1
|
Stenzel M, Alam M, Witte M, Jelinek J, Armbrecht N, Armstrong A, Kral A, Krauss JK, Land R, Schwabe K, Johne M. Exploring the cognitive effects of hearing loss in adult rats: Implications for visuospatial attention, social behavior, and prefrontal neural activity. Neuroscience 2025; 564:97-109. [PMID: 39522932 DOI: 10.1016/j.neuroscience.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Age-related hearing loss in humans has been associated with cognitive decline, though the underlying mechanisms remain unknown. We investigated the long-term effects of hearing loss on attention, impulse control, social interaction, and neural activity within medial prefrontal cortex (mPFC) subregions. Hearing loss was induced in adult rats via intracochlear neomycin injection (n = 13), with non-operated rats as controls (n = 10). Rats were tested for motor activity (open field), coordination (Rotarod), and social interaction (including ultrasonic vocalization, USV) before surgery and at weeks 1, 2, 4, 8, 16, and 24 post-surgery. From week 8 on, rats were trained in the five-choice serial reaction time task (5-CSRTT) to assess visuospatial attention and impulse control. Finally, oscillatory neuronal activity in mPFC subregions was recorded with multielectrode arrays during anesthesia, followed by immunohistological staining for NeuN+ and Parvalbumin+ cells. Deafened rats were more active than controls, whereas social interaction and USV were temporarily reduced. They also had difficulties to learn the concept of the 5-CSRTT paradigm and made more incorrect responses. Electrophysiology showed decreased power in theta, alpha, and beta frequency, and enhanced high gamma band in the mPFC in deafened rats, which was most pronounced in the cingulate subregion (Cg1). The number of NeuN+ and Parvalbumin+ cells, however, did not differ between groups. The behavioral deficits together with the altered neuronal activity found in the Cg1 subregion of the mPFC in adult deafened rats may be used as an endophenotype to elucidate the mechanisms behind the cognitive decline seen in older patients with hearing loss.
Collapse
Affiliation(s)
- Mariele Stenzel
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Mesbah Alam
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Marla Witte
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Jonas Jelinek
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Nina Armbrecht
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Adrian Armstrong
- Institute of AudioNeuroTechnology, Hannover Medical School, Stadtfelddamm 34, 30625 Hanover, Germany; Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Andrej Kral
- Cluster of Excellence Hearing4all, German Research Foundation, Hanover, Germany; Institute of AudioNeuroTechnology, Hannover Medical School, Stadtfelddamm 34, 30625 Hanover, Germany; Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Rüdiger Land
- Institute of AudioNeuroTechnology, Hannover Medical School, Stadtfelddamm 34, 30625 Hanover, Germany; Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany; Cluster of Excellence Hearing4all, German Research Foundation, Hanover, Germany
| | - Marie Johne
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany; Cluster of Excellence Hearing4all, German Research Foundation, Hanover, Germany.
| |
Collapse
|
2
|
Li J, Mi X, Yang Z, Feng Z, Han Y, Wang T, Lv H, Liu Y, Wu K, Liu J. Minocycline ameliorates cognitive impairment in rats with trigeminal neuralgia by regulating microglial polarization. Int Immunopharmacol 2025; 145:113786. [PMID: 39672028 DOI: 10.1016/j.intimp.2024.113786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Trigeminal neuralgia (TN)-related cognitive impairment is a common cause of decreased quality of life in patients and is closely associated with neuroinflammation. Although minocycline has demonstrated anti-inflammatory, analgesic, and neuroprotective functions, its role in treating TN-related cognitive impairment remains unreported. In this study, we used an in vivo TN model and an in vitro model of primary microglial neuroinflammation to investigate the potential effects of minocycline on cognitive function and microglial polarization in TN rats. Our results suggested that minocycline treatment attenuated cognitive deficits by alleviating hippocampal neuronal damage and enhancing synaptic plasticity in TN rats. Furthermore, both in vitro and in vivo assays demonstrated that minocycline polarized activated microglia to the M2 phenotype, leading to the reduction of pro-inflammatory factors, including tumor necrosis factor-α and interleukin-1, and an increase in the anti-inflammatory factors, such as interleukin-4 and interleukin-10, thereby attenuating neuroinflammation. Moreover, it was found that the TLR4/MyD88/NF-κB pathway was involved in the shift of microglia from a pro-inflammatory (M1) to an anti-inflammatory (M2). In summary, minocycline likely mediated the process of microglia polarization partly via the TLR4/MyD88/NF-κB pathway, promoting neuronal survival and restoring synaptic plasticity, thereby improving TN-related cognitive impairment.
Collapse
Affiliation(s)
- Junjie Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaojuan Mi
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Zhilun Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ziqi Feng
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yong Han
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Haowen Lv
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yanbo Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Kang Wu
- School of Stomatology, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
3
|
Wang S, Ren Y, Duan A, Lu D, Liu G, Meng L, Zhang Y, Shou R, Li H, Wang Z, Wang Z, Sun X. Unravelling the impact of QRICH1 modulation on endoplasmic reticulum stress and neuronal apoptosis in traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167621. [PMID: 39662754 DOI: 10.1016/j.bbadis.2024.167621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major public health concern with high morbidity and mortality rates. Secondary brain injury, marked by inflammatory responses and apoptosis, worsens TBI outcomes. The endoplasmic reticulum stress (ERS) response has been implicated in secondary brain injury, with Glutamine Rich 1 Gene (QRICH1) emerging as a potential mediator. However, the precise role of QRICH1 in TBI pathogenesis and its therapeutic implications remain unclear. METHODS Controlled cortical impact mouse and Lipopolysaccharide-stimulated primary neuron models were used. Behavioral assessments, including the modified Garcia score, Y-maze test, and open-field test, were used to evaluate postoperative recovery in mice. QRICH1 neuron conditional knockout (cKO) mice were used to assess QRICH1 function, whereas adeno-associated virus (AAV)-mediated gene manipulation was used to modulate QRICH1 expression in cortical neurons. RESULTS QRICH1 expression was upregulated in the brain tissue of TBI mice, particularly 24 h post-injury, as shown by western blot analysis and immunofluorescence staining. QRICH1 is localized within neuronal nuclei, suggesting a role in cellular stress responses. QRICH1 cKO improved behavioral outcomes post-TBI, whereas AAV-mediated QRICH1 overexpression exacerbated secondary brain injury, characterized by increased ERS-related protein expression and neuronal death. Conversely, AAV-mediated QRICH1 knockdown reduced secondary brain injury as evidenced by decreased ERS-related protein expression and neuronal death. CONCLUSION QRICH1 plays a critical role in exacerbating ERS and apoptosis, and influences neuronal fate in secondary brain injury. Its involvement in the ERS pathway and in the induction of neuronal apoptosis post-TBI highlights QRICH1 as a potential therapeutic target for TBI treatment.
Collapse
Affiliation(s)
- Shixin Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China; Department of Neurosurgery, Fuyang People's Hospital, Fuyang Clinical College of Anhui Medical University, Fuyang, Anhui 236006, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Aojie Duan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Lei Meng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Yu Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Renjie Shou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
4
|
Sowunmi AA, Omeiza NA, Bakre A, Abdulrahim HA, Aderibigbe AO. Dissecting the antidepressant effect of troxerutin: modulation of neuroinflammatory and oxidative stress biomarkers in lipopolysaccharide-treated mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9965-9979. [PMID: 38951153 DOI: 10.1007/s00210-024-03252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
The role of neuroinflammation in the pathogenesis of depression has prompted the search for new antidepressants. Troxerutin, a bioflavonoid with anti-inflammatory and antioxidant properties, has shown promise, but its impact on neurobehavioral functions remains poorly understood. This study aimed to investigate the antidepressant potential of troxerutin and its effect on the neuroinflammatory response. Here, we exposed male Swiss mice (n = 5/group) to various treatments, including naive and negative controls receiving distilled water, troxerutin-treated groups administered at different doses (10, 20, 40 mg/kg, i.p.), and an imipramine-treated group (25 mg/kg, i.p.). After seven days of treatment, with the exception of the naive group, mice were administered a single dose of lipopolysaccharide (LPS, 0.83 mg/kg). Behavioral evaluations, consisting of the novelty-suppressed feeding (NSF) test, forced swim test (FST), and open field test (OFT), were conducted. Additionally, brain samples were collected for biochemical and immunohistochemical analyses. Troxerutin significantly reduced immobility time in the FST and mitigated behavioral deficits in the NSF test. Additionally, troxerutin increased glutathione (GSH) and superoxide dismutase (SOD) levels while reducing nitrite, malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interferon-gamma (IFN-γ) levels compared to the negative control. Immunohistochemistry analysis revealed decreased expression of inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB) in troxerutin-treated mice. Overall, these findings suggest that troxerutin exerts significant antidepressive-like effects, likely mediated by its anti-inflammatory and antioxidant mechanisms. The reduction in neuroinflammatory and oxidative stress biomarkers, along with the improvement in behavioral outcomes, underscores troxerutin's potential as a therapeutic agent for depression.
Collapse
Affiliation(s)
- Abimbola A Sowunmi
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Noah A Omeiza
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, Academia Sinica, Taipei, Taiwan.
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Adewale Bakre
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Halimat A Abdulrahim
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adegbuyi O Aderibigbe
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
5
|
Kumar S, Rastogi SK, Roy S, Sharma K, Kumar S, Maity D, Chand D, Vishwakarma S, Gayen JR, Srivastava KR, Kumar R, Yadav PN. Discovery and structure - activity relationships of 2,4,5-trimethoxyphenyl pyrimidine derivatives as selective D5 receptor partial agonists. Bioorg Chem 2024; 153:107809. [PMID: 39270528 DOI: 10.1016/j.bioorg.2024.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Dopamine receptors are therapeutic targets for the treatment of various neurological and psychiatric disorders, including Parkinson's and Alzheimer's. Previously, PF-06649751 (tavapadon), PF-2562 and PW0464 have been discovered as potent and selective G protein-biased D1/D5 receptor agonists with optimal pharmacokinetic properties. However, no selective D5R agonist has been reported yet. In this context, we designed and synthesized forty non-catecholamines-based pyrimidine derivatives and identified four pyrimidine derivatives as selective D5R partial agonists. Using cAMP-based GloSensor assay in transiently transfected HEK293T cells with human D1 or D5 receptors, we discovered that compound 5c (4-(4-bromophenyl)-6-(2,4,5-trimethoxyphenyl)pyrimidin-2-amine) exhibited modest D5R agonist activity. This leads us to explore various modifications of this scaffold to improve the D5 agonist potency and efficacy. Using molecular docking, and rational design followed by their evaluation at D1 and D5 receptors for agonist activity, we identified three new derivatives, 5j, 5h, and 5e. The most potent compound of this series 5j (4-(4-iodophenyl)-6-(2,4,5-trimethoxyphenyl)pyrimidin-2-amine), exhibited EC50 of 269.7 ± 6.6 nM. Mice microsomal stability studies revealed that 5j is quite stable (>70 % at 1 hr). Furthermore, pharmacokinetic analysis of 5j (20 mg/kg, p.o) in C57BL/6j mice showed that 5j is readily absorbed via oral route of dosing and also enters into the brain (plasma Tmax: 1 h, Cmax: 51.10 ± 13.51 ng/ml; Brain Tmax: 0.5 h, Cmax: 22.54 ± 4.08 ng/ml). We further determined the in-vivo effect of 5j on cognition in scopolamine-induced amnesia in C57BL/6j mice. We observed that 5j (10 mg/kg, p.o) alleviated scopolamine-induced impairment in short-term memory and social recognition, which were blocked by D1/D5 antagonist SCH23390 (0.1 mg/kg, i.p.). Furthermore, 5j did not exhibit any cytotoxicity (up to 10 µM) or in vivo acute toxicity up to 200 mg/kg (p.o). These results strongly suggest that 5j could be further developed for treating neurological disorders wherein the D5 receptors play pivotal roles.
Collapse
Affiliation(s)
- Sakesh Kumar
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India
| | - Sumit K Rastogi
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India
| | - Subrata Roy
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India
| | - Kajal Sharma
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India
| | - Santosh Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India
| | - Debalina Maity
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, U.P., (226031), India
| | - Diwan Chand
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India
| | - Sachin Vishwakarma
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, U.P., (226031), India
| | - Jiaur R Gayen
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India; Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, U.P., (226031), India
| | - Kinshuk R Srivastava
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India.
| | - Prem N Yadav
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India.
| |
Collapse
|
6
|
Sohn E, Lim HS, Kim BY, Kim YJ, Kim JH, Jeong SJ. Neuroprotective effects of Elaeagnus glabra f. oxyphylla extract in amyloid-beta-induced cognitive deficit mice: Involvement of the PKC-delta, MYL2, and FER pathways. Biomed Pharmacother 2024; 181:117671. [PMID: 39532004 DOI: 10.1016/j.biopha.2024.117671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Elaeagnus glabra f. oxyphylla (EGFO), a member of the Elaeagnaceae family, is an evergreen plant distinct from other species in its genus. We previously reported that ethanol extract from EGFO has memory improvement effects in a short-term memory deficit mouse model and anti-inflammatory effects in a microglial cell line. However, little is known about the pharmacological effects of EGFO. In the present study, we further explored the effect of EGFO on cognitive impairment using amyloid-beta-induced Alzheimer's disease (AD)-like mice. EGFO extract significantly enhanced cognitive functions in the passive avoidance task and Morris water maze test. EGFO treatment led to a significant increase in neuronal nuclei expression in mouse hippocampal tissues and inhibited hydrogen peroxide-induced cell death in HT22 hippocampal cells, indicating the neuroprotective effects of EGFO. Antibody microarray analysis was performed to determine the molecular mechanisms underlying the effects of EGFO on cognitive improvement and neuroprotection. The data revealed that EGFO decreased the phosphorylation of protein kinase C delta and increased the phosphorylation of myosin regulatory light chain 2 and tyrosine kinase Fer. These findings were validated using immunoblotting both in in vitro and in vivo AD models. Overall, our findings suggest that EGFO could be a candidate therapeutic agent for AD or AD-like diseases due to its potential for cognitive improvement and neuroprotection.
Collapse
Affiliation(s)
- Eunjin Sohn
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.
| | - Hye-Sun Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, South Korea.
| | - Bu-Yeo Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.
| | - Yu Jin Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, South Korea.
| | - Soo-Jin Jeong
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.
| |
Collapse
|
7
|
Pan G, Chai L, Chen R, Yuan Q, Song Z, Feng W, Wei J, Yang Z, Zhang Y, Xie G, Yan A, Lv Q, Wang C, Zhao Y, Wang Y. Potential mechanism of Qinggong Shoutao pill alleviating age-associated memory decline based on integration strategy. PHARMACEUTICAL BIOLOGY 2024; 62:105-119. [PMID: 38145345 PMCID: PMC10763866 DOI: 10.1080/13880209.2023.2291689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 11/30/2023] [Indexed: 12/26/2023]
Abstract
CONTEXT Qinggong Shoutao Wan (QGSTW) is a pill used as a traditional medicine to treat age-associated memory decline (AAMI). However, its potential mechanisms are unclear. OBJECTIVE This study elucidates the possible mechanisms of QGSTW in treating AAMI. MATERIALS AND METHODS Network pharmacology and molecular docking approaches were utilized to identify the potential pathway by which QGSTW alleviates AAMI. C57BL/6J mice were divided randomly into control, model, and QGSTW groups. A mouse model of AAMI was established by d-galactose, and the pathways that QGSTW acts on to ameliorate AAMI were determined by ELISA, immunofluorescence staining and Western blotting after treatment with d-gal (100 mg/kg) and QGSTW (20 mL/kg) for 12 weeks. RESULTS Network pharmacology demonstrated that the targets of the active components were significantly enriched in the cAMP signaling pathway. AKT1, FOS, GRIN2B, and GRIN1 were the core target proteins. QGSTW treatment increased the discrimination index from -16.92 ± 7.06 to 23.88 ± 15.94% in the novel location test and from -19.54 ± 5.71 to 17.55 ± 6.73% in the novel object recognition test. ELISA showed that QGSTW could increase the levels of cAMP. Western blot analysis revealed that QGSTW could upregulate the expression of PKA, CREB, c-Fos, GluN1, GluA1, CaMKII-α, and SYN. Immunostaining revealed that the expression of SYN was decreased in the CA1 and DG. DISCUSSION AND CONCLUSIONS This study not only provides new insights into the mechanism of QGSTW in the treatment of AAMI but also provides important information and new research ideas for the discovery of traditional Chinese medicine compounds that can treat AAMI.
Collapse
Affiliation(s)
- Guiyun Pan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lijuan Chai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Yuan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanying Feng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinna Wei
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhang Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guinan Xie
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - An Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingbo Lv
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Caijun Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingqiang Zhao
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Wang Y, Chen Y, Zhang M, Yuan C, Zhang Y, Liu X, Zhang Y, Liang X. Effect of histone demethylase KDM5B on long-term cognitive impairment in neonatal rats induced by sevoflurane. Front Mol Neurosci 2024; 17:1459358. [PMID: 39664113 PMCID: PMC11632109 DOI: 10.3389/fnmol.2024.1459358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Whether repeated inhalation of sevoflurane during the neonatal period causes long-term learning and memory impairments in humans is unclear. Some recent investigations have indicated that general anesthesia drugs affect histone methylation modification and may further affect learning and memory ability. This study aimed to explore the role and mechanism of histone methylation in long-term cognitive dysfunction caused by repeated inhalation of sevoflurane during the neonatal period. Methods Neonatal SD rats were assigned into three groups. Sevoflurane group and sevoflurane +AS8351 group were exposed to 2% sevoflurane for 4 h on postnatal day 7 (P7), day 14 (P7) and day 21 (P21), and the control group was inhaled the air oxygen mixture at the same time. From postnatal day 22 to 36, rats in the +AS8351 group were treated with AS8351 while those in the Sevoflurane group and control group were treated with normal saline. Half of the rats were carried out Y-maze, Morris water maze (MWM), western blot and transmission electron microscope at P37, and the remaining rats were fed to P97 for the same experiment. Results Neonatal sevoflurane exposure affected histone demethylase expression in hippocampus, changed histone methylation levels, Down-regulated synapse-associated protein expression, impaired synaptic plasticity and long-term cognitive dysfunction and KDM5B inhibitors partially restored the negative reaction caused by sevoflurane exposure. Discussion In conclusion, KDM5B inhibitor can save the long-term learning and memory impairment caused by sevoflurane exposure in neonatal period by inhibiting KDM5B activity.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of Anesthesiology, Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Xishui County People’s Hospital, Zunyi, China
| | - Yun Chen
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Mengxiao Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Chengdong Yuan
- Department of Anesthesiology, Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Xingjian Liu
- Department of Anesthesiology, Xishui County People’s Hospital, Zunyi, China
| | - Yi Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaoli Liang
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Lao D, Gong Z, Li T, Mo X, Huang W. The P38MAPK Pathway Mediates the Destruction of the Blood-Brain Barrier in Anti-NMDAR Encephalitis Mice. Neurochem Res 2024; 50:21. [PMID: 39560818 DOI: 10.1007/s11064-024-04270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/10/2024] [Accepted: 09/18/2024] [Indexed: 11/20/2024]
Abstract
The clinical manifestations of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis may be closely related to the integrity of the blood-brain barrier (BBB). The P38 mitogen-activated protein kinase (P38MAPK) pathway plays a protective role in neurodegenerative diseases. However, whether the P38MAPK pathway is involved in the underlying mechanism of tight junction (TJ) protein disruption and neuronal damage has not been elucidated. Therefore, in this study, a mouse model of anti-NMDAR encephalitis was established by active immunization with NMDAR NR1356-385 peptides. The critical pathways of P38MAPK were screened by interaction network and co-enrichment analysis. The role of P38MAPK pathways was investigated by the injection of P38MAPK inhibitor SB203580 (10 mg/kg, i.p.). Compared with the control group, the expression of occludin and zonula occludens (ZO)-1 in NMDAR NR1356-385 group mice was downregulated, and the structure and function of BBB were damaged. However, after the intervention of SB203580, the activation of the P38MAPK was inhibited, the expression of matrix metalloproteinase 9 (MMP9) was reduced, and the function of BBB was improved. Meanwhile, inhibiting the P38MAPK pathway reversed the degradation of NMDAR NR1, while reducing the expression of the glial fibrillary acidic protein (GFAP) and pro-inflammatory factor tumor necrosis factor (TNF-α). It also relieved the damage of neuron-specific nucleus (NeuN), thus alleviating psychobehavioral symptoms. In conclusion, our results suggested that the P38MAPK pathway is involved in BBB destruction and neurobehavioral change in mice with anti-NMDAR encephalitis. Targeting the P38MAPK pathway may be a promising option for the treatment of anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Dayuan Lao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #22 Shuangyong Road, Guangxi, Nanning, 530021, China
| | - Zhuowei Gong
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #22 Shuangyong Road, Guangxi, Nanning, 530021, China
| | - Taiyan Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #22 Shuangyong Road, Guangxi, Nanning, 530021, China
| | - Xuean Mo
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #22 Shuangyong Road, Guangxi, Nanning, 530021, China
| | - Wen Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #22 Shuangyong Road, Guangxi, Nanning, 530021, China.
| |
Collapse
|
10
|
Shoae-Hagh P, Razavi BM, Sadeghnia HR, Mehri S, Karimi G, Hosseinzadeh H. Molecular and Behavioral Neuroprotective Effects of Clavulanic Acid and Crocin in Haloperidol-Induced Tardive Dyskinesia in Rats. Mol Neurobiol 2024:10.1007/s12035-024-04566-x. [PMID: 39520654 DOI: 10.1007/s12035-024-04566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Clavulanic acid (ClvA), a beta-lactamase inhibitor, is being explored for its significant neuroprotective potential. The effects of ClvA were assessed both individually and in combination with crocin (Cr), an antioxidant derived from saffron, in the context of tardive dyskinesia (TD). In rat haloperidol (Hp)-induced-TD (1 mg/kg, i.p. 21 days), the effects of ClvA (50, 100, 150 mg/kg) and Cr (10, 20, 40 mg/kg) were assessed via vacuous chewing movements (VCM) and tongue protrusion (TP). Striatal malondialdehyde (MDA) and glutathione (GSH) were measured spectrophotometrically. Based on the results, ClvA (100 mg/kg) and Cr (10 mg/kg) were determined with sub-effective doses. Glutamate transporter-subtype1 (GLT1), dopamine active transporter (DAT), vesicular monoamine transporter-type2 (VMAT2), Bax/Bcl2, cleaved Caspase3, phosphorylated AKT/AKT, IL1β, and TNFα levels were quantified using western blotting in sub-effective doses and their combination. The behavioral results of catalepsy and orofacial dyskinesia demonstrated model establishment. Hp decreased GLT1 (p < 0.05), DAT (p < 0.01), VMAT2 (p < 0.001), GSH and pAKT/AKT (p < 0.0001); increased TNFα (p < 0.05), IL1β, cleaved Caspase3 (p < 0.001); MDA and Bax/Bcl2 (p < 0.0001). ClvA 100 mg/kg reversed the decreased GLT1 and VMAT2 (p < 0.01), alongside the increased MDA (p < 0.0001) and VCM (p < 0.05). It also increased AKT phosphorylation (p < 0.05). No effects were noted on DAT, GSH, Bax/Bcl2, or inflammatory factors. However, the combination with Cr at 10 mg/kg influenced ClvA on DAT (p < 0.01) and resulted in a significant increase in GSH (p < 0.0001). Additionally, there was a marked decrease in TNFα (p < 0.0001) and IL1β (p < 0.001), enhancing its effects on reducing MDA and increasing pAKT/AKT (p < 0.0001). The combination adversely affected GLT1. ClvA protects against TD via GLT1 and VMAT2; combined with Cr, it enhances antioxidant effects, improves DAT, and requires dose optimization for GLT1 disruption.
Collapse
Affiliation(s)
- Parisa Shoae-Hagh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Poleto KH, Janner DE, Dahleh MMM, Poetini MR, Fernandes EJ, Musachio EAS, de Almeida FP, Amador ECDM, Reginaldo JC, Carriço MRS, Roehrs R, Prigol M, Guerra GP. p-Coumaric acid potential in restoring neuromotor function and oxidative balance through the Parkin pathway in a Parkinson disease-like model in Drosophila melanogaster. Food Chem Toxicol 2024; 193:115002. [PMID: 39276910 DOI: 10.1016/j.fct.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
p-Coumaric acid is a significant phenolic compound known for its potent antioxidant activity. Thus, this study investigated the effects of p-coumaric acid on the behavioral and neurochemical changes induced in Drosophila melanogaster by exposure to rotenone in a Parkinson disease (PD)-like model. The flies were divided into four groups and maintained for seven days on different diets: a standard diet (control), a diet containing rotenone (500 μM), a control diet to which p-coumaric acid was added on the fourth day (0.3 μM), and a diet initially containing rotenone (500 μM) with p-coumaric acid added on the fourth day (0.3 μM). Exposure to p-coumaric acid ameliorated locomotor impairment and reduced mortality induced by rotenone. Moreover, p-coumaric acid normalized oxidative stress markers (ROS, TBARS, SOD, CAT, GST, and NPSH), mitigated oxidative damage, and reflected in the recovery of dopamine levels, AChE activity, and cellular viability post-rotenone exposure. Additionally, p-coumaric acid restored the immunoreactivity of Parkin and Nrf2. The results affirm that p-coumaric acid effectively mitigates PD-like model-induced damage, underscoring its antioxidant potency and potential neuroprotective effect.
Collapse
Affiliation(s)
- Kétnne Hanna Poleto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Márcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Francielli Polet de Almeida
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Elen Caroline de Matos Amador
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil
| | - Jocemara Corrêa Reginaldo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil
| | - Murilo Ricardo Sigal Carriço
- Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil; Environmental and Toxicological Chemical Analysis Laboratory, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Rafael Roehrs
- Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil; Environmental and Toxicological Chemical Analysis Laboratory, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, Itaqui, Rio Grande do Sul, Brazil; Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana Campus, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
12
|
Liu G, Xie R, Tan Q, Zheng J, Li W, Wang Q, Liang Y. Pharmacokinetic study and neuropharmacological effects of atractylenolide Ⅲ to improve cognitive impairment via PI3K/AKT/GSK3β pathway in intracerebroventricular-streptozotocin rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118420. [PMID: 38838925 DOI: 10.1016/j.jep.2024.118420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese herbal remedy Atractylodes macrocephala Koidz is renowned for its purported gastrointestinal regulatory properties and immune-enhancing capabilities. Atractylenolide III (ATL III), a prominent bioactive compound in Atractylodes macrocephala Koidz, has demonstrated significant pharmacological activities. However, its impact on neuroinflammation, oxidative stress, and therapeutic potential concerning Alzheimer's disease (AD) remain inadequately investigated. AIM OF THE STUDY This study aims to assess the plasma pharmacokinetics of ATL III in Sprague-Dawley (SD) rats and elucidate its neuropharmacological effects on AD via the PI3K/AKT/GSK3β pathway. Through this research, we endeavor to furnish experimental substantiation for the advancement of novel therapeutics centered on ATL III. MATERIALS AND METHODS The pharmacokinetic profile of ATL III in SD rat plasma was analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). AD models were induced in SD rats through bilateral intracerebroventricular (ICV) administration of streptozotocin (STZ). ATL III was administered at doses of 0.6 mg/kg, 1.2 mg/kg, and 2.4 mg/kg, while donepezil (1 mg/kg) served as control. Cognitive function assessments were conducted employing behavioral tests including the Morris Water Maze and Novel Object Recognition. Neuronal pathology and histological changes were evaluated through Nissl staining and Hematoxylin-Eosin (HE) staining, respectively. Oxidative stress levels were determined by quantifying malondialdehyde (MDA) content and total superoxide dismutase (T-SOD) activity. Molecular docking analysis was employed to explore the direct binding between ATL III and its relevant targets, followed by validation using Western blot (WB) experiments to assess the expression of p-Tau, PI3K, AKT, GSK3β, and their phosphorylated forms. RESULTS Within the concentration range of 5-500 ng/mL, ATL III demonstrated exceptional linearity (R2 = 0.9991), with a quantification limit of 5 ng/mL. In male SD rats, ATL III exhibited a Tmax of 45 min, a t1/2 of 172.1 min, a Cmax of 1211 ng/L, and an AUC(0-t) of 156031 ng/L*min. Treatment with ATL III significantly attenuated Tau hyperphosphorylation in intracerebroventricular-streptozotocin (ICV-STZ) rats. Furthermore, ATL III administration mitigated neuroinflammation and oxidative stress, as evidenced by reduced Nissl body loss, alleviated histological alterations, decreased MDA content, and enhanced T-SOD activity. Molecular docking analyses revealed strong binding affinity between ATL III and the target genes PI3K, AKT, and GSK3β. Experimental validation corroborated that ATL III stimulated the phosphorylation of PI3K and AKT while reducing the phosphorylation of GSK3β. CONCLUSIONS Our results indicate that ATL III can mitigate Tau protein phosphorylation through modulation of the PI3K/AKT/GSK3β pathway. This attenuation consequently ameliorates neuroinflammation and oxidative stress, leading to enhanced learning and memory abilities in ICV-STZ rats.
Collapse
Affiliation(s)
- Guoqing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Ruiye Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qiwen Tan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Jingjing Zheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
13
|
Zhang X, Shi J, Thakore P, Gonzales AL, Earley S, Chen Q, Zhou T, Earley YF. Mitochondrial small RNA alterations associated with increased lysosome activity in an Alzheimer's Disease Mouse Model uncovered by PANDORA-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619155. [PMID: 39484605 PMCID: PMC11526903 DOI: 10.1101/2024.10.18.619155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Emerging small noncoding RNAs (sncRNAs), including tRNA-derived small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs), are critical in various biological processes, such as neurological diseases. Traditional sncRNA-sequencing (seq) protocols often miss these sncRNAs due to their modifications, such as internal and terminal modifications, that can interfere with sequencing. We recently developed panoramic RNA display by overcoming RNA modification aborted sequencing (PANDORA-seq), a method enabling comprehensive detection of modified sncRNAs by overcoming the RNA modifications. Using PANDORA-seq, we revealed a novel sncRNA profile enriched by tsRNAs/rsRNAs in the mouse prefrontal cortex and found a significant downregulation of mitochondrial tsRNAs and rsRNAs in an Alzheimer's disease (AD) mouse model compared to wild-type controls, while this pattern is not present in the genomic tsRNAs and rsRNAs. Moreover, our integrated analysis of gene expression and sncRNA profiles reveals that those downregulated mitochondrial sncRNAs negatively correlate with enhanced lysosomal activity, suggesting a crucial interplay between mitochondrial RNA dynamics and lysosomal function in AD. Given the versatile tsRNA/tsRNA molecular actions in cellular regulation, our data provide insights for future mechanistic study of AD with potential therapeutic strategies.
Collapse
Affiliation(s)
- Xudong Zhang
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Junchao Shi
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | | | - Albert L. Gonzales
- Department of Physiology & Cell Biology, University of Nevada, Reno, Reno, USA
| | - Scott Earley
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Tong Zhou
- Department of Physiology & Cell Biology, University of Nevada, Reno, Reno, USA
| | - Yumei Feng Earley
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
14
|
Hayashi M, Kudo C, Hanamoto H, Maegawa H, Usami N, Niwa H. Effects of hippocampal damage on pain perception in a rat model of Alzheimer's disease induced by amyloid-β and ibotenic acid injection into the hippocampus. Physiol Behav 2024; 285:114652. [PMID: 39096985 DOI: 10.1016/j.physbeh.2024.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
Patients with Alzheimer's disease (AD) present with a variety of symptoms, including core symptoms as well as behavioral and psychological symptoms. Somatosensory neural systems are generally believed to be relatively unaffected by AD until late in the course of the disease; however, somatosensory perception in patients with AD is not yet well understood. One factor that may complicate the assessment of somatosensory perception in humans centers on individual variations in pathological and psychological backgrounds. It is therefore necessary to evaluate somatosensory perception using animal models with uniform status. In the current study, we focused on the hippocampus, the primary site of AD. We first constructed a rat model of AD model using bilateral hippocampal injections of amyloid-β peptide 1-40 and ibotenic acid; sham rats received saline injections. The Morris water maze test was used to evaluate memory impairment, and the formalin test (1 % or 4 % formalin) and upper lip von Frey test were performed to compare pain perception between AD model and sham rats. Finally, histological and immunohistochemical methods were used to evaluate tissue damage and neuronal activity, respectively, in the hippocampus. AD model rats showed bilateral hippocampal damage and had memory impairment in the Morris water maze test. Furthermore, AD model rats exhibited significantly less pain-related behavior in phase 2 (the last 50 min of the 60-minute observation) of the 4 % formalin test compared with the sham rats. However, no significant changes were observed in the von Frey test. Immunohistochemical observations of the trigeminal spinal subnucleus caudalis after 4 % formalin injection revealed significantly fewer c-Fos-immunoreactive cells in AD model rats than in sham rats, reflecting reduced neuronal activity. These results indicate that AD model rats with hippocampal damage have reduced responsiveness to persistent inflammatory chemical stimuli to the orofacial region.
Collapse
Affiliation(s)
- Masayoshi Hayashi
- Department of Dental Anesthesiology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-871, Japan.
| | - Chiho Kudo
- Department of Dental Anesthesiology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-871, Japan
| | - Hiroshi Hanamoto
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Hiroharu Maegawa
- Department of Dental Anesthesiology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-871, Japan
| | - Nayuka Usami
- Department of Dental Anesthesiology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-871, Japan
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-871, Japan
| |
Collapse
|
15
|
Fahmy MI, Khalaf SS, Elrayess RA. The neuroprotective effects of alpha lipoic acid in rotenone-induced Parkinson's disease in mice via activating PI3K/AKT pathway and antagonizing related inflammatory cascades. Eur J Pharmacol 2024; 980:176878. [PMID: 39127301 DOI: 10.1016/j.ejphar.2024.176878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Parkinson's disease (PD) is an idiopathic disease caused by the loss or degeneration of the dopaminergic (dopamine-producing) neurons in the brain and characterized by various inflammatory and apoptotic responses in the neuronal cells. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) axis is responsible for neuronal survival by providing a number of anti-inflammatory and anti-apoptotic milieu that prevent the progression of PD. Alpha-lipoic acid (ALA) is a natural cofactor that has antioxidant capacity and contributes to various metabolic processes. ALA can penetrate the blood-brain barrier and contribute to numerous neuroprotective effects. It can activate PI3K/AKT pathway with consequent reduction of different inflammatory and oxidative biomarkers. Our work aims to unfold the neuroprotective effects of ALA via targeting PI3k/AKT pathway. Forty male mice were divided into four groups: control, ALA (100 mg/kg/day; i.p.), rotenone (ROT) (1.5 mg/kg/2 days, i.p.) and rotenone + ALA for 21 days. ALA showed obvious neuroprotective effects via significant activation of PI3K/AKT pathway with subsequent decreasing level of Caspase-3. ALA resulted in prominent anti-inflammatory actions by decreasing interlukin-1β (IL-1β), tumor necrosis factor (TNF)-α and nuclear factor kabba (NFk)-B. ALA remarkably induced antioxidant activities via increasing reduced glutathione (GSH) and superoxide dismutase (SOD) levels as well as decreasing malondialdehyde (MDA) level. The substantial behavioral improvement reflected in these results was noticed in the ALA-treated mice as a reflection of the neuroprotective activities of ALA. In conclusion, ALA showed promising neuroprotective effects in rotenone-induced PD via activating the PI3K/AKT pathway and consequent inhibition of apoptotic and inflammatory biomarkers.
Collapse
Affiliation(s)
- Mohamed I Fahmy
- Pharmacology and Toxicology Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt.
| | - Samar S Khalaf
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, 11785, Cairo, Egypt
| | - Ranwa A Elrayess
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
16
|
Farrag EAE, Askar MH, Abdallah Z, Mahmoud SM, Abdulhai EA, Abdelrazik E, Nashar EME, Alasiri FM, Alqahtani ANS, Eldesoqui M, Eldib AM, Magdy A. Comparative effect of atorvastatin and risperidone on modulation of TLR4/NF-κB/NOX-2 in a rat model of valproic acid-induced autism. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:26. [PMID: 39350139 DOI: 10.1186/s12993-024-00250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is significantly increasing, resulting in severe distress. The approved treatment for ASD only partially improves the sympoms, but it does not entirely reverse the symptoms. Developing novel disease-modifying drugs is essential for the continuous improvement of ASD. Because of its pleiotropic effect, atorvastatin has been garnered attention for treating neuronal degeneration. The present study aimed to investigate the therapeutic effects of atorvastatin in autism and compare it with an approved autism drug (risperidone) through the impact of these drugs on TLR4/NF-κB/NOX-2 and the apoptotic pathway in a valproic acid (VPA) induced rat model of autism. METHODS On gestational day 12.5, pregnant rats received a single IP injection of VPA (500 mg/kg), for VPA induced autism, risperidone and atorvastatin groups, or saline for control normal group. At postnatal day 21, male offsprings were randomly divided into four groups (n = 6): control, VPA induced autism, risperidone, and atorvastatin. Risperidone and atorvastatin were administered from postnatal day 21 to day 51. The study evaluated autism-like behaviors using the three-chamber test, the dark light test, and the open field test at the end of the study. Biochemical analysis of TLR4, NF-κB, NOX-2, and ROS using ELISA, RT-PCR, WB, histological examination with hematoxylin and eosin and immunohistochemical study of CAS-3 were performed. RESULTS Male offspring of prenatal VPA-exposed female rats exhibited significant autism-like behaviors and elevated TLR4, NF-κB, NOX-2, ROS, and caspase-3 expression. Histological analysis revealed structural alterations. Both risperidone and atorvastatin effectively mitigated the behavioral, biochemical, and structural changes associated with VPA-induced rat model of autism. Notably, atorvastatin group showed a more significant improvement than risperidone group. CONCLUSIONS The research results unequivocally demonstrated that atorvastatin can modulate VPA-induced autism by suppressing inflammation, oxidative stress, and apoptosis through TLR4/NF-κB/NOX-2 signaling pathway. Atorvastatin could be a potential treatment for ASD.
Collapse
Affiliation(s)
- Eman A E Farrag
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, 31516, Egypt.
| | - Mona H Askar
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Zienab Abdallah
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Safinaz M Mahmoud
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman A Abdulhai
- Department of Pediatrics, Faculty of Medicine, Mansoura, University, Mansoura, Egypt
| | - Eman Abdelrazik
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, 62529, Abha, Saudi Arabia
| | | | | | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 13713, Diriyah, Riyadh, Saudi Arabia
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ali M Eldib
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
- Al Rayan National College of Medicine, Hejrah Street-Madinah, P.O. Box 41411, Al-Madinah, Kingdom of Saudi Arabia
| | - Alshimaa Magdy
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Gholami M, Klionsky DJ, Motaghinejad M. Preventive Effects of Crocin, a Key Carotenoid Component in Saffron, Against Nicotine-Triggered Neurodegeneration in Rat Hippocampus: Possible Role of Autophagy and Apoptosis. Int J Prev Med 2024; 15:46. [PMID: 39539579 PMCID: PMC11559686 DOI: 10.4103/ijpvm.ijpvm_41_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/20/2024] [Indexed: 11/16/2024] Open
Abstract
Background Nicotine is a behavioral stimulant that in high doses, through the neuro-inflammatory and oxidative stress pathway, can induce apoptosis and autophagy leading to cell death. Previous data indicate that crocin has neuroprotective properties. The aim of the current study is to investigate crocin's neuroprotective effects against nicotine-triggered neuro-inflammation, apoptosis, and autophagy in rat hippocampus. Methods Seventy adult male Wistar rats were divided into the following seven groups: Group one received normal saline (0.2 ml/rat), group two was treated with nicotine 10 mg/kg intraperitoneally, groups 3 to 6 were treated simultaneously with nicotine and crocin (10, 20, 40, and 80 mg/kg, intraperitoneally), group 7 was treated with crocin-alone (80 mg/kg, intraperitoneally). The period of the mentioned agent administration was 21 days. On the 22nd day, an open field test (OFT) was used for evaluation of anxiety and motor activity changes. Inflammatory and oxidative stress factors and also apoptosis and autophagy biomarkers were evaluated. Results All mentioned doses of crocin could decrease the nicotine-induced OFT behavioral changes. Crocin also could decrease levels of hippocampal TNF/TNF-α (tumor necrosis factor), IL1B/IL-1β (interleukin 1 beta), oxidized glutathione (GSSG), unphosphorylated and phosphorylated forms of JNK, BECN1 (beclin 1), BAX (BCL2 associated X, apoptosis regulator), and phosphorylated/inactive forms of BCL2 (BCL2 apoptosis regulator) in nicotine-dependent rats. Crocin treatments also caused increases in the reduced form of glutathione (GSH) content and activity of CAT (catalase) and mitochondrial complex enzymes in nicotine-addicted subjects. Conclusions Crocin can modulate JNK-BCL2-BECN1 or JNK-BCL2-BAX signaling pathways and reduce neuronal oxidative stress, neuro-inflammation, and mitochondrial respiratory chain enzymes and exert neuroprotective effects against nicotine-induced neurodegeneration.
Collapse
Affiliation(s)
- Mina Gholami
- College of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Piva A, Benvegnù G, Negri S, Commisso M, Ceccato S, Avesani L, Guzzo F, Chiamulera C. Whole Plant Extracts for Neurocognitive Disorders: A Narrative Review of Neuropsychological and Preclinical Studies. Nutrients 2024; 16:3156. [PMID: 39339756 PMCID: PMC11434991 DOI: 10.3390/nu16183156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The incidence of neurodegenerative disorders like Alzheimer's or Parkinson's Disease, characterized by a progressive cognitive decline, is rising worldwide. Despite the considerable efforts to unveil the neuropsychological bases of these diseases, there is still an unmet medical need for effective therapies against cognitive deficits. In recent years, increasing laboratory evidence indicates the potential of phytotherapy as an integrative aid to improve cognitive functions. In this review, we describe the data of plant whole extracts or single compounds' efficacy on validated preclinical models and neuropsychological tests, aiming to correlate brain mechanisms underlying rodent behavioral responses to human findings. After a search of the literature, the overview was limited to the following plants: Dioscorea batatas, Ginkgo biloba, Melissa officinalis, Nigella sativa, Olea europaea, Panax ginseng, Punica granatum, and Vitis vinifera. Results showed significant improvements in different cognitive functions, such as learning and memory or visuospatial abilities, in both humans and rodents. However, despite promising laboratory evidence, clinical translation has been dampened by a limited pharmacological characterization of the single bioactive components of the herbal products. Depicting the contribution of the single phytochemicals to the phytocomplex's pharmacological efficacy could enable the comprehension of their potential synergistic activity, leading to phytotherapy inclusion in the existing therapeutic package against cognitive decline.
Collapse
Affiliation(s)
- Alessandro Piva
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (G.B.); (C.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
| | - Giulia Benvegnù
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (G.B.); (C.C.)
| | - Stefano Negri
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Mauro Commisso
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Sofia Ceccato
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (G.B.); (C.C.)
| | - Linda Avesani
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Flavia Guzzo
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Cristiano Chiamulera
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (G.B.); (C.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
| |
Collapse
|
19
|
Li QQ, Yu Q, Liu ZY, Zhang Q, Li MY, Hu Y. Sevoflurane anesthesia during late gestation induces cognitive disorder in rat offspring via the TLR4/BDNF/TrkB/CREB pathway. J Neuropathol Exp Neurol 2024:nlae096. [PMID: 39271176 DOI: 10.1093/jnen/nlae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Sevoflurane (Sevo) is widely used for general anesthesia during pregnancy. Emerging evidence indicates that maternal Sevo exposure can trigger developmental neurotoxicity in the offspring. Nonetheless, the underlying mechanisms need further investigation. Pregnant Sprague-Dawley rats on gestational day 18 were exposed to 3.5% Sevo to induce the rat model of neurotoxicity. TAK-242, a TLR4 inhibitor, was administrated to inhibit the signaling transduction. Hippocampal tissues of rat offspring were harvested for immunohistochemical staining, TUNEL staining, Western blotting, ELISA, and measurement of oxidative stress-related markers. Serum samples were collected to evaluate lipid metabolism-associated factors. Morris water maze was implemented to test the cognitive function of offspring rats. Rat hippocampal neurons were isolated to elucidate the effect of TAK-242 on the BDNF/TrkB/CREB signaling in vitro. The results showed that maternal Sevo exposure during the third trimester induced neuroinflammation, lipid metabolism disturbance, and oxidative stress, and impaired the spatial learning and memory of rat offspring. Sevo upregulated TLR4 and impeded BDNF/TrkB/CREB signaling transduction in the hippocampus of rat offspring; TAK-242 administration reversed these effects. In conclusion, Sevo anesthesia during late gestation impairs the learning and memory ability of rat offspring possibly by promoting neuroinflammation and disturbing lipid metabolism via the TLR4/BDNF/TrkB/CREB pathway.
Collapse
Affiliation(s)
- Qian-Qian Li
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qi Yu
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhi-Yi Liu
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qin Zhang
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Meng-Yuan Li
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yan Hu
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Hu T, Wei JW, Zheng JY, Luo QY, Hu XR, Du Q, Cai YF, Zhang SJ. Metformin improves cognitive dysfunction through SIRT1/NLRP3 pathway-mediated neuroinflammation in db/db mice. J Mol Med (Berl) 2024; 102:1101-1115. [PMID: 38953935 DOI: 10.1007/s00109-024-02465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Diabetes mellitus (DM), an important public health problem, aggravates the global economic burden. Diabetic encephalopathy (DE) is a serious complication of DM in the central nervous system. Metformin has been proven to improve DE. However, the mechanism is still unclear. In this study, the db/db mice, a common model used for DE, were employed to explore and study the neuroprotective effect of metformin and related mechanisms. Behavioral tests indicated that metformin (100 or 200 mg/kg/day) could significantly improve the learning and memory abilities of db/db mice. The outcomes from the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) demonstrate that metformin effectively modulates glucose and insulin signaling pathways in db/db mice. The results of body weight and blood lipid panel (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol) show that metformin promotes the level of lipid metabolism in db/db mice. Furthermore, data from oxidative stress assays, which measured levels of malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase, suggest that metformin suppresses oxidative stress-induced brain damage in db/db mice. In addition, western blot, Nissl staining, and immunofluorescence results showed that metformin increased the expressions of nerve growth factor and postsynaptic density 95 and repaired neuronal structural damage. For the mechanism study, metformin activated SIRT1 and inhibited the expression of NLRP3 inflammasome (NLRP3, ASC, caspase-1, IL-1β, and IL-18) and inflammatory cytokines (TNFα and IL-6). In conclusion, metformin could ameliorate cognitive dysfunction through the SIRT1/NLRP3 pathway, which might be a promising mechanism for DE treatment.
Collapse
Affiliation(s)
- Tian Hu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jun-Wen Wei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Qing-Yi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xin-Rui Hu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Qun Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ye-Feng Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
21
|
Gupta N, Sharma PK, Yadav SS, Chauhan M, Datusalia AK, Saha S. Tricompartmental Microcarriers with Controlled Release for Efficient Management of Parkinson's Disease. ACS Biomater Sci Eng 2024; 10:5039-5056. [PMID: 38978474 DOI: 10.1021/acsbiomaterials.4c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parkinson's is a progressive neurodegenerative disease of the nervous system. It has no cure, but its symptoms can be managed by supplying dopamine artificially to the brain.This work aims to engineer tricompartmental polymeric microcarriers by electrohydrodynamic cojetting technique to encapsulate three PD (Parkinson's disease) drugs incorporated with high encapsulation efficiency (∼100%) in a single carrier at a fixed drug ratio of 4:1:8 (Levodopa (LD): Carbidopa(CD): Entacapone (ENT)). Upon oral administration, the drug ratio needs to be maintained during subsequent release from microparticles to enhance the bioavailability of primary drug LD. This presents a notable challenge, as the three drugs vary in their aqueous solubility (LD > CD > ENT). The equilibrium of therapeutic release was achieved using a combination of FDA-approved polymers (PLA, PLGA, PCL, and PEG) and the disc shape of particles. In vitro studies demonstrated the simultaneous release of all the three therapeutics in a sustained and controlled manner. Additionally, pharmacodynamics and pharmacokinetics studies in Parkinson's disease rats induced by rotenone showed a remarkable improvement in PD conditions for the microparticles-fed rats, thereby showing a great promise toward efficient management of PD.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, Hauz Khas 110016, India
- Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 30010, Taiwan
- International College of Semiconductor Technology, National Yang-Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Pankaj Kumar Sharma
- Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar S3, New Delhi 110017, India
| | - Shreyash Santosh Yadav
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India
| | - Meenakshi Chauhan
- Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar S3, New Delhi 110017, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, Hauz Khas 110016, India
| |
Collapse
|
22
|
Ozdemir-Kumral ZN, Akgün T, Haşim C, Ulusoy E, Kalpakçıoğlu MK, Yüksel MF, Okumuş T, Us Z, Akakın D, Yüksel M, Gören Z, Yeğen BÇ. Intracerebroventricular administration of the exercise hormone irisin or acute strenuous exercise alleviates epileptic seizure-induced neuroinflammation and improves memory dysfunction in rats. BMC Neurosci 2024; 25:36. [PMID: 39103771 DOI: 10.1186/s12868-024-00884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Status epilepticus is a common and potentially life-threatening neurological emergency with a high risk for cognitive and neurobiological impairment. Our aim was to evaluate the neuroprotective effects of centrally administered irisin and acute exhausting exercise against oxidative brain injury and memory dysfunction due to a pentylenetetrazole (PTZ)-induced single seizure. Male Sprague Dawley rats with intracerebroventricular (icv) cannulas were randomly divided into intraperitoneally (ip) saline-injected control and PTZ-injected (45 mg/kg) seizure groups. Both the control and PTZ groups were then treated with irisin (7.5 µg/kg, 2 µl, icv), saline (2 µl, icv) or were forced to an acute bout of strenuous exercise before the ip injection of saline (control) or PTZ. Seizures were evaluated using the Racine score. To evaluate memory performance, a passive avoidance test was performed before and after PTZ injection. Following euthanasia at the 24th hour of seizure induction, brain tissues were removed for histopathological examination and for evaluating oxidative damage, antioxidant capacity, and neurotransmitter levels. RESULTS Glutamate/GABA imbalance observed in PTZ rats was corrected by irisin administration (p < 0.001/p < 0.01), while irisin prevented the generation of reactive oxygen species and lipid peroxidation (p < 0.05 - 0.001) and replenished the antioxidant catalase and glutathione levels (p < 0.01-0.01) in the cerebral tissue, and reduced the histologically evident neuronal injury due to a single seizure (p < 0.05 - 0.01). Irisin also delayed the onset of seizures (p < 0.05) and improved memory dysfunction (p < 0.05), but did not affect the severity of seizures. The acute exhaustive swimming exercise completed before PTZ-seizure depressed glutamate level (p < 0.001), maintained the oxidant/antioxidant balance, alleviated neuronal injury (p < 0.05 - 0.01) and upregulated cerebral BDNF expression (p < 0.05). CONCLUSION In conclusion, acute high-intensity exercise or exogenously administered irisin provides neuroprotection by maintaining the balance of excitatory/inhibitory neurotransmitters and oxidant/antioxidant systems.
Collapse
Affiliation(s)
- Zarife Nigâr Ozdemir-Kumral
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye
| | - Tuğçe Akgün
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye
| | - Ceren Haşim
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | - Ezgi Ulusoy
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | | | | | - Tunahan Okumuş
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | - Zeynep Us
- Department of Pharmacology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Dilek Akakın
- Department of Histology and Embryology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Meral Yüksel
- Department of Medical Laboratory, Marmara University Vocational School of Health Services, İstanbul, Türkiye
| | - Zafer Gören
- Department of Pharmacology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye.
| |
Collapse
|
23
|
Zhang X, Fan L, Yang L, Jin X, Liu H, Lei H, Song X, Zhang Z, Zhang F, Song J. DAPK1 mediates cognitive dysfunction and neuronal apoptosis in PSD rats through the ERK/CREB/BDNF signaling pathway. Behav Brain Res 2024; 471:115064. [PMID: 38777261 DOI: 10.1016/j.bbr.2024.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Post-stroke depression (PSD) is one of the most common mental sequelae after a stroke and can damage the brain. Although PSD has garnered increasing attention in recent years, the precise mechanism remains unclear. Studies have indicated that the expression of DAPK1 is elevated in various neurodegenerative conditions, including depression, ischemic stroke, and Alzheimer's disease. However, the specific molecular mechanism of DAPK1-mediated cognitive dysfunction and neuronal apoptosis in PSD rats is unclear. In this study, we established a rat model of PSD, and then assessed depression-like behaviors and cognitive dysfunction in rats using behavioral tests. In addition, we detected neuronal apoptosis and analyzed the expression of DAPK1 protein and proteins related to the ERK/CREB/BDNF signaling pathway. The findings revealed that MCAO combined with CUMS can induce more severe depression-like behaviors and cognitive dysfunction in rats, while overexpression of DAPK1 may hinder the downstream ERK/CREB/BDNF signaling pathways, resulting in neuronal loss and exacerbation of brain tissue damage. In this study, we will focus on DAPK1 and explore its role in PSD.
Collapse
Affiliation(s)
- Xinyue Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Lifei Fan
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Lina Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China
| | - Xuejiao Jin
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Huanhuan Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Hao Lei
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Xiaojia Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Zhaohui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Fuping Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453000, China; Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451162, China.
| | - Jinggui Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China; Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451162, China.
| |
Collapse
|
24
|
Ling Q, Zhang J, Zhong L, Li X, Sun T, Xiang H, Manyande A, Zhao G, Shi Y, Zhu Q. The role of gut microbiota in chronic restraint stress-induced cognitive deficits in mice. BMC Microbiol 2024; 24:289. [PMID: 39095715 PMCID: PMC11295512 DOI: 10.1186/s12866-024-03435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Chronic stress induces cognitive deficits. There is a well-established connection between the enteric and central nervous systems through the microbiota-gut-brain (MGB) axis. However, the effects of the gut microbiota on cognitive deficits remain unclear. The present study aimed to elucidate the microbiota composition in cognitive deficits and explore its potential in predicting chronic stress-induced cognitive deficits. METHODS Mice were randomly divided into control and chronic restraint stress (CRS) groups. The mice subjected to CRS were further divided into cognitive deficit (CRS-CD) and non-cognitive deficit (CRS-NCD) groups using hierarchical cluster analysis of novel object recognition test results. The composition and diversity of the gut microbiota were analyzed. RESULTS After being subjected to chronic restraint distress, the CRS-CD mice travelled shorter movement distances (p = 0.034 vs. CRS-NCD; p < 0.001 vs. control) and had a lower recognition index than the CRS-NCD (p < 0.0001 vs. CRS-NCD; p < 0.0001 vs. control) and control mice. The results revealed that 5 gut bacteria at genus levels were significantly different in the fecal samples of mice in the three groups. Further analyses demonstrated that Muricomes were not only significantly enriched in the CRS-CD group but also correlated with a decreased cognitive index. The area under the receiver operating curve of Muricomes for CRS-induced cognitive deficits was 0.96. CONCLUSIONS Our study indicates that the composition of the gut microbiota is involved in the development of cognitive deficits induced by chronic restraint stress. Further analysis revealed that Muricomes have the potential to predict the development of chronic stress-induced cognitive deficits in mice.
Collapse
Affiliation(s)
- Qiong Ling
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou, 510120, China
| | - Junhong Zhang
- Department of Research Public Service Center, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Zhong
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou, 510120, China
| | - Xiangyu Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou, 510120, China
| | - Tianning Sun
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Gaofeng Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou, 510120, China.
| | - Yongyong Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou, 510120, China.
| | - Qianqian Zhu
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|
25
|
Arora R, Deshmukh R. Embelin Mitigates Amyloid-β-Induced Neurotoxicity and Cognitive Impairment in Rats: Potential Therapeutic Implications for Alzheimer's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04308-z. [PMID: 39008170 DOI: 10.1007/s12035-024-04308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024]
Abstract
Alzheimer's disease (AD) is a significant form of dementia. Embelin (EMB) is a natural compound with varied actions that could help prevent AD pathology. Herein, we have investigated the neuroprotective potential of EMB against Aβ1-42-induced neurotoxicity in rats. In this experiment, Alzheimer-like dementia was induced in rats by infusing Aβ1-42 oligomers directly into the brain's ventricles. Subsequently, the Aβ1-42-intoxicated rats received treatment with varying doses of EMB (2.5, 5, and 10 mg/kg, administered intraperitoneally) over 2 weeks. The spatial and non-spatial memory of animals was assessed at different time intervals, and various biochemical, neurochemical, and neuroinflammatory parameters in the hippocampal brain tissue of the rats were analyzed. Infusion of Aβ1-42 in rat brain caused cognitive impairment and was accompanied by increased acetylcholinesterase activity, oxidative stress, and elevated levels of pro-inflammatory cytokines (such as TNF-α, IL-1β, and IL-6) in the hippocampal tissue. Moreover, a significant decline in the levels of monoamines and an imbalance of GABA and glutamate levels were also observed. EMB treatment significantly mitigated Aβ1-42-induced cognitive deficit and other biochemical changes, including Aβ levels. The EMB-treated rats showed improved learning and consolidation of memory. EMB also attenuated Aβ-induced oxidative stress and neuroinflammation and restored the levels of monoamines and the balance between GABA and glutamate. The observed cognitive benefits following EMB treatment in Aβ1-42-infused rats may be attributed to its antioxidant and anti-inflammatory properties and ability to restore hippocampal neurochemistry and Aβ levels. The above findings indicate the therapeutic potential of EMB in neurodegenerative pathologies associated with cognitive decline, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Rimpi Arora
- Research Scholar, IKGPTU, Jalandhar, Punjab, India;, ISF College of Pharmacy, Moga, Pb, 142001, India
| | - Rahul Deshmukh
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Pb, 151001, India.
| |
Collapse
|
26
|
Franco-Pérez J. Mechanisms Underlying Memory Impairment Induced by Fructose. Neuroscience 2024; 548:27-38. [PMID: 38679409 DOI: 10.1016/j.neuroscience.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Fructose consumption has increased over the years, especially in adolescents living in urban areas. Growing evidence indicates that daily fructose consumption leads to some pathological conditions, including memory impairment. This review summarizes relevant data describing cognitive deficits after fructose intake and analyzes the underlying neurobiological mechanisms. Preclinical experiments show sex-related deficits in spatial memory; that is, while males exhibit significant imbalances in spatial processing, females seem unaffected by dietary supplementation with fructose. Recognition memory has also been evaluated; however, only female rodents show a significant decline in the novel object recognition test performance. According to mechanistic evidence, fructose intake induces neuroinflammation, mitochondrial dysfunction, and oxidative stress in the short term. Subsequently, these mechanisms can trigger other long-term effects, such as inhibition of neurogenesis, downregulation of trophic factors and receptors, weakening of synaptic plasticity, and long-term potentiation decay. Integrating all these neurobiological mechanisms will help us understand the cellular and molecular processes that trigger the memory impairment induced by fructose.
Collapse
Affiliation(s)
- Javier Franco-Pérez
- Laboratorio Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Insurgentes Sur 3877, Col. La Fama, C.P. 14269, CDMX, México, Mexico.
| |
Collapse
|
27
|
Shang NY, Huang LJ, Lan JQ, Kang YY, Tang JS, Wang HY, Li XN, Sun Z, Chen QY, Liu MY, Wen ZP, Feng XH, Wu L, Peng Y. PHPB ameliorates memory deficits and reduces oxidative injury in Alzheimer's disease mouse model by activating Nrf2 signaling pathway. Acta Pharmacol Sin 2024; 45:1142-1159. [PMID: 38409216 PMCID: PMC11130211 DOI: 10.1038/s41401-024-01240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia in elderly people and substantially affects patient quality of life. Oxidative stress is considered a key factor in the development of AD. Nrf2 plays a vital role in maintaining redox homeostasis and regulating neuroinflammatory responses in AD. Previous studies show that potassium 2-(1-hydroxypentyl)-benzoate (PHPB) exerts neuroprotective effects against cognitive impairment in a variety of dementia animal models such as APP/PS1 transgenic mice. In this study we investigated whether PHPB ameriorated the progression of AD by reducing oxidative stress (OS) damage. Both 5- and 13-month-old APP/PS1 mice were administered PHPB (100 mg·kg-1·d-1, i.g.) for 10 weeks. After the cognition assessment, the mice were euthanized, and the left hemisphere of the brain was harvested for analyses. We showed that 5-month-old APP/PS1 mice already exhibited impaired performance in the step-down test, and knockdown of Nrf2 gene only slightly increased the impairment, while knockdown of Nrf2 gene in 13-month-old APP/PS1 mice resulted in greatly worse performance. PHPB administration significantly ameliorated the cognition impairments and enhanced antioxidative capacity in APP/PS1 mice. In addition, PHPB administration significantly increased the p-AKT/AKT and p-GSK3β/GSK3β ratios and the expression levels of Nrf2, HO-1 and NQO-1 in APP/PS1 mice, but these changes were abolished by knockdown of Nrf2 gene. In SK-N-SH APPwt cells and primary mouse neurons, PHPB (10 μM) significantly increased the p-AKT/AKT and p-GSK3β/GSK3β ratios and the level of Nrf2, which were blocked by knockdown of Nrf2 gene. In summary, this study demonstrates that PHPB exerts a protective effect via the Akt/GSK3β/Nrf2 pathway and it might be a promising neuroprotective agent for the treatment of AD.
Collapse
Affiliation(s)
- Nian-Ying Shang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Long-Jian Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jia-Qi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yu-Ying Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jing-Shu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hong-Yue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xin-Nan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhuo Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qiu-Yu Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Meng-Yao Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zi-Peng Wen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xin-Hong Feng
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
28
|
Shen J, Chen S, Li X, Wu L, Mao X, Jiang J, Zhu D. Salidroside Mediated the Nrf2/GPX4 Pathway to Attenuates Ferroptosis in Parkinson's Disease. Neurochem Res 2024; 49:1291-1305. [PMID: 38424396 PMCID: PMC10991011 DOI: 10.1007/s11064-024-04116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
Parkinson's Disease (PD) is characterized by the loss of dopaminergic neurons, with ferroptosis playing a significant role. Salidroside (SAL) has shown neuroprotective potential, this study aims to explore its capacity to mitigate ferroptosis in PD, focusing on the modulation of the Nuclear Factor E2-Related Factor 2 (Nrf2)/ Glutathione Peroxidase 4 (GPX4) pathway. Male C57BL/6 mice were subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD-like symptoms, followed by SAL and Nrf2 inhibitor administration. Then behavioral tests, immunohistochemical staining, transmission electron microscopy, and Western blot analysis were conducted to assess motor functions, pathological changes, ferroptosis, and related protein expressions. In vitro, SH-SY5Y cells were treated with erastin to induce ferroptosis to assess the protective effects of SAL. Additionally, A53T-α-synuclein (α-syn) was used to stimulate the PD model, SAL and a Nrf2 inhibitor (ML385) was utilized to elucidate the role of the Nrf2/GPX4 pathway in mitigating ferroptosis in PD. In vivo, SAL significantly improved motor functions and reduced the expression of α-syn, while increasing tyrosine hydroxylase (TH) expression of PD mice. Additionally, SAL treatment notably enhanced the levels of antioxidants and reduced MDA and iron content in the substantia nigra of PD mice. In vitro, SAL treatment increased the TH, GPX4, Nrf2 expression, and mitochondrial membrane potential whereas alleviated ferroptosis through the Nrf2/GPX4 pathway, as evidenced in erastin-induced and α-syn overexpressing SH-SY5Y cells. While these effects were reversed upon Nrf2 inhibition. SAL demonstrates significant potential in mitigating PD pathology and ferroptosis, positioning the Nrf2/GPX4 pathway as a promising therapeutic target. However, future studies should focus on the long-term effects of SAL, its pharmacokinetics, addressing the multifactorial nature of PD pathogenesis.
Collapse
Affiliation(s)
- Jun Shen
- Department of General Medicine, Hangzhou Linping District First People's Hospital, No. 369 Yingbin Road, Nanyuan Street, Linping District, Hangzhou, 311199, Zhejiang, China.
| | - Shasha Chen
- Department of Medical Geriatrics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xin Li
- Department of General Medicine, Hangzhou Linping District First People's Hospital, No. 369 Yingbin Road, Nanyuan Street, Linping District, Hangzhou, 311199, Zhejiang, China
| | - Lele Wu
- Department of General Medicine, Hangzhou Linping District First People's Hospital, No. 369 Yingbin Road, Nanyuan Street, Linping District, Hangzhou, 311199, Zhejiang, China
| | - Xue Mao
- Department of General Medicine, Hangzhou Linping District First People's Hospital, No. 369 Yingbin Road, Nanyuan Street, Linping District, Hangzhou, 311199, Zhejiang, China
| | - Jingjie Jiang
- Department of General Medicine, Hangzhou Linping District First People's Hospital, No. 369 Yingbin Road, Nanyuan Street, Linping District, Hangzhou, 311199, Zhejiang, China
| | - Dabu Zhu
- Department of Pharmacy, Hangzhou Linping District First People's Hospital, Hangzhou, 311199, Zhejiang, China
| |
Collapse
|
29
|
Naghdi Babaei F, Shirzad M, Ghasemi-Kasman M, Ghadir S, Hasaniani N, Ghasemi S, Amiri Manjili D. Sub-acute administration of metal-organic Framework-5 induces behavioral impairments and augments the levels of oxidative stress and inflammation in the brain of rats. Food Chem Toxicol 2024; 187:114608. [PMID: 38522498 DOI: 10.1016/j.fct.2024.114608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Metal-organic frameworks (MOFs) are known as potential pharmaceutical carriers because of their structure. Here, we evaluated the sub-acute administrations of MOF-5 on behavioral parameters, oxidative stress, and inflammation levels in rats. Thirty-two male Wistar rats received four injections of saline or MOF-5 at different doses which were 1, 10, and 50 mg/kg via caudal vein. Y-Maze and Morris-Water Maze (MWM) tests were used to explore working memory and spatial learning and memory, respectively. The antioxidant capacity and oxidative stress level of brain samples were assessed by ferric reducing antioxidant power (FRAP) and thiobarbituric acid-reacting substance (TBARS) assay, respectively. The expression levels of GFAP, IL-1β, and TNF-α were also measured by quantitative real-time reverse-transcription PCR (qRT-PCR). Sub-acute administration of MOF-5 reduced the spatial learning and memory as well as working memory, dose-dependently. The levels of FRAP were significantly reduced in rats treated with MOF-5 at higher doses. The Malondialdehyde (MDA) levels increased at the dose of 50 mg/kg. Additionally, the expression levels of IL-1β and TNF-α were significantly elevated in the rats' brains that were treated with MOF-5. Our findings indicate that sub-acute administration of MOF-5 induces cognitive impairment dose-dependently which might be partly mediated by increasing oxidative stress and inflammation.
Collapse
Affiliation(s)
| | - Moein Shirzad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nima Hasaniani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Shahram Ghasemi
- Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
30
|
Hoang NMH, Nguyen HD, Jo W, Kim MS. Role of prolactin in the protective effect of amisulpride against 1,2-Diacetylbenzene's neurotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104418. [PMID: 38493881 DOI: 10.1016/j.etap.2024.104418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Exposure to organic solvents is associated with various health problems, including neurodegenerative diseases. Among these solvents, 1,2-diethylbenzene is notable for its ability to produce a toxic metabolite, 1,2-Diacetylbenzene (DAB), which can cause memory impairment. Prolactin (PRL) is theorized to protect the central nervous system. Certain antipsychotic drugs, known for increasing PRL secretion, have shown to improve cognitive performance in psychotic Alzheimer's patients. Among these, amisulpride stands out for its high efficacy, limited side effects, and high selectivity for dopamine D2 receptors. In our study, we explored the potential of amisulpride to inhibit DAB-induced neurotoxicity via PRL activation. Our results show that amisulpride enhances the PRL/JAK/STAT, PI3K/AKT, and BDNF/ERK/CREB pathways, playing critical roles in PRL's neuroprotection pathways and memory formation. Additionally, amisulpride inhibited DAB-triggered NLRP3 inflammasome activation and apoptosis. Collectively, these findings suggest that amisulpride may be a promising therapeutic intervention for DAB-induced neurotoxicity, partly through activating the PRL pathway.
Collapse
Affiliation(s)
- Ngoc Minh-Hong Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Wonhee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea.
| |
Collapse
|
31
|
Park HR, Cai M. Antiseizure effects of Lilii Bulbus on pentylenetetrazol kindling-induced seizures in mice: Involvement of Reelin, Netrin-1, and semaphorin. Biomed Pharmacother 2024; 173:116385. [PMID: 38460369 DOI: 10.1016/j.biopha.2024.116385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Lilii Bulbus (Lilium lancifolium Thunberg) has a proneurogenic effect on the hippocampus. However, its effects on epilepsy and associated pathological features remain unknown. In this study, we investigated the antiseizure effects of a water extract of Lilii Bulbus (WELB) in mouse model of pentylenetetrazol (PTZ)-induced seizure. Mice were injected with PTZ once every 48 h until full kindling was achieved. WELB (100 and 500 mg/kg) was orally administered once daily before PTZ administration and during the kindling process. We found that WELB treatment protected against PTZ-induced low seizure thresholds and high seizure severity. Further, WELB-treated mice showed attenuated PTZ kindling-induced anxiety and memory impairment. Immunostaining and immunoblots showed that hyperactivation and ectopic migration of dentate granule cells (DGCs) were significantly reduced by WELB treatment in PTZ kindling-induced seizure mice. Staining for mossy fiber sprouting (MFS) using Timm staining and ZnT3 showed that WELB treatment significantly decreased PTZ kindling-induced MFS. Furthermore, the increased or decreased expression of proteins related to ectopic DGCs (Reelin and Dab-1), MFS (Netrin-1, Sema3A, and Sema3F), and their downstream effectors (ERK, AKT, and CREB) in the hippocampus of PTZ kindling mice was significantly restored by WELB treatment. Overall, our findings suggest that WELB is a potential antiseizure drug that acts by reducing ectopic DGCs and MFS and modulating epileptogenesis-related signaling in the hippocampus.
Collapse
Affiliation(s)
- Hee Ra Park
- Department of KM Medicine Science Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea.
| | - Mudan Cai
- Department of KM Medicine Science Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
| |
Collapse
|
32
|
Leite Junior JB, de Mello Bastos JM, Dias FRC, Samuels RI, Carey RJ, Carrera MP. A partial habituation method to test for anterograde and retrograde amnestic treatment effects: Evidence that antagonism of the NMDA receptor can induce anterograde but not retrograde amnestic effects. J Neurosci Methods 2024; 404:110072. [PMID: 38307259 DOI: 10.1016/j.jneumeth.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND A progressive decrease in spontaneous locomotion with repeated exposure to a novel environment has been assessed using both within and between-session measures. While both are well-established and reliable measurements, neither are useful alone as methods to concurrently assess treatment effects on acquisition and retention of habituation. NEW METHOD We report a behavioral method that measures habituation by combining the within and between measurements of locomotion. We used a 30 min session divided into 6 five min blocks. In the first novel environment session activity was maximal in the first 5 min block but was reduced to a low level by the sixth block, indicative of within-session habituation. Using 8 daily sessions, we showed that this terminal block low level of activity progressed incrementally to the first block to achieve complete habituation. RESULTS/COMPARISON WITH EXISTING METHODS Within-session activity across sessions was used to identify different stages of between session habituation. It was then possible to assess drug treatment effects from partial to complete habituation, so that treatment effects on retention of the previously acquired partial habituation, expressed as a reversion to an earlier within session habituation pattern (retrograde amnesia assessment), as well as the effects on new learning by the failure in subsequent sessions to acquire complete between-session habituation (anterograde amnesia assessment). CONCLUSIONS The use of spontaneous motor activity to assess learning and memory effects provides the opportunity to assess direct treatment effects on behavior and motor activity in contrast to many learning and memory models.
Collapse
Affiliation(s)
- Joaquim Barbosa Leite Junior
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - João Marcos de Mello Bastos
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Flávia Regina Cruz Dias
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Richard Ian Samuels
- Department of Entomology and Plant Pathology, State University of North Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Robert J Carey
- Department of Psychiatry SUNY Upstate Medical University, 800 Irving Avenue, Syracuse, NY 13210, USA
| | - Marinete Pinheiro Carrera
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil.
| |
Collapse
|
33
|
Mahoney HL, Schmidt TM. The cognitive impact of light: illuminating ipRGC circuit mechanisms. Nat Rev Neurosci 2024; 25:159-175. [PMID: 38279030 DOI: 10.1038/s41583-023-00788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/28/2024]
Abstract
Ever-present in our environments, light entrains circadian rhythms over long timescales, influencing daily activity patterns, health and performance. Increasing evidence indicates that light also acts independently of the circadian system to directly impact physiology and behaviour, including cognition. Exposure to light stimulates brain areas involved in cognition and appears to improve a broad range of cognitive functions. However, the extent of these effects and their mechanisms are unknown. Intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged as the primary conduit through which light impacts non-image-forming behaviours and are a prime candidate for mediating the direct effects of light on cognition. Here, we review the current state of understanding of these effects in humans and mice, and the tools available to uncover circuit-level and photoreceptor-specific mechanisms. We also address current barriers to progress in this area. Current and future efforts to unravel the circuits through which light influences cognitive functions may inform the tailoring of lighting landscapes to optimize health and cognitive function.
Collapse
Affiliation(s)
- Heather L Mahoney
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
34
|
Zhan F, Dong Y, Zhou L, Li X, Zhou Z, Xu G. Minocycline alleviates LPS-induced cognitive dysfunction in mice by inhibiting the NLRP3/caspase-1 pathway. Aging (Albany NY) 2024; 16:2989-3006. [PMID: 38329438 PMCID: PMC10911373 DOI: 10.18632/aging.205528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/06/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND Growing experimental evidence indicates that cognitive impairment is linked to neuroinflammation. Minocycline (MINO), an antibiotic known for its anti-inflammatory, has shown promise in alleviating cognitive impairment. Nonetheless, the exact mechanism through which MINO improves cognitive impairment is not yet understood. METHODS A neuroinflammatory model was establish by utilizing lipopolysaccharide. The assessment of mice's cognitive and learning abilities was conducted through the MWM and Y-maze tests. The evaluation of hippocampal neuronal injury and microglial activation were achieved by performing HE staining and IHC, respectively. To evaluate BV2 cell viability and apoptosis, the CCK-8 and Hoechst 33342/PI staining assays were employed. In order to assess the protein and RNA expression levels of NLRP3, caspase-1, IL-1β, IL-18, Iba-1, and Bcl2/Bax, WB and RT-qPCR were utilized. Additionally, the inhibitory effect of MINO on apoptosis by targeting the NLRP3/caspase-1 pathway was investigated using Nigericin. RESULTS MINO was effective in reducing the time it took for mice to escape from the test, increasing the number of platforms they crossed, and mitigating damage to the hippocampus while also suppressing microglial activation and the expression of Iba-1 in a neuroinflammatory model caused by LPS. Furthermore, MINO improved the viability of BV2 cell and reduced apoptosis. It also had the effect of reducing the expression levels of NLRP3/Caspase-1, IL-1β, IL-18, and BAX, while upregulating the expression of Bcl2. Additionally, MINO was found to downregulate the NLRP3 expression, which is specifically activated by nigericin. CONCLUSION The protective effect of MINO relies on the crucial involvement of the NLRP3/caspase-1 pathway.
Collapse
Affiliation(s)
- Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yao Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lanqian Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaozhong Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zheng Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
35
|
Tripathi AS, Fatima N, Tripathi P, Tripathi R, Alka, Zaki MEA, Mohapatra L, Yasir M, Maurya RK. Beneficial effect of 5-HT1b/1d agonist on Parkinson's disease by modulating glutamate and reducing deposition of α-synuclein. J Biochem Mol Toxicol 2024; 38:e23627. [PMID: 38229316 DOI: 10.1002/jbt.23627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
The given investigation examined the neuroprotection role of 5-HT1b/1d agonist in reserpine induced Parkinson's disease (PD) in male Wistar rats. PD was induced in rats by reserpine at 5 mg/kg ip for 3 days and thereafter the rats were provided with the following treatments for 4 days, zolmitriptan (ZLM) group (30 mg/kg ip); STD group (levodopa + carbidopa, 200 + 5 mg/kg ip); ZLM + GA group (zolmitriptan, 30 mg/kg ip and glutamic acid, 1.5 mg/kg); ZLM + DX group (zolmitriptan, 30 mg/kg ip and dextromethorphan, 20 mg/kg ip). All the groups were then assessed for cognitive and motor functions at the end of the protocol. Moreover, oxidative stress parameters and histopathological changes were observed in rats of all treatment groups. Deposition of α-synuclein in the brain tissue was observed by silver staining. Data of this investigation revealed that motor and cognitive functions were improved in the ZLM-treated group compared with the negative control group, which was observed to be reversed in ZLM + GA group. Treatment with ZLM ameliorated oxidative stress and histopathological changes in the brain tissue of PD rats. Further, ZLM reduced the deposition of α-synuclein in PD rats, which reversed in ZLM + GA-treated group. This study concludes by stating that 5-HT1b/1d agonist can prevent neurodegeneration and reduce oxidative stress in PD rats. The probable underlying mechanism of such an effect of 5-HT1b/1d agonist could be by regulating the deposition of α-synuclein and reducing the expression of NMDA receptor.
Collapse
Affiliation(s)
- Alok Shiomurti Tripathi
- Department of Pharmacology, Era College of Pharmacy, ERA University, Lucknow, Uttar Pradesh, India
| | - Needa Fatima
- Department of Pharmacology, Amity Institute of Pharmacy, Lucknow, Amity University, Noida, Uttar Pradesh, India
| | - Pankaj Tripathi
- Department of Pharmacology, Nootan Pharmacy College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Rina Tripathi
- Department of Pharmacology, Nootan Pharmacy College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Alka
- Department of Pharmacology, Amity Institute of Pharmacy, Lucknow, Amity University, Noida, Uttar Pradesh, India
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Lucy Mohapatra
- Department of Pharmacology, Amity Institute of Pharmacy, Lucknow, Amity University, Noida, Uttar Pradesh, India
| | - Mohammad Yasir
- Department of Pharmacology, Amity Institute of Pharmacy, Lucknow, Amity University, Noida, Uttar Pradesh, India
| | - Rahul K Maurya
- Department of Pharmacology, Amity Institute of Pharmacy, Lucknow, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
36
|
Ma X, Schildknecht B, Steiner AC, Amrein I, Nigri M, Bramati G, Wolfer DP. Refinement of IntelliCage protocols for complex cognitive tasks through replacement of drinking restrictions by incentive-disincentive paradigms. Front Behav Neurosci 2023; 17:1232546. [PMID: 38033480 PMCID: PMC10687469 DOI: 10.3389/fnbeh.2023.1232546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023] Open
Abstract
The IntelliCage allows automated testing of cognitive abilities of mice in a social home cage environment without handling by human experimenters. Restricted water access in combination with protocols in which only correct responses give access to water is a reliable learning motivator for hippocampus-dependent tasks assessing spatial memory and executive function. However, water restriction may negatively impact on animal welfare, especially in poor learners. To better comply with the 3R principles, we previously tested protocols in which water was freely available but additional access to sweetened water could be obtained by learning a task rule. While this purely appetitive motivation worked for simple tasks, too many mice lost interest in the sweet reward during more difficult hippocampus-dependent tasks. In the present study, we tested a battery of increasingly difficult spatial tasks in which water was still available without learning the task rule, but rendered less attractive either by adding bitter tasting quinine or by increasing the amount of work to obtain it. As in previous protocols, learning of the task rule provided access to water sweetened with saccharin. The two approaches of dual motivation were tested in two cohorts of female C57BL/6 N mice. Compared to purely appetitive motivation, both novel protocols strongly improved task engagement and increased task performance. Importantly, neither of the added disincentives had an adverse impact on liquid consumption, health status or body weight of the animals. Our results show that it is possible to refine test protocols in the IntelliCage so that they challenge cognitive functions without restricting access to water.
Collapse
Affiliation(s)
- Xueqian Ma
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH, Zürich, Switzerland
| | - Beatrice Schildknecht
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH, Zürich, Switzerland
| | - Adrian C. Steiner
- Faculty of Medicine, Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Irmgard Amrein
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH, Zürich, Switzerland
- Faculty of Medicine, Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Martina Nigri
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH, Zürich, Switzerland
| | - Giulia Bramati
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH, Zürich, Switzerland
| | - David P. Wolfer
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH, Zürich, Switzerland
- Faculty of Medicine, Institute of Anatomy, University of Zürich, Zürich, Switzerland
| |
Collapse
|
37
|
Zhao T, Lv J, Peng M, Mi J, Zhang S, Liu J, Chen T, Sun Z, Niu R. Fecal microbiota transplantation and short-chain fatty acids improve learning and memory in fluorosis mice by BDNF-PI3K/AKT pathway. Chem Biol Interact 2023; 387:110786. [PMID: 39491142 DOI: 10.1016/j.cbi.2023.110786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Fluoride, an environmental toxicant, not only arouses intestinal microbiota dysbiosis, but also causes neuronal apoptosis and a decline in learning and memory ability. The purpose of this study was to explore whether fecal microbiota transplantation (FMT) from healthy mice and bacteria-derived metabolites short-chain fatty acids (SCFAs) supplement protect against fluoride-induced learning and memory impairment. Results showed that FMT reversed the elevated percentage of working memory errors (WME) and reference memory errors (RME) in fluorosis mice during the eight-arm maze test. Nissl and TUNEL staining presented that fluoride led to a decreased proportion of Nissl bodies area in the hippocampal CA3 region and an increased apoptotic ratio of nerve cells in CA1, CA3 and DG areas, whereas FMT alleviated those pathological damages. Moreover, the expressions of mRNA in hippocampal BDNF, PDK1, AKT, Bcl-2, and Bcl-xL were downregulated in mice exposed to fluoride, but the levels of PI3K, Bax, Bak, and Caspase-7 mRNA were upregulated. NaF treatment had an increase in PI3K and Caspase-3 protein levels and reduced the expressions of these four proteins, including BDNF, p-PI3K, AKT and p-AKT. By contrast, FMT enhanced the expression of BDNF and thus activated the PI3K/AKT pathway. Besides, the 16S rRNA sequencing revealed that fluoride caused a reduction in certain SCFA producers in the colon as evidenced by a decline in Erysipelatoclostridiaceae, and a downward trend in Akkermansia, Blautia and Alistipes. However, the disordered gut microbiome was restored via frequent FMT. Of note, SCFAs administration also increased BDNF levels and regulated its downstream pathways, which contributed to cell survival and learning and memory function recovery. In conclusion, FMT and SCFAs may activate the BDNF-PI3K/AKT pathway to play an anti-apoptotic role and ultimately improve learning and memory deficits in fluorosis mice.
Collapse
Affiliation(s)
- Taotao Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jia Lv
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mingyuan Peng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jiahui Mi
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Shaosan Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jie Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Tong Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
38
|
Piriyaprasath K, Kakihara Y, Kurahashi A, Taiyoji M, Kodaira K, Aihara K, Hasegawa M, Yamamura K, Okamoto K. Preventive Roles of Rice- koji Extracts and Ergothioneine on Anxiety- and Pain-like Responses under Psychophysical Stress Conditions in Male Mice. Nutrients 2023; 15:3989. [PMID: 37764773 PMCID: PMC10535605 DOI: 10.3390/nu15183989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
This study determined the effect of daily administration of Rice-koji on anxiety and nociception in mice subjected to repeated forced swim stress (FST). In a parallel experiment, it was determined whether ergothioneine (EGT) contained in Rice-koji displayed similar effects. Anxiety and nociception were assessed behaviorally using multiple procedures. c-Fos and FosB immunoreactivities were quantified to assess the effect of both treatments on neural responses in the paraventricular nucleus of the hypothalamus (PVN), nucleus raphe magnus (NRM), and lumbar spinal dorsal horn (DH). FST increased anxiety- and pain-like behaviors in the hindpaw. Rice-koji or EGT significantly prevented these behaviors after FST. In the absence of formalin, both treatments prevented decreased FosB expressions in the PVN after FST, while no effect was seen in the NRM and DH. In the presence of formalin, both treatments prevented changes in c-Fos and FosB expressions in all areas in FST mice. Further, in vitro experiments using SH-SY5Y cells were conducted. Rice-koji and EGT did not affect cell viability but changed the level of brain-derived neurotrophic factor. In conclusion, Rice-koji could reduce anxiety and pain associated with psychophysical stress, possibly mediated by the modulatory effects of EGT on neural functions in the brain.
Collapse
Affiliation(s)
- Kajita Piriyaprasath
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan or (K.P.); (M.H.); (K.Y.)
- Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok 650000, Thailand
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan;
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| | - Atsushi Kurahashi
- Hakkaisan Brewery Co., Ltd., Minamiuonuma, Niigata 949-7112, Japan; (A.K.); (K.K.)
| | - Mayumi Taiyoji
- Food Research Center, Niigata Agricultural Research Institute, Kamo 959-1381, Japan; (M.T.); (K.A.)
| | - Kazuya Kodaira
- Hakkaisan Brewery Co., Ltd., Minamiuonuma, Niigata 949-7112, Japan; (A.K.); (K.K.)
| | - Kotaro Aihara
- Food Research Center, Niigata Agricultural Research Institute, Kamo 959-1381, Japan; (M.T.); (K.A.)
| | - Mana Hasegawa
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan or (K.P.); (M.H.); (K.Y.)
- Division of General Dentistry and Dental Clinical Education Unit, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan or (K.P.); (M.H.); (K.Y.)
| | - Keiichiro Okamoto
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan or (K.P.); (M.H.); (K.Y.)
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
39
|
Gholami M, Hayes AW, Jamaati H, Sureda A, Motaghinejad M. Role of apoptosis and autophagy in mediating tramadol-induced neurodegeneration in the rat hippocampus. Mol Biol Rep 2023; 50:7393-7404. [PMID: 37453963 DOI: 10.1007/s11033-023-08641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Tramadol (TRA) is an analgesic prescribed for treating mild to moderate pains, the abuse of which has increased in recent years. Chronic tramadol consumption produces neurotoxicity, although the mechanisms are unclear. The present study investigated the involvement of apoptosis and autophagy signaling pathways and the mitochondrial system in TRA-induced neurotoxicity. MATERIALS AND METHODS Sixty adult male Wistar rats were divided into five groups that received standard saline or TRA in doses of 25, 50, 75, 100, or 150 mg/kg intraperitoneally for 21 days. On the 22nd day, the Open Field Test (OFT) was conducted. Jun N-Terminal Kinase (JNK), B-cell lymphoma-2 (Bcl-2), Beclin1, and Bcl-2-like protein 4 (Bax) proteins and tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) were measured in rat hippocampal tissue. RESULTS TRA at doses 75, 100, and 150 mg/kg caused locomotor dysfunction in rats and increased total and phosphorylated forms of JNK and Beclin-1, Bax, and Caspase-3. TRA at the three higher doses also increased the phosphorylated (inactive) form of Bcl-2 level while decreasing the unphosphorylated (active) form of Bcl-2. Similarly, the protein levels of TNF-α and IL-1β were increased dose-dependently. The mitochondrial respiratory chain enzymes were reduced at the three higher doses of TRA. CONCLUSION TRA activated apoptosis and autophagy via modulation of TNF-α or IL-1β/JNK/Bcl-2/Beclin1 and Bcl-2/Bax signaling pathways and dysfunction of mitochondrial respiratory chain enzymes.
Collapse
Affiliation(s)
- Mina Gholami
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Hamidreza Jamaati
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands and, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Kamranian H, Asoudeh H, Sharif RK, Taheri F, Hayes AW, Gholami M, Alavi A, Motaghinejad M. Neuroprotective potential of trimetazidine against tramadol-induced neurotoxicity: role of PI3K/Akt/mTOR signaling pathways. Toxicol Mech Methods 2023; 33:607-623. [PMID: 37051630 DOI: 10.1080/15376516.2023.2202785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/14/2023]
Abstract
Tramadol (TRA) causes neurotoxicity whereas trimetazidine (TMZ) is neuroprotective. The potential involvement of the PI3K/Akt/mTOR signaling pathway in the neuroprotection of TMZ against TRA-induced neurotoxicity was evaluated. Seventy male Wistar rats were divided into groups. Groups 1 and 2 received saline or TRA (50 mg/kg). Groups 3, 4, and 5 received TRA (50 mg/kg) and TMZ (40, 80, or 160 mg/kg) for 14 days. Group 6 received TMZ (160 mg/kg). Hippocampal neurodegenerative, mitochondrial quadruple complex enzymes, phosphatidylinositol-3-kinases (PI3Ks)/protein kinase B levels, oxidative stress, inflammatory, apoptosis, autophagy, and histopathology were evaluated. TMZ decreased anxiety and depressive-like behavior induced by TRA. TMZ in tramadol-treated animals inhibited lipid peroxidation, GSSG, TNF-α, and IL-1β while increasing GSH, SOD, GPx, GR, and mitochondrial quadruple complex enzymes in the hippocampus. TRA inhibited Glial fibrillary acidic protein expression and increased pyruvate dehydrogenase levels. TMZ reduced these changes. TRA decreased the level of JNK and increased Beclin-1 and Bax. TMZ decreased phosphorylated Bcl-2 while increasing the unphosphorylated form in tramadol-treated rats. TMZ activated phosphorylated PI3Ks, Akt, and mTOR proteins. TMZ inhibited tramadol-induced neurotoxicity by modulating the PI3K/Akt/mTOR signaling pathways and its downstream inflammatory, apoptosis, and autophagy-related cascades.
Collapse
Affiliation(s)
- Houman Kamranian
- Department of Psychiatry, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hadi Asoudeh
- Faculty of Pharmacy, Central Branch of Islamic Azad University, Tehran, Iran
| | | | - Fereshteh Taheri
- Department of Medicine, Islamic Azad University, Qom Branch, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA and Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Alavi
- Department of Medicine, Islamic Azad University, Qom Branch, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Chou MY, Wong YC, Wang SY, Chi CH, Wang TH, Huang MJ, Huang PH, Li PH, Wang MF. Potential antidepressant effects of a dietary supplement from Huáng qí and its complex in aged senescence-accelerated mouse prone-8 mice. Front Nutr 2023; 10:1235780. [PMID: 37575325 PMCID: PMC10421658 DOI: 10.3389/fnut.2023.1235780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Healthcare is an emerging industry with significant market potential in the 21st century. Therefore, this study aimed to evaluate the benefits of tube feeding Huáng qí and its complexes for 8 weeks on 3-month-old senescence-accelerated mouse prone-8 (SAMP8) mice, 48 in total, randomly divided into 3 groups including control, Huáng qí extract [820 mg/kg Body weight (BW)/day], and Huáng qí complexes (6.2 mL /kg BW/day), where each group consisted of males (n = 8) and females (n = 8). Behavioral tests (locomotion test and aging score assessment on week 6, the single-trial passive avoidance test on week 7, and the active shuttle avoidance test on week 8) were conducted to evaluate the ability of the mice to learn and remember. In addition, after sacrificing the animals, the blood and organs were measured for antioxidant and aging bioactivities, including malondialdehyde (MDA) content and superoxide dismutase (SOD) activity and catalase activities (CAT), and the effects on promoting aging in SAMP8 mice were investigated. The findings showed that Huáng qí enhanced locomotor performance and had anti-aging effects, with positive effects on health, learning, and memory in SAMP-8 mice (p < 0.05), whether applied as a single agent (820 mg/kg BW/day) or as a complex (6.2 mL/kg BW/day) (p < 0.05). Based on existing strengths, a more compelling platform for clinical validation of human clinical evidence will be established to enhance the development and value-added of astragalus-related products while meeting the diversified needs of the functional food market.
Collapse
Affiliation(s)
- Ming-Yu Chou
- School of Business, Qanzhou Vocational and Technical University, Jinjiang, China
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan (R.O.C.)
| | - Yue-Ching Wong
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan (R.O.C.)
| | - Shih-Yi Wang
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan (R.O.C.)
| | - Ching-Hsin Chi
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan (R.O.C.)
| | - Teng-Hsu Wang
- PhytoHealth Corporation, Taipei city, Taiwan (R.O.C.)
| | - Mao-Jung Huang
- School of General Education, Hsiuping University of Science and Technology, Taichung, Taiwan (R.O.C.)
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung, Taiwan (R.O.C.)
| | - Ming-Fu Wang
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan (R.O.C.)
- Department of Food and Nutrition, Providence University, Taichung, Taiwan (R.O.C.)
| |
Collapse
|
42
|
Deshetty UM, Periyasamy P. Potential Biomarkers in Experimental Animal Models for Traumatic Brain Injury. J Clin Med 2023; 12:3923. [PMID: 37373618 DOI: 10.3390/jcm12123923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex and multifaceted disorder that has become a significant public health concern worldwide due to its contribution to mortality and morbidity. This condition encompasses a spectrum of injuries, including axonal damage, contusions, edema, and hemorrhage. Unfortunately, specific effective therapeutic interventions to improve patient outcomes following TBI are currently lacking. Various experimental animal models have been developed to mimic TBI and evaluate potential therapeutic agents to address this issue. These models are designed to recapitulate different biomarkers and mechanisms involved in TBI. However, due to the heterogeneous nature of clinical TBI, no single experimental animal model can effectively mimic all aspects of human TBI. Accurate emulation of clinical TBI mechanisms is also tricky due to ethical considerations. Therefore, the continued study of TBI mechanisms and biomarkers, of the duration and severity of brain injury, treatment strategies, and animal model optimization is necessary. This review focuses on the pathophysiology of TBI, available experimental TBI animal models, and the range of biomarkers and detection methods for TBI. Overall, this review highlights the need for further research to improve patient outcomes and reduce the global burden of TBI.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
43
|
Tajonar K, Gonzalez-Ronquillo M, Relling A, Nordquist RE, Nawroth C, Vargas-Bello-Pérez E. Toward assessing the role of dietary fatty acids in lamb's neurological and cognitive development. Front Vet Sci 2023; 10:1081141. [PMID: 36865439 PMCID: PMC9971820 DOI: 10.3389/fvets.2023.1081141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding and measuring sheep cognition and behavior can provide us with measures to safeguard the welfare of these animals in production systems. Optimal neurological and cognitive development of lambs is important to equip individuals with the ability to better cope with environmental stressors. However, this development can be affected by nutrition with a special role from long-chain fatty acid supply from the dam to the fetus or in lamb's early life. Neurological development in lambs takes place primarily during the first two trimesters of gestation. Through late fetal and early postnatal life, the lamb brain has a high level of cholesterol synthesis. This rate declines rapidly at weaning and remains low throughout adulthood. The main polyunsaturated fatty acids (PUFA) in the brain are ω-6 arachidonic acid and ω-3 docosahexaenoic acid (DHA), which are elements of plasma membranes' phospholipids in neuronal cells. DHA is essential for keeping membrane integrity and is vital for normal development of the central nervous system (CNS), and its insufficiency can damage cerebral functions and the development of cognitive capacities. In sheep, there is evidence that supplying PUFA during gestation or after birth may be beneficial to lamb productive performance and expression of species-specific behaviors. The objective of this perspective is to discuss concepts of ruminant behavior and nutrition and reflect on future research directions that could help to improve our knowledge on how dietary fatty acids (FA) relate to optimal neurological and cognitive development in sheep.
Collapse
Affiliation(s)
- Karen Tajonar
- Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico,Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Manuel Gonzalez-Ronquillo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Alejandro Relling
- Department of Animal Science, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Rebecca E. Nordquist
- Unit Animals in Science and Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Christian Nawroth
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany,*Correspondence: Christian Nawroth ✉
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom,Einar Vargas-Bello-Pérez ✉
| |
Collapse
|
44
|
Gil-Marti B, Barredo CG, Pina-Flores S, Trejo JL, Turiegano E, Martin FA. The elusive transcriptional memory trace. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac008. [PMID: 38596710 PMCID: PMC10913820 DOI: 10.1093/oons/kvac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/19/2022] [Accepted: 05/07/2022] [Indexed: 04/11/2024]
Abstract
Memory is the brain faculty to store and remember information. It is a sequential process in which four different phases can be distinguished: encoding or learning, consolidation, storage and reactivation. Since the discovery of the first Drosophila gene essential for memory formation in 1976, our knowledge of its mechanisms has progressed greatly. The current view considers the existence of engrams, ensembles of neuronal populations whose activity is temporally coordinated and represents the minimal correlate of experience in brain circuits. In order to form and maintain the engram, protein synthesis and, probably, specific transcriptional program(s) is required. The immediate early gene response during learning process has been extensively studied. However, a detailed description of the transcriptional response for later memory phases was technically challenging. Recent advances in transcriptomics have allowed us to tackle this biological problem. This review summarizes recent findings in this field, and discusses whether or not it is possible to identify a transcriptional trace for memory.
Collapse
Affiliation(s)
- Beatriz Gil-Marti
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
- Department of Biology, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Celia G Barredo
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
| | - Sara Pina-Flores
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
| | - Jose Luis Trejo
- Neurogenesis of the Adult Animal Laboratory. Department of Translational Neuroscience, Cajal Institute, Spanish National Research Council (CSIC), 28049, Madrid, Spain
| | - Enrique Turiegano
- Department of Biology, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Francisco A Martin
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
| |
Collapse
|
45
|
Cao W, Lin J, Xiang W, Liu J, Wang B, Liao W, Jiang T. Physical Exercise-Induced Astrocytic Neuroprotection and Cognitive Improvement Through Primary Cilia and Mitogen-Activated Protein Kinases Pathway in Rats With Chronic Cerebral Hypoperfusion. Front Aging Neurosci 2022; 14:866336. [PMID: 35721009 PMCID: PMC9198634 DOI: 10.3389/fnagi.2022.866336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/03/2022] [Indexed: 01/02/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is closely related to vascular cognitive impairment and dementia (VCID) and Alzheimer’s disease (AD). The neuroinflammation involving astrocytes is an important pathogenic mechanism. Along with the advancement of the concept and technology of astrocytic biology, the astrocytes have been increasingly regarded as the key contributors to neurological diseases. It is well known that physical exercise can improve cognitive function. As a safe and effective non-drug treatment, physical exercise has attracted continuous interests in neurological research. In this study, we explored the effects of physical exercise on the response of reactive astrocytes, and its role and mechanism in CCH-induced cognitive impairment. A rat CCH model was established by 2 vessel occlusion (2VO) and the wheel running exercise was used as the intervention. The cognitive function of rats was evaluated by morris water maze and novel object recognition test. The phenotypic polarization and the primary cilia expression of astrocytes were detected by immunofluorescence staining. The activation of MAPKs cascades, including ERK, JNK, and P38 signaling pathways, were detected by western blot. The results showed that physical exercise improved cognitive function of rats 2 months after 2VO, reduced the number of C3/GFAP-positive neurotoxic astrocytes, promoted the expression of S100A10/GFAP-positive neuroprotective astrocytes, and enhanced primary ciliogenesis. Additionally, physical exercise also alleviated the phosphorylation of ERK and JNK proteins induced by CCH. These results indicate that physical exercise can improve the cognitive function of rats with CCH possible by promoting primary ciliogenesis and neuroprotective function of astrocytes. The MAPKs signaling cascade, especially ERK and JNK signaling pathways may be involved in this process.
Collapse
Affiliation(s)
- Wenyue Cao
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Junbin Lin
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jingying Liu
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Biru Wang
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Weijing Liao
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Weijing Liao,
| | - Ting Jiang
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- *Correspondence: Ting Jiang,
| |
Collapse
|
46
|
Ji J, Yi X, Zhu Y, Yu H, Huang S, Liu Z, Zhang X, Xia G, Shen X. Tilapia Head Protein Hydrolysate Attenuates Scopolamine-Induced Cognitive Impairment through the Gut-Brain Axis in Mice. Foods 2021; 10:foods10123129. [PMID: 34945680 PMCID: PMC8701847 DOI: 10.3390/foods10123129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
The destruction of the homeostasis in the gut-brain axis can lead to cognitive impairment and memory decline. Dietary intervention with bioactive peptides from aquatic products is an innovative strategy to prevent cognitive deficits. The present study aimed to determine the neuroprotective effect of tilapia head protein hydrolysate (THPH) on scopolamine-induced cognitive impairment in mice, and to further explore its mechanism through the microbiota–gut-brain axis. The results showed that THPH administration significantly improved the cognitive behavior of mice, and normalized the cholinergic system and oxidative stress system of the mice brain. The histopathological observation showed that THPH administration significantly reduced the pathological damage of hippocampal neurons, increased the number of mature neurons marked by NeuN and delayed the activation of astrocytes in the hippocampus of mice. In addition, THPH administration maintained the stability of cholinergic system, alleviated oxidative stress and further improved the cognitive impairment by reshaping the gut microbiota structure of scopolamine-induced mice and alleviating the disorder of lipid metabolism and amino acid metabolism in serum. In conclusion, our research shows that THPH supplementation is a nutritional strategy to alleviate cognitive impairment through the gut-brain axis.
Collapse
Affiliation(s)
- Jun Ji
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Xiangzhou Yi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Yujie Zhu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Hui Yu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Shuqi Huang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
- Correspondence: ; Tel./Fax: +86-0898-66193581
| |
Collapse
|