1
|
Yu S, Zhang J, Cao Y, Zhong C, Xie J. Comparative transcriptomic and metabolomic analyses reveal key regulatory gene for methyl jasmonate-induced steroidal saponins synthesis in Dioscorea composita. Int J Biol Macromol 2024; 280:135788. [PMID: 39307487 DOI: 10.1016/j.ijbiomac.2024.135788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Dioscorea composita (D. composita) is a perennial herb with abundant steroidal saponins that have gained worldwide attention for their remarkable efficacy in cardiovascular diseases. However, few studies have been worked on the regulatory network of steroidal saponins biosynthesis under phytohormone induced. In this study, we combined the transcriptome and metabolome analysis to reveal the variation of diosgenin and steroidal saponins in transcriptional and metabolism levels under methyl-jasmonate (MeJA) treatment. Although the application of MeJA indeed significantly increased the accumulation of diosgenin of D. composita, different types of steroidal saponins exhibited different accumulation patterns. Consistently, the expression levels of UDP-glycosyltransferases and Cytochrome P450 monooxygenases genes that highly related to the accumulation of steroidal saponins were either up- or down-regulated. Correlation analyses of transcription factors (TFs)-steroidal saponins and structural genes-TFs were further to identified the TFs potentially involved in the regulation of steroidal saponins biosynthesis. Silencing of DcWRKY11 in Dioscorea composita decreases the accumulation of steroidal saponins by regulating the expression steroidal saponins synthesis genes, suggesting that DcWRKY11 is a positive regulator in the regulation of steroidal saponins biosynthesis. Our findings take a deeper understanding of the regulatory network of MeJA-mediated steroidal saponins biosynthesis in D. composita.
Collapse
Affiliation(s)
- Shangjie Yu
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou 510642, PR China
| | - Jiani Zhang
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou 510642, PR China
| | - Yinxing Cao
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou 510642, PR China
| | - Chunmei Zhong
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou 510642, PR China.
| | - Jun Xie
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou 510642, PR China.
| |
Collapse
|
2
|
Wei W, Guo T, Fan W, Ji M, Fu Y, Lian C, Chen S, Ma W, Ma W, Feng S. Integrative analysis of metabolome and transcriptome provides new insights into functional components of Lilii Bulbus. CHINESE HERBAL MEDICINES 2024; 16:435-448. [PMID: 39072198 PMCID: PMC11283230 DOI: 10.1016/j.chmed.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 07/30/2024] Open
Abstract
Objective Lilium brownii var. viridulum (LB) and L. lancifolium (LL) are the main sources of medicinal lily (Lilii Bulbus, Baihe in Chinese) in China. However, the functional components of these two species responsible for the treatment efficacy are yet not clear. In order to explore the therapeutic material basis of Lilii Bulbus, we selected L. davidii var. willmottiae (LD) only used for food as the control group to analyze the differences between LD and the other two (LB and LL). Methods Metabolome and transcriptome were carried out to investigate the differences of active components in LD vs LB and LD vs LL. Data of metabolome and transcriptome was analysed using various analysis methods, such as principal component analysis (PCA), hierarchical cluster analysis (HCA), and so on. Differentially expressed genes (DEGs) were enriched through KEGG and GO enrichment analysis. Results The PCA and HCA of the metabolome indicated the metabolites were clearly separated and varied greatly in LL and LB contrasted with LD. There were 318 significantly differential metabolites (SDMs) in LD vs LB group and 298 SDMs in LD vs LL group. Compared with LD group, the significant up-regulation of steroidal saponins and steroidal alkaloids were detected both in LB and LL groups, especially in LB group. The HCA of transcriptome indicated that there was significant difference in LB vs LD group, while the difference between LL and LD varied slightly. Additionally, 47 540 DEGs in LD vs LB group and 18 958 DEGs in LD vs LL group were identified. Notably, CYP450s involving in the biosynthesis of steroidal saponins and steroidal alkaloids were detected, and comparing with LD, CYP724, CYP710A, and CYP734A1 in LB and CYP90B in LL were all up-regulated. Conclusion This study suggested that steroidal saponins and steroidal alkaloids maybe the representative functional components of Lilii Bulbus, which can provide new insights for Lilii Bulbus used in the research and development of classic famous formula.
Collapse
Affiliation(s)
- Wenjun Wei
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Tao Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Wenguang Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Mengshan Ji
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Yu Fu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Conglong Lian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Wenjing Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wenfang Ma
- Lanzhou Shibai Agricultural Biotechnology Co., Ltd., Lanzhou 730050, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
3
|
Liu J, Yin X, Kou C, Thimmappa R, Hua X, Xue Z. Classification, biosynthesis, and biological functions of triterpene esters in plants. PLANT COMMUNICATIONS 2024; 5:100845. [PMID: 38356259 PMCID: PMC11009366 DOI: 10.1016/j.xplc.2024.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Triterpene esters comprise a class of secondary metabolites that are synthesized by decorating triterpene skeletons with a series of oxidation, glycosylation, and acylation modifications. Many triterpene esters with important bioactivities have been isolated and identified, including those with applications in the pesticide, pharmaceutical, and cosmetic industries. They also play essential roles in plant defense against pests, diseases, physical damage (as part of the cuticle), and regulation of root microorganisms. However, there has been no recent summary of the biosynthetic pathways and biological functions of plant triterpene esters. Here, we classify triterpene esters into five categories based on their skeletons and find that C-3 oxidation may have a significant effect on triterpenoid acylation. Fatty acid and aromatic moieties are common ligands present in triterpene esters. We further analyze triterpene ester synthesis-related acyltransferases (TEsACTs) in the triterpene biosynthetic pathway. Using an evolutionary classification of BAHD acyltransferases (BAHD-ATs) and serine carboxypeptidase-like acyltransferases (SCPL-ATs) in Arabidopsis thaliana and Oryza sativa, we classify 18 TEsACTs with identified functions from 11 species. All the triterpene-skeleton-related TEsACTs belong to BAHD-AT clades IIIa and I, and the only identified TEsACT from the SCPL-AT family belongs to the CP-I subfamily. This comprehensive review of the biosynthetic pathways and bioactivities of triterpene esters provides a foundation for further study of their bioactivities and applications in industry, agricultural production, and human health.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xue Yin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chengxi Kou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ramesha Thimmappa
- Amity Institute of Genome Engineering, Amity University, Noida, UP India 201313, India
| | - Xin Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, P.R. China.
| |
Collapse
|
4
|
Kunert M, Langley C, Lucier R, Ploss K, Rodríguez López CE, Serna Guerrero DA, Rothe E, O'Connor SE, Sonawane PD. Promiscuous CYP87A enzyme activity initiates cardenolide biosynthesis in plants. NATURE PLANTS 2023; 9:1607-1617. [PMID: 37723202 PMCID: PMC10581899 DOI: 10.1038/s41477-023-01515-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/16/2023] [Indexed: 09/20/2023]
Abstract
Cardenolides are specialized, steroidal metabolites produced in a wide array of plant families1,2. Cardenolides play protective roles in plants, but these molecules, including digoxin from foxglove (Digitalis spp.), are better known for treatment of congenital heart failure, atrial arrhythmia, various cancers and other chronic diseases3-9. However, it is still unknown how plants synthesize 'high-value', complex cardenolide structures from, presumably, a sterol precursor. Here we identify two cytochrome P450, family 87, subfamily A (CYP87A) enzymes that act on both cholesterol and phytosterols (campesterol and β-sitosterol) to form pregnenolone, the first committed step in cardenolide biosynthesis in the two phylogenetically distant plants Digitalis purpurea and Calotropis procera. Arabidopsis plants overexpressing these CYP87A enzymes ectopically accumulated pregnenolone, whereas silencing of CYP87A in D. purpurea leaves by RNA interference resulted in substantial reduction of pregnenolone and cardenolides. Our work uncovers the key entry point to the cardenolide pathway, and expands the toolbox for sustainable production of high-value plant steroids via synthetic biology.
Collapse
Affiliation(s)
- Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Chloe Langley
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Rosalind Lucier
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Kerstin Ploss
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Carlos E Rodríguez López
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Delia A Serna Guerrero
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Eva Rothe
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
5
|
Akiyama R, Umemoto N, Mizutani M. Recent advances in steroidal glycoalkaloid biosynthesis in the genus Solanum. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:185-191. [PMID: 38293253 PMCID: PMC10824493 DOI: 10.5511/plantbiotechnology.23.0717b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/17/2023] [Indexed: 02/01/2024]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites found in members of Solanum species, and are also known as toxic substances in Solanum food crops such as tomato (Solanum lycopersicum), potato (Solanum tuberosum), and eggplant (Solanum melongena). SGA biosynthesis can be divided into two main parts: formation of steroidal aglycones, which are derived from cholesterol, and glycosylation at the C-3 hydroxy group. This review focuses on recent studies that shed light on the complete process of the aglycone formation in SGA biosynthesis and structural diversification of SGAs by duplicated dioxygenases, as well as the development of non-toxic potatoes through genome editing using these findings.
Collapse
Affiliation(s)
- Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan
| |
Collapse
|
6
|
Shen C, Li X. Genome-wide analysis of the P450 gene family in tea plant (Camellia sinensis) reveals functional diversity in abiotic stress. BMC Genomics 2023; 24:535. [PMID: 37697232 PMCID: PMC10494425 DOI: 10.1186/s12864-023-09619-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Cytochrome P450 (Cytochrome P450s) genes are involved in the catalysis of various reactions, including growth, development, and secondary metabolite biosynthetic pathways. However, little is known about the characteristics and functions of the P450 gene family in Camellia sinensis (C. sinensis). RESULTS To reveal the mechanisms of tea plant P450s coping with abiotic stresses, analyses of the tea plant P450 gene family were conducted using bioinformatics-based methods. In total, 273 putative P450 genes were identified from the genome database of C. sinensis. The results showed that P450s were well-balanced across the chromosomes I to XV of entire genome, with amino acid lengths of 268-612 aa, molecular weights of 30.95-68.5 kDa, and isoelectric points of 4.93-10.17. Phylogenetic analysis divided CsP450s into 34 subfamilies, of which CYP71 was the most abundant. The predicted subcellular localization results showed that P450 was distributed in a variety of organelles, with chloroplasts, plasma membrane,,and cytoplasm localized more frequently. The promoter region of CsP450s contained various cis-acting elements related to phytohormones and stress responses. In addition, ten conserved motifs (Motif1-Motif10) were identified in the CsP450 family proteins, with 27 genes lacking introns and only one exon. The results of genome large segment duplication showed that there were 37 pairs of genes with tandem duplication. Interaction network analysis showed that CsP450 could interact with multiple types of target genes, and there are protein interactions within the family. Tissue expression analysis showed that P450 was highly expressed in roots and stems. Moreover, qPCR analysis of the relative expression level of the gene under drought and cold stress correlated with the sequencing results. CONCLUSIONS This study lays the foundation for resolving the classification and functional study of P450 family genes and provides a reference for the molecular breeding of C. sinensis.
Collapse
Affiliation(s)
- Chuan Shen
- Shaannan Eco-Economy Research Center, Ankang University, Ankang, 725000, China.
| | - Xia Li
- Department of Electronic and Information Engineering, Ankang University, Ankang, 725000, China
| |
Collapse
|
7
|
Wang W, Hou L, Li S, Li J. The Functional Characterization of DzCYP72A12-4 Related to Diosgenin Biosynthesis and Drought Adaptability in Dioscorea zingiberensis. Int J Mol Sci 2023; 24:ijms24098430. [PMID: 37176134 PMCID: PMC10179397 DOI: 10.3390/ijms24098430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Dioscorea zingiberensis is a perennial herb famous for the production of diosgenin, which is a valuable initial material for the industrial synthesis of steroid drugs. Sterol C26-hydroxylases, such as TfCYP72A616 and PpCYP72A613, play an important role in the diosgenin biosynthesis pathway. In the present study, a novel gene, DzCYP72A12-4, was identified as C26-hydroxylase and was found to be involved in diosgenin biosynthesis, for the first time in D. zingiberensis, using comprehensive methods. Then, the diosgenin heterogenous biosynthesis pathway starting from cholesterol was created in stable transgenic tobacco (Nicotiana tabacum L.) harboring DzCYP90B71(QPZ88854), DzCYP90G6(QPZ88855) and DzCYP72A12-4. Meanwhile, diosgenin was detected in the transgenic tobacco using an ultra-performance liquid chromatography system (Vanquish UPLC 689, Thermo Fisher Scientific, Bremen, Germany) tandem MS (Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer, Thermo Fisher Scientific, Bremen, Germany). Further RT-qPCR analysis showed that DzCYP72A12-4 was highly expressed in both rhizomes and leaves and was upregulated under 15% polyethylene glycol (PEG) treatment, indicating that DzCYP72A12-4 may be related to drought resistance. In addition, the germination rate of the diosgenin-producing tobacco seeds was higher than that of the negative controls under 15% PEG pressure. In addition, the concentration of malonaldehyde (MDA) was lower in the diosgenin-producing tobacco seedlings than those of the control, indicating higher drought adaptability. The results of this study provide valuable information for further research on diosgenin biosynthesis in D. zingiberensis and its functions related to drought adaptability.
Collapse
Affiliation(s)
- Weipeng Wang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lixiu Hou
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Song Li
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiaru Li
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Xu ZP, Liu Y, Wang SY, Li ZW, Li XM, Lu DX, Pan J, Kuang HX, Yang BY. Eight undescribed steroidal saponins including an unprecedented 16, 26-epoxy-furostanol saponin from Solanum xanthocarpum and their cytotoxic activities. PHYTOCHEMISTRY 2022; 199:113171. [PMID: 35398090 DOI: 10.1016/j.phytochem.2022.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Eight undescribed steroidal saponins named solasaponins A-H were isolated from the fruits of Solanum xanthocarpum, including an unusual 16,26-epoxy-furostanol saponin, two furostanol saponins, three isospirostanol saponins, two pseudo-spirostanol saponins. The structures of all compounds were elucidated by extensive spectroscopic data analyses (1D, 2D NMR, and HRESIMS) combined with physico-chemical analysis methods (acid hydrolysis, optical rotation, and IR). The cytotoxicities of all compounds in vitro against two human cancer cell lines (A-549 and HepG2) were evaluated by CCK-8 assay.
Collapse
Affiliation(s)
- Zhen-Peng Xu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Si-Yi Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Zi-Wei Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiao-Mao Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Dong-Xu Lu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
9
|
Chen Y, Wu J, Yu D, Du X. Advances in steroidal saponins biosynthesis. PLANTA 2021; 254:91. [PMID: 34617240 DOI: 10.1007/s00425-021-03732-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
This work reviews recent advances in the pathways and key enzymes of steroidal saponins biosynthesis and sets the foundation for the biotechnological production of these useful compounds through transformation of microorganisms. Steroidal saponins, due to their specific chemical structures and active effects, have long been important natural products and that are irreplaceable in hormone production and other pharmaceutical industries. This article comprehensively reviewed the previous and current research progress and summarized the biosynthesis pathways and key biosynthetic enzymes of steroidal saponins that have been discovered in plants and microoganisms. On the basis of the general biosynthetic pathway in plants, it was found that the starting components, intermediates and catalysing enzymes were diverse between plants and microorganisms; however, the functions of their related enzymes tended to be similar. The biosynthesis pathways of steroidal saponins in microorganisms and marine organisms have not been revealed as clearly as those in plants and need further investigation. The elucidation of biosynthetic pathways and key enzymes is essential for understanding the synthetic mechanisms of these compounds and provides researchers with important information to further develop and implement the massive production of steroidal saponins by biotechnological approaches and methodologies.
Collapse
Affiliation(s)
- Yiyang Chen
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Junkai Wu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Dan Yu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Xiaowei Du
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China.
| |
Collapse
|
10
|
Zhang M, Deng Y, Liu F, Zheng M, Liang Y, Sun W, Li Q, Li XN, Qi C, Liu J, Chen C, Zhu H, Zhang Y. Five undescribed steroids from Talaromyces stipitatus and their cytotoxic activities against hepatoma cell lines. PHYTOCHEMISTRY 2021; 189:112816. [PMID: 34087503 DOI: 10.1016/j.phytochem.2021.112816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Five undescribed sterol derivatives, (22E,24R)-7α-methoxy-5α,6α-epoxyergosta-8(14),22-diene-3β,15β-diol, (22E,24R)-5α,6α-epoxyergosta-8(14),22-diene-3β,7β,15α-triol, (22E,24R)-3β,5α-dihydroxy-14β,15β-epoxyergosta-7,22-diene-6-one, (22E,24R)-6α-methoxy-7α,15β-dihydroxyergosta-4,8(14),22-triene-3-one, and (25S)-ergosta-7,24(28)-diene-3β,4α,6α,26-tetraol were isolated from the extract of Talaromyces stipitatus, along with eight known congeners. This is the first example of a class of ergosterols isolated from T. stipitatus. Their structures with absolute configurations were elucidated based on NMR spectroscopic data, ECD calculations, and X-ray crystallographic analyses. All these compounds were tested for their effects on three hepatoma cell lines including Hep3B, HepG2, and Huh-7. Moreover, (22E,24R)-5α,6α-epoxyergosta-8(14),22-diene-3β,7β,15α-triol and (22E,24R)-9α,15α-dihydroxyergosta-4,6,8(14),22-tetraen-3-one were further evaluated for their impacts on cell cycle progression and apoptosis due to their pronounced cytotoxicity, to uncover their underlying mechanisms. Our results suggested that their antiproliferative activities were mainly mediated by inducing cell apoptosis.
Collapse
Affiliation(s)
- Mi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yanfang Deng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fei Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Meijia Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
11
|
Bien T, Hambleton EA, Dreisewerd K, Soltwisch J. Molecular insights into symbiosis-mapping sterols in a marine flatworm-algae-system using high spatial resolution MALDI-2-MS imaging with ion mobility separation. Anal Bioanal Chem 2020; 413:2767-2777. [PMID: 33274397 PMCID: PMC8007520 DOI: 10.1007/s00216-020-03070-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/27/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Waminoa sp. acoel flatworms hosting Symbiodiniaceae and the related Amphidinium dinoflagellate algae are an interesting model system for symbiosis in marine environments. While the host provides a microhabitat and safety, the algae power the system by photosynthesis and supply the worm with nutrients. Among these nutrients are sterols, including cholesterol and numerous phytosterols. While it is widely accepted that these compounds are produced by the symbiotic dinoflagellates, their transfer to and fate within the sterol-auxotrophic Waminoa worm host as well as their role in its metabolism are unknown. Here we used matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging combined with laser-induced post-ionization and trapped ion mobility spectrometry (MALDI-2-TIMS-MSI) to map the spatial distribution of over 30 different sterol species in sections of the symbiotic system. The use of laser post-ionization crucially increased ion yields and allowed the recording of images with a pixel size of 5 μm. Trapped ion mobility spectrometry (TIMS) helped with the tentative assignment of over 30 sterol species. Correlation with anatomical features of the worm, revealed by host-derived phospholipid signals, and the location of the dinoflagellates, revealed by chlorophyll a signal, disclosed peculiar differences in the distribution of different sterol species (e.g. of cholesterol versus stigmasterol) within the receiving host. These findings point to sterol species-specific roles in the metabolism of Waminoa beyond a mere source of energy. They also underline the value of the MALDI-2-TIMS-MSI method to future research in the spatially resolved analysis of sterols.
Collapse
Affiliation(s)
- Tanja Bien
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149, Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149, Münster, Germany
| | - Elizabeth A Hambleton
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149, Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149, Münster, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149, Münster, Germany. .,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149, Münster, Germany.
| |
Collapse
|
12
|
Biosynthesis and Industrial Production of Androsteroids. PLANTS 2020; 9:plants9091144. [PMID: 32899410 PMCID: PMC7570361 DOI: 10.3390/plants9091144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
Steroids are a group of organic compounds that include sex hormones, adrenal cortical hormones, sterols, and phytosterols. In mammals, steroid biosynthesis starts from cholesterol via multiple steps to the final steroid and occurs in the gonads, adrenal glands, and placenta. This highly regulated pathway involves several cytochrome P450, as well as different dehydrogenases and reductases. Steroids in mammals have also been associated with drug production. Steroid pharmaceuticals such as testosterone and progesterone represent the second largest category of marketed medical products. There heterologous production through microbial transformation of phytosterols has gained interest in the last couple of decades. Phytosterols being the plants sterols serve as inexpensive substrates for the production of steroid derivatives. Various genes and biochemical pathways involved in phytosterol degradation have been identified in many Rhodococcus and Mycobacterium species. Apart from an early investigation in mammals, presence of steroids such as androsteroids and progesterone has also been demonstrated in plants. Their main role is linked with growth, development, and reproduction. Even though plants share some chemical features with mammals, the biosynthesis is different, with the first C22 hydroxylation as an example. This is performed by CYP11A1 in mammals and CYP90B1 in plants. Moreover, the entire plant steroid biosynthesis is not fully elucidated. Knowing this pathway could provide new processes for the industrial biotechnological production of steroid hormones in plants.
Collapse
|
13
|
Prasad A, Patel P, Pandey S, Niranjan A, Misra P. Growth and alkaloid production along with expression profiles of biosynthetic pathway genes in two contrasting morphotypes of prickly and prickleless Solanum viarum Dunal. PROTOPLASMA 2020; 257:561-572. [PMID: 31814043 DOI: 10.1007/s00709-019-01446-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Growth and production kinetics of three important glycoalkaloids viz. α-solanine, solanidine, and solasodine in two contrasting prickly and prickleless plants of Solanum viarum Dunal were evaluated under in vitro conditions. The prickleless plants showed improved accumulation of total glycoalkaloid content [7.11 and 6.85 mg g-1 dry weight (DW)] and growth (GI = 11.08 and 19.26) after 45 and 50 days of culture cycle, respectively. For higher biomass (91.18 g l-1) as well as glycoalkaloid (52.56 mg l-1) recovery, the prickleless plants served as highly profitable platform. All the three studied glycoalkaloids were identified and quantified by mass spectrometry and HPLC. All the three studied glycoalkaloids accumulated in age-dependent manner. The presence of two constituents, i.e., solasodine and solanidine mainly contributed for higher accumulation of total glycoalkaloid content in the prickleless plants. However, the synthesis of α-solanine was highly age specific and could be detected after 4 to 5 weeks of culture cycle in both prickle containing as well as prickleless plants of S. viarum. The higher accumulation of glycoalkaloids in prickleless plants was also supported with the expression analysis of six key pathway enzymes viz. mevalonate kinase (MVK), 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGR), farnesyl diphosphate synthase (FPS), UDP-galactose/solanidine galactosyltransferase (SGT1), UDP-glucose/solanidine glucosyltransferase (SGT2), and cytochrome P450 monooxygenase (CYP). The results indicated that the plants harvested after 45 and 50 days of culture cycle accumulated maximum bioactive in-demand glycoalkaloids in the prickly and prickleless plants of S. viarum Dunal, respectively.
Collapse
Affiliation(s)
- Archana Prasad
- Department of Plant Biotechnology, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Preeti Patel
- Department of Plant Biotechnology, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Shatrujeet Pandey
- Department of Plant Biotechnology, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Abhishek Niranjan
- Central Instrumentation Facility, Council of Scientific and Industrial Research - National Botanical Research Institute, Lucknow, 226001, India
| | - Pratibha Misra
- Department of Plant Biotechnology, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
14
|
Yang Z, Yang L, Liu C, Qin X, Liu H, Chen J, Ji Y. Transcriptome analyses of Paris polyphylla var. chinensis, Ypsilandra thibetica, and Polygonatum kingianum characterize their steroidal saponin biosynthesis pathway. Fitoterapia 2019; 135:52-63. [PMID: 30999023 DOI: 10.1016/j.fitote.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/01/2019] [Accepted: 04/13/2019] [Indexed: 10/27/2022]
Abstract
Steroidal saponins, one of the most diverse groups of plant-derived natural products, elicit biological and pharmacological activities; however, the genes involved in their biosynthesis and the corresponding biosynthetic pathway in monocotyledon plants remain unclear. This study aimed to identify genes involved in the biosynthesis of steroidal saponins by performing a comparative analysis among transcriptomes of Paris polyphylla var. chinensis (PPC), Ypsilandra thibetica (YT), and Polygonatum kingianum (PK). De novo transcriptome assemblies generated 57,537, 140,420, and 151,773 unigenes from PPC, YT, and PK, respectively, of which 56.54, 47.81, and 44.30% were successfully annotated, respectively. Among the transcriptomes for PPC, YT, and PK, we identified 194, 169, and 131; 17, 14, and 26; and, 80, 122, and 113 unigenes corresponding to terpenoid backbone biosynthesis; sesquiterpenoid and triterpenoid biosynthesis; and, steroid biosynthesis pathways, respectively. These genes are putatively involved in the biosynthesis of cholesterol that is the primary precursor of steroidal saponins. Phylogenetic analyses indicated that lanosterol synthase may be exclusive to dicotyledon plant species, and the cytochrome P450 unigenes were closely related to clusters CYP90B1 and CYP734A1, which are UDP-glycosyltransferases unigenes homologous with the UGT73 family. Thus, unigenes of β-glucosidase may be candidate genes for catalysis of later period modifications of the steroidal saponin skeleton. Our data provide evidence to support the hypothesis that monocotyledons biosynthesize steroidal saponins from cholesterol via the cycloartenol pathway.
Collapse
Affiliation(s)
- Zhenyan Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Lifang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; School of Life Science, Yunnan University, Kunming 650201, Yunnan, PR China
| | - Changkun Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Xujie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Jiahui Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.
| | - Yunheng Ji
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.
| |
Collapse
|
15
|
Phylogenomic analysis of cytochrome P450 multigene family and their differential expression analysis in Solanum lycopersicum L. suggested tissue specific promoters. BMC Genomics 2019; 20:116. [PMID: 30732561 PMCID: PMC6367802 DOI: 10.1186/s12864-019-5483-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Background Cytochrome P450 (P450) is a functionally diverse and multifamily class of enzymes which catalyses vast variety of biochemical reactions. P450 genes play regulatory role in growth, development and secondary metabolite biosynthesis. Solanum lycopersicum L. (Tomato) is an economically important crop plant and model system for various studies with massive genomic data. The comprehensive identification and characterization of P450 genes was lacking. Probing tomato genome for P450 identification would provide valuable information about the functions and evolution of the P450 gene family. Results In the present study, we have identified 233 P450 genes from tomato genome along with conserved motifs. Through the phylogenetic analysis of Solanum lycopersicum P450 (SlP450) protein sequences, they were classified into two major clades and nine clans further divided into 42 families. RT-qPCR analysis of selected six candidate genes were corroborated with digital expression profile. Out of 233 SlP450 genes, 73 showed expression evidence in 19 tissues of tomato. Out of 22 intron gain/loss positions, two positions were conserved in tomato P450 genes supporting intron late theory of intron evolution in SlP450 families. The comparison between tomato and other related plant P450s families showed that CYP728, CYP733, CYP80, CYP92, CYP736 and CYP749 families have been evolved in tomato and few higher plants whereas lost from Arabidopsis. The global promoter analysis of SlP450 against all the protein coding genes, coupled with expression data, revealed statistical overrepresentation of few promoter motifs in SlP450 genes which were highly expressed in specific tissue of tomato. Hence, these identified promoter motifs can be pursued further as tissue specific promoter that are driving expression of respective SlP450. Conclusions The phylogenetic analysis and expression profiles of tomato P450 gene family offers essential genomic resource for their functional characterization. This study allows comparison of SlP450 gene family with other Solanaceae members which are also economically important and attempt to classify functionally important SlP450 genes into groups and families. This report would enable researchers working on Tomato P450 to select appropriate candidate genes from huge repertoire of P450 genes depending on their phylogenetic class, tissue specific expression and promoter prevalence. Electronic supplementary material The online version of this article (10.1186/s12864-019-5483-x) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Yin Y, Gao L, Zhang X, Gao W. A cytochrome P450 monooxygenase responsible for the C-22 hydroxylation step in the Paris polyphylla steroidal saponin biosynthesis pathway. PHYTOCHEMISTRY 2018; 156:116-123. [PMID: 30268044 DOI: 10.1016/j.phytochem.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/18/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Polyphyllins are the major steroidal saponin components of Paris polyphylla, the main source plant of the common Chinese herbal medicine Paridis Rhizoma with strong pharmacological activity and extremely high economic value and great market prospects. However, the production of polyphyllins in plants is limited, and their biosynthesis pathway has not been reported. The downstream hydroxylation step was particularly unclear. To clarify the enzymes and intermediates involved in the downstream steps of polyphyllin biosynthesis, we performed a comparative transcriptome analysis and discovered a cytochrome P450 gene that encodes a protein with monooxygenase activity. Heterologous expression in Saccharomyces cerevisiae demonstrated that it encodes an enzyme that catalyzes the formation of 22(R)-hydroxycholesterol from cholesterol. The relative gene expression measured by RT-PCR and polyphyllin contents measured by HPLC in P. polyphylla roots at different ages confirmed that this gene is involved in polyphyllin biosynthesis. To our best knowledge, this is the first report on the cloning of a CYP450 enzyme gene from the steroidal saponin pathway of higher plants.
Collapse
Affiliation(s)
- Yan Yin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, PR China
| | - Linhui Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China; State Key Laboratory of Breeding Base Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Xianan Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China.
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
17
|
Upadhyay S, Jeena GS, Shukla RK. Recent advances in steroidal saponins biosynthesis and in vitro production. PLANTA 2018; 248:519-544. [PMID: 29748819 DOI: 10.1007/s00425-018-2911-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Steroidal saponins exhibited numerous pharmacological activities due to the modification of their backbone by different cytochrome P450s (P450) and UDP glycosyltransferases (UGTs). Plant-derived steroidal saponins are not sufficient for utilizing them for commercial purpose so in vitro production of saponin by tissue culture, root culture, embryo culture, etc, is necessary for its large-scale production. Saponin glycosides are the important class of plant secondary metabolites, which consists of either steroidal or terpenoidal backbone. Due to the existence of a wide range of medicinal properties, saponin glycosides are pharmacologically very important. This review is focused on important medicinal properties of steroidal saponin, its occurrence, and biosynthesis. In addition to this, some recently identified plants containing steroidal saponins in different parts were summarized. The high throughput transcriptome sequencing approach elaborates our understanding related to the secondary metabolic pathway and its regulation even in the absence of adequate genomic information of non-model plants. The aim of this review is to encapsulate the information related to applications of steroidal saponin and its biosynthetic enzymes specially P450s and UGTs that are involved at later stage modifications of saponin backbone. Lastly, we discussed the in vitro production of steroidal saponin as the plant-based production of saponin is time-consuming and yield a limited amount of saponins. A large amount of plant material has been used to increase the production of steroidal saponin by employing in vitro culture technique, which has received a lot of attention in past two decades and provides a way to conserve medicinal plants as well as to escape them for being endangered.
Collapse
Affiliation(s)
- Swati Upadhyay
- Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, (CSIR-CIMAP) P.O. CIMAP (a laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Gajendra Singh Jeena
- Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, (CSIR-CIMAP) P.O. CIMAP (a laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Rakesh Kumar Shukla
- Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants, (CSIR-CIMAP) P.O. CIMAP (a laboratory under Council of Scientific and Industrial Research, India), Near Kukrail Picnic Spot, Lucknow, 226015, India.
| |
Collapse
|
18
|
Ohnishi T. Recent advances in brassinosteroid biosynthetic pathway: insight into novel brassinosteroid shortcut pathway. JOURNAL OF PESTICIDE SCIENCE 2018; 43:159-167. [PMID: 30363110 PMCID: PMC6140664 DOI: 10.1584/jpestics.d18-040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/13/2018] [Indexed: 05/23/2023]
Abstract
Brassinosteroids (BRs) are plant steroid hormones involved in plant growth and environmental adaptation. It is well known that oxidation/hydroxylation steps in the BR biosynthetic pathway are catalyzed by cytochrome P450 enzymes. It has been proposed that brassinolide is biosynthesized from campesterol via campestanol (CN) in the original BR biosynthetic pathway. However, a recent enzymatic analysis of cytochrome P450 enzymes and re-evaluation of the endogenous amount of BRs in BR-deficient mutants included an investigation of the novel BR biosynthetic pathway (CN-independent pathway) not via CN. This review highlights comprehensive recent advances in the biochemical research of BR biosynthetic enzymes and the CN-independent pathway. This review also focuses the biosynthesis inhibitors and the antagonists/agonists that are utilized not only as plant growth regulators but also as tools for the chemical and biological investigation of the physiological functions of BRs.
Collapse
Affiliation(s)
- Toshiyuki Ohnishi
- College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422–8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422–8529, Japan
| |
Collapse
|
19
|
Guan HY, Su P, Zhao YJ, Zhang XN, Dai ZB, Guo J, Tong YR, Liu YJ, Hu TY, Yin Y, Gao LH, Gao W, Huang LQ. Cloning and functional analysis of two sterol-C24-methyltransferase 1 (SMT1) genes from Paris polyphylla. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:595-604. [PMID: 28276759 DOI: 10.1080/10286020.2016.1271791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
The biosynthetic pathways of phytosterols and steroidal saponins are located in two adjacent branches which share cycloartenol as substrate. The rate-limiting enzyme S-adenosyl-L-methionine-sterol-C24-methyltransferase 1 (SMT1) facilitates the metabolic flux toward phytosterols. It catalyzes the methylation of the cycloartenol in the side chain of the C24-alkyl group, to generate 24(28)-methylene cycloartenol. In this study, we obtained two full-length sequences of SMT1 genes from Pari polyphylla, designated PpSMT1-1 and PpSMT1-2. The full-length cDNA of PpSMT1-1 was 1369 bp long with an open reading frame (ORF) of 1038 bp, while the PpSMT1-2 had a length of 1222 bp, with a 1005 bp ORF. Bioinformatics analysis confirmed that the two cloned SMTs belong to the SMT1 family. The predicted function was further validated by performing in vitro enzymatic reactions, and the results showed that PpSMT1-1 encodes a cycloartenol-C24-methyltransferase, which catalyzes the conversion of cycloartenol to 24-methylene cycloartenol, whereas PpSMT1-2 lacked this catalytic activity. The tissue expression patterns of the two SMTs revealed differential expression in different organs of Paris polyphylla plants of different developmental stage and age. These results lay the foundation for detailed genetic studies of the biosynthetic pathways of steroid compounds, which constitute the main class of active substances found in P. polyphylla.
Collapse
Affiliation(s)
- Hong-Yu Guan
- a School of Traditional Chinese Medicine, Capital Medical University , Beijing 100069 , China
| | - Ping Su
- b Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences , Beijing 100700 , China
| | - Yu-Jun Zhao
- b Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences , Beijing 100700 , China
| | - Xia-Nan Zhang
- a School of Traditional Chinese Medicine, Capital Medical University , Beijing 100069 , China
| | - Zhu-Bo Dai
- c Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , Tianjin 300308 , China
| | - Juan Guo
- b Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences , Beijing 100700 , China
| | - Yu-Ru Tong
- a School of Traditional Chinese Medicine, Capital Medical University , Beijing 100069 , China
| | - Yu-Jia Liu
- a School of Traditional Chinese Medicine, Capital Medical University , Beijing 100069 , China
| | - Tian-Yuan Hu
- a School of Traditional Chinese Medicine, Capital Medical University , Beijing 100069 , China
| | - Yan Yin
- d School of Pharmaceutical Sciences, Guizhou University , Guiyang 550025 , China
| | - Lin-Hui Gao
- a School of Traditional Chinese Medicine, Capital Medical University , Beijing 100069 , China
| | - Wei Gao
- a School of Traditional Chinese Medicine, Capital Medical University , Beijing 100069 , China
| | - Lu-Qi Huang
- b Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences , Beijing 100700 , China
| |
Collapse
|
20
|
Zhan X, Liao X, Luo X, Zhu Y, Feng S, Yu C, Lu J, Shen C, Wang H. Comparative Metabolomic and Proteomic Analyses Reveal the Regulation Mechanism Underlying MeJA-Induced Bioactive Compound Accumulation in Cutleaf Groundcherry ( Physalis angulata L.) Hairy Roots. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6336-6347. [PMID: 29874907 DOI: 10.1021/acs.jafc.8b02502] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cutleaf groundcherry ( Physalis angulata L.) is an annual plant with a number of medicinal ingredients. However, studies about the secondary metabolism of P. angulata are very limited. An integrated metabolome and proteome approach was used to reveal the variations in the metabolism associated with bioactive compounds under methyl-jasmonate (MeJA) treatment. Application of MeJA to the hairy roots could significantly increase the accumulation of most active ingredients. A targeted approach confirmed the variations in physalins D and H between MeJA treatment and the controls. Increases in the levels of a number of terpenoid backbone biosynthesis and steroid biosynthesis related enzymes, cytochrome P450 monooxygenases and 3β-hydroxysterioid dehydrogenase might provide a potential explanation for the MeJA-induced active ingredient synthesis. Our results may contribute to a deeper understanding of the regulation mechanism underlying the MeJA-induced active compound accumulation in P. angulata.
Collapse
|
21
|
Zhang Z, Xu L. Arabidopsis BRASSINOSTEROID INACTIVATOR2 is a typical BAHD acyltransferase involved in brassinosteroid homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1925-1941. [PMID: 29462426 DOI: 10.1093/jxb/ery057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Brassinosteroids (BRs) are plant-specific steroidal hormones; BR homeostasis is crucial for various aspects of plant growth and development. However, to date, the BR inactivation process has not been thoroughly elucidated. In this study, we identified and characterized a novel BAHD family acyltransferase gene, BRASSINOSTEROID INACTIVATOR2 (BIA2), involved in BR inactivation. BIA2-overexpressing (OE-BIA2) plants displayed typical BR-deficient phenotypes, which were rescued by exogenous BR treatment. Real-time qRT-PCR and transcriptome analyses showed that expression levels of virtually all of the BR biosynthetic genes were increased, whereas the expression of many BR inactivation genes was reduced in OE-BIA2 plants. Root inhibition assays showed that the root growth of OE-BIA2 plants was inhibited. We obtained plants with an intermediate phenotype by crossing the OE-BIA2 plants with BRASSINOSTEROID-INSENSITIVE1 (BRI1)-overexpressing plants. The null BIA2 mutants had longer hypocotyls in the dark. BIA2 was predominantly expressed in roots, and its expression was induced by 24-epibrassinolide or dark treatment, but it exhibited a differential expression pattern compared with its homologue, BIA1. Furthermore, genetic transformation with point-mutant and deleted-BIA2 constructs confirmed that the HXXXD motif is essential for the function of BIA2. Taken together, these findings indicate that BIA2 is a typical BAHD acyltransferase that is involved in BR homeostasis and may inactivate bioactive BRs by esterification, particularly in roots and hypocotyls under dark conditions.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, China
| | - Liping Xu
- National Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
22
|
Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 2018; 70:35-61. [DOI: 10.1016/j.plipres.2018.04.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
|
23
|
Shpakovski GV, Spivak SG, Berdichevets IN, Babak OG, Kubrak SV, Kilchevsky AV, Aralov AV, Slovokhotov IY, Shpakovski DG, Baranova EN, Khaliluev MR, Shematorova EK. A key enzyme of animal steroidogenesis can function in plants enhancing their immunity and accelerating the processes of growth and development. BMC PLANT BIOLOGY 2017; 17:189. [PMID: 29143658 PMCID: PMC5688476 DOI: 10.1186/s12870-017-1123-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND The initial stage of the biosynthesis of steroid hormones in animals occurs in the mitochondria of steroidogenic tissues, where cytochrome P450SCC (CYP11A1) encoded by the CYP11A1 gene catalyzes the conversion of cholesterol into pregnenolone - the general precursor of all the steroid hormones, starting with progesterone. This stage is missing in plants where mitochondrial cytochromes P450 (the mito CYP clan) have not been found. Generating transgenic plants with a mitochondrial type P450 from animals would offer an interesting option to verify whether plant mitochondria could serve as another site of P450 monooxygenase reaction for the steroid hormones biosynthesis. RESULTS For a more detailed comparison of steroidogenic systems of Plantae and Animalia, we have created and studied transgenic tobacco and tomato plants efficiently expressing mammalian CYP11A1 cDNA. The detailed phenotypic characterization of plants obtained has shown that through four generations studied, the transgenic tobacco plants have reduced a period of vegetative development (early flowering and maturation of bolls), enlarged biomass and increased productivity (quantity and quality of seeds) as compared to the only empty-vector containing or wild type plants. Moreover, the CYP11A1 transgenic plants show resistance to such fungal pathogen as Botrytis cinerea. Similar valuable phenotypes (the accelerated course of ontogenesis and/or stress resistance) are also visible in two clearly distinct transgenic tomato lines expressing CYP11A1 cDNA: one line (No. 4) has an accelerated rate of vegetative development, while the other (No. 7) has enhanced immunity to abiotic and biotic stresses. The progesterone level in transgenic tobacco and tomato leaves is 3-5 times higher than in the control plants of the wild type. CONCLUSIONS For the first time, we could show the compatibility in vivo of even the most specific components of the systems of biosynthesis of steroid hormones in Plantae and Animalia. The hypothesis is proposed and substantiated that the formation of the above-noted special phenotypes of transgenic plants expressing mammalian CYP11A1 cDNA is due to the increased biosynthesis of progesterone that can be considered as a very ancient bioregulator of plant cells and the first real hormone common to plants and animals.
Collapse
Affiliation(s)
- George V Shpakovski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Svetlana G Spivak
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
- Belarusian State Medical University, Minsk, Belarus
| | - Irina N Berdichevets
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Olga G Babak
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Svetlana V Kubrak
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Alexander V Kilchevsky
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ivan Yu Slovokhotov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry G Shpakovski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Marat R Khaliluev
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Elena K Shematorova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
24
|
New cryptotanshinone derivatives with anti-influenza A virus activities obtained via biotransformation by Mucor rouxii. Appl Microbiol Biotechnol 2017; 101:6365-6374. [PMID: 28584912 DOI: 10.1007/s00253-017-8351-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/27/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
This paper provides an efficient platform to diversify the structure and pharmaceutical potentials of known natural products. Seven metabolites were obtained via the biotransformation of cryptotanshinone by the fungus Mucor rouxii AS 3.3447, and assigned as 13R-14R-hydroxy-anhydride of 16R-cryptotanshinone (1), 1S-hydroxy-anhydride of 16R-cryptotanshinone (2), 1R-hydroxy-anhydride of 16R-cryptotanshinone (3), 3S-hydroxy-epicryptoacetalide (4), 3S-hydroxy-cryptoacetalide (5), epicryptoacetalide (6), and cryptoacetalide (7). Among these compounds, 1-5 are novel. The ortho-naphthoquinone chromophore of cryptotanshinone was degraded and rearranged by M. rouxii. 1 and 3 showed good anti-influenza A virus activities with the reduced cytotoxic activities compared to the parent substrate cryptotanshinone (8). The structures of all the new compounds were determined on the basis of HRESIMS (high-resolution electrospray ionization mass spectroscopy) spectrometry, NMR (nuclear magnetic resonance) spectroscopy, ECD (electronic circular dichroism) calculations, and the CD (circular dichroism) of "in situ" method with [Rh2(OCOCF3)4].
Collapse
|
25
|
Yokota T, Ohnishi T, Shibata K, Asahina M, Nomura T, Fujita T, Ishizaki K, Kohchi T. Occurrence of brassinosteroids in non-flowering land plants, liverwort, moss, lycophyte and fern. PHYTOCHEMISTRY 2017; 136:46-55. [PMID: 28057327 DOI: 10.1016/j.phytochem.2016.12.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/01/2016] [Accepted: 12/23/2016] [Indexed: 05/05/2023]
Abstract
Endogenous brassinosteroids (BRs) in non-flowering land plants were analyzed. BRs were found in a liverwort (Marchantia polymorpha), a moss (Physcomitrella patens), lycophytes (Selaginella moellendorffii and S. uncinata) and 13 fern species. A biologically active BR, castasterone (CS), was identified in most of these non-flowering plants but another biologically active BR, brassinolide, was not. It may be distinctive that levels of CS in non-flowering plants were orders of magnitude lower than those in flowering plants. 22-Hydroxycampesterol and its metabolites were identified in most of the non-flowering plants suggesting that the biosynthesis of BRs via 22-hydroxylation of campesterol occurs as in flowering plants. Phylogenetic analyses indicated that M. polymorpha, P. patens and S. moellendorffii have cytochrome P450s in the CYP85 clans which harbors BR biosynthesis enzymes, although the P450 profiles are simpler as compared with Arabidopsis and rice. Furthermore, these basal land plants were found to have multiple P450s in the CYP72 clan which harbors enzymes to catabolize BRs. These findings indicate that green plants were able to synthesize and inactivate BRs from the land-transition stage.
Collapse
Affiliation(s)
- Takao Yokota
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan.
| | - Toshiyuki Ohnishi
- Graduate School of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kyomi Shibata
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan
| | - Masashi Asahina
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan
| | - Takahito Nomura
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Takayuki Kohchi
- Laboratory of Plant Molecular Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
26
|
Tsukagoshi Y, Ohyama K, Seki H, Akashi T, Muranaka T, Suzuki H, Fujimoto Y. Functional characterization of CYP71D443, a cytochrome P450 catalyzing C-22 hydroxylation in the 20-hydroxyecdysone biosynthesis of Ajuga hairy roots. PHYTOCHEMISTRY 2016; 127:23-28. [PMID: 27017303 DOI: 10.1016/j.phytochem.2016.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
20-Hydroxyecdysone (20HE), a molting hormone of insects, is also distributed among a variety of plant families. 20HE is thought to play a role in protecting plants from insect herbivores. In insects, biosynthesis of 20HE from cholesterol proceeds via 7-dehydrocholesterol and 3β,14α-dihydroxy-5β-cholest-7-en-6-one (5β-ketodiol), the latter being converted to 20HE through sequential hydroxylation catalyzed by four P450 enzymes, which have been cloned and identified. In contrast, little is known about plant 20HE biosynthesis, and no biosynthetic 20HE gene has been reported thus far. We recently proposed involvement of 3β-hydroxy-5β-cholestan-6-one (5β-ketone) in 20HE biosynthesis in the hairy roots of Ajuga reptans var. atropurpurea (Lamiaceae). In this study, an Ajuga EST library was generated from the hairy roots and P450 genes were deduced from the library. Five genes with a high expression level (CYP71D443, CYP76AH19, CYP76AH20, CYP76AH21 and CYP716D27) were screened for a possible involvement in 20HE biosynthesis. As a result, CYP71D443 was shown to have C-22 hydroxylation activity for the 5β-ketone substrate using a yeast expression system. The hydroxylated product, 22-hydroxy-5β-ketone, had a 22R configuration in agreement with that of 20HE. Furthermore, labeling experiments indicated that (22R)-22-hydroxy-5β-ketone was converted to 20HE in Ajuga hairy roots. Based on the present results, a possible 20HE biosynthetic pathway in Ajuga plants involved CYP71D443 is proposed.
Collapse
Affiliation(s)
- Yuki Tsukagoshi
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, O-okayama, Meguro, Tokyo 152-8551, Japan
| | - Kiyoshi Ohyama
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, O-okayama, Meguro, Tokyo 152-8551, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoyoshi Akashi
- Department of Applied Biological Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yoshinori Fujimoto
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, O-okayama, Meguro, Tokyo 152-8551, Japan.
| |
Collapse
|
27
|
Lindemann P. Steroidogenesis in plants--Biosynthesis and conversions of progesterone and other pregnane derivatives. Steroids 2015; 103:145-52. [PMID: 26282543 DOI: 10.1016/j.steroids.2015.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 07/03/2015] [Accepted: 08/06/2015] [Indexed: 01/23/2023]
Abstract
In plants androstanes, estranes, pregnanes and corticoids have been described. Sometimes 17β-estradiol, androsterone, testosterone or progesterone were summarized as sex hormones. These steroids influence plant development: cell divisions, root and shoot growth, embryo growth, flowering, pollen tube growth and callus proliferation. First reports on the effect of applicated substances and of their endogenous occurrence date from the early twenties of the last century. This caused later on doubts on the identity of the compounds. Best investigated is the effect of progesterone. Main steps of the progesterone biosynthetic pathway have been analyzed in Digitalis. Cholesterol-side-chain-cleavage, pregnenolone and progesterone formation as well as the stereospecific reduction of progesterone are described and the corresponding enzymes are presented. Biosynthesis of androstanes, estranes and corticoids is discussed. Possible progesterone receptors and physiological reactions on progesterone application are reviewed.
Collapse
Affiliation(s)
- Peter Lindemann
- Institut für Pharmazie, Martin-Luther Universität Halle/Wittenberg, Hoher Weg 8, 06120 Halle, Germany.
| |
Collapse
|
28
|
Vriet C, Lemmens K, Vandepoele K, Reuzeau C, Russinova E. Evolutionary trails of plant steroid genes. TRENDS IN PLANT SCIENCE 2015; 20:301-308. [PMID: 25861757 DOI: 10.1016/j.tplants.2015.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/01/2015] [Accepted: 03/05/2015] [Indexed: 05/22/2023]
Abstract
Plant steroids - brassinosteroids (BRs) and their precursors, phytosterols - play a major role in plant growth, development, stress tolerance, and have high potential for agricultural applications. Currently, this prospect is limited by a lack of information about their evolution and expression dynamics (spatial and temporal) across plant species. The increasing number of sequenced genomes offers an opportunity for evolutionary studies that might help to prioritize functional analyses with the aim to improve crop yield and stress tolerance. In this review we provide a glimpse of the origin, evolution, and functional conservation of phytosterol and BR genes in the green plant lineage using comparative sequence and expression analyses of publicly available datasets.
Collapse
Affiliation(s)
- Cécile Vriet
- CropDesign N.V., a BASF Plant Science company, 9052 Ghent, Belgium
| | - Karen Lemmens
- CropDesign N.V., a BASF Plant Science company, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | | | - Eugenia Russinova
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
29
|
Zhang M, Zhao Q, Liang YY, Ma JH, Chen LX, Zhang X, Ding LQ, Zhao F, Qiu F. Stereo- and regiospecific biotransformation of curcumenol by four fungal strains. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Chen LX, Zhao Q, Zhang M, Liang YY, Ma JH, Zhang X, Ding LQ, Zhao F, Qiu F. Biotransformation of Curcumenol by Mucor polymorphosporus. JOURNAL OF NATURAL PRODUCTS 2015; 78:674-680. [PMID: 25821895 DOI: 10.1021/np500845z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biocatalysis of curcumenol (1) was performed by Mucor polymorphosporus AS 3.3443. Six metabolites including five new compounds were obtained, and their structures were elucidated as 10β-hydroxy-9,10-dihydrocurcumenol (2), 2β-hydroxycurcumenol (3), 15-hydroxycurcumenol (4), 12-hydroxycurcumenol (5), 1-hydroxy-4αH-guai-1,6,9-triene-2,8-dione (6), and 5-hydroxycarbonyl-1-oxo-3,7-dimethylindane (7) by spectroscopic analysis. M. polymorphosporus catalyzed unusual degradation and rearrangement reactions to generate a ring-contracted metabolite (7) of curcumenol (1). Curcumenol (1) and metabolites 4-7 exhibited inhibitory activities against lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages, with 7 exhibiting more potent activity than curcumenol.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li-Qin Ding
- ‡School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Nankai District, Tianjin 300193, People's Republic of China
| | - Feng Zhao
- §School of Pharmacy, Yantai University, Laishan District, Yantai, 264005, People's Republic of China
| | - Feng Qiu
- ‡School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Nankai District, Tianjin 300193, People's Republic of China
| |
Collapse
|
31
|
Analysis of the transcriptome of Marsdenia tenacissima discovers putative polyoxypregnane glycoside biosynthetic genes and genetic markers. Genomics 2014; 104:186-93. [DOI: 10.1016/j.ygeno.2014.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/21/2014] [Accepted: 07/25/2014] [Indexed: 11/21/2022]
|
32
|
Omura T. Contribution of cytochrome P450 to the diversification of eukaryotic organisms. Biotechnol Appl Biochem 2014; 60:4-8. [PMID: 23586987 DOI: 10.1002/bab.1099] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/16/2013] [Indexed: 11/10/2022]
Abstract
Emergence of eukaryotic cells in the ancient world of prokaryotic life was dependent on P450 as the synthesis of sterols, an essential constituent of the plasma membrane, required a P450-catalyzed reaction. As the ancestral monocellular eukaryotic organisms evolved into multicellular eukaryotes, and then diversified to plants, fungi, and animals with different body organizations and metabolic activities, many novel compounds were created in order to meet the requirements for increasing complex metabolic activities of a wide variety of eukaryotic organisms. Many new P450s, created by gene duplication and mutation, contributed to the synthesis of those novel compounds in animals, plants, and fungi, and supported the diversification of the eukaryotes. Many secondary metabolites of plants, which protect the plants from the predation by herbivorous animals, were also synthesized by P450-catalyzed reactions. The herbivorous animals detoxified the noxious foreign compounds in the plants by P450. This "chemical warfare" between animals and plants is particularly evident in plants-insects interaction, and contributed to the coevolution and diversification of both plants and insects. The interaction between flowering plants and insect pollinators, which contributed to their coevolution, also depends on various plant compounds synthesized by P450-catalyzed reactions. P450 has made highly important contributions to the evolution and diversification of eukaryotic organisms.
Collapse
Affiliation(s)
- Tsuneo Omura
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
33
|
Asahina M, Tamaki Y, Sakamoto T, Shibata K, Nomura T, Yokota T. Blue light-promoted rice leaf bending and unrolling are due to up-regulated brassinosteroid biosynthesis genes accompanied by accumulation of castasterone. PHYTOCHEMISTRY 2014; 104:21-9. [PMID: 24856112 DOI: 10.1016/j.phytochem.2014.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/13/2014] [Accepted: 04/23/2014] [Indexed: 05/07/2023]
Abstract
In this study the relationship between blue light- and brassinosteroid-enhanced leaf lamina bending and unrolling in rice was investigated. Twenty-four hours (h) irradiation with white or blue light increased endogenous brassinosteroid levels, especially those of typhasterol and castasterone, in aerial tissues of rice seedlings. There was an accompanying up-regulation of transcript levels of CYP85A1/OsDWARF, encoding an enzyme catalyzing C-6 oxidation, after 6h under either white or blue light. These effects were not observed in seedlings placed under far-red or red light regimes. It was concluded that blue light up-regulates the levels of several cytochrome P450 enzymes including CYP85A1, thereby promoting the synthesis of castasterone, a biologically active brassinosteroid in rice. Based on these findings, it is considered that blue light-mediated rice leaf bending and unrolling are consequences of the enhanced biosynthesis of endogenous castasterone. In contrast to aerial tissues, brassinosteroid synthesis in roots appeared to be negatively regulated by white, blue and red light but positively controlled by far-red light.
Collapse
Affiliation(s)
- Masashi Asahina
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Yuji Tamaki
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Tomoaki Sakamoto
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Kyomi Shibata
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Takahito Nomura
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Takao Yokota
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan.
| |
Collapse
|
34
|
Cheon J, Fujioka S, Dilkes BP, Choe S. Brassinosteroids regulate plant growth through distinct signaling pathways in Selaginella and Arabidopsis. PLoS One 2013; 8:e81938. [PMID: 24349155 PMCID: PMC3862569 DOI: 10.1371/journal.pone.0081938] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/28/2013] [Indexed: 12/21/2022] Open
Abstract
Brassinosteroids (BRs) are growth-promoting steroid hormones that regulate diverse physiological processes in plants. Most BR biosynthetic enzymes belong to the cytochrome P450 (CYP) family. The gene encoding the ultimate step of BR biosynthesis in Arabidopsis likely evolved by gene duplication followed by functional specialization in a dicotyledonous plant-specific manner. To gain insight into the evolution of BRs, we performed a genomic reconstitution of Arabidopsis BR biosynthetic genes in an ancestral vascular plant, the lycophyte Selaginella moellendorffii. Selaginella contains four members of the CYP90 family that cluster together in the CYP85 clan. Similar to known BR biosynthetic genes, the Selaginella CYP90s exhibit eight or ten exons and Selaginella produces a putative BR biosynthetic intermediate. Therefore, we hypothesized that Selaginella CYP90 genes encode BR biosynthetic enzymes. In contrast to typical CYPs in Arabidopsis, Selaginella CYP90E2 and CYP90F1 do not possess amino-terminal signal peptides, suggesting that they do not localize to the endoplasmic reticulum. In addition, one of the three putative CYP reductases (CPRs) that is required for CYP enzyme function co-localized with CYP90E2 and CYP90F1. Treatments with a BR biosynthetic inhibitor, propiconazole, and epi-brassinolide resulted in greatly retarded and increased growth, respectively. This suggests that BRs promote growth in Selaginella, as they do in Arabidopsis. However, BR signaling occurs through different pathways than in Arabidopsis. A sequence homologous to the Arabidopsis BR receptor BRI1 was absent in Selaginella, but downstream components, including BIN2, BSU1, and BZR1, were present. Thus, the mechanism that initiates BR signaling in Selaginella seems to differ from that in Arabidopsis. Our findings suggest that the basic physiological roles of BRs as growth-promoting hormones are conserved in both lycophytes and Arabidopsis; however, different BR molecules and BRI1-based membrane receptor complexes evolved in these plants.
Collapse
Affiliation(s)
- Jinyeong Cheon
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Shozo Fujioka
- RIKEN Advanced Science Institute, Wako-shi, Saitama, Japan
| | - Brian P. Dilkes
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (SC); (BD)
| | - Sunghwa Choe
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
- Convergence Research Center for Functional Plant Products, Advanced Institutes of Convergence Technology, Suwon, Gyeonggi, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
- * E-mail: (SC); (BD)
| |
Collapse
|
35
|
Li H, Jiang L, Youn JH, Sun W, Cheng Z, Jin T, Ma X, Guo X, Wang J, Zhang X, Wu F, Wu C, Kim SK, Wan J. A comprehensive genetic study reveals a crucial role of CYP90D2/D2 in regulating plant architecture in rice (Oryza sativa). THE NEW PHYTOLOGIST 2013; 200:1076-88. [PMID: 23902579 DOI: 10.1111/nph.12427] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/22/2013] [Indexed: 05/05/2023]
Abstract
Brassinosteroids (BRs) are essential regulators of plant architecture. Understanding how BRs control plant height and leaf angle would facilitate development of new plant type varieties by biotechnology. A number of mutants involved in BR biosynthesis have been isolated but many of them lack detailed genetic analysis. Here, we report the isolation and characterization of a severe dwarf mutant, chromosome segment deleted dwarf 1 (csdd1), which was deficient in BR biosynthesis in rice. We isolated the mutant by screening a tissue culture-derived population, cloned the gene by mapping, and confirmed its function by complementary and RNAi experiments, combined with physiological and chemical analysis. We showed that the severe dwarf phenotype was caused by a complete deletion of a cytochrome P450 gene, CYP90D2/D2, which was further confirmed in two independent T-DNA insertion lines in different genetic backgrounds and by RNA interference. Our chemical analysis suggested that CYP90D2/D2 might catalyze C-3 dehydrogenation step in BR biosynthesis. We have demonstrated that the CYP90D2/D2 gene plays a more important role than previously reported. Allelic mutations of CYP90D2/D2 confer varying degrees of dwarfism and leaf angle, thus providing useful information for molecular breeding in grain crop plants.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gao C, Ju Z, Li S, Zuo J, Fu D, Tian H, Luo Y, Zhu B. Deciphering ascorbic acid regulatory pathways in ripening tomato fruit using a weighted gene correlation network analysis approach. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1080-1091. [PMID: 23718676 DOI: 10.1111/jipb.12079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
Genotype is generally determined by the co-expression of diverse genes and multiple regulatory pathways in plants. Gene co-expression analysis combining with physiological trait data provides very important information about the gene function and regulatory mechanism. L-Ascorbic acid (AsA), which is an essential nutrient component for human health and plant metabolism, plays key roles in diverse biological processes such as cell cycle, cell expansion, stress resistance, hormone synthesis, and signaling. Here, we applied a weighted gene correlation network analysis approach based on gene expression values and AsA content data in ripening tomato (Solanum lycopersicum L.) fruit with different AsA content levels, which leads to identification of AsA relevant modules and vital genes in AsA regulatory pathways. Twenty-four modules were compartmentalized according to gene expression profiling. Among these modules, one negatively related module containing genes involved in redox processes and one positively related module enriched with genes involved in AsA biosynthetic and recycling pathways were further analyzed. The present work herein indicates that redox pathways as well as hormone-signal pathways are closely correlated with AsA accumulation in ripening tomato fruit, and allowed us to prioritize candidate genes for follow-up studies to dissect this interplay at the biochemical and molecular level.
Collapse
Affiliation(s)
- Chao Gao
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Vriet C, Russinova E, Reuzeau C. From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant kingdom. MOLECULAR PLANT 2013; 6:1738-57. [PMID: 23761349 DOI: 10.1093/mp/sst096] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The plant steroid hormones, brassinosteroids (BRs), and their precursors, phytosterols, play major roles in plant growth, development, and stress tolerance. Here, we review the impressive progress made during recent years in elucidating the components of the sterol and BR metabolic and signaling pathways, and in understanding their mechanism of action in both model plants and crops, such as Arabidopsis and rice. We also discuss emerging insights into the regulations of these pathways, their interactions with other hormonal pathways and multiple environmental signals, and the putative nature of sterols as signaling molecules.
Collapse
Affiliation(s)
- Cécile Vriet
- CropDesign NV, a BASF Plant Science Company, 9052 Gent, Belgium
| | | | | |
Collapse
|
38
|
Dong X, Feng H, Xu M, Lee J, Kim YK, Lim YP, Piao Z, Park YD, Ma H, Hur Y. Comprehensive analysis of genic male sterility-related genes in Brassica rapa using a newly developed Br300K oligomeric chip. PLoS One 2013; 8:e72178. [PMID: 24039743 PMCID: PMC3770635 DOI: 10.1371/journal.pone.0072178] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/05/2013] [Indexed: 11/18/2022] Open
Abstract
To identify genes associated with genic male sterility (GMS) that could be useful for hybrid breeding in Chinese cabbage (Brassicarapa ssp. pekinensis), floral bud transcriptome analysis was carried out using a B. rapa microarray with 300,000 probes (Br300K). Among 47,548 clones deposited on a Br300K microarray with seven probes of 60 nt length within the 3' 150 bp region, a total of 10,622 genes were differentially expressed between fertile and sterile floral buds; 4,774 and 5,848 genes were up-regulated over 2-fold in fertile and sterile buds, respectively. However, the expression of 1,413 and 199 genes showed fertile and sterile bud-specific features, respectively. Genes expressed specifically in fertile buds, possibly GMS-related genes, included homologs of several Arabidopsis male sterility-related genes, genes associated with the cell wall and synthesis of its surface proteins, pollen wall and coat components, signaling components, and nutrient supplies. However, most early genes for pollen development, genes for primexine and callose formation, and genes for pollen maturation and anther dehiscence showed no difference in expression between fertile and sterile buds. Some of the known genes associated with Arabidopsis pollen development showed similar expression patterns to those seen in this study, while others did not. BrbHLH89 and BrMYP99 are putative GMS genes. Additionally, 17 novel genes identified only in B. rapa were specifically and highly expressed only in fertile buds, implying the possible involvement in male fertility. All data suggest that Chinese cabbage GMS might be controlled by genes acting in post-meiotic tapetal development that are different from those known to be associated with Arabidopsis male sterility.
Collapse
Affiliation(s)
- Xiangshu Dong
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ming Xu
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jeongyeo Lee
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Yeon Ki Kim
- GreenGene Biotech Inc, Genomics and Genetics Institute, Yongin, Korea
| | - Yong Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon, Korea
| | - Zhongyun Piao
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Young Doo Park
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, Korea
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yoonkang Hur
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
- * E-mail:
| |
Collapse
|
39
|
Tralau T, Luch A. The evolution of our understanding of endo-xenobiotic crosstalk and cytochrome P450 regulation and the therapeutic implications. Expert Opin Drug Metab Toxicol 2013; 9:1541-54. [DOI: 10.1517/17425255.2013.828692] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Genetic variation in plant CYP51s confers resistance against voriconazole, a novel inhibitor of brassinosteroid-dependent sterol biosynthesis. PLoS One 2013; 8:e53650. [PMID: 23335967 PMCID: PMC3546049 DOI: 10.1371/journal.pone.0053650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 12/04/2012] [Indexed: 01/19/2023] Open
Abstract
Brassinosteroids (BRs) are plant steroid hormones with structural similarity to mammalian sex steroids and ecdysteroids from insects. The BRs are synthesized from sterols and are essential regulators of cell division, cell elongation and cell differentiation. In this work we show that voriconazole, an antifungal therapeutic drug used in human and veterinary medicine, severely impairs plant growth by inhibiting sterol-14α-demethylation and thereby interfering with BR production. The plant growth regulatory properties of voriconazole and related triazoles were identified in a screen for compounds with the ability to alter BR homeostasis. Voriconazole suppressed growth of the model plant Arabidopsis thaliana and of a wide range of both monocotyledonous and dicotyledonous plants. We uncover that voriconazole toxicity in plants is a result of a deficiency in BRs that stems from an inhibition of the cytochrome P450 CYP51, which catalyzes a step of BR-dependent sterol biosynthesis. Interestingly, we found that the woodland strawberry Fragaria vesca, a member of the Rosaceae, is naturally voriconazole resistant and that this resistance is conferred by the specific CYP51 variant of F. vesca. The potential of voriconazole as a novel tool for plant research is discussed.
Collapse
|
41
|
Chai YM, Zhang Q, Tian L, Li CL, Xing Y, Qin L, Shen YY. Brassinosteroid is involved in strawberry fruit ripening. PLANT GROWTH REGULATION 2013; 69:63-69. [PMID: 0 DOI: 10.1007/s10725-012-9747-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
42
|
Yang C, Fan H, Yuan Y, Gao J. Microbial Transformation of Pregnane-3β,16β,20-triol byCunninghamella echinulata. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201201080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Mizutani M. Impacts of diversification of cytochrome P450 on plant metabolism. Biol Pharm Bull 2012; 35:824-32. [PMID: 22687470 DOI: 10.1248/bpb.35.824] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome P450 monooxygenases (P450s) catalyze a wide variety of monooxygenation reactions in primary and secondary metabolism in plants. The share of P450 genes in each plant genome is estimated to be up to 1%. This implies that the diversification of P450 has made a significant contribution to the ability to acquire the emergence of new metabolic pathways during land plant evolution. The P450 families conserved universally in land plants contribute to their chemical defense mechanisms. Several P450s are involved in the biosynthesis and catabolism of plant hormones. Species-specific P450 families are essential for the biosynthetic pathways of phytochemicals such as terpenoids and alkaloids. Genome wide analysis of the gene clusters including P450 genes will provide a clue to defining the metabolic roles of orphan P450s. Metabolic engineering with plant P450s is an important technology for large-scale production of valuable phytochemicals such as medicines.
Collapse
Affiliation(s)
- Masaharu Mizutani
- Functional Phytochemistry, Graduate School of Agricultural Science, Kobe University, Nada, Japan.
| |
Collapse
|
44
|
Synthesis of [26-2H3]-campesterin and [26-2H3]-campestanol, deuterated analogs of biosynthetic precursors of 28C-brassinosteroids. Chem Nat Compd 2012. [DOI: 10.1007/s10600-012-0323-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Ohnishi T, Godza B, Watanabe B, Fujioka S, Hategan L, Ide K, Shibata K, Yokota T, Szekeres M, Mizutani M. CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. J Biol Chem 2012; 287:31551-60. [PMID: 22822057 DOI: 10.1074/jbc.m112.392720] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brassinosteroids (BRs) are steroidal phytohormones that regulate plant growth and development. Whereas in Arabidopsis the network-like routes of BR biosynthesis have been elucidated in considerable detail, the roles of some of the biosynthetic enzymes and their participation in the different subpathways remained to be clarified. We investigated the function of the cytochrome P450 monooxygenase CYP90A1/CPD, which earlier had been proposed to act as a BR C-23 hydroxylase. Our GC-MS and genetic analyses demonstrated that the cpd mutation arrests BR synthesis upstream of the DET2-mediated 5α reduction step and that overexpression of the C-23 hydroxylase CYP90C1 does not alleviate BR deficiency in the cpd mutant. In line with these results, we found that CYP90A1/CPD heterologously expressed in a baculovirus-insect cell system catalyzes C-3 oxidation of the early BR intermediates (22S)-22-hydroxycampesterol and (22R,23R)-22,23-dihydroxycampesterol, as well as of 6-deoxocathasterone and 6-deoxoteasterone. Enzyme kinetic data of CYP90A1/CPD and DET2, together with those of the earlier studied CYP90B1, CYP90C1, and CYP90D1, suggest that BR biosynthesis proceeds mainly via the campestanol-independent pathway.
Collapse
Affiliation(s)
- Toshiyuki Ohnishi
- Division of Global Research Leaders, Shizuoka University, Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Khripach VA, Zhabinskii VN, Ermolovich YV, Gulyakevich OV, Mekhtiev AR, Karalkin PA. Synthesis and biological activity of the probable biosynthetic precursors of 241-norbrassinolide. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012. [DOI: 10.1134/s1068162012040097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Lima-Silva V, Rosado A, Amorim-Silva V, Muñoz-Mérida A, Pons C, Bombarely A, Trelles O, Fernández-Muñoz R, Granell A, Valpuesta V, Botella MÁ. Genetic and genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit. BMC Genomics 2012; 13:187. [PMID: 22583865 PMCID: PMC3462723 DOI: 10.1186/1471-2164-13-187] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/25/2012] [Indexed: 12/02/2022] Open
Abstract
Background L-ascorbic acid (AsA; vitamin C) is essential for all living plants where it functions as the main hydrosoluble antioxidant. It has diverse roles in the regulation of plant cell growth and expansion, photosynthesis, and hormone-regulated processes. AsA is also an essential component of the human diet, being tomato fruit one of the main sources of this vitamin. To identify genes responsible for AsA content in tomato fruit, transcriptomic studies followed by clustering analysis were applied to two groups of fruits with contrasting AsA content. These fruits were identified after AsA profiling of an F8 Recombinant Inbred Line (RIL) population generated from a cross between the domesticated species Solanum lycopersicum and the wild relative Solanum pimpinellifollium. Results We found large variability in AsA content within the RIL population with individual RILs with up to 4-fold difference in AsA content. Transcriptomic analysis identified genes whose expression correlated either positively (PVC genes) or negatively (NVC genes) with the AsA content of the fruits. Cluster analysis using SOTA allowed the identification of subsets of co-regulated genes mainly involved in hormones signaling, such as ethylene, ABA, gibberellin and auxin, rather than any of the known AsA biosynthetic genes. Data mining of the corresponding PVC and NVC orthologs in Arabidopis databases identified flagellin and other ROS-producing processes as cues resulting in differential regulation of a high percentage of the genes from both groups of co-regulated genes; more specifically, 26.6% of the orthologous PVC genes, and 15.5% of the orthologous NVC genes were induced and repressed, respectively, under flagellin22 treatment in Arabidopsis thaliana. Conclusion Results here reported indicate that the content of AsA in red tomato fruit from our selected RILs are not correlated with the expression of genes involved in its biosynthesis. On the contrary, the data presented here supports that AsA content in tomato fruit co-regulates with genes involved in hormone signaling and they are dependent on the oxidative status of the fruit.
Collapse
Affiliation(s)
- Viviana Lima-Silva
- Departamento Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Universidad de Málaga, 29071, Málaga, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S. Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. THE NEW PHYTOLOGIST 2012; 194:28-45. [PMID: 22292897 DOI: 10.1111/j.1469-8137.2011.04049.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cardenolides are remarkable steroidal toxins that have become model systems, critical in the development of theories for chemical ecology and coevolution. Because cardenolides inhibit the ubiquitous and essential animal enzyme Na⁺/K⁺-ATPase, most insects that feed on cardenolide-containing plants are highly specialized. With a huge diversity of chemical forms, these secondary metabolites are sporadically distributed across 12 botanical families, but dominate the Apocynaceae where they are found in > 30 genera. Studies over the past decade have demonstrated patterns in the distribution of cardenolides among plant organs, including all tissue types, and across broad geographic gradients within and across species. Cardenolide production has a genetic basis and is subject to natural selection by herbivores. In addition, there is strong evidence for phenotypic plasticity, with the biotic and abiotic environment predictably impacting cardenolide production. Mounting evidence indicates a high degree of specificity in herbivore-induced cardenolides in Asclepias. While herbivores of cardenolide-containing plants often sequester the toxins, are aposematic, and possess several physiological adaptations (including target site insensitivity), there is strong evidence that these specialists are nonetheless negatively impacted by cardenolides. While reviewing both the mechanisms and evolutionary ecology of cardenolide-mediated interactions, we advance novel hypotheses and suggest directions for future work.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, and Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Georg Petschenka
- Biozentrum Grindel, Molekulare Evolutionsbiologie, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Robin A Bingham
- Department of Natural and Environmental Sciences, Western State College of Colorado, Gunnison, CO 81231, USA
| | - Marjorie G Weber
- Department of Ecology and Evolutionary Biology, and Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Sergio Rasmann
- Department of Ecology and Evolution, Bâtiment Biophore, University of Lausanne, CH - 1015 Lausanne, Switzerland
| |
Collapse
|
49
|
Joo SH, Kim TW, Son SH, Lee WS, Yokota T, Kim SK. Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1823-33. [PMID: 22170941 PMCID: PMC3295382 DOI: 10.1093/jxb/err354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A metabolic study revealed that 28-norcastasterone in Arabidopsis is synthesized from cholesterol via the late C-6 oxidation pathway. On the other hand, the early C-6 oxidation pathway was found to be interrupted because cholestanol is converted to 6-oxocholestanol, but further metabolism to 28-norcathasterone was not observed. The 6-oxoBRs were found to have been produced from the respective 6-deoxoBRs administered to the enzyme solution, thus indicating that these 6-oxoBRs are supplied from the late C-6 oxidation pathway. Heterologously expressed CYP85A1 and CYP85A2 in yeast catalysed this C-6 oxidation, with CYP85A2 being much more efficient than CYP85A1. Abnormal growth of det2 and dwf4 was restored via the application of 28-norcastasterone and closer precursors. Furthermore, det2 and dwf4 could not convert cholesterol to cholestanol and cholestanol to 6-deoxo-28-norcathasterone, respectively. It is, therefore, most likely that the same enzyme system is operant in the synthesis of both 28-norcastasterone and castasterone. In the presence of S-adenosyl-L-methionine, the cell-free enzyme extract catalysed the C-24 methylation of 28-norcastasterone to castasterone, although the conversion rates of 28-norteasterone to teasterone and 28-nortyphasterol to typhasterol were much lower; this suggests that 28-norcastasterone is the primary precursor for the generation of C(28)-BRs from C(27)-BRs.
Collapse
Affiliation(s)
- Se-Hwan Joo
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
| | - Tae-Wuk Kim
- Department of Life Science, Hanyang University, Seoul 133-791, Korea
| | - Seung-Hyun Son
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
| | - Woo Sung Lee
- Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Korea
| | - Takao Yokota
- Department of Biosciences, Teikyo University, Utsunomiya, 320-8551, Japan
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Zhang R, Xia X, Lindsey K, da Rocha PSCF. Functional complementation of dwf4 mutants of Arabidopsis by overexpression of CYP724A1. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:421-8. [PMID: 22196800 DOI: 10.1016/j.jplph.2011.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 05/20/2023]
Abstract
An essential step in the biosynthesis of bioactive brassinosteroids (BRs) in plants is the hydroxylation at C-22, a reaction catalyzed by P450 enzymes of the CYP90B and CYP724B subfamilies. Genes for both types of enzymes are present in many species, and in rice (Oryza sativa) and tomato (Solanum lycopersicum) both CYP90B and CYP724B enzymes contribute to C-22 hydroxylation. In Arabidopsis (Arabidopsis thaliana), C-22 hydroxylation of BRs is catalyzed by CYP90B1 (encoded by DWF4) and null dwf4 mutants show severe symptoms of BR-deficiency. CYP724A1 (At5g14400), an Arabidopsis gene of unknown function and limited expression, encodes a P450 sharing less than 55% sequence identity to CYP724B proteins. We used transgenic plants of the null mutants dwf4-102 and a novel allele, bashful (bsf), ectopically expressing the CYP724A1 gene to investigate the potential activity of CYP724A1 as a C-22 hydroxylase of BRs. Defects associated with BR deficiency were reversed and a normal growth habit restored in transgenic dwf4-102 and bsf plants overexpressing CYP724A1. The vegetative phase was prolonged and the transgenic plants were on average larger than wild type plants with respect to several morphometric parameters. Fertility was restored in the transgenic plants but individual siliques yielded fewer and heavier seeds than those of wild type plants. The implications of these findings with regard to the functions of CYP724A1 and the activity of its encoded enzyme are discussed.
Collapse
Affiliation(s)
- Rujia Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropic Agriculture, Chinese Academy of Sciences, Mapoling of Changsha City, Changsha, Hunan 410125, PR China
| | | | | | | |
Collapse
|