1
|
Vashishth S, Ambasta RK, Kumar P. Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder. Ageing Res Rev 2024; 100:102466. [PMID: 39197710 DOI: 10.1016/j.arr.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Every facet of biological anthropology, including development, ageing, diseases, and even health maintenance, is influenced by gut microbiota's significant genetic and metabolic capabilities. With current advancements in sequencing technology and with new culture-independent approaches, researchers can surpass older correlative studies and develop mechanism-based studies on microbiome-host interactions. The microbiota-gut-brain axis (MGBA) regulates glial functioning, making it a possible target for the improvement of development and advancement of treatments for neurodegenerative diseases (NDDs). The gut-brain axis (GBA) is accountable for the reciprocal communication between the gastrointestinal and central nervous system, which plays an essential role in the regulation of physiological processes like controlling hunger, metabolism, and various gastrointestinal functions. Lately, studies have discovered the function of the gut microbiome for brain health-different microbiota through different pathways such as immunological, neurological and metabolic pathways. Additionally, we review the involvement of the neurotransmitters and the gut hormones related to gut microbiota. We also explore the MGBA in neurodegenerative disorders by focusing on metabolites. Further, targeting the blood-brain barrier (BBB), intestinal barrier, meninges, and peripheral immune system is investigated. Lastly, we discuss the therapeutics approach and evaluate the pre-clinical and clinical trial data regarding using prebiotics, probiotics, paraprobiotics, fecal microbiota transplantation, personalised medicine, and natural food bioactive in NDDs. A comprehensive study of the GBA will felicitate the creation of efficient therapeutic approaches for treating different NDDs.
Collapse
Affiliation(s)
- Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, School of Medicine, VUMC, Vanderbilt University, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
2
|
Koo B, Yang C, Nyachoti CM. Effects of sanitary conditions with lipopolysaccharide injection and dietary valine supplementation on growth performance, immune response, bacterial profile, and microbial metabolites in weaned pigs. Arch Anim Nutr 2024; 78:225-241. [PMID: 39087698 DOI: 10.1080/1745039x.2024.2382278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
This study investigated the effects of dietary L-valine (Val) supplementation and sanitary conditions with lipopolysaccharide injection on growth performance, immune response, and intestinal bacterial profiles and metabolites in weaned pigs. Thirty-two weaned pigs (6.98 ± 0.47 kg) were randomly assigned to treatments in a 2 × 2 factorial arrangement based on dietary Val levels and sanitary conditions (low or high). The pigs were fed either a basal diet containing the standard levels of Val suggested by (NRC), (2012) or a basal diet supplemented with 0.1% L-Val. A room designated as a high sanitary room was washed weekly, whereas the designated low sanitary room was not washed throughout the experiment and 5 kg of manure from the nursery pig barn was spread on the pen floors on day 1. All data were analysed using a mixed procedure of SAS, with the individual pen as the experimental unit. The pigs raised in low sanitary conditions exhibited a lower (p < 0.05) average daily gain, average daily feed intake, and gain-to-feed ratio and a higher (p < 0.05) incidence of diarrhoea than those raised in high sanitary conditions during the 14-d experimental period. The pigs in the low sanitary group also had a lower (p < 0.05) concentration of butyrate in the jejunum and a higher (p < 0.05) concentration of NH3-N in the colon than those in the high sanitary group. Dietary Val supplementation was reduced (p < 0.05) plasma interleukin (IL)-1β and IL-1 receptor antagonist concentrations as well as isovalerate and NH3-N concentrations in the colon, regardless of sanitary conditions. Interactions between dietary Val supplementation and sanitary conditions were observed in the abundances of mRNA-encoding β-defensins 113, 125 and 129 (p < 0.05). In conclusion, dietary Val supplementation beneficially modulates inflammatory responses and microbial metabolites regardless of sanitary conditions while transcriptional levels of β-defensins are regulated by dietary Val supplementation in a manner dependent on housing hygiene conditions.
Collapse
Affiliation(s)
- Bonjin Koo
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
3
|
Liang ZL, Kodama N, Isobe N. Effect of mastitis during early-stage pregnancy on the immunity levels and pregnancy function of goats. Anim Reprod Sci 2024; 262:107430. [PMID: 38364503 DOI: 10.1016/j.anireprosci.2024.107430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
In this study, we investigated the effects of mammary inflammation induced by lipopolysaccharide (LPS) and Staphylococcus aureus (SA) infusions on pregnancy function during early pregnancy in goats. In Experiment 1, pregnant goats were subjected to an intramammary LPS infusion for 1 week from Days 60-66 after natural mating (n = 5), and in Experiment 2, they received intramammary infusions of either saline, LPS, or SA for 1 week from Days 45-51 after natural mating (n = 15). Blood was collected to determine the plasma cytokine, cortisol, 13,14-dihydro-15-keto-prostaglandin F2α (PGFM), and progesterone levels. Pregnancy length was significantly longer in the LPS-treated group than that for the saline-treated group of experiment 2. Cytokine levels (IL-1β, IL-8, Tumor necrosis factor-α: TNF-α) after LPS (in both Experiments 1 and 2) and SA (in Experiment 2) infusion were significantly higher compared with those before infusion. In Experiment 2, the SA-infused group showed significantly higher TNF-α concentrations than those in the saline group. Cortisol levels increased in both experiment 1 and 2 after LPS infusion, but not after saline and SA treatments. Furthermore, PGFM levels increased after LPS infusion in Experiment 1. In Experiment 2, LPS- and SA-infused goats showed significantly higher PGFM levels than those in the saline-infused goats. However, the progesterone levels decreased after LPS treatment in Experiment 1. Our results show that intramammary LPS infusion during the early stage of pregnancy in goats induces inflammatory cytokine and stress hormone production, which prolongs the pregnancy period.
Collapse
Affiliation(s)
- Zi-Long Liang
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Nozomi Kodama
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
4
|
Li C, Wang Y, Zhao X, Li J, Wang H, Ren Y, Sun H, Zhu X, Song Q, Wang J. Comparative Analysis of Intestinal Inflammation and Microbiota Dysbiosis of LPS-Challenged Piglets between Different Breeds. Animals (Basel) 2024; 14:665. [PMID: 38473050 DOI: 10.3390/ani14050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Post-weaning diarrhea is common in piglets, causing huge economic losses worldwide. Associations between LPS challenge, intestinal inflammation, and microbiota have been reported in Duroc × Landrace × Yorkshire (DLY) crossbred pigs. However, the effects of LPS challenge in other breeds remain unclear. In the current study, we performed a comprehensive comparative analysis of the effects of LPS challenge on jejunal mucosal morphology, jejunal microbial composition, and serum indexes in two pig breeds: DLY and Heigai, an indigenous Chinese breed. The results showed that LPS caused considerable damage to the mucosal morphology, enhanced serum levels of inflammatory cytokines and the intestinal permeability index, and lowered the antioxidant capacity index. LPS challenge also changed the microbial composition and structure of the jejunum, significantly increased the abundances of Escherichia-Shigella in DLY pigs, and decreased those of Gemella and Saccharimonadales in Heigai pigs. Furthermore, LPS challenge triggered functional changes in energy metabolism and activities related to the stress response in the jejunal bacterial community, alleviating the inflammatory response in Heigai pigs. This study also revealed that Heigai pigs had a weaker immune response to LPS challenge than DLY pigs, and identified several genera related to the breed-specific phenotypes of Heigai pigs, including Gemella, Saccharimonadales, Clostridia_UCG_014, Terrisporobacter, and Dielma. Our collective findings uncovered differences between Heigai and DLY pigs in intestinal inflammation and microbiota dysbiosis induced by LPS challenge, providing a theoretical basis for unraveling the mechanism of intestinal inflammation in swine and proposing microbial candidates involved in the resistance to diarrhea in piglets.
Collapse
Affiliation(s)
- Chao Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yanping Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Xueyan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Jingxuan Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Huaizhong Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Yifan Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Houwei Sun
- Zaozhuang Heigai Pigs Breeding Co., Ltd., Zaozhuang 277100, China
| | - Xiaodong Zhu
- Zaozhuang Heigai Pigs Breeding Co., Ltd., Zaozhuang 277100, China
| | - Qinye Song
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Jiying Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| |
Collapse
|
5
|
Bryan EE, Bode NM, Chen X, Burris ES, Johnson DC, Dilger RN, Dilger AC. The effect of chronic, non-pathogenic maternal immune activation on offspring postnatal muscle and immune outcomes. J Anim Sci 2024; 102:skad424. [PMID: 38189595 PMCID: PMC10794819 DOI: 10.1093/jas/skad424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
The objective was to determine the effects of maternal inflammation on offspring muscle development and postnatal innate immune response. Sixteen first-parity gilts were randomly allotted to repeated intravenous injections with lipopolysaccharide (LPS; n = 8, treatment code INFLAM) or comparable volume of phosphate buffered saline (CON, n = 8). Injections took place every other day from gestational day (GD) 70 to GD 84 with an initial dose of 10 μg LPS/kg body weight (BW) increasing by 12% each time to prevent endotoxin tolerance. On GD 70, 76, and 84, blood was collected at 0 and 4 h postinjection via jugular or ear venipuncture to determine tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β concentrations. After farrowing, litter mortality was recorded, and the pig closest to litter BW average was used for dissection and muscle fiber characterization. On weaning (postnatal day [PND] 21), pigs were weighed individually and 2 barrows closest to litter BW average were selected for another study. The third barrow closest to litter BW average was selected for the postnatal LPS challenge. On PND 52, pigs were given 5 μg LPS/kg BW via intraperitoneal injection, and blood was collected at 0, 4, and 8 h postinjection to determine TNF-α concentration. INFLAM gilt TNF-α concentration increased (P < 0.01) 4 h postinjection compared to 0 h postinjection, while CON gilt TNF-α concentration did not differ between time points. INFLAM gilt IL-6 and IL-1β concentrations increased (P = 0.03) 4 h postinjection compared to 0 h postinjection on GD 70, but did not differ between time points on GD 76 and 84. There were no differences between INFLAM and CON gilts litter mortality outcomes (P ≥ 0.13), but INFLAM pigs were smaller (P = 0.04) at birth and tended (P = 0.09) to be smaller at weaning. Muscle and organ weights did not differ (P ≥ 0.17) between treatments, with the exception of semitendinosus, which was smaller (P < 0.01) in INFLAM pigs. INFLAM pigs tended (P = 0.06) to have larger type I fibers. INFLAM pig TNF-α concentration did not differ across time, while CON pig TNF-α concentration peaked (P = 0.01) 4 h postinjection. TNF-α concentration did not differ between treatments at 0 and 8 h postinjection, but CON pigs had increased (P = 0.01) TNF-α compared to INFLAM pigs 4 h postinjection. Overall, maternal immune activation did not alter pig muscle development, but resulted in suppressed innate immune activation.
Collapse
Affiliation(s)
- Erin E Bryan
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Nick M Bode
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Xuenan Chen
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Elli S Burris
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Danielle C Johnson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Anna C Dilger
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
6
|
Olson ME, Hornick MG, Stefanski A, Albanna HR, Gjoni A, Hall GD, Hart PC, Rajab IM, Potempa LA. A biofunctional review of C-reactive protein (CRP) as a mediator of inflammatory and immune responses: differentiating pentameric and modified CRP isoform effects. Front Immunol 2023; 14:1264383. [PMID: 37781355 PMCID: PMC10540681 DOI: 10.3389/fimmu.2023.1264383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
C-reactive protein (CRP) is an acute phase, predominantly hepatically synthesized protein, secreted in response to cytokine signaling at sites of tissue injury or infection with the physiological function of acute pro-inflammatory response. Historically, CRP has been classified as a mediator of the innate immune system, acting as a pattern recognition receptor for phosphocholine-containing ligands. For decades, CRP was envisioned as a single, non-glycosylated, multi-subunit protein arranged non-covalently in cyclic symmetry around a central void. Over the past few years, however, CRP has been shown to exist in at least three distinct isoforms: 1.) a pentamer of five identical globular subunits (pCRP), 2.) a modified monomer (mCRP) resulting from a conformational change when subunits are dissociated from the pentamer, and 3.) a transitional isoform where the pentamer remains intact but is partially changed to express mCRP structural characteristics (referred to as pCRP* or mCRPm). The conversion of pCRP into mCRP can occur spontaneously and is observed under commonly used experimental conditions. In careful consideration of experimental design used in published reports of in vitro pro- and anti-inflammatory CRP bioactivities, we herein provide an interpretation of how distinctive CRP isoforms may have affected reported results. We argue that pro-inflammatory amplification mechanisms are consistent with the biofunction of mCRP, while weak anti-inflammatory mechanisms are consistent with pCRP. The interplay of each CRP isoform with specific immune cells (platelets, neutrophils, monocytes, endothelial cells, natural killer cells) and mechanisms of the innate immune system (complement), as well as differences in mCRP and pCRP ligand recognition and effector functions are discussed. This review will serve as a revised understanding of the structure-function relationship between CRP isoforms as related to inflammation and innate immunity mechanisms.
Collapse
Affiliation(s)
- Margaret E. Olson
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Guo J, Qin X, Wang Y, Li X, Wang X, Zhu H, Chen S, Zhao J, Xiao K, Liu Y. Necroptosis Mediates Muscle Protein Degradation in a Cachexia Model of Weanling Pig with Lipopolysaccharide Challenge. Int J Mol Sci 2023; 24:10923. [PMID: 37446099 DOI: 10.3390/ijms241310923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Necroptosis, an actively researched form of programmed cell death closely related to the inflammatory response, is important in a variety of disorders and diseases. However, the relationship between necroptosis and muscle protein degradation in cachexia is rarely reported. This study aimed to elucidate whether necroptosis played a crucial role in muscle protein degradation in a cachexia model of weaned piglets induced by lipopolysaccharide (LPS). In Experiment 1, the piglets were intraperitoneally injected with LPS to construct the cachexia model, and sacrificed at different time points after LPS injection (1, 2, 4, 8, 12, and 24 h). In Experiment 2, necrostatin-1 (Nec-1), a necroptosis blocker, was pretreated in piglets before the injection of LPS to inhibit the occurrence of necroptosis. Blood and longissimus dorsi muscle samples were collected for further analysis. In the piglet model with LPS-induced cachexia, the morphological and ultrastructural damage, and the release of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were dynamically elicited in longissimus dorsi muscle. Further, protein concentration and protein/DNA ratio were dynamically decreased, and protein degradation signaling pathway, containing serine/threonine kinase (Akt), Forkhead box O (FOXO), muscular atrophy F-box (MAFbx), and muscle ring finger protein 1 (MuRF1), was dynamically activated in piglets after LPS challenge. Moreover, mRNA and protein expression of necroptosis signals including receptor-interacting protein kinase (RIP)1, RIP3, and mixed lineage kinase domain-like pseudokinase (MLKL), were time-independently upregulated. Subsequently, when Nec-1 was used to inhibit necroptosis, the morphological damage, the increase in expression of pro-inflammatory cytokines, the reduction in protein content and protein/DNA ratio, and the activation of the protein degradation signaling pathway were alleviated. These results provide the first evidence that necroptosis mediates muscle protein degradation in cachexia by LPS challenge.
Collapse
Affiliation(s)
- Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xu Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiangen Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| |
Collapse
|
8
|
Fan B, Bryant RH, Greer AW. Automatically Identifying Sickness Behavior in Grazing Lambs with an Acceleration Sensor. Animals (Basel) 2023; 13:2086. [PMID: 37443882 DOI: 10.3390/ani13132086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Acute disease of grazing animals can lead to alterations in behavioral patterns. Relatively recent advances in accelerometer technology have resulted in commercial products, which can be used to remotely detect changes in animals' behavior, the pattern and extent of which may provide an indicator of disease challenge and animal health status. The objective of this study was to determine if changes in behavior during use of a lipopolysaccharide (LPS) challenge model can be detected using ear-mounted accelerometers in grazing lambs. LPS infusion elevated rectal temperatures from 39.31 °C to 39.95 °C, indicating successful establishment of an acute fever response for comparison with groups (p < 0.001). For each of the five recorded behaviors, time spent eating, ruminating, not active, active, and highly active, the accelerometers were able to detect an effect of LPS challenge. Compared with the control, there were significant effects of LPS infusion by hour interaction on durations of eating (-6.71 min/h, p < 0.001), inactive behavior (+16.00 min/h, p < 0.001), active behavior (-8.39 min/h, p < 0.001), and highly active behavior (-2.90 min/h, p < 0.001) with a trend for rumination time (-1.41 min/h, p = 0.075) in lambs after a single LPS infusion. Results suggest that current sensors have the capability to correctly identify behaviors of grazing lambs, raising the possibility of detecting changes in animals' health status.
Collapse
Affiliation(s)
- Bowen Fan
- Department of Agricultural Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Racheal H Bryant
- Department of Agricultural Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Andrew W Greer
- Department of Agricultural Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
9
|
Scheurink TAW, Borkent J, Gangadin SS, El Aidy S, Mandl R, Sommer IEC. Association between gut permeability, brain volume, and cognition in healthy participants and patients with schizophrenia spectrum disorder. Brain Behav 2023; 13:e3011. [PMID: 37095714 PMCID: PMC10275537 DOI: 10.1002/brb3.3011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
INTRODUCTION The barrier function of the gut is important for many organs and systems, including the brain. If gut permeability increases, bacterial fragments may enter the circulation, giving rise to increased systemic inflammation. Increases in bacterial translocation are reflected in higher values of blood markers, including lipopolysaccharide binding protein (LBP) and soluble cluster of differentiation 14 (sCD14). Some pioneer studies showed a negative association between bacterial translocation markers and brain volumes, but this association remains scarcely investigated. We investigate the effect of bacterial translocation on brain volumes and cognition in both healthy controls and patients with a schizophrenia spectrum disorder (SSD). MATERIALS AND METHODS Healthy controls (n = 39) and SSD patients (n = 72) underwent an MRI-scan, venipuncture and cognition assessments. We investigated associations between LBP and sCD14 and brain volumes (intracranial volume, total brain volume, and hippocampal volume) using linear regression. We then associated LBP and sCD14 to cognitive function using a mediation analysis, with intracranial volume as mediator. RESULTS Healthy controls showed a negative association between hippocampal volume and LBP (b = -0.11, p = .04), and intracranial volume and sCD14 (b = -0.25, p = .07). Both markers were indirectly associated with lower cognitive functioning in healthy controls (LBP: b = -0.071, p = .028; sCD14: b = -0.213, p = .052), mediated by low intracranial volume. In the SSD patients, these associations were markedly less present. CONCLUSION These findings extend earlier studies suggesting that increased bacterial translocation may negatively affect brain volume, which indirectly impacts cognition, even in this young healthy group. If replicated, this finding stresses the importance of a healthy gut for the development and optimal functioning of the brain. Absence of these associations in the SSD group may indicate that other factors such as allostatic load, chronic medication use and interrupted educational carrier had larger impact and attenuated the relative contribution of bacterial translocation.
Collapse
Affiliation(s)
- Toon Anton Willem Scheurink
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Jenny Borkent
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Shiral S. Gangadin
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sahar El Aidy
- Host‐Microbe Metabolic InteractionsGroningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| | - Rene Mandl
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Iris E. C. Sommer
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of PsychiatryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
10
|
Wu J, Yang W, Song R, Li Z, Jia X, Zhang H, Zhang P, Xue X, Li S, Xie Y, Zhang R, Ye J, Zhou Z, Wu C. Dietary Soybean Lecithin Improves Growth, Immunity, Antioxidant Capability and Intestinal Barrier Functions in Largemouth Bass Micropterus salmoides Juveniles. Metabolites 2023; 13:metabo13040512. [PMID: 37110170 PMCID: PMC10145076 DOI: 10.3390/metabo13040512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
This study evaluated the effects of dietary soybean lecithin (SBL) on the growth, haematological indices, immunities, antioxidant capabilities, and inflammatory and intestinal barrier functions because little information of dietary SBL could be obtained in juvenile largemouth bass (Micropterus salmoides). The fish were fed identical diets except for SBL added at 0, 2, 4 and 8%. It was found that 4 and 8% SBL significantly increased fish weight gain and daily growth rate (p < 0.05), while 4% SBL was optimal for enhancing RBC, HGB, PLT, MCV, MCH, WBC and MON in blood, and ALB and ALP in serum (p < 0.05). SBL (4%) also significantly elevated the antioxidant enzymes activities of T-SOD, CAT, GR, GPx, GST and T-AOC and GSH contents; increased mRNA transcription levels of Nrf2, Cu/Zn-SOD, CAT, GR, GST3 and GPx3; and decreased MDA contents. Keap1a and Keap1b levels were markedly down-regulated (p < 0.05). SBL (4%) significantly enhanced levels of the immune factors (ACP, LZM and C3) and the mRNA expression levels of innate immune-related genes (C3, C4, CFD, HEPC and MHC-I) compared with the control groups (0%) (p < 0.05). SBL (4%) significantly increased IgM and T-NOS in the intestine (p < 0.05) and significantly decreased levels of TNF-α, IL-8, IL-1β and IFN-γ and increased TGF-β1 at both transcription and protein levels in the liver and intestine (p < 0.05). The mRNA expression levels of MAPK13, MAPK14 and NF-κB P65 were significantly decreased in the intestine in the 4% SBL groups (p < 0.05). Histological sections also demonstrated that 4% SBL protected intestinal morphological structures compared with controls. This included increased intestinal villus height and muscular thickness (p < 0.05). Furthermore, the mRNA expression levels of the intestinal epithelial cell tight junction proteins (TJs) (ZO-1, claudin-3, claudin-4, claudin-5, claudin-23 and claudin-34) and mucin-5AC were significantly up-regulated in the 4% SBL groups compared with the controls (p < 0.05). In conclusion, these results suggested that 4% dietary SBL could not only improve growth, haematological indices, antioxidant capabilities, immune responses and intestinal functions, but also alleviate inflammatory responses, thereby providing reference information for the feed formulations in cultured largemouth bass.
Collapse
Affiliation(s)
- Jiaojiao Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Wenxue Yang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Rui Song
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Zhe Li
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Xiaowei Jia
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Hao Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Penghui Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Xinyu Xue
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Shenghui Li
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Yuanyuan Xie
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Rongfei Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Jinyun Ye
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Zhijin Zhou
- Huzhou Agricultural Science and Technology Development Center, 768 Luwang Road, Huzhou 313000, China
| | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| |
Collapse
|
11
|
Behavioural changes in weaned piglets orally challenged with Escherichia coli F4 and supplemented with in-feed protected acid salts. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
12
|
Bortoluzzi EM, Goering MJ, Ochoa SJ, Holliday AJ, Mumm JM, Nelson CE, Wu H, Mote BE, Psota ET, Schmidt TB, Jaberi-Douraki M, Hulbert LE. Evaluation of Precision Livestock Technology and Human Scoring of Nursery Pigs in a Controlled Immune Challenge Experiment. Animals (Basel) 2023; 13:ani13020246. [PMID: 36670787 PMCID: PMC9854951 DOI: 10.3390/ani13020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The objectives were to determine the sensitivity, specificity, and cutoff values of a visual-based precision livestock technology (NUtrack), and determine the sensitivity and specificity of sickness score data collected with the live observation by trained human observers. At weaning, pigs (n = 192; gilts and barrows) were randomly assigned to one of twelve pens (16/pen) and treatments were randomly assigned to pens. Sham-pen pigs all received subcutaneous saline (3 mL). For LPS-pen pigs, all pigs received subcutaneous lipopolysaccharide (LPS; 300 μg/kg BW; E. coli O111:B4; in 3 mL of saline). For the last treatment, eight pigs were randomly assigned to receive LPS, and the other eight were sham (same methods as above; half-and-half pens). Human data from the day of the challenge presented high true positive and low false positive rates (88.5% sensitivity; 85.4% specificity; 0.871 Area Under Curve, AUC), however, these values declined when half-and-half pigs were scored (75% sensitivity; 65.5% specificity; 0.703 AUC). Precision technology measures had excellent AUC, sensitivity, and specificity for the first 72 h after treatment and AUC values were >0.970, regardless of pen treatment. These results indicate that precision technology has a greater potential for identifying pigs during a natural infectious disease event than trained professionals using timepoint sampling.
Collapse
Affiliation(s)
- Eduarda M. Bortoluzzi
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Mikayla J. Goering
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Sara J. Ochoa
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Aaron J. Holliday
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68505, USA
| | - Jared M. Mumm
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Catherine E. Nelson
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Hui Wu
- Department of Statistics, Kansas State University, Manhattan, KS 66506, USA
| | - Benny E. Mote
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68505, USA
| | - Eric T. Psota
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ty B. Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68505, USA
| | - Majid Jaberi-Douraki
- Department of Statistics, Kansas State University, Manhattan, KS 66506, USA
- Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA
- 1-DATA, Kansas State University Olathe, Olathe, KS 66061, USA
| | - Lindsey E. Hulbert
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: ; Tel.: +1-785-477-2904
| |
Collapse
|
13
|
Reinoso-Maset E, Falk M, Bernhoft A, Ersdal C, Framstad T, Fuhrmann H, Salbu B, Oropeza-Moe M. Selenium Speciation Analysis Reveals Improved Antioxidant Status in Finisher Pigs Fed L-Selenomethionine, Alone or Combined with Sodium Selenite, and Vitamin E. Biol Trace Elem Res 2022:10.1007/s12011-022-03516-9. [PMID: 36577830 PMCID: PMC10350441 DOI: 10.1007/s12011-022-03516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/02/2022] [Indexed: 12/30/2022]
Abstract
Conditions associated with selenium (Se) and/or vitamin E (VitE) deficiency are still being reported in high-yielding pigs fed the recommended amounts. Here, the dietary effects of Se source (sodium selenite, NaSe, 0.40 or 0.65 mg Se/kg; L-selenomethionine, SeMet, 0.19 or 0.44 mg Se/kg; a NaSe-SeMet mixture, SeMix, 0.44-0.46 mg Se/kg) and VitE concentration (27, 50-53 or 101 mg/kg) on the antioxidant status of finisher pigs were compared with those in pigs fed non-Se-supplemented diets (0.08-0.09 mg Se/kg). Compared to NaSe-enriched diets, SeMet-supplemented diets resulted in significantly (p < 0.0018) higher plasma concentrations of total Se (14-27%) and selenospecies (GPx3, SelP, SeAlb; 7-83%), significantly increased the total Se accumulation in skeletal muscles, myocardium, liver and brain (10-650%), and enhanced the VitE levels in plasma (15-74%) and tissues (8-33%) by the end of the 80-day trial, proving better Se distribution and retention in pigs fed organic Se. Injecting lipopolysaccharide (LPS) intravenously half-way into the trial provoked a pyrogenic response in the pigs followed by a rapid increase of inorganic Se after 5-12 h, a drastic drop of SeMet levels between 12 and 24 h that recovered by 48 h, and a small increase of SeCys by 24-48 h, together with a gradual rise of GPx3, SelP and SeAlb in plasma up to 48 h. These changes in Se speciation in plasma were particularly significant (0.0024 > p > 0.00007) in pigs receiving SeMet- (0.44 mg Se/kg, above EU-legislated limits) or SeMix-supplemented (SeMet and NaSe both at 0.2 mg Se/kg, within EU-legislated limits) diets, which demonstrates Se metabolism upregulation to counteract the LPS-induced oxidative stress and a strengthened antioxidant capacity in these pigs. Overall, a Se source combination (without exceeding EU-legislated limits) and sufficient VitE supplementation (≥ 50 mg/kg) improved the pigs' antioxidant status, while doubling the allowed dietary organic Se increased the Se in tissues up to sixfold without compromising the animal's health due to toxicity. This study renders valuable results for revising the current dietary SeMet limits in swine rations.
Collapse
Affiliation(s)
- Estela Reinoso-Maset
- Centre for Environmental Radioactivity CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Elizabeth Stephansens vei 31, 1433, Aas, Norway.
| | - Michaela Falk
- Norwegian Veterinary Institute, Svebastadveien 112, 4325, Sandnes, Norway
- Department of Production Animal Clinical Sciences (PRODMED), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway
| | - Aksel Bernhoft
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, 1433, Aas, Norway
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences (PRODMED), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway
| | - Tore Framstad
- Department of Production Animal Clinical Sciences (PRODMED), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens vei 15, 1433, Aas, Norway
| | - Herbert Fuhrmann
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Brit Salbu
- Centre for Environmental Radioactivity CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Elizabeth Stephansens vei 31, 1433, Aas, Norway
| | - Marianne Oropeza-Moe
- Department of Production Animal Clinical Sciences (PRODMED), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway
| |
Collapse
|
14
|
He L, Zhao X, Li J, Yang C. Post-weaning diarrhea and use of feedstuffs in pigs. Anim Front 2022; 12:41-52. [PMID: 36530506 PMCID: PMC9749819 DOI: 10.1093/af/vfac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiaoya Zhao
- College of Animal Science, South China Agricultural University, Tianhe District, Guangzhou 510642, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | | |
Collapse
|
15
|
Sun F, Zhao Q, Chen X, Zhao G, Gu X. Feed tossing behaviour of Holstein cows: evaluation of physiological stress state and rumen fermentation function. BMC Vet Res 2022; 18:371. [PMID: 36253770 PMCID: PMC9575279 DOI: 10.1186/s12917-022-03469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022] Open
Abstract
Background Abnormal or stereotyped behaviours in dairy cows are common in large-scale indoor farms and are usually accompanied by high physiological stress levels. Feed tossing is an abnormal behaviour commonly seen in cows while being fed, making farm management difficult. However, the reasons behind this behaviour have not been sufficiently reported. The objective of this study was to explore the changes in rumen fermentation, serum indicators, inflammatory conditions and the performance of cows with feed tossing behaviour. Holstein cows with similar lactation stages in the same barn were subjected to behaviour observations two times per day for 21 consecutive days. Ten cows with feed tossing behaviour (FT) and ten cows without abnormal behaviours (CON) were selected for further sampling. Plasma samples, rumen fluid, milk yield data of cows, and an indoor environment temperature-humidity index (THI) were collected. Results There was no significant difference in average daily milk yield during the observation period between feed-tossing cows (n = 68) and the other cows (n = 112). The number of cows showing FT behaviour had a moderately strong negative linear correlation with the THI of the environment. Compared to the CON cows, the FT cows had higher cortisol, norepinephrine and urea nitrogen levels in plasma, as well as higher plasma levels of inflammatory indicators, including total protein, lactate dehydrogenase, albumin, aspartate aminotransferase levels, and the ratio of aspartate aminotransferase to alanine aminotransferase. The FT cows had no significant variations from the CON cows regarding their rumen fermentation indicators, such as pH, ammonia nitrogen, and volatile fatty acids. In addition, 16S rRNA analysis revealed that there might be no clear association between the diversity and abundance of rumen bacteria and feed tossing behaviour. Conclusions Our findings suggested that cows might have suffered from high levels of physiological stress and immune state for a long period when they exhibited FT behaviour. The environmental THI could affect the FT behaviour of cows; as the THI increases, the willingness of cows to throw decreases. This work provided the first evidence that feed tossing might be a response associated with high levels of physiological stress and immune. It also explored our insights into a commonly observed behavioural response to cow welfare traits. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03469-0.
Collapse
Affiliation(s)
- Fuyu Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing, China.,College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, China
| | - Qingyao Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing, China.,College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, China
| | - Xiaoyang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing, China
| | - Guangyong Zhao
- College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, China
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing, China.
| |
Collapse
|
16
|
Microglial Dynamics Modulate Vestibular Compensation in a Rodent Model of Vestibulopathy and Condition the Expression of Plasticity Mechanisms in the Deafferented Vestibular Nuclei. Cells 2022; 11:cells11172693. [PMID: 36078101 PMCID: PMC9454928 DOI: 10.3390/cells11172693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Unilateral vestibular loss (UVL) induces a vestibular syndrome composed of posturo-locomotor, oculomotor, vegetative, and perceptivo-cognitive symptoms. With time, these functional deficits progressively disappear due to a phenomenon called vestibular compensation, known to be supported by the expression in the deafferented vestibular nuclei (VNs) of various adaptative plasticity mechanisms. UVL is known to induce a neuroinflammatory response within the VNs, thought to be caused by the structural alteration of primary vestibular afferents. The acute inflammatory response, expressed in the deafferented VNs was recently proven to be crucial for the expression of the endogenous plasticity supporting functional recovery. Neuroinflammation is supported by reactive microglial cells, known to have various phenotypes with adverse effects on brain tissue. Here, we used markers of pro-inflammatory and anti-inflammatory phenotypes of reactive microglia to study microglial dynamics following a unilateral vestibular neurectomy (UVN) in the adult rat. In addition, to highlight the role of acute inflammation in vestibular compensation and its underlying mechanisms, we enhanced the inflammatory state of the deafferented VNs using systemic injections of lipopolysaccharide (LPS) during the acute phase after a UVN. We observed that the UVN induced the expression of both M1 proinflammatory and M2 anti-inflammatory microglial phenotypes in the deafferented VNs. The acute LPS treatment exacerbated the inflammatory reaction and increased the M1 phenotype while decreasing M2 expression. These effects were associated with impaired postlesional plasticity in the deafferented VNs and exacerbated functional deficits. These results highlight the importance of a homeostatic inflammatory level in the expression of the adaptative plasticity mechanisms underlying vestibular compensation. Understanding the rules that govern neuroinflammation would provide therapeutic leads in neuropathologies associated with these processes.
Collapse
|
17
|
van der Zande LE, Guzhva O, Parois S, van de Leemput IA, Bolhuis JE, Rodenburg TB. Estimation of Resilience Parameters Following LPS Injection Based on Activity Measured With Computer Vision. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.883940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Resilience could be referred to as the animal’s ability to successfully adapt to a challenge. This is typically displayed by a quick return to initial metabolic or activity levels and behaviors. Pigs have distinct diurnal activity patterns. Deviations from these patterns could potentially be utilized to quantify resilience. However, human observations of activity are labor intensive and not feasible in practice on a large scale. In this study, we show the use of a computer vision tracking algorithm to quantify resilience based on activity individual patterns following a lipopolysaccharide (LPS) challenge, which induced a sickness response. We followed 121 individual pigs housed in barren or enriched housing systems, as previous work suggests an impact of housing on resilience, for eight days. The enriched housing consisted of delayed weaning in a group farrowing system and extra space compared with the barren pens and environmental enrichment. Enriched housed pigs were more active pre-injection of LPS, especially during peak activity times, than barren housed pigs (49.4 ± 9.9 vs. 39.1 ± 5.0 meter/hour). Four pigs per pen received an LPS injection and two pigs a saline injection. LPS injected animals were more likely to show a dip in activity than controls (86% vs 17%). Duration and Area Under the Curve (AUC) of the dip were not affected by housing. However, pigs with the same AUC could have a long and shallow dip or a steep and short dip. Therefore the AUC:duration ratio was calculated, and enriched housed pigs had a higher AUC:duration ratio compared to barren housed pigs (9244.1 ± 5429.8 vs 5919.6 ± 4566.1). Enriched housed pigs might therefore have a different strategy to cope with an LPS sickness challenge. However, more research on this strategy and the use of activity to quantify resilience and its relationship to physiological parameters is therefore needed.
Collapse
|
18
|
Russell B, Hrelja KM, Adams WK, Zeeb FD, Taves MD, Kaur S, Soma KK, Winstanley CA. Differential effects of lipopolysaccharide on cognition, corticosterone and cytokines in socially-housed vs isolated male rats. Behav Brain Res 2022; 433:114000. [PMID: 35817135 DOI: 10.1016/j.bbr.2022.114000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/20/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
Social isolation is an established risk factor for mental illness and impaired immune function. Evidence suggests that neuroinflammatory processes contribute to mental illness, possibly via cytokine-induced modulation of neural activity. We examined the effects of lipopolysaccharide (LPS) administration and social home cage environment on cognitive performance in the 5-Choice Serial Reaction Time Task (5CSRTT), and their effects on corticosterone and cytokines in serum and brain tissue. Male Long-Evans rats were reared in pairs or in isolation before training on the 5CSRTT. The effects of saline and LPS (150 µg/kg i.p.) administration on sickness behaviour and task performance were then assessed. LPS-induced sickness behaviour was augmented in socially-isolated rats, translating to increased omissions and slower response times in the 5CSRTT. Both social isolation and LPS administration reduced impulsive responding, while discriminative accuracy remained unaffected. With the exception of reduced impulsivity in isolated rats, these effects were not observed following a second administration of LPS, revealing behavioural tolerance to repeated LPS injections. In a separate cohort of animals, social isolation potentiated the ability of LPS to increase serum corticosterone and IL-6, which corresponded to increased IL-6 in the orbitofrontal and medial prefrontal cortices and the nucleus accumbens. Basal IL-4 levels in the nucleus accumbens were reduced in socially-isolated rats. These findings are consistent with the adaptive response of reduced motivational drive following immune challenge, and identify social isolation as an exacerbating factor. Enhanced IL-6 signalling may play a role in mediating the potentiated behavioural response to LPS administration in isolated animals.
Collapse
Affiliation(s)
- Brittney Russell
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M Hrelja
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Wendy K Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Fiona D Zeeb
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Matthew D Taves
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sukhbir Kaur
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
19
|
López-Martínez MJ, Cerón JJ, Ortín-Bustillo A, Escribano D, Kuleš J, Beletić A, Rubić I, González-Sánchez JC, Mrljak V, Martínez-Subiela S, Muñoz-Prieto A. A Proteomic Approach to Elucidate the Changes in Saliva and Serum Proteins of Pigs with Septic and Non-Septic Inflammation. Int J Mol Sci 2022; 23:ijms23126738. [PMID: 35743177 PMCID: PMC9223627 DOI: 10.3390/ijms23126738] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a systemic inflammatory response triggered by an infectious agent and is recognized by the World Health Organization as a global concern, since it is one of the major causes of severe illness in humans and animals. The study of the changes that can occur in saliva and serum in sepsis can contribute to a better understanding of the pathophysiological mechanisms involved in the process and also to discover potential biomarkers that can help in its diagnosis and monitoring. The objective of this study was to characterize the changes that occur in the salivary and serum proteome of pigs with experimentally-induced sepsis. The study included five pigs with sepsis induced by LPS administration and five pigs with non-septic inflammation induced by turpentine for comparative purposes. In saliva, there were eighteen salivary proteins differentially expressed in the sepsis condition and nine in non-septic inflammation. Among these, significant increments in aldolase A and serpin B12 only occurred in the sepsis model. Changes in aldolase A were validated in a larger population of pigs with sepsis due to Streptococcus suis infection. In serum, there were 30 proteins differentially expressed in sepsis group and 26 proteins in the non-septic group, and most of the proteins that changed in both groups were related to non-specific inflammation. In the saliva of the septic animals there were some specific pathways activated, such as the organonitrogen compound metabolic process and lipid transport, whereas, in the serum, one of the main activated pathways was the regulation of protein secretion. Overall, saliva and serum showed different proteome variations in response to septic inflammation and could provide complementary information about the pathophysiological mechanisms occurring in this condition. Additionally, salivary aldolase A could be a potential biomarker of sepsis in pigs that should be confirmed in a larger population.
Collapse
Affiliation(s)
- María José López-Martínez
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (M.J.L.-M.); (A.O.-B.); (D.E.); (I.R.); (S.M.-S.)
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (M.J.L.-M.); (A.O.-B.); (D.E.); (I.R.); (S.M.-S.)
- Correspondence: (J.J.C.); (A.M.-P.)
| | - Alba Ortín-Bustillo
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (M.J.L.-M.); (A.O.-B.); (D.E.); (I.R.); (S.M.-S.)
| | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (M.J.L.-M.); (A.O.-B.); (D.E.); (I.R.); (S.M.-S.)
| | - Josipa Kuleš
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (J.K.); (A.B.); (V.M.)
| | - Anđelo Beletić
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (J.K.); (A.B.); (V.M.)
| | - Ivana Rubić
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (M.J.L.-M.); (A.O.-B.); (D.E.); (I.R.); (S.M.-S.)
| | | | - Vladimir Mrljak
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (J.K.); (A.B.); (V.M.)
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (M.J.L.-M.); (A.O.-B.); (D.E.); (I.R.); (S.M.-S.)
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain; (M.J.L.-M.); (A.O.-B.); (D.E.); (I.R.); (S.M.-S.)
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (J.K.); (A.B.); (V.M.)
- Correspondence: (J.J.C.); (A.M.-P.)
| |
Collapse
|
20
|
Nery da Silva A, Alves L, Osowski GV, Sabei L, Ferraz PA, Pugliesi G, Marques MG, Zanella R, Zanella AJ. Housing Conditions and a Challenge with Lipopolysaccharide on the Day of Estrus Can Influence Gene Expression of the Corpus Luteum in Gilts. Genes (Basel) 2022; 13:genes13050769. [PMID: 35627154 PMCID: PMC9141224 DOI: 10.3390/genes13050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum (CL) is a temporary endocrine gland that plays a decisive role in the reproductive physiology of gilts. Recently, it has been suggested that exogenous factors may compromise the normal functioning of the CL. In the present study, we aimed to understand to what extent an acute and systemic challenge with lipopolysaccharide (LPS) on the day of estrus could compromise gene expression of gilts’ CLs housed in different welfare conditions. For this, we housed 42 gilts in three different housing systems: crates, indoor group pens, and outdoor housing. Then, we challenged six females from each group with LPS and eight with saline (SAL) on the day of estrus. After slaughtering the gilts on the fifth day after the challenge, ovaries were collected for gene expression analysis by RT-qPCR. Housing system and LPS challenge did not have a significant interaction for any genes evaluated; thus, their effects were studied separately. We identified significant (p < 0.05) downregulation of the angiogenic genes VEGF and FTL1 among LPS-challenged animals. Meanwhile, we also observed upregulation of HSD3B1 gene among LPS-challenged animals. We found that STAR and LHCGR genes were differentially expressed depending on the housing system, which indicates that the environment may affect adaptation capabilities. Our results indicate that an acute health challenge on the estrus day alters CL gene expression; however, the role of the housing system remains uncertain.
Collapse
Affiliation(s)
- Arthur Nery da Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (A.N.d.S.); (L.A.); (G.V.O.); (L.S.)
| | - Luana Alves
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (A.N.d.S.); (L.A.); (G.V.O.); (L.S.)
| | - Germana Vizzotto Osowski
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (A.N.d.S.); (L.A.); (G.V.O.); (L.S.)
| | - Leandro Sabei
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (A.N.d.S.); (L.A.); (G.V.O.); (L.S.)
| | - Priscila Assis Ferraz
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (P.A.F.); (G.P.)
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (P.A.F.); (G.P.)
| | - Mariana Groke Marques
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil;
- Programa de Pós-Graduação em Produção e Sanidade Animal, Instituto Federal Catarinense—IFC, Concórdia 89703-720, SC, Brazil
| | - Ricardo Zanella
- School of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo 99052-900, RS, Brazil;
| | - Adroaldo José Zanella
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (A.N.d.S.); (L.A.); (G.V.O.); (L.S.)
- Correspondence:
| |
Collapse
|
21
|
Niu X, Ding Y, Chen S, Gooneratne R, Ju X. Effect of Immune Stress on Growth Performance and Immune Functions of Livestock: Mechanisms and Prevention. Animals (Basel) 2022; 12:ani12070909. [PMID: 35405897 PMCID: PMC8996973 DOI: 10.3390/ani12070909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Immune stress is an important stressor in domestic animals that leads to decreased feed intake, slow growth, and reduced disease resistance of pigs and poultry. Especially in high-density animal feeding conditions, the risk factor of immune stress is extremely high, as they are easily harmed by pathogens, and frequent vaccinations are required to enhance the immunity function of the animals. This review mainly describes the causes, mechanisms of immune stress and its prevention and treatment measures. This provides a theoretical basis for further research and development of safe and efficient prevention and control measures for immune stress in animals. Abstract Immune stress markedly affects the immune function and growth performance of livestock, including poultry, resulting in financial loss to farmers. It can lead to decreased feed intake, reduced growth, and intestinal disorders. Studies have shown that pathogen-induced immune stress is mostly related to TLR4-related inflammatory signal pathway activation, excessive inflammatory cytokine release, oxidative stress, hormonal disorders, cell apoptosis, and intestinal microbial disorders. This paper reviews the occurrence of immune stress in livestock, its impact on immune function and growth performance, and strategies for immune stress prevention.
Collapse
Affiliation(s)
- Xueting Niu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
| | - Yuexia Ding
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
| | - Shengwei Chen
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Xianghong Ju
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
- Correspondence:
| |
Collapse
|
22
|
Luo L, van der Zande LE, van Marwijk MA, Knol EF, Rodenburg TB, Bolhuis JE, Parois SP. Impact of Enrichment and Repeated Mixing on Resilience in Pigs. Front Vet Sci 2022; 9:829060. [PMID: 35400108 PMCID: PMC8988148 DOI: 10.3389/fvets.2022.829060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022] Open
Abstract
Resilience, the capacity of animals to be minimally affected by a disturbance or to rapidly bounce back to the state before the challenge, may be improved by enrichment, but negatively impacted by a high allostatic load from stressful management procedures in pigs. We investigated the combined effects of diverging environmental conditions from weaning and repeated mixing to create high allostatic load on resilience of pigs. Pigs were either exposed to barren housing conditions (B) from weaning onwards or provided with sawdust, extra toys, regular access to a “play arena” and daily positive human contact (E). Half of the pigs were exposed to repeated mixing (RM) and the other half to one mixing only at weaning (minimal mixing, MM). To assess their resilience, the response to and recovery from a lipopolysaccharide (LPS) sickness challenge and a Frustration challenge were studied. In addition, potential long-term resilience indicators, i.e. natural antibodies, hair cortisol and growth were measured. Some indications of more favorable responses to the challenges in E pigs were found, such as lower serum reactive oxygen metabolite (dROM) concentrations and a smaller area under the curve of dROM after LPS injection. In the Frustration challenge, E pigs showed less standing alert, escape behaviors and other negative behaviors, a tendency for a smaller area under the curve of salivary cortisol and a lower plasma cortisol level at 1 h after the challenge. Aggression did not decrease over mixings in RM pigs and was higher in B pigs than in E pigs. Repeated mixing did not seem to reduce resilience. Contrary to expectations, RM pigs showed a higher relative growth than MM pigs during the experiment, especially in the week of the challenges. Barren RM pigs showed a lower plasma cortisol concentration than barren MM pigs after the LPS challenge, which may suggest that those RM pigs responded less detrimentally than MM pigs. Enriched RM pigs showed a higher level of IgM antibodies binding keyhole limpet hemocyanin (KLH) than enriched MM and barren RM pigs, and RM pigs showed a sharper decline in IgG antibodies binding Bovine Serum Albumin (PC-BSA) over time than MM pigs. Hair cortisol concentrations were not affected by enrichment or mixing. To conclude, enrichment did not enhance the speed of recovery from challenges in pigs, although there were indications of reduced stress. Repeated as opposed to single mixing did not seem to aggravate the negative effects of barren housing on resilience and for some parameters even seemed to reduce the negative effects of barren housing.
Collapse
Affiliation(s)
- Lu Luo
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Lisette E. van der Zande
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Manon A. van Marwijk
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | | | - T. Bas Rodenburg
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- *Correspondence: J. Elizabeth Bolhuis
| | - Severine P. Parois
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- PEGASE, INRAE, Institut Agro, Saint-Gilles, France
- Epidemiology Health and Welfare Research Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, France
| |
Collapse
|
23
|
Kaur A, Kaur IP, Chopra K, Rishi P. Bi-directional elucidation of Lactiplantibacillus plantarum (RTA 8) intervention on the pathophysiology of gut-brain axis during Salmonella brain infection. Gut Pathog 2022; 14:11. [PMID: 35236424 PMCID: PMC8892704 DOI: 10.1186/s13099-022-00484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There have been reports of patients suffering from typhoid fever, particularly those involving infants and immunocompromised patients, which at times present with Salmonella induced brain infection. Although rare, it has frequently been associated with adverse neurological complications and increased mortality. In this context, the gut-brain axis, involving two-way communication between the gut and the brain, holds immense significance as various gut ailments have been associated with psychiatric complications. In turn, several neurodegenerative diseases have been associated with an altered gut microbiota profile. Given the paucity of effective antimicrobials and increasing incidence of multi-drug resistance in pathogens, alternate treatment therapies such as probiotics have gained significant attention in the recent past. RESULTS In the current study, prophylactic effect of Lactiplantibacillus plantarum (RTA 8) in preventing neurological complications occurring due to Salmonella brain infection was evaluated in a murine model. Along with a significant reduction in bacterial burden and improved histoarchitecture, L. plantarum (RTA 8) administration resulted in amelioration in the level of neurotransmitters such as serotonin, norepinephrine and dopamine in the gut as well as in the brain tissue. Simultaneously, increased gene expression of physiologically essential molecules such as mucin (MUC1 and MUC3) and brain-derived neurotrophic factor (BDNF) was also observed in this group. CONCLUSION Present study highlights the potential benefits of a probiotic supplemented diet in improving various aspects of host health due to their multi-targeted approach, thereby resulting in multi-faceted gains.
Collapse
Affiliation(s)
- Amrita Kaur
- Department of Microbiology, Basic Medical Sciences Block I, Panjab University, South Campus, Sector 25, Chandigarh, 160014, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Praveen Rishi
- Department of Microbiology, Basic Medical Sciences Block I, Panjab University, South Campus, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
24
|
Boyle LA, Edwards SA, Bolhuis JE, Pol F, Šemrov MZ, Schütze S, Nordgreen J, Bozakova N, Sossidou EN, Valros A. The Evidence for a Causal Link Between Disease and Damaging Behavior in Pigs. Front Vet Sci 2022; 8:771682. [PMID: 35155642 PMCID: PMC8828939 DOI: 10.3389/fvets.2021.771682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
Damaging behaviors (DB) such as tail and ear biting are prevalent in pig production and reduce welfare and performance. Anecdotal reports suggest that health challenges increase the risk of tail-biting. The prevalence of tail damage and health problems show high correlations across batches within and between farms. There are many common risk factors for tail-biting and health problems, notably respiratory, enteric and locomotory diseases. These include suboptimal thermal climate, hygiene, stocking density and feed quality. The prevalence of tail damage and health problems also show high correlations across batches within and between farms. However, limited evidence supports two likely causal mechanisms for a direct link between DB and health problems. The first is that generalized poor health (e.g., enzootic pneumonia) on farm poses an increased risk of pigs performing DB. Recent studies indicate a possible causal link between an experimental inflammation and an increase in DB, and suggest a link between cytokines and tail-biting. The negative effects of poor health on the ingestion and processing of nutrients means that immune-stimulated pigs may develop specific nutrient deficiencies, increasing DB. The second causal mechanism involves tail-biting causing poor health. Indirectly, pathogens enter the body via the tail lesion and once infected, systemic spread of infection may occur. This occurs mainly via the venous route targeting the lungs, and to a lesser extent via cerebrospinal fluid and the lymphatic system. In carcasses with tail lesions, there is an increase in lung lesions, abscessation, arthritis and osteomyelitis. There is also evidence for the direct spread of pathogens between biters and victims. In summary, the literature supports the association between poor health and DB, particularly tail-biting. However, there is insufficient evidence to confirm causality in either direction. Nevertheless, the limited evidence is compelling enough to suggest that improvements to management and housing to enhance pig health will reduce DB. In the same way, improvements to housing and management designed to address DB, are likely to result in benefits to pig health. While most of the available literature relates to tail-biting, we suggest that similar mechanisms are responsible for links between health and other DB.
Collapse
Affiliation(s)
- Laura A. Boyle
- Teagasc Animal and Grassland Research and Innovation Centre, Cork, Ireland
- *Correspondence: Laura A. Boyle
| | - Sandra A. Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | | | - Manja Zupan Šemrov
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Ljubljana, Slovenia
| | - Sabine Schütze
- Chamber of Agriculture of North Rhine-Westphalia, Animal Health Services, Bad Sassendorf, Germany
| | - Janicke Nordgreen
- Faculty of Veterinary Medicine, Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Nadya Bozakova
- Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Evangelia N. Sossidou
- Ellinikos Georgikos Organismos-DIMITRA (ELGO-DIMITRA), Veterinary Research Institute, Thessaloniki, Greece
| | - Anna Valros
- Department of Production Animal Medicine, Research Centre for Animal Welfare, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Kobek-Kjeldager C, Schönherz AA, Canibe N, Pedersen LJ. Diet and microbiota-gut-brain axis in relation to tail biting in pigs: A review. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2021.105514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Goyal A, Tanwar B, Kumar Sihag M, Sharma V. Sacha inchi (Plukenetia volubilis L.): An emerging source of nutrients, omega-3 fatty acid and phytochemicals. Food Chem 2021; 373:131459. [PMID: 34731811 DOI: 10.1016/j.foodchem.2021.131459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Sacha inchi (Plukenetia volubilis) (SI) is an oleaginous plant producing oil and protein-rich seeds. It has been cultivated for centuries and is native to the tropical rainforest of the Amazon region of South America including parts of Peru and northwestern Brazil. At present, SI seeds are emerging as a potential source of macro- and micronutrients, α-linolenic acid and phytochemicals. This review attempts to elucidate the nutrients, phytonutrients, safety, toxicity, health benefits and food applications of SI seed. Recent scientific studies have associated the consumption of SI seed/oil with reduced risk of chronic inflammatory diseases. However, lack of awareness and in-depth understanding has resulted in it being neglected both at the consumer and industrial level. In all, SI is an underutilized and undervalued oleaginous crop which not only has the potential to mitigate food and nutritional insecurity but also offers humongous opportunities for the development of novel value-added food products.
Collapse
Affiliation(s)
- Ankit Goyal
- Department of Dairy Chemistry, Mansinhbhai Institute of Dairy and Food Technology, Mehsana 384002, Gujarat, India.
| | - Beenu Tanwar
- Department of Dairy Technology, Mansinhbhai Institute of Dairy and Food Technology, Mehsana 384002, Gujarat, India.
| | - Manvesh Kumar Sihag
- Department of Dairy Chemistry, College of Dairy Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141001, Punjab, India.
| | - Vivek Sharma
- Dairy Chemistry Division, National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, India.
| |
Collapse
|
27
|
Zhang Y, Deng ZX, He ML, Pastor JJ, Tedo G, Liu JX, Wang HF. Olive oil cake extract stabilizes the physiological condition of lipopolysaccharide-challenged piglets by reducing oxidative stress and inflammatory responses and modulating the ileal microbiome. Food Funct 2021; 12:10171-10183. [PMID: 34529747 DOI: 10.1039/d0fo03012k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Olives are a rich source of compounds with antioxidant and anti-inflammatory activities. This study was designed to investigate whether a standardized olive cake extract was able to alleviate oxidative stress, inflammation and intestinal villus damage in a model of lipopolysaccharide (LPS)-challenged piglets. Thirty weaned piglets (6.9 ± 0.9 kg) were assigned to five groups using a randomized complete block design. Piglets were fed a basal diet before intraperitoneal (i.p.) injection of physiological saline (C); fed a basal diet alone (CL) or fed a basal diet plus an olive cake extract (OL), antibiotics (AL), or olive cake extract plus antibiotics (OAL) before i.p. injection of LPS. The feeding period lasted for 2 weeks. Piglets were euthanized 4 h after the LPS injection. Systemic oxidative and inflammatory status and intestinal morphology were evaluated. LPS challenge significantly lowered the serum levels of GSH-Px, SOD and ALB and increased the serum concentration of MDA, NO, LDH, ALT, AST, TNF-α, IL-6, DAO and D-xylose (P < 0.05), as extracted from the comparison of piglets in the C and CL groups. Intestinal morphology was altered in the duodenum and ileum, displaying that the CL group had significantly lower villus height (VH), higher crypt depth (CD) and lower VH/CD compared with the control group (P < 0.05). Moreover, feed supplementation was able to partially mitigate the negative effects of LPS challenge in all groups (OL, AL, and OAL), as evidenced by the significantly increased serum levels of GSH-Px, SOD, ALB and IL-10 and decreased concentration of MDA, NO, LDH, ALT, AST, TNF-α, IL-6, DAO and D-xylose, compared with the CL group (P < 0.05). Alterations in intestinal morphology were also prevented and the OL, AL, and OAL groups had significantly lower CD and higher VH/CD compared with the CL group (P < 0.05), both in the ileum and duodenum. Furthermore, the positive effect in the relative abundance of intestinal Lactobacillus and Clostridium at the genus level was also observed for the OL group compared to the CL group. In summary, dietary supplementation with an olive cake extract stabilized the physiological condition of piglets subjected to an acute LPS challenge by reducing oxidative stress and the inflammatory status, improving intestinal morphology and increasing the abundance of beneficial intestinal bacteria. This trial was registered at Zhejiang University (http://www.lac.zju.edu.cn) as No. ZJU20170529.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China.
| | - Zhao-Xi Deng
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China.
| | - Mao-Long He
- Innovation Division, Lucta (Guangzhou) Flavours Co. Ltd, Guangzhou, 510530, China
| | - Jose J Pastor
- Innovation Division, Lucta S. A., UAB Research Park, Edifici Eureka, 08193 Bellaterra, Spain
| | - Gemma Tedo
- Innovation Division, Lucta S. A., UAB Research Park, Edifici Eureka, 08193 Bellaterra, Spain
| | - Jian-Xin Liu
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China.
| | - Hai-Feng Wang
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China.
| |
Collapse
|
28
|
Sali V, Veit C, Valros A, Junnikkala S, Heinonen M, Nordgreen J. Dynamics of Salivary Adenosine Deaminase, Haptoglobin, and Cortisol in Lipopolysaccharide-Challenged Growing Pigs. Front Vet Sci 2021; 8:698628. [PMID: 34722692 PMCID: PMC8551609 DOI: 10.3389/fvets.2021.698628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/21/2021] [Indexed: 11/27/2022] Open
Abstract
Infectious and inflammatory conditions are common especially in growing pigs. Lipopolysaccharide (LPS) is an important antigenic structure of Gram-negative bacteria and can be used to induce inflammation experimentally. As pigs are usually group-housed in commercial conditions, it is difficult to detect sick individuals, particularly at an early stage of illness. Acute phase proteins such as haptoglobin (Hp) are known indicators of an activated innate immune system whereas adenosine deaminase (ADA) is a relatively novel inflammatory biomarker in pigs. Both parameters can be measured in saliva and could be used as indicators of inflammation. Compared with blood sampling, saliva sampling is a less stressful procedure that is rapid, non-invasive and easy to perform both at group and at individual level. In this blinded randomized clinical trial, 32 female pigs at their post-weaning phase were allocated to one of four treatments comprising two injections of the following substance combinations: saline-saline (SS), ketoprofen-saline (KS), saline-LPS (SL), and ketoprofen-LPS (KL). First, ketoprofen or saline was administered intramuscularly on average 1 h before either LPS or saline was given through an ear vein catheter. In all groups, saliva was collected prior to injections (baseline) and at 4, 24, 48, and 72 h post-injection for determination of ADA, Hp, and cortisol concentrations. A multivariate model was applied to describe the dynamics of each biomarker. Pairwise relationships between ADA, Hp, and cortisol responses from baseline to 4 h post-injection within the SL group were studied with Spearman correlations. A significant increase in the SL group was seen in all biomarkers 4 h post-injection compared to baseline and other time points (pairwise comparisons, p < 0.01 for all) and ketoprofen alleviated the LPS effect. We found a significant positive correlation between ADA and Hp within the SL group (r = 0.86, p < 0.05). The primary and novel findings of the present study are the response of ADA to LPS, its time course and alleviation by ketoprofen. Our results support the evidence that ADA and Hp can be used as inflammatory biomarkers in pigs. We suggest further studies to be conducted in commercial settings with larger sample sizes.
Collapse
Affiliation(s)
- Virpi Sali
- Department of Production Animal Medicine, University of Helsinki, Mäntsälä, Finland
| | - Christina Veit
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Anna Valros
- Department of Production Animal Medicine, Research Centre for Animal Welfare, University of Helsinki, Mäntsälä, Finland
| | - Sami Junnikkala
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Mari Heinonen
- Department of Production Animal Medicine, University of Helsinki, Mäntsälä, Finland
- Department of Production Animal Medicine, Research Centre for Animal Welfare, University of Helsinki, Mäntsälä, Finland
| | - Janicke Nordgreen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
29
|
Kiefer ZE, Studer JM, Chipman AL, Adur MK, Mainquist-Whigham C, Gabler NK, Keating AF, Ross JW. Circulating biomarkers associated with pelvic organ prolapse risk in late gestation sows. J Anim Sci 2021; 99:6316206. [PMID: 34228800 PMCID: PMC8378218 DOI: 10.1093/jas/skab207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Sow mortality, as the result of pelvic organ prolapse (POP), has been increasing in the last decade in the U.S. swine industry. The objective of this study was to identify potential biological markers associated with risk of POP in sows. We hypothesized that sows differing in perineal score (PS) from PS1–PS3 (PS1—a presumed low POP risk; PS2—a presumed moderate POP risk; and PS3—a presumed high POP risk) would differ in circulatory biomarkers of inflammation and hormonal profiles. On gestation week 15, 2,864 individual sows were assigned a PS, and subsequently, 1.0%, 2.7%, and 23.4% of PS1, PS2, or PS3 sows, respectively, experienced POP. During PS assignment at days 107–116 of gestation, blood samples were collected from sows on two farms of similar genetics, feed sources, and health status. Whole blood was subjected to complete blood count (CBC) analysis (n = 212) and steroid hormones were measured in serum from a subset (n = 110) of animals assigned PS3 parity matched to PS1. Lipopolysaccharide-binding protein (LBP), tumor necrosis factor-alpha (TNF-α), haptoglobin, C-reactive protein (CRP), and creatine kinase (CK) levels were also evaluated. Complete blood count analysis revealed decreased (P ≤ 0.05) mean platelet volume (3.9%), lymphocytes (6.5%), and monocytes (7.5%) in PS3 compared to PS1 sows. Increased (P ≤ 0.02) abundance of androstenedione (13.4%), androsterone (18.2%), estrone (24.8%), and 17β-estradiol (26.2%) was observed in PS3 compared to PS1 sows. Additionally, a 25.8% increase (P = 0.04) in LBP in PS3 compared to PS1 sows was observed. Many dynamic physiological changes occur in sows during late gestation as they approach farrowing. The data presented herein demonstrate that distinct differences in concentrations of circulating biomarkers exist between late gestation sows at high or low risk for POP and may serve as a useful tool for understanding the etiology of POP and evaluation of mitigation strategies.
Collapse
Affiliation(s)
- Zoë E Kiefer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jamie M Studer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Malavika K Adur
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.,Iowa Pork Industry Center, Ames, IA 50011, USA
| |
Collapse
|
30
|
Veit C, Foister S, Valros A, Munsterhjelm C, Sandercock DA, Janczak AM, Ranheim B, Nordgreen J. The use of social network analysis to describe the effect of immune activation on group dynamics in pigs. Animal 2021; 15:100332. [PMID: 34392193 DOI: 10.1016/j.animal.2021.100332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022] Open
Abstract
The immune system can influence social motivation with potentially dire consequences for group-housed production animals, such as pigs. The aim of this study was to test the effect of a controlled immune activation in group-housed pigs, through an injection with lipopolysaccharide (LPS) and an intervention with ketoprofen on centrality parameters at the individual level. In addition, we wanted to test the effect of time relative to the injection on general network parameters in order to get a better understanding of changes in social network structures at the group level. 52 female pigs (11-12 weeks) were allocated to four treatments, comprising two injections: ketoprofen-LPS (KL), ketoprofen-saline (KS), saline-LPS (SL) and saline-saline (SS). Social behaviour with a focus on damaging behaviour was observed continuously in 10 × 15 min bouts between 0800 am and 1700 pm 1 day before (baseline) and two subsequent days after injection. Activity was scan-sampled every 5 min for 6 h after the last injection in the pen. Saliva samples were taken for cortisol analysis at baseline and at 4, 24, 48, 72 h after the injections. A controlled immune activation affected centrality parameters for ear manipulation networks at the individual level. Lipopolysaccharide-injected pigs had a lower in-degree centrality, thus, received less interactions, 2 days after the challenge. Treatment effects on tail manipulation and fighting networks were not observed at the individual level. For networks of manipulation of other body parts, in-degree centrality was positively correlated with cortisol response at 4 h and lying behaviour in the first 6 h after the challenge in LPS-injected pigs. Thus, the stronger the pigs reacted to the LPS, the more interactions they received in the subsequent days. The time in relation to injection affected general network parameters for ear manipulation and fighting networks at the group level. For ear manipulation networks, in-degree centralisation was higher on the days following injection, thus, certain individuals in the pen received more interactions than the rest of the group compared to baseline. For fighting networks, betweenness decreased on the first day after injection compared to baseline, indicating that network connectivity increased after the challenge. Networks of tail manipulation and manipulation of other body parts did not change on the days after injection at the group level. Social network analysis is a method that can potentially provide important insights into the effects of sickness on social behaviour in group-housed pigs.
Collapse
Affiliation(s)
- C Veit
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - S Foister
- Innovent Technology, Markethill, Turriff, Aberdeenshire AB53 4PA, United Kingdom
| | - A Valros
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - C Munsterhjelm
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - D A Sandercock
- Animal and Veterinary Science Research Group, Roslin Institute, Scotland's Rural College, Midlothian EH15 9RG, United Kingdom
| | - A M Janczak
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - B Ranheim
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - J Nordgreen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| |
Collapse
|
31
|
Grigoryan R, Costas-Rodríguez M, Van Wonterghem E, Vandenbroucke RE, Vanhaecke F. Effect of Endotoxemia Induced by Intraperitoneal Injection of Lipopolysaccharide on the Mg isotopic Composition of Biofluids and Tissues in Mice. Front Med (Lausanne) 2021; 8:664666. [PMID: 34368182 PMCID: PMC8342922 DOI: 10.3389/fmed.2021.664666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
Endotoxemia induced in vivo in mice by intraperitoneal injection of lipopolysaccharide (LPS) leads to (neuro)inflammation and sepsis. Also the homeostasis of mineral elements can be altered through mechanisms that still are poorly understood. The isotopic composition of Mg and the concentrations of the minor elements Ca, K, Mg, Na, P, and S were determined in biological fluids and tissues of young (14–28 weeks) and aged (40–65 weeks) LPS-injected mice and age-matched controls to reveal potential effects of the LPS-induced infection. Blood plasma of young and aged LPS-injected mice showed a heavy Mg isotopic composition, as well as elevated Mg and P concentrations, compared to matched controls. The plasma Mg isotopic composition was correlated with the P concentration in aged mice. Also the liver Mg isotopic composition was strongly affected in the young and aged LPS-injected mice, while for aged mice, an additional effect on the urine Mg isotopic composition was established. These observations were hypothetically associated with liver inflammation and/or hepatotoxicity, and reduced urinary Mg excretion, respectively. Also a regional endotoxin-induced difference was observed in the brain Mg isotopic composition for the aged mice only, and was attributed to potential disruption of the blood-brain barrier.
Collapse
Affiliation(s)
- Rosa Grigoryan
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium
| | - Marta Costas-Rodríguez
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium
| | - Elien Van Wonterghem
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frank Vanhaecke
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Liu X, Song P, Yan H, Zhang L, Wang L, Zhao F, Gao H, Hou X, Shi L, Li B, Wang L. A Comparison of the Behavior, Physiology, and Offspring Resilience of Gestating Sows When Raised in a Group Housing System and Individual Stalls. Animals (Basel) 2021; 11:ani11072076. [PMID: 34359203 PMCID: PMC8300341 DOI: 10.3390/ani11072076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary The housing patterns of gestating sows affect their health and welfare. In this study, the differences between behavior and stress hormone levels were assessed when sows were housed in a group housing system compared to individual stalls; in addition, the disease resistance and resilience of their piglets were compared. In our investigation, the group-housed sows showed more exploratory behavior, less vacuum chewing, less sitting behavior, and lower stress hormone levels throughout pregnancy. A lipopolysaccharide (LPS) injection test revealed that the offspring of group-housed sows showed better resistance and resilience to disease. Therefore, the gestating sows raised in a group housing system and their piglets are healthier and have improved welfare. Our results show that a group housing system provides higher welfare standards, with conditions that are more suitable for gestating sows in modern pig production. Abstract Being in a confined environment causes chronic stress in gestating sows, which is detrimental for sow health, welfare and, consequently, offspring physiology. This study assessed the health and welfare of gestating sows housed in a group housing system compared to individual gestation stalls. After pregnancy was confirmed, experimental sows were divided randomly into two groups: the group housing system (GS), with the electronic sow feeding (ESF) system; or individual stall (IS). The behavior of sows housed in the GS or IS was then compared; throughout pregnancy, GS sows displayed more exploratory behavior, less vacuum chewing, and less sitting behavior (p < 0.05). IS sows showed higher stress hormone levels than GS sows. In particular, at 41 days of gestation, the concentration of the adrenocorticotropic hormone (ACTH) and adrenaline (A) in IS sows was significantly higher than that of GS sows, and the A level of IS sows remained significantly higher at 71 days of gestation (p < 0.01). The lipopolysaccharide (LPS) test was carried out in the weaned piglets of the studied sows. Compared with the offspring of gestating sows housed in GS (PG) or IS (PS), PG experienced a shorter period of high temperature and showed a quicker return to the normal state (p < 0.05). Additionally, their lower levels of stress hormone (p < 0.01) suggest that PG did not suffer from as much stress as PS. These findings suggested that gestating sows housed in GS were more able to carry out their natural behaviors and, therefore, had lower levels of stress and improved welfare. In addition, PG also showed better disease resistance and resilience. These results will provide a research basis for the welfare and breeding of gestating sows.
Collapse
Affiliation(s)
- Xin Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
| | - Pengkang Song
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Hua Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
| | - Fuping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
| | - Hongmei Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
| | - Xinhua Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
| | - Lijun Shi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence: (B.L.); (L.W.); Tel.: +86-010-6281-8771 (L.W.)
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (P.S.); (H.Y.); (L.Z.); (L.W.); (F.Z.); (H.G.); (X.H.); (L.S.)
- Correspondence: (B.L.); (L.W.); Tel.: +86-010-6281-8771 (L.W.)
| |
Collapse
|
33
|
van der Zande LE, Guzhva O, Rodenburg TB. Individual Detection and Tracking of Group Housed Pigs in Their Home Pen Using Computer Vision. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.669312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Modern welfare definitions not only require that the Five Freedoms are met, but animals should also be able to adapt to changes (i. e., resilience) and reach a state that the animals experience as positive. Measuring resilience is challenging since relatively subtle changes in animal behavior need to be observed 24/7. Changes in individual activity showed potential in previous studies to reflect resilience. A computer vision (CV) based tracking algorithm for pigs could potentially measure individual activity, which will be more objective and less time consuming than human observations. The aim of this study was to investigate the potential of state-of-the-art CV algorithms for pig detection and tracking for individual activity monitoring in pigs. This study used a tracking-by-detection method, where pigs were first detected using You Only Look Once v3 (YOLOv3) and in the next step detections were connected using the Simple Online Real-time Tracking (SORT) algorithm. Two videos, of 7 h each, recorded in barren and enriched environments were used to test the tracking. Three detection models were proposed using different annotation datasets: a young model where annotated pigs were younger than in the test video, an older model where annotated pigs were older than the test video, and a combined model where annotations from younger and older pigs were combined. The combined detection model performed best with a mean average precision (mAP) of over 99.9% in the enriched environment and 99.7% in the barren environment. Intersection over Union (IOU) exceeded 85% in both environments, indicating a good accuracy of the detection algorithm. The tracking algorithm performed better in the enriched environment compared to the barren environment. When false positive tracks where removed (i.e., tracks not associated with a pig), individual pigs were tracked on average for 22.3 min in the barren environment and 57.8 min in the enriched environment. Thus, based on proposed tracking-by-detection algorithm, pigs can be tracked automatically in different environments, but manual corrections may be needed to keep track of the individual throughout the video and estimate activity. The individual activity measured with proposed algorithm could be used as an estimate to measure resilience.
Collapse
|
34
|
Johnson JS, Maskal JM, Duttlinger AW, Kpodo KR, McConn BR, Byrd CJ, Richert BT, Marchant-Forde JN, Lay DC, Perry SD, Lucy MC, Safranski TJ. In utero heat stress alters the postnatal innate immune response of pigs. J Anim Sci 2021; 98:5960114. [PMID: 33159520 DOI: 10.1093/jas/skaa356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022] Open
Abstract
The effects of in utero heat stress (IUHS) range from decreased growth performance to altered behavior, but the long-term impact of IUHS on postnatal innate immune function in pigs is unknown. Therefore, the study objective was to determine the effects of early gestation IUHS on the immune, metabolic, and stress response of pigs subjected to an 8 hr lipopolysaccharide (LPS) challenge during postnatal life. Twenty-four pregnant gilts were exposed to thermoneutral (TN; n = 12; 17.5 ± 2.1 °C) or heat stress (HS; n = 12; cyclic 26 to 36 °C) conditions from days 6 to 59 of gestation, and then TN conditions (20.9 ± 2.3 °C) from day 60 of gestation to farrowing. At 12 wk of age, 16 IUHS and 16 in utero thermoneutral (IUTN) pigs were selected, balanced by sex and given an intravenous injection of LPS (2 µg/kg BW mixed with sterile saline [SAL] and injected at 2 µL/kg BW) or SAL (2 µL/kg BW). Body temperature was monitored every 30 min, and blood was obtained at 0, 1, 2, 3, 4, 6, and 8 hr following the LPS challenge. Blood samples were analyzed for glucose, insulin, non-esterified fatty acids (NEFA), cortisol, and cytokine concentrations. In addition, white blood cell counts were determined at 0 and 4 hr. Hour 0 data were used as covariates. Body temperature was increased (P < 0.01) in LPS (40.88 ± 0.08 °C) vs. SAL (39.83 ± 0.08 °C) pigs. Eosinophils tended to be decreased overall (P = 0.09; 43.9%) in IUHS vs. IUTN pigs. Glucose concentrations were reduced overall (P = 0.05; 5.9%) in IUHS vs. IUTN pigs. The NEFA concentrations tended to be greater (P = 0.07; 143.4%) in IUHS-LPS pigs compared with all other treatments, and IUTN-LPS pigs tended to have greater (127.4%) circulating NEFA concentrations compared with IUTN-SAL and IUHS-SAL pigs. Cortisol was increased (P = 0.04) in IUHS-LPS compared with IUTN-LPS pigs at 3 hr (21.5%) and 4 hr (64.3%). At 1 hr, tumor necrosis factor α was increased (P = 0.01; 115.1%) in IUHS-LPS compared with IUTN-LPS pigs. Overall, interleukin-1β (IL-1β) and interleukin-6 (IL-6) were greater (P < 0.04; 281.3% and 297.8%, respectively) in IUHS-LPS pigs compared with all other treatments, and IUTN-LPS pigs had increased IL-1β and IL-6 concentrations compared with IUTN-SAL and IUHS-SAL pigs. In summary, IUHS altered the postnatal cytokine, metabolic, and physiological stress response of pigs during postnatal life, which may have negative implications toward the innate immune response of IUHS pigs to pathogens.
Collapse
Affiliation(s)
- Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN
| | - Jacob M Maskal
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Alan W Duttlinger
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Kouassi R Kpodo
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Betty R McConn
- Oak Ridge Institute for Science and Education, Oak Ridge, TN
| | | | - Brian T Richert
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | | | - Donald C Lay
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN
| | - Shelbi D Perry
- Division of Animal Sciences, University of Missouri, Columbia, MO
| | - Matthew C Lucy
- Division of Animal Sciences, University of Missouri, Columbia, MO
| | - Tim J Safranski
- Division of Animal Sciences, University of Missouri, Columbia, MO
| |
Collapse
|
35
|
Veit C, Janczak AM, Ranheim B, Vas J, Valros A, Sandercock DA, Piepponen P, Dulgheriu D, Nordgreen J. The Effect of LPS and Ketoprofen on Cytokines, Brain Monoamines, and Social Behavior in Group-Housed Pigs. Front Vet Sci 2021; 7:617634. [PMID: 33585605 PMCID: PMC7873924 DOI: 10.3389/fvets.2020.617634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Poor health is a risk factor for damaging behaviors, but the mechanisms behind this link are unknown. Injection of pigs with lipopolysaccharide (LPS) can be used to model aspects of poor health. Recent studies have shown that LPS-injected pigs perform more tail- and ear-directed behavior compared to saline-injected pigs and suggest that pro-inflammatory cytokines may play a role in these behaviors. The aims of this study were to test the effect of LPS on the social behavior of pigs and the neurotransmitters and modulators in their brains and to test the effect of a nonsteroidal anti-inflammatory drug on the effects of LPS. Fifty-two female pigs (11-12 weeks) were allocated to four treatments comprising two injections: saline-saline (SS), saline-LPS (SL), ketoprofen-saline (KS), and ketoprofen-LPS (KL). Activity was scan-sampled every 5 min for 6 h after the last injection in the pen. Social behavior was observed continuously in 10 × 15-min bouts between 8 a.m. and 5 p.m. 1 day before (baseline) and 1 and 2 days after the injection. Saliva was analyzed for cortisol and plasma for tryptophan and kynurenine. The frontal cortex, hippocampus, hypothalamus, and brain stem were sampled 72 h after the injection and analyzed for cytokines and monoamines. LPS activated the HPA axis and decreased the activity within 6 h after the injection. Ketoprofen lowered the effect of LPS on cortisol release and attenuated the behavioral signs of sickness in challenged pigs. SL pigs manipulated the ears of their pen mates significantly longer than SS pigs 2 days after the injection. LPS had no observed effect on IFN-γ, TNF-α, and IL-18. At 72 h after the injection, plasma tryptophan was depleted in SL pigs, and tryptophan and kynurenine concentrations in the frontal cortex and brain stem of SL pigs were significantly lower compared to those in SS pigs. Dopamine concentrations in the hypothalamus of SL pigs were significantly lower compared to those in SS pigs. Serotonin concentrations in the hypothalamus and noradrenaline concentrations in the hippocampus of SL pigs were significantly lower compared to those in KL pigs. In conclusion, LPS influenced the different neurotransmitters and modulators in the brain that are hypothesized to play an important role in the regulation of mood and behavior.
Collapse
Affiliation(s)
- Christina Veit
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Andrew M Janczak
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Birgit Ranheim
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Judit Vas
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Anna Valros
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Dale A Sandercock
- Animal and Veterinary Science Research Group, Scotland's Rural College, Roslin Institute Building, Easter Bush, Midlothian, United Kingdom
| | - Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Daniela Dulgheriu
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Janicke Nordgreen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
36
|
Suganya K, Koo BS. Gut-Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions. Int J Mol Sci 2020; 21:E7551. [PMID: 33066156 PMCID: PMC7589356 DOI: 10.3390/ijms21207551] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome acts as an integral part of the gastrointestinal tract (GIT) that has the largest and vulnerable surface with desirable features to observe foods, nutrients, and environmental factors, as well as to differentiate commensals, invading pathogens, and others. It is well-known that the gut has a strong connection with the central nervous system (CNS) in the context of health and disease. A healthy gut with diverse microbes is vital for normal brain functions and emotional behaviors. In addition, the CNS controls most aspects of the GI physiology. The molecular interaction between the gut/microbiome and CNS is complex and bidirectional, ensuring the maintenance of gut homeostasis and proper digestion. Besides this, several mechanisms have been proposed, including endocrine, neuronal, toll-like receptor, and metabolites-dependent pathways. Changes in the bidirectional relationship between the GIT and CNS are linked with the pathogenesis of gastrointestinal and neurological disorders; therefore, the microbiota/gut-and-brain axis is an emerging and widely accepted concept. In this review, we summarize the recent findings supporting the role of the gut microbiota and immune system on the maintenance of brain functions and the development of neurological disorders. In addition, we highlight the recent advances in improving of neurological diseases by probiotics/prebiotics/synbiotics and fecal microbiota transplantation via the concept of the gut-brain axis.
Collapse
Affiliation(s)
- Kanmani Suganya
- Department of Oriental Medicine, Dongguk University, Gyeongju 38066, Korea;
- Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University, Ilsan Hospital, 814 Siksa-dong, Goyang-si, Gyeonggi-do 10326, Korea
| | - Byung-Soo Koo
- Department of Oriental Medicine, Dongguk University, Gyeongju 38066, Korea;
- Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University, Ilsan Hospital, 814 Siksa-dong, Goyang-si, Gyeonggi-do 10326, Korea
| |
Collapse
|
37
|
Chapa JM, Maschat K, Iwersen M, Baumgartner J, Drillich M. Accelerometer systems as tools for health and welfare assessment in cattle and pigs - A review. Behav Processes 2020; 181:104262. [PMID: 33049377 DOI: 10.1016/j.beproc.2020.104262] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
Welfare assessment has traditionally been performed by direct observation by humans, providing information at only selected points in time. Recently, this assessment method has been questioned, as 'Precision Livestock Farming' technologies may be able to deliver more valid, reliable and feasible real-time data at the individual level and serve as early monitoring systems for animal welfare. The aim of this paper is to describe how accelerometers can be used for welfare assessment based on the principles of the Welfare Quality assessment protocol. Algorithm development is based mainly on the detection of behavioural traits. So far, high accuracies have been found for movement and resting behaviours in cows and pigs, while algorithm development for feeding and drinking behaviours in pigs lag behind progress in cows where valid algorithms are already available. Welfare studies have used accelerometer technology to address the effects on behaviour of diet, daily cycle, enrichment, housing, social mixing, oestrus, lameness and disease. Additional aspects to consider before a decision is made upon its use in research and in practical applications include battery life and sensor location. While accelerometer systems for cows are already being used by farmers, application in pigs has mainly remained at the research level.
Collapse
Affiliation(s)
- Jose M Chapa
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, 3430 Tulln, Austria
| | - Kristina Maschat
- Institute of Animal Welfare Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, 3430 Tulln, Austria
| | - Michael Iwersen
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Johannes Baumgartner
- Institute of Animal Welfare Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Marc Drillich
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| |
Collapse
|
38
|
Nordgreen J, Edwards SA, Boyle LA, Bolhuis JE, Veit C, Sayyari A, Marin DE, Dimitrov I, Janczak AM, Valros A. A Proposed Role for Pro-Inflammatory Cytokines in Damaging Behavior in Pigs. Front Vet Sci 2020; 7:646. [PMID: 33134341 PMCID: PMC7562715 DOI: 10.3389/fvets.2020.00646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Sickness can change our mood for the worse, leaving us sad, lethargic, grumpy and less socially inclined. This mood change is part of a set of behavioral symptoms called sickness behavior and has features in common with core symptoms of depression. Therefore, the physiological changes induced by immune activation, for example following infection, are in the spotlight for explaining mechanisms behind mental health challenges such as depression. While humans may take a day off and isolate themselves until they feel better, farm animals housed in groups have only limited possibilities for social withdrawal. We suggest that immune activation could be a major factor influencing social interactions in pigs, with outbreaks of damaging behavior such as tail biting as a possible result. The hypothesis presented here is that the effects of several known risk factors for tail biting are mediated by pro-inflammatory cytokines, proteins produced by the immune system, and their effect on neurotransmitter systems. We describe the background for and implications of this hypothesis.
Collapse
Affiliation(s)
- Janicke Nordgreen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Sandra A. Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laura Ann Boyle
- Teagasc Animal and Grassland Research and Innovation Centre, Fermoy, Ireland
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Christina Veit
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Amin Sayyari
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Daniela E. Marin
- National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | | | - Andrew M. Janczak
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Anna Valros
- Department of Production Animal Medicine, Research Centre for Animal Welfare, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Li W, Luo S, Wan C. Characterization of fever and sickness behavior regulated by cytokines during infection. BEHAVIOUR 2020. [DOI: 10.1163/1568539x-bja10028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
In response to invasion of pathogens, hosts present fever and a series of behavioural changes including reduced grooming, reduction of foraging, decreased locomotion, withdrawing from social activities and reproductive process, which are collectively termed sickness behaviour. Fever as well as sickness behaviour are adaptive and benefit the host to reduce pathology caused by infections and opportunity costs for time away from foraging, reproduction and predator avoidance. Antipathogenic fever and sickness behaviour are mediated proximately by cytokines including pro- and anti-inflammatory cytokines. Pro-inflammation cytokines trigger these sickness responses, while anti-inflammatory cytokines constrain these responses and prevent damage to host from exaggerated responses. The present study reviews the characterization of fever and sickness behaviour regulated by cytokines during infection.
Collapse
Affiliation(s)
- Weiran Li
- aDepartment of Pediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu 610041, P.R. China
- bKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, P.R. China
| | - Shuanghong Luo
- aDepartment of Pediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu 610041, P.R. China
- bKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, P.R. China
| | - Chaomin Wan
- aDepartment of Pediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu 610041, P.R. China
- bKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, P.R. China
| |
Collapse
|
40
|
Rajab IM, Hart PC, Potempa LA. How C-Reactive Protein Structural Isoforms With Distinctive Bioactivities Affect Disease Progression. Front Immunol 2020; 11:2126. [PMID: 33013897 PMCID: PMC7511658 DOI: 10.3389/fimmu.2020.02126] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022] Open
Abstract
C-reactive protein (CRP) is a widely known, hepatically synthesized protein whose blood levels change rapidly and pronouncedly in response to any tissue damaging event associated with an inflammatory response. The synthesis and secretion of CRP is stimulated by interleukin-6, an early pleiotropic cytokine released by macrophages, endothelial, and other cells that are activated when localized normal tissue structures are compromised by trauma or disease. Serum CRP levels can change rapidly and robustly from 10-100-fold within 6–72 h of any tissue damaging event. Elevated blood levels correlate with the onset and extent of both activated inflammation and the acute phase biochemical response to the tissue insult. Because its functional bioactivity as the prototypic acute phase reactant has eluded clear definition for decades, diagnosticians of various conditions and diseases use CRP blood levels as a simple index for ongoing inflammation. In many pathologies, which involves many different tissues, stages of disease, treatments, and responses to treatments, its interpretive diagnostic value requires a deeper understanding of the localized tissue processes and events that contribute signals which regulate protective or pathological host defense bioactivities. This report presents concepts that describe how local tissue activation events can lead to a non-proteolytic, conformational rearrangement of CRP into a unique isoform with distinctive solubility, antigenicity, binding reactivities and bioactivities from that protein widely known and measured in serum. By describing factors that control the expression, tissue localization, half-life and pro-inflammatory amplification activity of this CRP isoform, a unifying explanation for the diagnostic significance of CRP measurement in disease is advanced.
Collapse
Affiliation(s)
- Ibraheem M Rajab
- Roosevelt University College of Pharmacy, Schaumburg, IL, United States
| | - Peter C Hart
- Roosevelt University College of Pharmacy, Schaumburg, IL, United States
| | | |
Collapse
|
41
|
Dietary Gluten and Neurodegeneration: A Case for Preclinical Studies. Int J Mol Sci 2020; 21:ijms21155407. [PMID: 32751379 PMCID: PMC7432597 DOI: 10.3390/ijms21155407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Although celiac disease (CD) is an autoimmune disease that primarily involves the intestinal tract, mounting evidence suggests that a sizeable number of patients exhibit neurological deficits. About 40% of the celiac patients with neurological manifestations have circulating antibodies against neural tissue transglutaminase-6 (tTG6). While early diagnosis and strict adherence to a gluten-free diet (GFD) have been recommended to prevent neurological dysfunction, better therapeutic strategies are needed to improve the overall quality of life. Dysregulation of the microbiota-gut-brain axis, presence of anti-tTG6 antibodies, and epigenetic mechanisms have been implicated in the pathogenesis. It is also possible that circulating or gut-derived extracellular structures and including biomolecular condensates and extracellular vesicles contribute to disease pathogenesis. There are several avenues for shaping the dysregulated gut homeostasis in individuals with CD, non-celiac gluten sensitivity (NCGS) and/or neurodegeneration. In addition to GFD and probiotics, nutraceuticals, such as phyto and synthetic cannabinoids, represent a new approach that could shape the host microbiome towards better prognostic outcomes. Finally, we provide a data-driven rationale for potential future pre-clinical research involving non-human primates (NHPs) to investigate the effect of nutraceuticals, such as phyto and synthetic cannabinoids, either alone or in combination with GFD to prevent/mitigate dietary gluten-induced neurodegeneration.
Collapse
|
42
|
Transcriptome, Spliceosome and Editome Expression Patterns of the Porcine Endometrium in Response to a Single Subclinical Dose of Salmonella Enteritidis Lipopolysaccharide. Int J Mol Sci 2020; 21:ijms21124217. [PMID: 32545766 PMCID: PMC7352703 DOI: 10.3390/ijms21124217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Endometrial infections at a young age can lead to fertility issues in adulthood. Bacterial endotoxins, such as lipopolysaccharide (LPS), can participate in long-term molecular changes even at low concentrations. Lipopolysaccharide plays a crucial role in the progression of septic shock, inflammation and auto-immune diseases. The aim of this study was to describe transcriptomic modulations in the porcine endometrium, induced in vivo by a single subclinical dose of LPS from Salmonella Enteritidis. which did not produce clinical symptoms of toxicity. The RNA-seq methodology was applied to reveal 456 differentially expressed regions, including 375 genes, four long noncoding RNAs, and 77 other unclassified transcripts. Two independent methods confirmed 118 alternatively spliced genes that participate i.a., in the formation of the MHC-I complex and the adaptive immune response. Single nucleotide variant-calling algorithms supported the identification of 3730 allele-specific expression variants and 57 canonical A-to-I RNA editing sites. The results demonstrated that the differential expression of genes involved in inflammation, immune response, angiogenesis and endometrial development may be maintained for up to 7 days after exposure to LPS. RNA editing sites and long noncoding RNAs (lncRNAs) play an important role in transcriptional regulatory machinery in the porcine endometrium in response to LPS administration.
Collapse
|
43
|
A Spatiotemporal Convolutional Network for Multi-Behavior Recognition of Pigs. SENSORS 2020; 20:s20082381. [PMID: 32331463 PMCID: PMC7219324 DOI: 10.3390/s20082381] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 11/28/2022]
Abstract
The statistical data of different kinds of behaviors of pigs can reflect their health status. However, the traditional behavior statistics of pigs were obtained and then recorded from the videos through human eyes. In order to reduce labor and time consumption, this paper proposed a pig behavior recognition network with a spatiotemporal convolutional network based on the SlowFast network architecture for behavior classification of five categories. Firstly, a pig behavior recognition video dataset (PBVD-5) was built by cutting short clips from 3-month non-stop shooting videos, which was composed of five categories of pig’s behavior: feeding, lying, motoring, scratching and mounting. Subsequently, a SlowFast network based spatiotemporal convolutional network for the pig’s multi-behavior recognition (PMB-SCN) was proposed. The results of the networks with variant architectures of the PMB-SCN were implemented and the optimal architecture was compared with the state-of-the-art single stream 3D convolutional network in our dataset. Our 3D pig behavior recognition network showed a top-1 accuracy of 97.63% and a views accuracy of 96.35% on the test set of PBVD and a top-1 accuracy of 91.87% and a views accuracy of 84.47% on a new test set collected from a completely different pigsty. The experimental results showed that this network provided remarkable ability of generalization and possibility for the subsequent pig detection and behavior recognition simultaneously.
Collapse
|
44
|
Gong Q, He L, Wang M, Zuo S, Gao H, Feng Y, Du L, Luo Y, Li J. Comparison of the TLR4/NFκB and NLRP3 signalling pathways in major organs of the mouse after intravenous injection of lipopolysaccharide. PHARMACEUTICAL BIOLOGY 2019; 57:555-563. [PMID: 31446815 PMCID: PMC6720225 DOI: 10.1080/13880209.2019.1653326] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Context: Lipopolysaccharide (LPS) is often used to induce immunoinflammatory reactions. TLR4/NFκB and NLRP3 signalling are major factors for inflammation. Dexamethasone (DXM) has an anti-immunoinflammatory effect. Objective: To investigate the inflammatory reaction in pathological changes of organs and the expression of inflammatory signalling during LPS infection. Materials and methods: ICR mice were divided into control group (n = 9), LPS group (n = 15) and LPS + DXM group (n = 14). LPS (10 mg/kg) was injected intravenously in LPS group and LPS + DXM group, normal saline was injected to the control group; DXM (0.5 mg/kg) was given by intragastric administration. 12 h after LPS, the blood was collected and the organs were isolated for biochemical analysis, protein expression, and morphological examination. Results: The results showed that BUN, Cre, ALT, AST in the LPS group increased distinctly by 81.42, 67.84, 40.53 and 36.05%, respectively, and CK, ALP, TP and ALB decreased by 71.37, 60.6, 12.57 and 19.73%, respectively, compared with the control group. In the morphologic observation, local necrosis in the liver, arterial vasodilation in the heart and kidney, alveolar secretions and pulmonary interstitial in the lungs, and mucosal shedding in the small and large intestines, the expression of TLR4-NFκB signalling were up-regulated distinctly whereas NLRP3 signalling was less broadly affected. DXM can decrease BUN and Cre, downregulate the expression of TLR4-NFκB signalling, but has no effect on the organ damage based on morphology. Conclusion: Acute injuries induced by LPS are extensive. The inflammatory damage in small and large intestines, liver and kidney was more severe than other organs. TLR4-NFκB signalling was the major response to LPS stress.
Collapse
Affiliation(s)
- Qin Gong
- School of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Luling He
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Mulan Wang
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Shasha Zuo
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yulin Feng
- School of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lijun Du
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yingying Luo
- School of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- Yingying Luo School of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, No. 56, Yangming Road, Nanchang 330006, China
| | - Jun Li
- School of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- CONTACT Jun Li
| |
Collapse
|
45
|
Le Page LM, Guglielmetti C, Najac CF, Tiret B, Chaumeil MM. Hyperpolarized 13 C magnetic resonance spectroscopy detects toxin-induced neuroinflammation in mice. NMR IN BIOMEDICINE 2019; 32:e4164. [PMID: 31437326 PMCID: PMC6817388 DOI: 10.1002/nbm.4164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 05/04/2023]
Abstract
Lipopolysaccharide (LPS) is a commonly used agent for induction of neuroinflammation in preclinical studies. Upon injection, LPS causes activation of microglia and astrocytes, whose metabolism alters to favor glycolysis. Assessing in vivo neuroinflammation and its modulation following therapy remains challenging, and new noninvasive methods allowing for longitudinal monitoring would be highly valuable. Hyperpolarized (HP) 13 C magnetic resonance spectroscopy (MRS) is a promising technique for assessing in vivo metabolism. In addition to applications in oncology, the most commonly used probe of [1-13 C] pyruvate has shown potential in assessing neuroinflammation-linked metabolism in mouse models of multiple sclerosis and traumatic brain injury. Here, we aimed to investigate LPS-induced neuroinflammatory changes using HP [1-13 C] pyruvate and HP 13 C urea. 2D chemical shift imaging following simultaneous intravenous injection of HP [1-13 C] pyruvate and HP 13 C urea was performed at baseline (day 0) and at days 3 and 7 post-intracranial injection of LPS (n = 6) or saline (n = 5). Immunofluorescence (IF) analyses were performed for Iba1 (resting and activated microglia/macrophages), GFAP (resting and reactive astrocytes) and CD68 (activated microglia/macrophages). A significant increase in HP [1-13 C] lactate production was observed at days 3 and 7 following injection, in the injected (ipsilateral) side of the LPS-treated mouse brain, but not in either the contralateral side or saline-injected animals. HP 13 C lactate/pyruvate ratio, without and with normalization to urea, was also significantly increased in the ipsilateral LPS-injected brain at 7 days compared with baseline. IF analyses showed a significant increase in CD68 and GFAP staining at 3 days, followed by increased numbers of Iba1 and GFAP positive cells at 7 days post-LPS injection. In conclusion, we can detect LPS-induced changes in the mouse brain using HP 13 C MRS, in alignment with increased numbers of microglia/macrophages and astrocytes. This study demonstrates that HP 13 C spectroscopy has substantial potential for providing noninvasive information on neuroinflammation.
Collapse
Affiliation(s)
- Lydia M Le Page
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Chloé F Najac
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Brice Tiret
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
46
|
Liu H, Feye KM, Nguyen YT, Rakhshandeh A, Loving CL, Dekkers JCM, Gabler NK, Tuggle CK. Acute systemic inflammatory response to lipopolysaccharide stimulation in pigs divergently selected for residual feed intake. BMC Genomics 2019; 20:728. [PMID: 31610780 PMCID: PMC6792331 DOI: 10.1186/s12864-019-6127-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/20/2019] [Indexed: 12/23/2022] Open
Abstract
Background It is unclear whether improving feed efficiency by selection for low residual feed intake (RFI) compromises pigs’ immunocompetence. Here, we aimed at investigating whether pig lines divergently selected for RFI had different inflammatory responses to lipopolysaccharide (LPS) exposure, regarding to clinical presentations and transcriptomic changes in peripheral blood cells. Results LPS injection induced acute systemic inflammation in both the low-RFI and high-RFI line (n = 8 per line). At 4 h post injection (hpi), the low-RFI line had a significantly lower (p = 0.0075) mean rectal temperature compared to the high-RFI line. However, no significant differences in complete blood count or levels of several plasma cytokines were detected between the two lines. Profiling blood transcriptomes at 0, 2, 6, and 24 hpi by RNA-sequencing revealed that LPS induced dramatic transcriptional changes, with 6296 genes differentially expressed at at least one time point post injection relative to baseline in at least one line (n = 4 per line) (|log2(fold change)| ≥ log2(1.2); q < 0.05). Furthermore, applying the same cutoffs, we detected 334 genes differentially expressed between the two lines at at least one time point, including 33 genes differentially expressed between the two lines at baseline. But no significant line-by-time interaction effects were detected. Genes involved in protein translation, defense response, immune response, and signaling were enriched in different co-expression clusters of genes responsive to LPS stimulation. The two lines were largely similar in their peripheral blood transcriptomic responses to LPS stimulation at the pathway level, although the low-RFI line had a slightly lower level of inflammatory response than the high-RFI line from 2 to 6 hpi and a slightly higher level of inflammatory response than the high-RFI line at 24 hpi. Conclusions The pig lines divergently selected for RFI had a largely similar response to LPS stimulation. However, the low-RFI line had a relatively lower-level, but longer-lasting, inflammatory response compared to the high-RFI line. Our results suggest selection for feed efficient pigs does not significantly compromise a pig’s acute systemic inflammatory response to LPS, although slight differences in intensity and duration may occur.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Animal Science, Iowa State University, 2258 Kildee Hall, Ames, IA, 50011, USA
| | - Kristina M Feye
- Interdepartmental Immunobiology, Department of Animal Science, Iowa State University, 2258 Kildee Hall, Ames, IA, 50011, USA
| | - Yet T Nguyen
- Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA, 23529, USA
| | - Anoosh Rakhshandeh
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS, USDA, 1920 Dayton Ave, Ames, IA, 50010, USA
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, 239 Kildee Hall, Ames, IA, 50011, USA
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, 239 Kildee Hall, Ames, IA, 50011, USA
| | - Christopher K Tuggle
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.
| |
Collapse
|
47
|
Paukszto L, Mikolajczyk A, Szeszko K, Smolinska N, Jastrzebski JP, Kaminski T. Transcription analysis of the response of the porcine adrenal cortex to a single subclinical dose of lipopolysaccharide from Salmonella Enteritidis. Int J Biol Macromol 2019; 141:1228-1245. [PMID: 31520703 DOI: 10.1016/j.ijbiomac.2019.09.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
Lipopolysaccharide (LPS) is a bacterial endotoxin which can participate in the induction of inflammatory responses. LPS may also play a significant role in some neurodegenerative, oncological and metabolic disorders. The aim of the current study was to determine the effect of a subclinical low single dose of LPS from Salmonella Enteritidis administrated in vivo on the transcriptome of porcine adrenal cortex cells, especially gene expression levels, long non-coding RNA (lncRNA) profiles, alternative splicing events and RNA editing sites using RNA-seq technology. The subclinical dose of LPS changed the expression of 354 genes, 27 lncRNA loci and other unclassified RNAs. An analysis of alternative splicing events revealed 104 genes with differentially expressed splice junction sites, and the single nucleotide variant calling approach supported the identification of 376 canonical RNA editing candidates and 7249 allele-specific expression variants. The obtained results suggest that the RIG-I-like receptor signaling pathway, may play a more important role than the Toll-like signaling pathway after the administration of a subclinical dose of LPS. Single subclinical dose of LPS can affect the expression profiles of genes coding peptide hormones, steroidogenic enzymes and transcriptional factors, and modulate the endocrine functions of the gland.
Collapse
Affiliation(s)
- Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Anita Mikolajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
| | - Karol Szeszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Jan P Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| |
Collapse
|
48
|
Missailidis D, Annesley SJ, Fisher PR. Pathological Mechanisms Underlying Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Diagnostics (Basel) 2019; 9:E80. [PMID: 31330791 PMCID: PMC6787592 DOI: 10.3390/diagnostics9030080] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The underlying molecular basis of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is not well understood. Characterized by chronic, unexplained fatigue, a disabling payback following exertion ("post-exertional malaise"), and variably presenting multi-system symptoms, ME/CFS is a complex disease, which demands a concerted biomedical investigation from disparate fields of expertise. ME/CFS research and patient treatment have been challenged by the lack of diagnostic biomarkers and finding these is a prominent direction of current work. Despite these challenges, modern research demonstrates a tangible biomedical basis for the disorder across many body systems. This evidence is mostly comprised of disturbances to immunological and inflammatory pathways, autonomic and neurological dysfunction, abnormalities in muscle and mitochondrial function, shifts in metabolism, and gut physiology or gut microbiota disturbances. It is possible that these threads are together entangled as parts of an underlying molecular pathology reflecting a far-reaching homeostatic shift. Due to the variability of non-overlapping symptom presentation or precipitating events, such as infection or other bodily stresses, the initiation of body-wide pathological cascades with similar outcomes stemming from different causes may be implicated in the condition. Patient stratification to account for this heterogeneity is therefore one important consideration during exploration of potential diagnostic developments.
Collapse
Affiliation(s)
- Daniel Missailidis
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia
| | - Sarah J Annesley
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia
| | - Paul R Fisher
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia.
| |
Collapse
|
49
|
Li Z, Kanitz E, Tuchscherer M, Tuchscherer A, Metges CC, Trakooljul N, Wimmers K, Murani E. Kinetics of Physiological and Behavioural Responses in Endotoxemic Pigs with or without Dexamethasone Treatment. Int J Mol Sci 2019; 20:ijms20061393. [PMID: 30897706 PMCID: PMC6471452 DOI: 10.3390/ijms20061393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
Although dexamethasone (DEX) is a widely used immunoregulatory agent, knowledge about its pharmacological properties in farm animals, especially pigs, is insufficient. Previous studies suggest that compared to other species, pigs are less sensitive to the immunosuppression conferred by DEX and more sensitive to the threat of bacterial endotoxins. However, there is a paucity of studies examining DEX immunomodulation in endotoxemia in this species. In this study, a porcine endotoxemia model was established by lipopolysaccharide (LPS) and the effect of DEX-pretreatment on the magnitude and kinetics of neuroendocrine, metabolic, hematologic, inflammatory, and behavioural responses were examined. DEX decreased cortisol, adrenocorticotropic hormone (ACTH), red blood cell, hemoglobin, hematocrit, and lymphocyte whereas glucose concentration was increased under both normal and endotoxemic conditions. By contrast, DEX decreased triglyceride, lactate, and IL-6 concentrations and increased platelet count only under an endotoxemic condition. DEX also reduced the frequency of sickness behaviour following LPS challenge. PCA showed that glucose and triglyceride metabolism together with red blood cell count mainly contributed to the separation of clusters during DEX treatment. Our study demonstrates that DEX protects pigs from inflammation and morbidity in endotoxemia, in spite of their less sensitivity to DEX. Moreover, its considerable role in the regulation of the metabolic and hematologic responses in endotoxemic pigs is revealed for the first time.
Collapse
Affiliation(s)
- Zhiwei Li
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Ellen Kanitz
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Margret Tuchscherer
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Cornelia C Metges
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Nares Trakooljul
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Eduard Murani
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
50
|
Naya A, Traulsen I, Gertz M, Hasler M, Burfeind O, große Beilage E, Krieter J. Is tail biting in growing pigs reduced by a prolonged suckling period? Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2018.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|