1
|
Ahmadpourmir H, Attar H, Asili J, Soheili V, Taghizadeh SF, Shakeri A. Natural-derived acetophenones: chemistry and pharmacological activities. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:28. [PMID: 38727781 PMCID: PMC11087454 DOI: 10.1007/s13659-024-00447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/03/2024] [Indexed: 05/13/2024]
Abstract
Acetophenones are naturally occurring phenolic compounds which have found in over 24 plant families and also fungi strains. They are exist in both free or glycosides form in nature. The biological activities of these compounds have been assayed and reported including cytotoxicity, antimicrobial, antimalarial, antioxidant and antityrosinase activities. Herein, we review the chemistry and biological activity of natural acetophenone derivatives that have been isolated and identified until January 2024. Taken together, it was reported 252 acetophenone derivatives in which the genera Melicope (69) and Acronychia (44) were the principal species as producers of acetophenones.
Collapse
Affiliation(s)
- Hamid Ahmadpourmir
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Homayoun Attar
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Faezeh Taghizadeh
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zubkov FI, Kouznetsov VV. Traveling across Life Sciences with Acetophenone-A Simple Ketone That Has Special Multipurpose Missions. Molecules 2023; 28:370. [PMID: 36615564 PMCID: PMC9823374 DOI: 10.3390/molecules28010370] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Each metabolite, regardless of its molecular simplicity or complexity, has a mission or function in the organism biosynthesizing it. In this review, the biological, allelochemical, and chemical properties of acetophenone, as a metabolite involved in multiple interactions with various (mi-cro)organisms, are discussed. Further, the details of its biogenesis and chemical synthesis are provided, and the possibility of its application in different areas of life sciences, i.e., the status quo of acetophenone and its simple substituted analogs, is examined. In particular, natural and synthetic simple acetophenone derivatives are analyzed as promising agrochemicals and useful scaffolds for drug research and development.
Collapse
Affiliation(s)
- Fedor I. Zubkov
- Department of Organic Chemistry, Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Vladimir V. Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander, Cl. 9 # Cra 27, A.A., Bucaramanga 680006, Colombia
| |
Collapse
|
3
|
Negrel J, Klinguer A, Adrian M. In vitro inhibition of shikimate hydroxycinnamoyltransferase by acibenzolar acid, the first metabolite of the plant defence inducer acibenzolar-S-methyl. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:119-127. [PMID: 33836466 DOI: 10.1016/j.plaphy.2021.03.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Acibenzolar acid, the first metabolite formed in planta from the defence inducer acibenzolar-S-methyl (ASM), has been shown to be an inhibitor of the enzyme shikimate hydroxycinnamoyltransferase (HST), extracted from grapevine or tobacco cell suspension cultures. Using a purified recombinant Arabidopsis thaliana HST, the inhibition was found to be competitive, acibenzolar acid binding reversibly to the shikimate binding site of the HST:p-coumaroyl-CoA complex, with a Ki value of 250 μM. The other hydroxycinnamoyltransferases tested in the course of this study, using either hydroxypalmitic acid, putrescine, tyramine, or quinic acid as acyl acceptors were not, or only slightly, inhibited by acibenzolar acid. To understand the specificity of the interaction of acibenzolar acid with HST, we analyzed the structure-activity relationship of a series of benzoic or acibenzolar acid analogues, tested either as AtHST substrates or as inhibitors. This analysis confirmed previously published data on the substrate flexibility of HST and demonstrated that both the carboxyl group and the thiadiazole moiety of acibenzolar acid are playing an important role in the interaction with the shikimate binding site. Acibenzolar acid, which cannot form an ester bond with p-coumaric acid, was however a less potent inhibitor than protocatechuic or 3-hydroxybenzoic acids, which are used as acyl acceptors by HST. Our results show that the interaction of acibenzolar acid with HST, which is probably directly linked to the substrate promiscuity of HST, is unlikely to play a direct role in the defence-inducing properties of ASM in plants.
Collapse
Affiliation(s)
- Jonathan Negrel
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche- Comté, F-21000 Dijon, France.
| | - Agnès Klinguer
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche- Comté, F-21000 Dijon, France.
| | - Marielle Adrian
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche- Comté, F-21000 Dijon, France.
| |
Collapse
|
4
|
Parent GJ, Méndez‐Espinoza C, Giguère I, Mageroy MH, Charest M, Bauce É, Bohlmann J, MacKay JJ. Hydroxyacetophenone defenses in white spruce against spruce budworm. Evol Appl 2020; 13:62-75. [PMID: 31892944 PMCID: PMC6935585 DOI: 10.1111/eva.12885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/17/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
We review a recently discovered white spruce (Picea glauca) chemical defense against spruce budworm (Choristoneura fumiferana) involving hydroxyacetophenones. These defense metabolites detected in the foliage accumulate variably as the aglycons, piceol and pungenol, or the corresponding glucosides, picein and pungenin. We summarize current knowledge of the genetic, genomic, molecular, and biochemical underpinnings of this defense and its effects on C. fumiferana. We present an update with new results on the ontogenic variation and the phenological window of this defense, including analysis of transcript responses in P. glauca to C. fumiferana herbivory. We also discuss this chemical defense from an evolutionary and a breeding context.
Collapse
Affiliation(s)
- Geneviève J. Parent
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
- Institut de biologie intégrative et des systèmesUniversité LavalQuébecQCCanada
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Claudia Méndez‐Espinoza
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
- Institut de biologie intégrative et des systèmesUniversité LavalQuébecQCCanada
- Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas ForestalesInstituto Nacional de Investigaciones Forestales, Agrícolas y PecuariasCiudad de MéxicoMexico
| | - Isabelle Giguère
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
- Institut de biologie intégrative et des systèmesUniversité LavalQuébecQCCanada
| | - Melissa H. Mageroy
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Norwegian Institute for Bioeconomy ResearchÅsNorway
| | - Martin Charest
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
| | - Éric Bauce
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
| | - Joerg Bohlmann
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
| | - John J. MacKay
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
- Institut de biologie intégrative et des systèmesUniversité LavalQuébecQCCanada
- Department of Plant SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Lamara M, Parent GJ, Giguère I, Beaulieu J, Bousquet J, MacKay JJ. Association genetics of acetophenone defence against spruce budworm in mature white spruce. BMC PLANT BIOLOGY 2018; 18:231. [PMID: 30309315 PMCID: PMC6182838 DOI: 10.1186/s12870-018-1434-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Outbreaks of spruce budworm (SBW, Choristoneura fumiferana Clem.) cause major recurrent damage in boreal conifers such as white spruce (Picea glauca [Moench] Voss) and large losses of forest biomass in North America. Although defensive phenolic compounds have recently been linked to chemical resistance against SBW, their genetic basis remains poorly understood in forest trees, especially in conifers. Here, we used diverse association genetics approaches to discover genes and their variants that may control the accumulation of acetophenones, and dissect the genetic architecture of these defence compounds against SBW in white spruce mature trees. RESULTS Out of 4747 single nucleotide polymorphisms (SNPs) from 2312 genes genotyped in a population of 211 unrelated individuals, genetic association analyses identified 35 SNPs in 33 different genes that were significantly associated with the defence traits by using single-locus, multi-locus and multi-trait approaches. The multi-locus approach was particularly effective at detecting SNP-trait associations that explained a large fraction of the phenotypic variance (from 20 to 43%). Significant genes were regulatory including the NAC transcription factor, or they were involved in carbohydrate metabolism, falling into the binding, catalytic or transporter activity functional classes. Most of them were highly expressed in foliage. Weak positive phenotypic correlations were observed between defence and growth traits, indicating little or no evidence of defence-growth trade-offs. CONCLUSIONS This study provides new insights on the genetic architecture of tree defence traits, contributing to our understanding of the physiology of resistance mechanisms to biotic factors and providing a basis for the genetic improvement of the constitutive defence of white spruce against SBW.
Collapse
Affiliation(s)
- Mebarek Lamara
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
- Canada Research Chair in Forest Genomics, Université Laval, Qc, Québec, G1V 0A6 Canada
| | | | - Isabelle Giguère
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
| | - Jean Beaulieu
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
- Canada Research Chair in Forest Genomics, Université Laval, Qc, Québec, G1V 0A6 Canada
| | - Jean Bousquet
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
- Canada Research Chair in Forest Genomics, Université Laval, Qc, Québec, G1V 0A6 Canada
| | - John J. MacKay
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB UK
- Canada Research Chair in Forest Genomics, Université Laval, Qc, Québec, G1V 0A6 Canada
| |
Collapse
|
6
|
Parent GJ, Giguère I, Mageroy M, Bohlmann J, MacKay JJ. Evolution of the biosynthesis of two hydroxyacetophenones in plants. PLANT, CELL & ENVIRONMENT 2018; 41:620-629. [PMID: 29314043 DOI: 10.1111/pce.13134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
Acetophenones are phenolic metabolites of plant species. A metabolic route for the biosynthesis and release of 2 defence-related hydroxyacetophenones in white spruce (Picea glauca) was recently proposed to involve 3 phases: (a) biosynthesis of the acetophenone aglycons catalysed by a currently unknown set of enzymes, (b) formation and accumulation of the corresponding glycosides catalysed by a glucosyltransferase, and (c) release of the aglycons catalysed by a glucosylhydrolase (PgβGLU-1). We tested if this biosynthetic model is conserved across Pinaceae and land plant species. We assayed and surveyed the literature and sequence databases for possible patterns of the presence of the acetophenone aglycons piceol and pungenol and their glucosides, as well as sequences and expression of Pgβglu-1 orthologues. In the Pinaceae, the 3 phases of the biosynthetic model are present and differences in expression of Pgβglu-1 gene orthologues explain some of the interspecific variation in hydroxyacetophenones. The phylogenetic signal in the metabolite phenotypes was low across species of 6 plant divisions. Putative orthologues of PgβGLU-1 do not form a monophyletic group in species producing hydroxyacetophenones. The biosynthetic model for acetophenones appears to be conserved across Pinaceae, whereas convergent evolution has led to the production of acetophenone glucosides across land plants.
Collapse
Affiliation(s)
- Geneviève J Parent
- Centre d'étude de la forêt, Département des sciences du bois et de la forêt, Université Laval, Québec City, Québec, G1V 0A6, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec City, Québec, G1V 0A6, Canada
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Isabelle Giguère
- Centre d'étude de la forêt, Département des sciences du bois et de la forêt, Université Laval, Québec City, Québec, G1V 0A6, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Melissa Mageroy
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Norwegian Institute for Bioeconomy Research, Ås, 1433, Norway
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - John J MacKay
- Centre d'étude de la forêt, Département des sciences du bois et de la forêt, Université Laval, Québec City, Québec, G1V 0A6, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec City, Québec, G1V 0A6, Canada
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| |
Collapse
|
7
|
Wong DCJ, Pichersky E, Peakall R. The Biosynthesis of Unusual Floral Volatiles and Blends Involved in Orchid Pollination by Deception: Current Progress and Future Prospects. FRONTIERS IN PLANT SCIENCE 2017; 8:1955. [PMID: 29181016 PMCID: PMC5693887 DOI: 10.3389/fpls.2017.01955] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/30/2017] [Indexed: 05/23/2023]
Abstract
Flowers have evolved diverse strategies to attract animal pollinators, with visual and olfactory floral cues often crucial for pollinator attraction. While most plants provide reward (e.g., nectar, pollen) in return for the service of pollination, 1000s of plant species, particularly in the orchid family, offer no apparent reward. Instead, they exploit their often specific pollinators (one or few) by mimicking signals of female insects, food source, and oviposition sites, among others. A full understanding of how these deceptive pollination strategies evolve and persist remains an open question. Nonetheless, there is growing evidence that unique blends that often contain unusual compounds in floral volatile constituents are often employed to secure pollination by deception. Thus, the ability of plants to rapidly evolve new pathways for synthesizing floral volatiles may hold the key to the widespread evolution of deceptive pollination. Yet, until now the biosynthesis of these volatile compounds has been largely neglected. While elucidating the biosynthesis in non-model systems is challenging, nonetheless, these cases may also offer untapped potential for biosynthetic breakthroughs given that some of the compounds can be exclusive or dominant components of the floral scent and production is often tissue-specific. In this perspective article, we first highlight the chemical diversity underpinning some of the more widespread deceptive orchid pollination strategies. Next, we explore the potential metabolic pathways and biosynthetic steps that might be involved. Finally, we offer recommendations to accelerate the discovery of the biochemical pathways in these challenging but intriguing systems.
Collapse
Affiliation(s)
- Darren C. J. Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
8
|
Complex Sexual Deception in an Orchid Is Achieved by Co-opting Two Independent Biosynthetic Pathways for Pollinator Attraction. Curr Biol 2017. [DOI: 10.1016/j.cub.2017.05.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Kim Y, Miyashita M, Miyagawa H. Early signaling events induced by the peptide elicitor PIP-1 necessary for acetosyringone accumulation in tobacco cells. Biosci Biotechnol Biochem 2016; 80:1054-7. [PMID: 26924306 DOI: 10.1080/09168451.2016.1151342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
Abstract
A peptide elicitor PIP-1 induces defense-related secondary metabolites such as phytoalexin capsidiol in tobacco cells. In this study, we identified one of other metabolites induced by PIP-1 as acetosyringone. Unlike capsidiol accumulation that requires long-term stimulation with PIP-1, acetosyringone was induced by short-term stimulation with PIP-1. The importance of NADPH oxidase in the acetosyringone induction was also demonstrated.
Collapse
Affiliation(s)
- Yonghyun Kim
- a Division of Applied Life Sciences , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | - Masahiro Miyashita
- a Division of Applied Life Sciences , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | - Hisashi Miyagawa
- a Division of Applied Life Sciences , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| |
Collapse
|
10
|
Romek KM, Nun P, Remaud GS, Silvestre V, Taïwe GS, Lecerf-Schmidt F, Boumendjel A, De Waard M, Robins RJ. A retro-biosynthetic approach to the prediction of biosynthetic pathways from position-specific isotope analysis as shown for tramadol. Proc Natl Acad Sci U S A 2015; 112:8296-301. [PMID: 26106160 PMCID: PMC4500278 DOI: 10.1073/pnas.1506011112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tramadol, previously only known as a synthetic analgesic, has now been found in the bark and wood of roots of the African medicinal tree Nauclea latifolia. At present, no direct evidence is available as to the biosynthetic pathway of its unusual skeleton. To provide guidance as to possible biosynthetic precursors, we have adopted a novel approach of retro-biosynthesis based on the position-specific distribution of isotopes in the extracted compound. Relatively recent developments in isotope ratio monitoring by (13)C NMR spectrometry make possible the measurement of the nonstatistical position-specific natural abundance distribution of (13)C (δ(13)Ci) within the molecule with better than 1‰ precision. Very substantial variation in the (13)C positional distribution is found: between δ(13)Ci = -11 and -53‰. Distribution is not random and it is argued that the pattern observed can substantially be interpreted in relation to known causes of isotope fractionation in natural products. Thus, a plausible biosynthetic scheme based on sound biosynthetic principals of precursor-substrate relationships can be proposed. In addition, data obtained from the (18)O/(16)O ratios in the oxygen atoms of the compound add support to the deductions made from the carbon isotope analysis. This paper shows how the use of (13)C NMR at natural abundance can help with proposing a biosynthetic route to compounds newly found in nature or those difficult to tackle by conventional means.
Collapse
Affiliation(s)
- Katarzyna M Romek
- Elucidation of Biosynthesis by Isotopic Spectrometry Group, Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, CNRS-University of Nantes Unité Mixte de Recherche 6230, F-44322 Nantes, France; Laboratory for Isotope Effects Studies, Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Pierrick Nun
- Elucidation of Biosynthesis by Isotopic Spectrometry Group, Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, CNRS-University of Nantes Unité Mixte de Recherche 6230, F-44322 Nantes, France
| | - Gérald S Remaud
- Elucidation of Biosynthesis by Isotopic Spectrometry Group, Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, CNRS-University of Nantes Unité Mixte de Recherche 6230, F-44322 Nantes, France
| | - Virginie Silvestre
- Elucidation of Biosynthesis by Isotopic Spectrometry Group, Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, CNRS-University of Nantes Unité Mixte de Recherche 6230, F-44322 Nantes, France
| | | | - Florine Lecerf-Schmidt
- Department of Medicinal Chemistry, University Grenoble Alpes-CNRS Unité Mixte de Recherche 5063, F-38041 Grenoble, France
| | - Ahcène Boumendjel
- Department of Medicinal Chemistry, University Grenoble Alpes-CNRS Unité Mixte de Recherche 5063, F-38041 Grenoble, France
| | - Michel De Waard
- Grenoble Institute of Neuroscience, Unit Inserm U836, F-38700 La Tronche, France; University Joseph Fourier, F-38041 Grenoble, France
| | - Richard J Robins
- Elucidation of Biosynthesis by Isotopic Spectrometry Group, Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, CNRS-University of Nantes Unité Mixte de Recherche 6230, F-44322 Nantes, France;
| |
Collapse
|
11
|
Mageroy MH, Parent G, Germanos G, Giguère I, Delvas N, Maaroufi H, Bauce É, Bohlmann J, Mackay JJ. Expression of the β-glucosidase gene Pgβglu-1 underpins natural resistance of white spruce against spruce budworm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:68-80. [PMID: 25302566 PMCID: PMC4404995 DOI: 10.1111/tpj.12699] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 05/04/2023]
Abstract
Periodic outbreaks of spruce budworm (SBW) affect large areas of ecologically and economically important conifer forests in North America, causing tree mortality and reduced forest productivity. Host resistance against SBW has been linked to growth phenology and the chemical composition of foliage, but the underlying molecular mechanisms and population variation are largely unknown. Using a genomics approach, we discovered a β-glucosidase gene, Pgβglu-1, whose expression levels and function underpin natural resistance to SBW in mature white spruce (Picea glauca) trees. In phenotypically resistant trees, Pgβglu-1 transcripts were up to 1000 times more abundant than in non-resistant trees and were highly enriched in foliage. The encoded PgβGLU-1 enzyme catalysed the cleavage of acetophenone sugar conjugates to release the aglycons piceol and pungenol. These aglycons were previously shown to be active against SBW. Levels of Pgβglu-1 transcripts and biologically active acetophenone aglycons were substantially different between resistant and non-resistant trees over time, were positively correlated with each other and were highly variable in a natural white spruce population. These results suggest that expression of Pgβglu-1 and accumulation of acetophenone aglycons is a constitutive defence mechanism in white spruce. The progeny of resistant trees had higher Pgβglu-1 gene expression than non-resistant progeny, indicating that the trait is heritable. With reported increases in the intensity of SBW outbreaks, influenced by climate, variation of Pgβglu-1 transcript expression, PgβGLU-1 enzyme activity and acetophenone accumulation may serve as resistance markers to better predict impacts of SBW in both managed and wild spruce populations.
Collapse
Affiliation(s)
- Melissa H Mageroy
- Michael Smith Laboratories, University of British ColumbiaVancouver, BC, Canada, V6T 1Z4
| | - Geneviève Parent
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
- Institut de Biologie Intégrative et des Systèmes, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Gaby Germanos
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
- Institut de Biologie Intégrative et des Systèmes, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Isabelle Giguère
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
- Institut de Biologie Intégrative et des Systèmes, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Nathalie Delvas
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Halim Maaroufi
- Institut de Biologie Intégrative et des Systèmes, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Éric Bauce
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British ColumbiaVancouver, BC, Canada, V6T 1Z4
| | - John J Mackay
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université LavalQuébec, QC, Canada, G1V 0A6
- Institut de Biologie Intégrative et des Systèmes, Université LavalQuébec, QC, Canada, G1V 0A6
- Department of Plant Sciences, University of OxfordOxford, OX1 3RB, UK
- *For correspondence (e-mail )
| |
Collapse
|
12
|
Negrel J, Javelle F, Wipf D. Detection of an O-methyltransferase synthesising acetosyringone in methyl jasmonate-treated tobacco cell-suspensions cultures. PHYTOCHEMISTRY 2014; 99:52-60. [PMID: 24445177 DOI: 10.1016/j.phytochem.2013.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/16/2013] [Accepted: 12/20/2013] [Indexed: 06/03/2023]
Abstract
Acetosyringone (3',5'-dimethoxy-4'-hydroxyacetophenone) is a well-known and very effective inducer of the virulence genes of Agrobacterium tumefaciens but the precise pathway of its biosynthesis in plants is still unknown. We have used two tobacco cell lines, cultured in suspension and exhibiting different patterns of accumulation of acetosyringone in their culture medium upon treatment with methyl jasmonate, to study different steps of acetosyringone biosynthesis. In the two cell lines studied, treatment with 100 μM methyl jasmonate triggered a rapid and transient increase in acetovanillone synthase activity followed by a progressive increase in S-adenosyl-L-methionine: 5-hydroxyacetovanillone 5-O-methyltransferase activity which paralleled the rise in acetosyringone concentration in the culture medium. This O-methyltransferase displayed Michaelis-Menten kinetics with an apparent Km value of 18 μM for 5-hydroxyacetovanillone and its activity was magnesium-independent. Its molecular mass was estimated by gel permeation on an FPLC column and was found to be of ca. 81 kDa. 5-Hydroxyacetovanillone was the best substrate among the different o-diphenolic compounds tested as methyl acceptors in the O-methyltransferase assay. No formation of 5-hydroxyacetovanillone could be detected in vitro from 5-hydroxyferuloyl-CoA and NAD in the extracts used to measure acetovanillone synthase activity, indicating that 5-hydroxyacetovanillone is probably formed by direct hydroxylation of acetovanillone rather than by β-oxidation of 5-hydroxyferulic acid. Taken together our results strongly support the hypothesis that acetosyringone biosynthesis in tobacco proceeds from feruloyl-CoA via acetovanillone and 5-hydroxyacetovanillone.
Collapse
Affiliation(s)
- Jonathan Negrel
- UMR 1347 Agroécologie INRA, AgroSup, Université de Bourgogne, 17 rue Sully BP 86510, 21065 Dijon Cedex, France.
| | - Francine Javelle
- UMR 1347 Agroécologie INRA, AgroSup, Université de Bourgogne, 17 rue Sully BP 86510, 21065 Dijon Cedex, France
| | - Daniel Wipf
- UMR 1347 Agroécologie INRA, AgroSup, Université de Bourgogne, 17 rue Sully BP 86510, 21065 Dijon Cedex, France
| |
Collapse
|