Gill TM, Vitale KR, Hu B, Wegner SA, Hopf FW. Drinking despite adversity: behavioral evidence for a head down and push strategy of conflict-resistant alcohol drinking in rats. Addict Biol 2019. [PMID: 29516676 DOI: 10.1111/adb.12608] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Compulsive alcohol drinking, where intake persists regardless of adverse consequences, plays a major role in the substantial costs of alcohol use disorder. However, the processes that promote aversion-resistant drinking remain poorly understood. Compulsion-like responding has been considered automatic and reflexive and also to involve higher motivation, since drinking persists despite adversity. Thus, we used lickometry, where microstructural behavioral changes can reflect altered motivation, to test whether conflict-resistant intake [quinine-alcohol (QuiA)] reflected greater automaticity or motivation relative to alcohol-only drinking (Alc). Front-loading during QuiA and Alc suggested incentive to drink in both. However, the relationship between total licking and intake was less variable during QuiA, as was lick volume, without changes in average responding. QuiA bout organization was also less variable, with fewer licks outside of bouts (stray licks) and fewer gaps within bouts. Interestingly, QuiA avoidance of stray licking continued into short bouts, with fewer short and more medium-length bouts, which was striking given their minor impact on intake. Instead, more effort at bout onset could allow short bouts to persist longer. Indeed, while QuiA licking was overall faster, QuiA bouts were especially fast at bout initiation. However, few QuiA changes individually predicted greater intake, perhaps suggesting an overarching strategy during aversion-resistant responding. Thus, our results indicate that aversion-resistant intake exhibited less variability, where increased automaticity could decrease need for awareness, and stronger bout initiation, which might prolong responding despite adversity. This may reflect a collective strategy, which we call Head Down and Push responding that facilitates conflict-resistant, compulsion-like intake.
Collapse
Affiliation(s)
- David Darevsky
- Alcohol and Addiction Research Group, Department of NeurologyUniversity of California at San Francisco San Francisco CA USA
| | - Thomas Michael Gill
- Alcohol and Addiction Research Group, Department of NeurologyUniversity of California at San Francisco San Francisco CA USA
- Gladstone CenterUniversity of California at San Francisco San Francisco CA USA
| | - Katherine Rose Vitale
- Alcohol and Addiction Research Group, Department of NeurologyUniversity of California at San Francisco San Francisco CA USA
| | - Bing Hu
- Alcohol and Addiction Research Group, Department of NeurologyUniversity of California at San Francisco San Francisco CA USA
| | - Scott Andrew Wegner
- Alcohol and Addiction Research Group, Department of NeurologyUniversity of California at San Francisco San Francisco CA USA
| | - Frederic Woodward Hopf
- Alcohol and Addiction Research Group, Department of NeurologyUniversity of California at San Francisco San Francisco CA USA
- Wheeler Center for the Study of AddictionUniversity of California at San Francisco San Francisco CA USA
| |
Collapse
|
20
|
Siciliano CA, Tye KM. Leveraging calcium imaging to illuminate circuit dysfunction in addiction. Alcohol 2019; 74:47-63. [PMID: 30470589 PMCID: PMC7575247 DOI: 10.1016/j.alcohol.2018.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/08/2018] [Accepted: 05/28/2018] [Indexed: 12/28/2022]
Abstract
Alcohol and drug use can dysregulate neural circuit function to produce a wide range of neuropsychiatric disorders, including addiction. To understand the neural circuit computations that mediate behavior, and how substances of abuse may transform them, we must first be able to observe the activity of circuits. While many techniques have been utilized to measure activity in specific brain regions, these regions are made up of heterogeneous sub-populations, and assessing activity from neuronal populations of interest has been an ongoing challenge. To fully understand how neural circuits mediate addiction-related behavior, we must be able to reveal the cellular granularity within brain regions and circuits by overlaying functional information with the genetic and anatomical identity of the cells involved. The development of genetically encoded calcium indicators, which can be targeted to populations of interest, allows for in vivo visualization of calcium dynamics, a proxy for neuronal activity, thus providing an avenue for real-time assessment of activity in genetically and anatomically defined populations during behavior. Here, we highlight recent advances in calcium imaging technology, compare the current technology with other state-of-the-art approaches for in vivo monitoring of neural activity, and discuss the strengths, limitations, and practical concerns for observing neural circuit activity in preclinical addiction models.
Collapse
Affiliation(s)
- Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; The Salk Institute for Biological Sciences, 10010 N Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
21
|
Johnson AW. Characterizing ingestive behavior through licking microstructure: Underlying neurobiology and its use in the study of obesity in animal models. Int J Dev Neurosci 2018; 64:38-47. [PMID: 28684308 PMCID: PMC6063358 DOI: 10.1016/j.ijdevneu.2017.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/24/2017] [Accepted: 06/30/2017] [Indexed: 12/19/2022] Open
Abstract
Ingestive behavior is controlled by multiple distinct peripheral and central physiological mechanisms that ultimately determine whether a particular food should be accepted or avoided. As rodents consume a fluid they display stereotyped rhythmic tongue movements, and by analyzing the temporal distribution of pauses of licking, it is possible through analyses of licking microstructure to uncover dissociable evaluative and motivational variables that contribute to ingestive behavior. The mean number of licks occurring within each burst of licking (burst and cluster size) reflects the palatability of the consumed solution, whereas the frequency of initiating novel bouts of licking behavior (burst and cluster number) is dependent upon the degree of gastrointestinal inhibition that accrues through continued fluid ingestion. This review describes the analysis of these measures within a context of the behavioral variables that come to influence the acceptance or avoidance of a fluid, and the neurobiological mechanisms that underlie alterations in the temporal distribution of pauses of licks. The application of these studies to models of obesity in animals is also described.
Collapse
Affiliation(s)
- Alexander W Johnson
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, 48864, USA.
| |
Collapse
|
22
|
Morales M, McGinnis MM, McCool BA. Chronic ethanol exposure increases voluntary home cage intake in adult male, but not female, Long-Evans rats. Pharmacol Biochem Behav 2015; 139:67-76. [PMID: 26515190 PMCID: PMC4722864 DOI: 10.1016/j.pbb.2015.10.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 11/30/2022]
Abstract
The current experiment examined the effects of 10 days of chronic intermittent ethanol (CIE) exposure on anxiety-like behavior and home cage ethanol intake using a 20% intermittent access (M, W, F) paradigm in male and female Long-Evans rats. Withdrawal from alcohol dependence contributes to relapse in humans and increases in anxiety-like behavior and voluntary ethanol consumption in preclinical models. Our laboratory has shown that 10 days of CIE exposure produces both behavioral and neurophysiological alterations associated with withdrawal in male rats; however, we have yet to examine the effects of this exposure regime on ethanol intake in females. During baseline, females consumed more ethanol than males but, unlike males, did not show escalations in intake. Rats were then exposed to CIE and were again given intermittent access to 20% ethanol. CIE males increased their intake compared to baseline, whereas air-exposed males did not. Ethanol intake in females was unaffected by CIE exposure. Notably, both sexes expressed significantly elevated withdrawal-associated anxiety-like behavior in the plus maze. Finally, rats were injected with the cannabinoid CB1 receptor antagonist, SR141716A (0, 1, 3, 10mg/kg, i.p.) which reduced ethanol intake in both sexes. However, females appear to be more sensitive to lower doses of this CB1 receptor antagonist. Our results show that females consume more ethanol than males; however, they did not escalate their intake using the intermittent access paradigm. Unlike males, CIE exposure had no effect on drinking in females. It is possible that females may be less sensitive than males to ethanol-induced increases in drinking after a short CIE exposure. Lastly, our results demonstrate that males and females may have different pharmacological sensitivities to CB1 receptor blockade on ethanol intake, at least under the current conditions.
Collapse
Affiliation(s)
- Melissa Morales
- Wake Forest University, School of Medicine, Dept. of Physiology & Pharmacology, Winston-Salem, NC 27101, United States
| | - Molly M McGinnis
- Wake Forest University, School of Medicine, Dept. of Physiology & Pharmacology, Winston-Salem, NC 27101, United States
| | - Brian A McCool
- Wake Forest University, School of Medicine, Dept. of Physiology & Pharmacology, Winston-Salem, NC 27101, United States.
| |
Collapse
|