1
|
Li Y, Li J, Sun T, He Z, Liu C, Li Z, Wu Y, Xiang H. Sex-specific associations between body composition and depression among U.S. adults: a cross-sectional study. Lipids Health Dis 2025; 24:15. [PMID: 39827131 PMCID: PMC11742532 DOI: 10.1186/s12944-025-02437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Depression presents sexual dimorphism, and one important factor that increases the frequency of depression and contributes to sex-specific variations in its presentation is obesity. The conventional use of Body Mass Index (BMI) as an indicator of obesity is inherently limited due to its inability to distinguish between fat and lean mass, which limits its predictive utility for depression risk. Implementation of dual-energy X-ray absorptiometry (DXA) investigated sex-specific associations between body composition (fat mass, appendicular lean mass) and depression. METHODS Data from the NHANES cycles between 2011 and 2018 were analyzed, including 3,637 participants (1,788 males and 1,849 females). Four body composition profiles were identified in the subjects: low adiposity-low muscle (LA-LM), low adiposity-high muscle (LA-HM), high adiposity-low muscle (HA-LM) and high adiposity-high muscle (HA-HM). After accounting for confounding variables, the associations between fat mass index (FMI), appendicular skeletal muscle mass index (ASMI), body fat percentage (BFP), body composition phenotypes, and depression risk were assessed using restricted cubic spline (RCS) curves and multivariable logistic regression models. We further conducted interaction analyses for ASMI and FMI in females. RESULTS RCS curves indicated a U-shaped relationship between ASMI and the risk of depression in males. Logistic regression analysis revealed that in males, the second (OR = 0.43, 95%CI:0.22-0.85) and third (OR = 0.35, 95%CI:0.14-0.86) quartile levels of ASMI were significantly negatively associated with depression risk. In females, increases in BFP (OR = 1.06, 95%CI:1.03-1.09) and FMI (OR = 1.08, 95% CI:1.04-1.12) were significantly associated with an increased risk of depression. Additionally, compared to females with a low-fat high-muscle phenotype, those with LA-LM (OR = 3.97, 95%CI:2.16-7.30), HA-LM (OR = 5.40, 95%CI:2.34-12.46), and HA-HM (OR = 6.36, 95%CI:3.26-12.37) phenotypes were more likely to develop depression. Interestingly, further interaction analysis of ASMI and FMI in females revealed an interplay between height-adjusted fat mass and muscle mass (OR = 4.67, 95%CI: 2.04-10.71). CONCLUSION The findings demonstrate how important it is to consider body composition when estimating the risk of depression, particularly in females. There is a substantial correlation between the LA-LM, HA-LM, and HA-HM phenotypes in females with a higher prevalence of depression. It is advised to use a preventative approach that involves gaining muscle mass and losing fat.
Collapse
Affiliation(s)
- Yijing Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Juan Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Tianning Sun
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Zhigang He
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Cheng Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Zhixiao Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Yanqiong Wu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei, China.
| | - Hongbing Xiang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei, China.
- Key Laboratory of Anesthesiology and Resuscitation , (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
2
|
Obesity: The Fat Tissue Disease Version of Cancer. Cells 2022; 11:cells11121872. [PMID: 35741001 PMCID: PMC9221301 DOI: 10.3390/cells11121872] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity is a disease with high potential for fatality. It perfectly fits the disease definition, as cancer does. This is because it damages body structure and functions, both mechanically and biologically, and alters physical, mental, and social health. In addition, it shares many common morbid characteristics with the most feared disease, cancer. For example, it is influenced by a sophisticated interaction between a person’s genetics, the environment, and an increasing number of other backgrounds. Furthermore, it displays abnormal cell growth and proliferation events, only limited to white fat, resulting in adipose tissue taking up an increasing amount of space within the body. This occurs through fat “metastases” and via altered signaling that further aggravates the pathology of obesity by inducing ubiquitous dishomeostasis. These metastases can be made graver by angiogenesis, which might boost diseased tissue growth. More common features with cancer include its progressive escalation through different levels of severity and its possibility of re-onset after recovery. Despite all these similarities with cancer, obesity is substantially less agitating for most people. Thus, the ideas proposed herein could have utility to sensitize the public opinion about the hard reality of obesity. This is increasingly needed, as the obesity pandemic has waged a fierce war against our bodies and society in general, while there is still doubt about whether it is a real disease or not. Hence, raising public consciousness to properly face health issues is crucial to improving our health instead of gaining weight unhealthily. It is obviously illogical to fight cancer extremely seriously on the one hand and to consider dying with obesity as self-inflicted on the other. In fact, obesity merits a top position among the most lethal diseases besides cancer.
Collapse
|
3
|
Yao L, Fan Z, Han S, Sun N, Che H. Apigenin acts as a partial agonist action at estrogen receptors in vivo. Eur J Pharmacol 2021; 906:174175. [PMID: 34048736 DOI: 10.1016/j.ejphar.2021.174175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
The flavone apigenin is widely distributed in vegetables and fruits and has a variety of pharmacological effects. However, there is no definitive scientific evidence that apigenin could act as a phytoestrogen and exert exerting estrogenic or antiestrogenic efficacy in vivo. Therefore, this study was established an ovariectomy (OVX) and estrogenized mouse model to evaluate the effects of apigenin on reproductive target tissues. Our data demonstrated that apigenin could exert a double-directional adjusting estrogenic effect in vivo. Specifically, treatment with apigenin reversed the weight changes caused by abnormal estrogen levels and altered the status of vaginal epithelial cells via the estrogen receptors. In addition, we found that apigenin exhibited a significant estrogenic activity, as indicated by the reversal of uterine atrophy. Apigenin treatment could also regulate the target tissue coefficient changes and estrogen disorders caused by excessive estrogen. Importantly, the administration of apigenin could upregulated the estrogen receptor (ER) α and ER β expression as a partial agonist. Our results demonstrate that apigenin has a double directional adjusting function in different physiological environments.
Collapse
Affiliation(s)
- Lu Yao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhuoyan Fan
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shiwen Han
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
4
|
Wang LH, Lv SY, Liu YR, Chen X, Wang JJ, Huang W, Zhou ZY. Comparative effectiveness of herb-partitioned moxibustion plus lifestyle modification treatment for patients with simple obesity: A study protocol for a randomized controlled trial. Medicine (Baltimore) 2021; 100:e23758. [PMID: 33545941 PMCID: PMC7837822 DOI: 10.1097/md.0000000000023758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Obesity is a global public health issue, which results in many health complications. Moxibustion may serve as an alternative management for simple obesity, where pharmacological therapy is always difficult to be accepted by the majority of obese patients based on its safety. However, the effects of herb-partitioned moxibustion as obesity intervention have not been confirmed. This study is designed as a single-blinded, 3-dummy randomized controlled trial to evaluate the efficacy and safety of herb-partitioned moxibustion plus lifestyle modification treatment in patients with simple obesity. METHODS AND ANALYSIS This study will be a randomized, controlled trial conducted from April, 2019 to April, 2021 that includes 108 participants who have simple obesity and meet the eligibility criteria. The participants will be randomly divided into 3 treatment groups: heat application group, medicated plaster group, or herb-partitioned moxibustion group. Each treatment will last 4 weeks. The primary outcomes will be the clinical effectiveness. The secondary outcome measures include participants' obesity-related indicators, the IWQOL-Lite scale, and the syndrome score of Traditional Chinese Medicine. Adverse events will be recorded during the intervention period. ETHICS AND DISSEMINATION Ethical approval of this study was granted by the Ethics Committee of Hubei Provincial Hospital of Traditional Chinese Medicine on 15 November 2018 (Ethics Reference No: HBZY2018-C24-01). Written informed consents will be provided by all participants before they were enrolled in this study. TRIAL REGISTRATION NUMBER NCT04606680.
Collapse
Affiliation(s)
- Li-Hua Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion
| | - Si-Ying Lv
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yi-Ran Liu
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xia Chen
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Jia-Jie Wang
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Wei Huang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion
| | - Zhong-Yu Zhou
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
5
|
Shearrer GE, Sadler JR, Papantoni A, Burger KS. Earlier onset of menstruation is related to increased body mass index in adulthood and altered functional correlations between visual, task control and somatosensory brain networks. J Neuroendocrinol 2020; 32:e12891. [PMID: 32939874 PMCID: PMC8045982 DOI: 10.1111/jne.12891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Later onset of puberty has been associated with lower body mass index (BMI) in adulthood independent of childhood BMI. However, how the relationship between time of onset of puberty and BMI in adulthood is associated with neurocognitive outcomes is largely unstudied. In the present study, women were sampled from the Human Connectome Project 1200 parcellation, timeseries and netmats1 release (PTN) release. Inclusion criteria were: four (15 minutes) resting state fMRI scans, current measured BMI, self-reported age at onset of menstruation (a proxy of age at onset of puberty) and no endocrine complications (eg, polycystic ovarian syndrome). The effect of age at onset of menstruation, measured BMI at scan date and the interaction of age at onset of menstruation by BMI on brain functional correlation was modelled using fslnets (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets) controlling for race and age at scan. Corrected significance was set at a family-wise error probability (pFWE) < 0.05. A final sample of n = 510 (age 29.5 years ± 3.6, BMI at scan 25.9 ± 5.6 and age at onset of menstruation 12.7 ± 1.6 were included. Age at onset of menstruation was negatively associated with BMI at scan (r = - 0.19, P < 0.001). The interaction between age at onset of menstruation and BMI at scan was associated with stronger correlation between a somatosensory and visual network (t = 3.45, pFWE = 0.026) and a visual network and cingulo-opercular task control network (t = 4.74, pFWE = 0.0002). Post-hoc analyses of behavioural/cognitive measures showed no effect of the interaction between BMI and age at onset of menstruation on behavioural/cognitive measures. However, post-hoc analyses of heritability showed adult BMI and the correlation between the visual and somatosensory networks have high heritability. In sum, we report increased correlation between visual, taste-associated and self-control brain regions in women at high BMI with later age at onset of menstruation.
Collapse
Affiliation(s)
- Grace E Shearrer
- Department of Nutritional Science, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Institute, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer R Sadler
- Department of Nutritional Science, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Afroditi Papantoni
- Department of Nutritional Science, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Kyle S Burger
- Department of Nutritional Science, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Institute, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Ghanemi A, Melouane A, Yoshioka M, St-Amand J. Exercise and High-Fat Diet in Obesity: Functional Genomics Perspectives of Two Energy Homeostasis Pillars. Genes (Basel) 2020; 11:genes11080875. [PMID: 32752100 PMCID: PMC7463441 DOI: 10.3390/genes11080875] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
The heavy impact of obesity on both the population general health and the economy makes clarifying the underlying mechanisms, identifying pharmacological targets, and developing efficient therapies for obesity of high importance. The main struggle facing obesity research is that the underlying mechanistic pathways are yet to be fully revealed. This limits both our understanding of pathogenesis and therapeutic progress toward treating the obesity epidemic. The current anti-obesity approaches are mainly a controlled diet and exercise which could have limitations. For instance, the “classical” anti-obesity approach of exercise might not be practical for patients suffering from disabilities that prevent them from routine exercise. Therefore, therapeutic alternatives are urgently required. Within this context, pharmacological agents could be relatively efficient in association to an adequate diet that remains the most efficient approach in such situation. Herein, we put a spotlight on potential therapeutic targets for obesity identified following differential genes expression-based studies aiming to find genes that are differentially expressed under diverse conditions depending on physical activity and diet (mainly high-fat), two key factors influencing obesity development and prognosis. Such functional genomics approaches contribute to elucidate the molecular mechanisms that both control obesity development and switch the genetic, biochemical, and metabolic pathways toward a specific energy balance phenotype. It is important to clarify that by “gene-related pathways”, we refer to genes, the corresponding proteins and their potential receptors, the enzymes and molecules within both the cells in the intercellular space, that are related to the activation, the regulation, or the inactivation of the gene or its corresponding protein or pathways. We believe that this emerging area of functional genomics-related exploration will not only lead to novel mechanisms but also new applications and implications along with a new generation of treatments for obesity and the related metabolic disorders especially with the modern advances in pharmacological drug targeting and functional genomics techniques.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada; (A.G.); (A.M.)
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Aicha Melouane
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada; (A.G.); (A.M.)
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada; (A.G.); (A.M.)
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: +1-418-654-2296; Fax: +1-418-654-2761
| |
Collapse
|
7
|
Kaikaew K, Steenbergen J, van Dijk TH, Grefhorst A, Visser JA. Sex Difference in Corticosterone-Induced Insulin Resistance in Mice. Endocrinology 2019; 160:2367-2387. [PMID: 31265057 PMCID: PMC6760317 DOI: 10.1210/en.2019-00194] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
Abstract
Prolonged exposure to glucocorticoids (GCs) causes various metabolic derangements. These include obesity and insulin resistance, as inhibiting glucose utilization in adipose tissues is a major function of GCs. Although adipose tissue distribution and glucose homeostasis are sex-dependently regulated, it has not been evaluated whether GCs affect glucose metabolism and adipose tissue functions in a sex-dependent manner. In this study, high-dose corticosterone (rodent GC) treatment in C57BL/6J mice resulted in nonfasting hyperglycemia in male mice only, whereas both sexes displayed hyperinsulinemia with normal fasting glucose levels, indicative of insulin resistance. Metabolic testing using stable isotope-labeled glucose techniques revealed a sex-specific corticosterone-driven glucose intolerance. Corticosterone treatment increased adipose tissue mass in both sexes, which was reflected by elevated serum leptin levels. However, female mice showed more metabolically protective adaptations of adipose tissues than did male mice, demonstrated by higher serum total and high-molecular-weight adiponectin levels, more hyperplastic morphological changes, and a stronger increase in mRNA expression of adipogenic differentiation markers. Subsequently, in vitro studies in 3T3-L1 (white) and T37i (brown) adipocytes suggest that the increased leptin and adiponectin levels were mainly driven by the elevated insulin levels. In summary, this study demonstrates that GC-induced insulin resistance is more severe in male mice than in female mice, which can be partially explained by a sex-dependent adaptation of adipose tissues.
Collapse
Affiliation(s)
- Kasiphak Kaikaew
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jacobie Steenbergen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Theo H van Dijk
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, Netherlands
| | - Aldo Grefhorst
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
8
|
Turkson S, Kloster A, Hamilton PJ, Neigh GN. Neuroendocrine drivers of risk and resilience: The influence of metabolism & mitochondria. Front Neuroendocrinol 2019; 54:100770. [PMID: 31288042 PMCID: PMC6886586 DOI: 10.1016/j.yfrne.2019.100770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The manifestation of risk versus resilience has been considered from varying perspectives including genetics, epigenetics, early life experiences, and type and intensity of the challenge with which the organism is faced. Although all of these factors are central to determining risk and resilience, the current review focuses on what may be a final common pathway: metabolism. When an organism is faced with a perturbation to the environment, whether internal or external, appropriate energy allocation is essential to resolving the divergence from equilibrium. This review examines the potential role of metabolism in the manifestation of stress-induced neural compromise. In addition, this review details the current state of knowledge on neuroendocrine factors which are poised to set the tone of the metabolic response to a systemic challenge. The goal is to provide an essential framework for understanding stress in a metabolic context and appreciation for key neuroendocrine signals.
Collapse
Affiliation(s)
- Susie Turkson
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Alix Kloster
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Peter J Hamilton
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
9
|
Walker RE, NDao F, BeLue R. Exploring the Concept of Food Insecurity and Family Hunger in Senegal, West Africa. INTERNATIONAL QUARTERLY OF COMMUNITY HEALTH EDUCATION 2019; 40:99-104. [PMID: 31242085 DOI: 10.1177/0272684x19858015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Using a previously validated instrument, surveys were conducted by researchers in a Senegalese village to elicit data on childhood food insecurity and health outcomes. Fifty-four participants were interviewed and completed the Community Childhood Hunger Identification Project (CCHIP) survey. More than half of the adults experienced hypertension or diabetes and also reported childhood food insecurity. The role of food coping strategies and social support were identified as factors that minimized the burden of food insecurity. Further testing with instruments that include analysis of cyclic food access patterns is warranted to best determine how to combat both food insecurity and noncommunicable chronic disease incidence in Senegalese families.
Collapse
Affiliation(s)
- Renee E Walker
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Fatou NDao
- Penn State University, University Park, PA, USA
| | - Rhonda BeLue
- Salus Center, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
10
|
Fowler N, Vo PT, Sisk CL, Klump KL. Stress as a potential moderator of ovarian hormone influences on binge eating in women. F1000Res 2019; 8. [PMID: 30854192 PMCID: PMC6396839 DOI: 10.12688/f1000research.16895.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 12/30/2022] Open
Abstract
Previous research has demonstrated significant associations between increased levels of ovarian hormones and increased rates of binge eating (BE) in women. However, whereas all women experience fluctuations in ovarian hormones across the menstrual cycle, not all women binge eat in response to these fluctuations, suggesting that other factors must contribute. Stress is one potential contributing factor. Specifically, it may be that hormone-BE associations are stronger in women who experience high levels of stress, particularly as stress has been shown to be a precipitant to BE episodes in women. To date, no studies have directly examined stress as a moderator of hormone-BE associations, but indirect data (that is, associations between BE and stress and between ovarian hormones and stress) could provide initial clues about moderating effects. Given the above, the purpose of this narrative review was to evaluate these indirect data and their promise for understanding the role of stress in hormone-BE associations. Studies examining associations between all three phenotypes (that is, ovarian hormones, stress, and BE) in animals and humans were reviewed to provide the most thorough and up-to-date review of the literature on the potential moderating effects of stress on ovarian hormone-BE associations. Overall, current evidence suggests that associations between hormones and BE may be stronger in women with high stress levels, possibly via altered hypothalamic-pituitary-adrenal axis response to stress and increased sensitivity to and altered effects of ovarian hormones during stress. Additional studies are necessary to directly examine stress as a moderator of ovarian hormone-BE associations and identify the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Natasha Fowler
- Department of Psychology, Michigan State University, 316 Physics Road, East Lansing, MI, 48824-1116, USA
| | - Phuong T Vo
- Department of Psychology, Michigan State University, 316 Physics Road, East Lansing, MI, 48824-1116, USA
| | - Cheryl L Sisk
- Neuroscience Program, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824-1116, USA
| | - Kelly L Klump
- Department of Psychology, Michigan State University, 316 Physics Road, East Lansing, MI, 48824-1116, USA
| |
Collapse
|
11
|
Munetsuna E, Yamada H, Yamazaki M, Ando Y, Mizuno G, Ota T, Hattori Y, Sadamoto N, Suzuki K, Ishikawa H, Hashimoto S, Ohashi K. Maternal fructose intake disturbs ovarian estradiol synthesis in rats. Life Sci 2018; 202:117-123. [PMID: 29654807 DOI: 10.1016/j.lfs.2018.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022]
Abstract
AIMS Recent increases in fructose consumption have raised concerns regarding the potential adverse intergenerational effects, as maternal fructose intake may induce physiological dysfunction in offspring. However, no reports are available regarding the effect of excess maternal fructose on reproductive tissues such as the ovary. Notably, the maternal intrauterine environment has been demonstrated to affect ovarian development in the subsequent generation. Given the fructose is transferred to the fetus, excess fructose consumption may affect offspring ovarian development. As ovarian development and its function is maintained by 17β-estradiol, we therefore investigated whether excess maternal fructose intake influences offspring ovarian estradiol synthesis. Rats received a 20% fructose solution during gestation and lactation. After weaning, offspring ovaries were isolated. KEY FINDINGS Offspring from fructose-fed dams showed reduced StAR and P450(17α) mRNA levels, along with decreased protein expression levels. Conversely, attenuated P450arom protein level was found in the absence of mRNA expression alteration. Consistent with these phenomena, decreased circulating levels of estradiol were observed. Furthermore, estrogen receptor α (ERα) protein levels were also down-regulated. In accordance, the mRNA for progesterone receptor, a transcriptional target of ERα, was decreased. These results suggest that maternal fructose might alter ovarian physiology in the subsequent generation.
Collapse
Affiliation(s)
- Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Mirai Yamazaki
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Yoshitaka Ando
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Genki Mizuno
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takeru Ota
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Yuji Hattori
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Nao Sadamoto
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Ohashi
- Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| |
Collapse
|
12
|
Abstract
SUMMARYObesity and depression are conditions that have been linked through a great number of interesting mechanisms. To fully understand the implications of treatment choices it is necessary to continue to investigate the physiology of these two conditions. By examining the background of these problems and considering factors such as stress response, neurological change and systemic inflammation, we propose a cycle linking depression and obesity. With reference to this cycle, we discuss management options, focusing particularly on prescribing choices and current guidelines. An assessment of the medication options is provided demonstrating that prescribing choices can have a significant impact on ongoing physical health. The aim of this discussion is to raise awareness of current research and progress and to see whether the cycle of depression and obesity can be broken.LEARNING OBJECTIVES•Update knowledge of the mechanisms linking depression and obesity•Understand the impact of medication on the cycle linking the two•Consider how we can improve outcomes for patients with depression and/or obesityDECLARATION OF INTERESTNone.
Collapse
|
13
|
Neigh GN, Felger JC. Editorial introduction: The effects of somatic disease and environmental insults on the stress response. Physiol Behav 2016; 166:1-3. [PMID: 27498283 DOI: 10.1016/j.physbeh.2016.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Jennifer C Felger
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Michopoulos V, Vester A, Neigh G. Posttraumatic stress disorder: A metabolic disorder in disguise? Exp Neurol 2016; 284:220-229. [PMID: 27246996 PMCID: PMC5056806 DOI: 10.1016/j.expneurol.2016.05.038] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/30/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a heterogeneous psychiatric disorder that affects individuals exposed to trauma and is highly co-morbid with other adverse health outcomes, including cardiovascular disease and obesity. The unique pathophysiological feature of PTSD is the inability to inhibit fear responses, such that individuals suffering from PTSD re-experience traumatic memories and are unable to control psychophysiological responses to trauma-associated stimuli. However, underlying alterations in sympathetic nervous system activity, neuroendocrine systems, and metabolism associated with PTSD are similar to those present in traditional metabolic disorders, such as obesity and diabetes. The current review highlights existing clinical, translational, and preclinical data that support the notion that underneath the primary indication of impaired fear inhibition, PTSD is itself also a metabolic disorder and proposes altered function of inflammatory responses as a common underlying mechanism. The therapeutic implications of treating PTSD as a whole-body condition are significant, as targeting any underlying biological system whose activity is altered in both PTSD and metabolic disorders, (i.e. HPA axis, sympathetic nervous systems, inflammation) may elicit symptomatic relief in individuals suffering from these whole-body adverse outcomes.
Collapse
Affiliation(s)
- Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Aimee Vester
- Department of Environmental Health Sciences, Rollins School of Public Health, Atlanta, GA, United States
| | - Gretchen Neigh
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States; Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
15
|
Protective Effects of Hydrogen against Low-Dose Long-Term Radiation-Induced Damage to the Behavioral Performances, Hematopoietic System, Genital System, and Splenic Lymphocytes in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1947819. [PMID: 27774116 PMCID: PMC5059652 DOI: 10.1155/2016/1947819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/04/2016] [Indexed: 11/18/2022]
Abstract
Molecular hydrogen (H2) has been previously reported playing an important role in ameliorating damage caused by acute radiation. In this study, we investigated the effects of H2 on the alterations induced by low-dose long-term radiation (LDLTR). All the mice in hydrogen-treated or radiation-only groups received 0.1 Gy, 0.5 Gy, 1.0 Gy, and 2.0 Gy whole-body gamma radiation, respectively. After the last time of radiation exposure, all the mice were employed for the determination of the body mass (BM) observation, forced swim test (FST), the open field test (OFT), the chromosome aberration (CA), the peripheral blood cells parameters analysis, the sperm abnormality (SA), the lymphocyte transformation test (LTT), and the histopathological studies. And significant differences between the treatment group and the radiation-only groups were observed, showing that H2 could diminish the detriment induced by LDLTR and suggesting the protective efficacy of H2 in multiple systems in mice against LDLTR.
Collapse
|