1
|
Alves-Silva JM, Zuzarte M, Salgueiro L, Cocco E, Ghiani V, Falconieri D, Maccioni D, Maxia A. Agroprospecting of Biowastes: Globe Artichoke ( Cynara scolymus L. Cultivar Tema, Asteraceae) as Potential Source of Bioactive Compounds. Molecules 2024; 29:3960. [PMID: 39203039 PMCID: PMC11356890 DOI: 10.3390/molecules29163960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Artichokes (Cynara scolymus L.) are valuable foods, thanks to their health benefits, but they generate significant waste during their production, harvesting, and processing, which poses sustainability issues. This study applied an agroprospecting approach to convert Tema artichoke biowaste (TB) into valuable resources, starting from a global perspective of the production chain to the targeted applications based on chemical and biological analysis. The major TB was identified in the outer bracts of the immature flower heads, which were collected throughout the harvesting season, extracted, and analyzed. The most abundant compounds were phenolic acids including chlorogenic acid and caffeoylquinic derivatives. Among flavonoids, cynaroside was the most abundant compound. Multivariate analysis distinguished batches by collection period, explaining 77.7% of the variance, with most compounds increasing in concentration later in the harvest season. Subsequently, TB extracts were analyzed for their potential in wound healing and anti-aging properties. Fibroblasts were used to assess the effect of selected extracts on cell migration through a scratch wound assay and on cellular senescence induced by etoposide. The results show a significant decrease in senescence-associated β-galactosidase activity, γH2AX nuclear accumulation, and both p53 and p21 protein levels. Overall, this study ascribes relevant anti-skin aging effects to TB, thus increasing its industrial value in cosmeceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (L.S.)
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Mónica Zuzarte
- Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (L.S.)
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (L.S.)
- Department of Chemical Engineering, Chemical Engineering and Renewable Resources for Sustainability (CERES), University of Coimbra, 3030-790 Coimbra, Portugal
| | - Emma Cocco
- Laboratory of Economic and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123 Cagliari, Italy (A.M.)
| | | | - Danilo Falconieri
- Laboratory of Economic and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123 Cagliari, Italy (A.M.)
| | - Delia Maccioni
- Laboratory of Economic and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123 Cagliari, Italy (A.M.)
| | - Andrea Maxia
- Laboratory of Economic and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123 Cagliari, Italy (A.M.)
| |
Collapse
|
2
|
Laghezza Masci V, Alicandri E, Antonelli C, Paolacci AR, Marabottini R, Tomassi W, Scarascia Mugnozza G, Tiezzi A, Garzoli S, Vinciguerra V, Vettraino AM, Ovidi E, Ciaffi M. Cynara cardunculus L. var. scolymus L. Landrace "Carciofo Ortano" as a Source of Bioactive Compounds. PLANTS (BASEL, SWITZERLAND) 2024; 13:761. [PMID: 38592769 PMCID: PMC10976138 DOI: 10.3390/plants13060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
The preservation of agricultural biodiversity and socioeconomic development are relevant both to enhance domestic production and to support innovation. In the search for new biomolecules, we have focused on the "Carciofo Ortano" landrace, growth in the northern part of the Lazio region. Artichoke cultivation generates substantial by-products, including leaves, stems, and roots, which could serve as valuable sources of biomolecules and prebiotic dietary fiber. To valorize the leaf waste of the "Carciofo Ortano" landrace, a multidisciplinary approach was applied. Chemical analysis using HPLC-DAD identified mono-O- and di-O-caffeoylquinic acids and the sesquiterpene cynaropicrin in all artichoke leaf extracts. SPME-GC/MS analyses detected aliphatic alcohols in the fresh leaf samples. Antiproliferative and cytotoxic studies on cancer (SH-SY5Y, MCF-7, MDA) and normal (MCF-10A) human cell lines revealed that leaf extracts induced a selective dose and time-dependent biological effect. While showing slight activity against environmental bacterial strains, artichoke leaf extracts exhibited significant antifungal activity against the phytopathogenic fungus Alternaria alternata. Overall, the results highlight the potential of "Carciofo Ortano" cultivation by-products as a rich source of biomolecules with versatile applications in humans, animals, and the environment.
Collapse
Affiliation(s)
- Valentina Laghezza Masci
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (V.L.M.); (E.A.); (C.A.); (A.R.P.); (R.M.); (W.T.); (G.S.M.); (A.T.); (V.V.); (A.M.V.); (E.O.)
| | - Enrica Alicandri
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (V.L.M.); (E.A.); (C.A.); (A.R.P.); (R.M.); (W.T.); (G.S.M.); (A.T.); (V.V.); (A.M.V.); (E.O.)
| | - Chiara Antonelli
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (V.L.M.); (E.A.); (C.A.); (A.R.P.); (R.M.); (W.T.); (G.S.M.); (A.T.); (V.V.); (A.M.V.); (E.O.)
| | - Anna Rita Paolacci
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (V.L.M.); (E.A.); (C.A.); (A.R.P.); (R.M.); (W.T.); (G.S.M.); (A.T.); (V.V.); (A.M.V.); (E.O.)
| | - Rosita Marabottini
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (V.L.M.); (E.A.); (C.A.); (A.R.P.); (R.M.); (W.T.); (G.S.M.); (A.T.); (V.V.); (A.M.V.); (E.O.)
| | - William Tomassi
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (V.L.M.); (E.A.); (C.A.); (A.R.P.); (R.M.); (W.T.); (G.S.M.); (A.T.); (V.V.); (A.M.V.); (E.O.)
| | - Giuseppe Scarascia Mugnozza
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (V.L.M.); (E.A.); (C.A.); (A.R.P.); (R.M.); (W.T.); (G.S.M.); (A.T.); (V.V.); (A.M.V.); (E.O.)
| | - Antonio Tiezzi
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (V.L.M.); (E.A.); (C.A.); (A.R.P.); (R.M.); (W.T.); (G.S.M.); (A.T.); (V.V.); (A.M.V.); (E.O.)
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Rome, Italy;
| | - Vittorio Vinciguerra
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (V.L.M.); (E.A.); (C.A.); (A.R.P.); (R.M.); (W.T.); (G.S.M.); (A.T.); (V.V.); (A.M.V.); (E.O.)
| | - Anna Maria Vettraino
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (V.L.M.); (E.A.); (C.A.); (A.R.P.); (R.M.); (W.T.); (G.S.M.); (A.T.); (V.V.); (A.M.V.); (E.O.)
| | - Elisa Ovidi
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (V.L.M.); (E.A.); (C.A.); (A.R.P.); (R.M.); (W.T.); (G.S.M.); (A.T.); (V.V.); (A.M.V.); (E.O.)
| | - Mario Ciaffi
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (V.L.M.); (E.A.); (C.A.); (A.R.P.); (R.M.); (W.T.); (G.S.M.); (A.T.); (V.V.); (A.M.V.); (E.O.)
| |
Collapse
|
3
|
Rutz A, Wolfender JL. Automated Composition Assessment of Natural Extracts: Untargeted Mass Spectrometry-Based Metabolite Profiling Integrating Semiquantitative Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18010-18023. [PMID: 37949451 PMCID: PMC10683005 DOI: 10.1021/acs.jafc.3c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Recent developments in mass spectrometry-based metabolite profiling allow unprecedented qualitative coverage of complex biological extract composition. However, the electrospray ionization used in metabolite profiling generates multiple artifactual signals for a single analyte. This leads to thousands of signals per analysis without satisfactory means of filtering those corresponding to abundant constituents. Generic approaches are therefore needed for the qualitative and quantitative annotation of a broad range of relevant constituents. For this, we used an analytical platform combining liquid chromatography-mass spectrometry (LC-MS) with Charged Aerosol Detection (CAD). We established a generic metabolite profiling for the concomitant recording of qualitative MS data and semiquantitative CAD profiles. The MS features (recorded in high-resolution tandem MS) are grouped and annotated using state-of-the-art tools. To efficiently attribute features to their corresponding extracted and integrated CAD peaks, a custom signal pretreatment and peak-shape comparison workflow is built. This strategy allows us to automatically contextualize features at both major and minor metabolome levels, together with a detailed reporting of their annotation including relevant orthogonal information (taxonomy, retention time). Signals not attributed to CAD peaks are considered minor metabolites. Results are illustrated on an ethanolic extract of Swertia chirayita (Roxb.) H. Karst., a bitter plant of industrial interest, exhibiting the typical complexity of plant extracts as a proof of concept. This generic qualitative and quantitative approach paves the way to automatically assess the composition of single natural extracts of interest or broader collections, thus facilitating new ingredient registrations or natural-extracts-based drug discovery campaigns.
Collapse
Affiliation(s)
- Adriano Rutz
- School
of Pharmaceutical Sciences, University of
Geneva, 1211 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Institute
of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Jean-Luc Wolfender
- School
of Pharmaceutical Sciences, University of
Geneva, 1211 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
4
|
Grazina L, Mafra I, Monaci L, Amaral JS. Mass spectrometry-based approaches to assess the botanical authenticity of dietary supplements. Compr Rev Food Sci Food Saf 2023; 22:3870-3909. [PMID: 37548598 DOI: 10.1111/1541-4337.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
Dietary supplements are legally considered foods despite frequently including medicinal plants as ingredients. Currently, the consumption of herbal dietary supplements, also known as plant food supplements (PFS), is increasing worldwide and some raw botanicals, highly demanded due to their popularity, extensive use, and/or well-established pharmacological effects, have been attaining high prices in the international markets. Therefore, botanical adulteration for profit increase can occur along the whole PFS industry chain, from raw botanicals to plant extracts, until final PFS. Besides the substitution of high-value species, unintentional mislabeling can happen in morphologically similar species. Both cases represent a health risk for consumers, prompting the development of numerous works to access botanical adulterations in PFS. Among different approaches proposed for this purpose, mass spectrometry (MS)-based techniques have often been reported as the most promising, particularly when hyphenated with chromatographic techniques. Thus, this review aims at describing an overview of the developments in this field, focusing on the applications of MS-based techniques to targeted and untargeted analysis to detect botanical adulterations in plant materials, extracts, and PFS.
Collapse
Affiliation(s)
- Liliana Grazina
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Linda Monaci
- ISPA-CNR, Institute of Sciences of Food Production of National Research Council of Italy, Bari, Italy
| | - Joana S Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
5
|
Wang X, Zhong L, Zou X, Gong L, Zhuang J, Zhang D, Zheng H, Wang X, Wu D, Zhan R, Chen L. GC-MS and UHPLC-QTOFMS-assisted identification of the differential metabolites and metabolic pathways in key tissues of Pogostemon cablin. FRONTIERS IN PLANT SCIENCE 2023; 14:1098280. [PMID: 36923120 PMCID: PMC10009150 DOI: 10.3389/fpls.2023.1098280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Pogostemon cablin is an important aromatic medicinal herb widely used in the pharmaceutical and perfume industries. However, our understanding of the phytochemical compounds and metabolites within P. cablin remains limited. To our knowledge, no integrated studies have hitherto been conducted on the metabolites of the aerial parts of P. cablin. In this study, twenty-three volatile compounds from the aerial parts of P. cablin were identified by GC-MS, predominantly sesquiterpenes. Quantitative analysis showed the highest level of patchouli alcohol in leaves (24.89 mg/g), which was 9.12 and 6.69-fold higher than in stems and flowers. UHPLC-QTOFMS was used to analyze the non-volatile compounds of leaf, stem and flower tissues. The differences in metabolites between flower and leaf tissues were the largest. Based on 112, 77 and 83 differential metabolites between flower-leaf, flower-stem and leaf-stem, three tissue-specific biomarkers of metabolites were identified, and the differential metabolites were enriched in several KEGG pathways. Furthermore, labeling differential metabolites in the primary and secondary metabolic pathways showed that flowers accumulated more lipids and amino acids, including proline, lysine and tryptophan; the leaves accumulated higher levels of terpenoids, vitamins and flavonoids, and stems contained higher levels of carbohydrate compounds. Based on the role of acetyl coenzyme A, the distribution and possible exchange mechanism of metabolites in leaves, stems and flowers of P. cablin were mapped for the first time, laying the groundwork for future research on the metabolites in P. cablin and their regulatory role.
Collapse
Affiliation(s)
- Xiaobing Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Liting Zhong
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Xuan Zou
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Lizhen Gong
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Jiexuan Zhuang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Danhua Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Hai Zheng
- School of Pharmaceutical Sciences, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Xiaomin Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Daidi Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| | - Likai Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| |
Collapse
|
6
|
Pagliari S, Cannavacciuolo C, Celano R, Carabetta S, Russo M, Labra M, Campone L. Valorisation, Green Extraction Development, and Metabolomic Analysis of Wild Artichoke By-Product Using Pressurised Liquid Extraction UPLC-HRMS and Multivariate Data Analysis. Molecules 2022; 27:7157. [PMID: 36363983 PMCID: PMC9656714 DOI: 10.3390/molecules27217157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 08/13/2023] Open
Abstract
Valorisation of food by-products has recently attracted considerable attention due to the opportunities to improve the economic and environmental sustainability of the food production chain. Large quantities of non-edible parts of the artichoke plant (Cynara cardunculus L.) comprising leaves, stems, roots, bracts, and seeds are discarded annually during industrial processing. These by-products contain many phytochemicals such as dietary fibres, phenolic acids, and flavonoids, whereby the most challenging issue concerns about the recovery of high-added value components from these by-products. The aim of this work is to develop a novel valorisation strategy for the sustainable utilisation of artichoke leaves' waste, combining green pressurised-liquid extraction (PLE), spectrophotometric assays and UPLC-HRMS phytochemical characterization, to obtain bioactive-rich extract with high antioxidant capacity. Multivariate analysis of the major selected metabolites was used to compare different solvent extraction used in PLE.
Collapse
Affiliation(s)
- Stefania Pagliari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, Italy
| | - Ciro Cannavacciuolo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, Italy
| | - Rita Celano
- Department of Pharmacy, University of Salerno, Via Giovanni Paola II 132, Fisciano, 84084 Salerno, Italy
| | - Sonia Carabetta
- Safety and Sensoromic Laboratory (FoCuSS Lab), Department of Agriculture Science, Food Chemistry, University of Reggio Calabria, Via dell’Università 25, 89124 Reggio Calabria, Italy
| | - Mariateresa Russo
- Safety and Sensoromic Laboratory (FoCuSS Lab), Department of Agriculture Science, Food Chemistry, University of Reggio Calabria, Via dell’Università 25, 89124 Reggio Calabria, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
7
|
Dhyani P, Sati P, Sharma E, Attri DC, Bahukhandi A, Tynybekov B, Szopa A, Sharifi-Rad J, Calina D, Suleria HAR, Cho WC. Sesquiterpenoid lactones as potential anti-cancer agents: an update on molecular mechanisms and recent studies. Cancer Cell Int 2022; 22:305. [PMID: 36207736 PMCID: PMC9540722 DOI: 10.1186/s12935-022-02721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Plants-based natural compounds are well-identified and recognized chemoprotective agents that can be used for primary and secondary cancer prevention, as they have proven efficacy and fewer side effects. In today's scenario, when cancer cases rapidly increase in developed and developing countries, the anti-cancerous plant-based compounds become highly imperative. Among others, the Asteraceae (Compositae) family's plants are rich in sesquiterpenoid lactones, a subclass of terpenoids with wide structural diversity, and offer unique anti-cancerous effects. These plants are utilized in folk medicine against numerous diseases worldwide. However, these plants are now a part of the modern medical system, with their sesquiterpenoid lactones researched extensively to find more effective and efficient cancer drug regimens. Given the evolving importance of sesquiterpenoid lactones for cancer research, this review comprehensively covers different domains in a spectrum of sesquiterpenoid lactones viz (i) Guaianolides (ii) Pseudoguaianolide (iii) Eudesmanolide (iv) Melampodinin A and (v) Germacrene, from important plants such as Cynara scolymus (globe artichoke), Arnica montana (wolf weeds), Spilanthes acmella, Taraxacum officinale, Melampodium, Solidago spp. The review, therefore, envisages being a helpful resource for the growth of plant-based anti-cancerous drug development.
Collapse
Affiliation(s)
- Praveen Dhyani
- Department of Biotechnology, Kumaun University, Bhimtal, 263 136, Uttarakhand, India
| | - Priyanka Sati
- Graphic Era University, Dehradun, 248 001, Uttarakhand, India
| | - Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India
| | - Dharam Chand Attri
- High Altitude Plant Physiology Research Centre (HAPPRC), HNB Garhwal University, Srinagar Garhwal, 246 174, Uttarakhand, India
| | - Amit Bahukhandi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Agnieszka Szopa
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| |
Collapse
|
8
|
Ceccanti C, De Bellis L, Guidi L, Negro C, Pardossi A, Incrocci L. Effect of Blanching and Boiling on the Secondary Metabolism of Cultivated Cardoon Stalks: A Case Study of the Tuscany Region (Italy). Metabolites 2022; 12:metabo12080728. [PMID: 36005600 PMCID: PMC9414563 DOI: 10.3390/metabo12080728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Cardoon (C. cardunculus var. altilis DC) is commonly cultivated in the Mediterranean area to produce stalks that are consumed once cooked. Before cooking, stalks are usually subjected to blanching, which means they are exposed to darkness for a few weeks. The present work analyzed the effect of field blanching carried out for 40 days in different ways (burying the stalks under soil or covering them with plastic sheet) on the total phenolic content (TPC), phenolic profile, cynaropicrin content (a bitter compound), and antioxidant activity (AA) of two cardoon cultivars. The nutraceutical quality of blanched cardoons was also investigated following boiling. The phenolic profile revealed a higher number of compounds in blanched stalks than in raw ones. The cynaropicrin content decreased in both cultivars after blanching, indicating a sensitivity to dark conditions and the effectiveness of blanching method in reducing its bitterness. The data presented contribute to improving the knowledge about the effect of blanching and boiling on the quality of cardoon stalks.
Collapse
Affiliation(s)
- Costanza Ceccanti
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy
- Interdepartmental Research Center, Nutrafood, “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
- Correspondence:
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy
- Interdepartmental Research Center, Nutrafood, “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Alberto Pardossi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy
- Interdepartmental Research Center, Nutrafood, “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Luca Incrocci
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
9
|
Kamel AM, Farag MA. Therapeutic Potential of Artichoke in the Treatment of Fatty Liver: A Systematic Review and Meta-Analysis. J Med Food 2022; 25:931-942. [PMID: 35763310 DOI: 10.1089/jmf.2022.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major chronic liver disease that can lead to liver cirrhosis, liver cancer, and death. Artichoke leaf extract (ALE) is well known in folk medicine for its hepatoprotective effect. Till recent times, no sufficient data from randomized clinical trials (RCTs) exist to support such use. This meta-analysis summarizes evidence from recent RCTs that evaluated ALE in NAFLD patients. Electronic databases were searched for RCTs that used ALE in NAFLD patients. The random-effects model was used to pool effect sizes (standardized change score). Data synthesis from five RCTs (333 patients) showed that ALE resulted in a significant reduction in alanine aminotransferase (standardized mean difference [SMD]: 1.1; 95% confidence interval [CI], 0.79-1.73; P < .001) and aspartate aminotransferase levels (SMD: 1.01; 95% CI, 0.52-1.51; P < .001) compared with the control group. ALE also resulted in a significant reduction in total cholesterol (SMD: 0.98; 95% CI, 0.53-1.43; P = .004), low-density lipoprotein (SMD: 0.96; 95% CI, 0.3-1.62; P < .001) and triglycerides (SMD: 0.95; 95% CI, 0.58-1.32; P < .001). The current review provides evidence from RCTs to support the use of ALE as a hepatoprotective agent in NAFLD patients. The study was registered on the PROSPERO database with the Registration No. CRD42020182502 (https://www.crd.york.ac.uk/prospero).
Collapse
Affiliation(s)
- Ahmed Mohamed Kamel
- Department of Clinical Pharmacy, and Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed Ali Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Comparative Chemical Profiling and Biological Potential of Essential Oils of Petal, Choke, and Heart Parts of Cynara scolymus L. Head. J CHEM-NY 2022. [DOI: 10.1155/2022/2355004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The essential oil and macroelemental composition of different parts of flower bud (petal, choke, and heart) of Cynara scolymus L. were explored and compared using gas chromatography mass spectrometry (GC-MS) and inductively coupled plasma mass spectrometry (ICP-MS). Overall, 62 organic components were detected in the flower bud based on mass spectra characteristics and retention indices. The essential oil extracted from the petals, choke, and bud showed the presence of thirty-one, twenty-one, and twenty-one compounds, respectively, with linoleic acid and palmitic acid as the major components. 21 components were identified in the oil of the petals, comprising 94.45% of the total oil, in which linoleic acid methyl ester, palmitic acid methyl ester, octadecanoic acid methyl ester, O-α-d-glucopyranoside, and heptyl oct-3-yl ester were the major constituents. Twenty-one compounds, representing 89.13% of the total oil, were detected in the choke oil. Linoleic acid methyl ester, palmitic acid methyl ester, and 2-methyl-1-hexadecanol were the main components. However, the edible heart oil contains twenty compounds, comprising 86.84% of the total oil. Cyclopropane butanoic acid, linoleic acid, methyl ester, and palmitic acid were the major constituents. The analysis executed by ICP-MS revealed the presence of significant amounts of various inorganic elements in all the three samples. The extracted essential oils were tested for antibacterial, antioxidant, and anticancer activities. The results showed that the oil extracted from the petals of C. scolymus flower bud displayed the highest antibacterial, antioxidant, anti-inflammatory, and anticancer effects, as compared to choke and heart oils.
Collapse
|
11
|
Luca SV, Kulinowski Ł, Ciobanu C, Zengin G, Czerwińska ME, Granica S, Xiao J, Skalicka-Woźniak K, Trifan A. Phytochemical and multi-biological characterization of two Cynara scolymus L. varieties: A glance into their potential large scale cultivation and valorization as bio-functional ingredients. INDUSTRIAL CROPS AND PRODUCTS 2022; 178:114623. [DOI: 10.1016/j.indcrop.2022.114623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
El-Hawary EA, Zayed A, Laub A, Modolo LV, Wessjohann L, Farag MA. How Does LC/MS Compare to UV in Coffee Authentication and Determination of Antioxidant Effects? Brazilian and Middle Eastern Coffee as Case Studies. Antioxidants (Basel) 2022; 11:131. [PMID: 35052637 PMCID: PMC8773014 DOI: 10.3390/antiox11010131] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/27/2022] Open
Abstract
Coffee is a popular beverage owing to its unique flavor and diverse health benefits. The current study aimed at investigating the antioxidant activity, in relation to the phytochemical composition, of authenticated Brazilian green and roasted Coffea arabica and C. robusta, along with 15 commercial specimens collected from the Middle East. Ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-ESI-HRMS) and UV spectrometry were employed for profiling and fingerprinting, respectively. With the aid of global natural product social molecular networking (GNPS), a total of 88 peaks were annotated as belonging to different chemical classes, of which 11 metabolites are reported for the first time in coffee seeds. Moreover, chemometric tools showed comparable results between both platforms, with more advantages for UV in the annotation of roasting products, suggesting that UV can serve as a discriminative tool. Additionally, antioxidant assays coupled with the UHPLC-ESI-HRMS dataset using partial least-squares discriminant analysis (PLS-DA) demonstrated that caffeoylquinic acid and caffeine were potential antioxidant markers in unroasted coffee versus dicaffeoyl quinolactone and melanoidins in roasted coffee. The study presents a multiplex metabolomics approach to the quality control of coffee, one of the most consumed beverages.
Collapse
Affiliation(s)
- Enas A. El-Hawary
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta 31527, Egypt;
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| | - Annegret Laub
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany;
| | - Luzia V. Modolo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Ludger Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany;
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| |
Collapse
|
13
|
Kozyra M, Kozyra M, Kukuła-Koch W, Szymański M. Phenolic composition of inflorescences of Carduus nutans L. Chem Biodivers 2021; 19:e202100827. [PMID: 34964548 DOI: 10.1002/cbdv.202100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/29/2021] [Indexed: 11/10/2022]
Abstract
Carduus nutans L. (Compositae) has been extensively used for medicinal purposes. As other representatives of the genus it is implemented in the treatment of liver disorders and used as diuretic and digestive agent. Previous studies have determined the predominant classes of secondary metabolites in Carduus species. Among the major representatives of their extracts flavonoids, phenolic acids, coumarins, sterols and terpenes were identified. The antiradical capacity of three extracts assessed in the DPPH test revealed the highest radical scavenging properties of methanol extract (the EC50 618 ± 10.03 µg/mL) and based on these results it was selected for phenolic content determination. (TPC=61.49 mg/g). To understand better the induced pharmacological effects of the plant the aim of the study was to determine the composition of the methanol extract from the inflorescences of C. nutans and to study their phenolic composition. In order to determine the composition in a more efficient way, the crude extract was fractionated and subjected to hydrolyses. As a result more than twenty phenolic acids and flavonoids were identified in the extract and fractions by HPLC-DAD and/or HPLC-ESI-TOF-MS. The total extract was later subjected to fractionation by centrifugal partition chromatography using the Arizona system composed of n-hexane: ethyl acetate: methanol: water (0.7:4:0.8:4 v/v/v/v) to produce fractions enriched in flavonoids that are of high pharmacological significance.
Collapse
Affiliation(s)
- Malgorzata Kozyra
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Chair and Department of Pharmacognosy, Chodźki 1 Street, 20-093, Lublin, POLAND
| | - Malgorzata Kozyra
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Department of Pharmacognosy with Medicinal Plants Garden, 20-093 Lublin, ul. Chodźki 1, 20- 093 Lublin, Lublin, POLAND
| | - Wirginia Kukuła-Koch
- Medical University of Lublin, Department of Pharmacognosy with Medicinal Plants Garden, 20-093 Lublin, ul. Chodźki 1, Lublin, POLAND
| | - Michał Szymański
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Department Of Pharmacognosy with Medicinal Plants Garden, Chodźki 1, 20-093, Lublin, POLAND
| |
Collapse
|
14
|
Schreiner T, Sauter D, Friz M, Heil J, Morlock GE. Is Our Natural Food Our Homeostasis? Array of a Thousand Effect-Directed Profiles of 68 Herbs and Spices. Front Pharmacol 2021; 12:755941. [PMID: 34955829 PMCID: PMC8696259 DOI: 10.3389/fphar.2021.755941] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
The beneficial effects of plant-rich diets and traditional medicines are increasingly recognized in the treatment of civilization diseases due to the abundance and diversity of bioactive substances therein. However, the important active portion of natural food or plant-based medicine is presently not under control. Hence, a paradigm shift from quality control based on marker compounds to effect-directed profiling is postulated. We investigated 68 powdered plant extracts (botanicals) which are added to food products in food industry. Among them are many plants that are used as traditional medicines, herbs and spices. A generic strategy was developed to evaluate the bioactivity profile of each botanical as completely as possible and to straightforwardly assign the most potent bioactive compounds. It is an 8-dimensional hyphenation of normal-phase high-performance thin-layer chromatography with multi-imaging by ultraviolet, visible and fluorescence light detection as well as effect-directed assay and heart-cut of the bioactive zone to orthogonal reversed-phase high-performance liquid chromato-graphy-photodiode array detection-heated electrospray ionization mass spectrometry. In the non-target, effect-directed screening via 16 different on-surface assays, we tentatively assigned more than 60 important bioactive compounds in the studied botanicals. These were antibacterials, estrogens, antiestrogens, androgens, and antiandrogens, as well as acetylcholinesterase, butyrylcholinesterase, α-amylase, α-glucosidase, β-glucosidase, β-glucuronidase, and tyrosinase inhibitors, which were on-surface heart-cut eluted from the bioautogram or enzyme inhibition autogram to the next dimension for further targeted characterization. This biological-physicochemical hyphenation is able to detect and control active mechanisms of traditional medicines or botanicals as well as the essentials of plant-based food. The array of 1,292 profiles (68 samples × 19 detections) showed the versatile bioactivity potential of natural food. It reveals how efficiently and powerful our natural food contributes to our homeostasis.
Collapse
Affiliation(s)
- Tamara Schreiner
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Dorena Sauter
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Maren Friz
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Julia Heil
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Gertrud Elisabeth Morlock
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
15
|
Frigerio J, Tedesco E, Benetti F, Insolia V, Nicotra G, Mezzasalma V, Pagliari S, Labra M, Campone L. Anticholesterolemic Activity of Three Vegetal Extracts (Artichoke, Caigua, and Fenugreek) and Their Unique Blend. Front Pharmacol 2021; 12:726199. [PMID: 34887750 PMCID: PMC8650624 DOI: 10.3389/fphar.2021.726199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatic-related diseases, in particular hyperlipidemia and hypercholesterolemia, are a thorn on the side of the national health institutes around the globe. Indeed, liver lipid and cholesterol dysregulation could lead to atherosclerotic plaque formation and cardiovascular diseases. Currently, statin administration and monacolin K consumption are the main therapies proposed to counter this alarming connection, but relevant side effects are known. To overcome this issue, safe nutraceutical formulations and/or vegetal extracts, endowed with anticholesterolemic activity, could be instrumental in hypercholesterolemia prevention and treatment. In the present work, the anticholesterolemic efficacy of three vegetal extracts used in traditional medicine (artichoke, caigua, and fenugreek), their unique blend (ACFB), and the monacolin K-containing red yeast extract (RYR), was investigated with an in vitro approach based on hepatic cell line HepG2. The impact on cholesterol of the three extracts, their blend, and RYR were investigated by determining hepatocyte total and free cholesterol and bile acids biosynthesis. According to our results, the anticholesterolemic activity of the vegetal extracts was confirmed, and a novel choleretic activity of caigua extract was evidenced. ACFB showed to be safer than RYR while showing a similar effect on total and free cholesterol and bile acids synthesis compared to it. The anticholesterolemic activity of the blend was obtained with lower vegetal extract concentrations compared with the single vegetal extract, potentially indicating an additive effect between the extracts. In conclusion, the vegetal extracts and their blend, ACFB, are safe and are endowed with anticholesterolemic activity, potentially providing complementary therapies to the statin-based ones for hyperlipidemia and hypercholesterolemia-related complications.
Collapse
Affiliation(s)
- Jessica Frigerio
- FEM2-Ambiente, Milano, Italy
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Erik Tedesco
- ECSIN-European Center for the Sustainable Impact of Nanotechnology, ECAMRICERT SRL, Padova, Italy
| | - Federico Benetti
- ECSIN-European Center for the Sustainable Impact of Nanotechnology, ECAMRICERT SRL, Padova, Italy
| | | | | | | | - Stefania Pagliari
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Massimo Labra
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Luca Campone
- Zooplantlab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
16
|
Salem MA, Zayed A, Alseekh S, Fernie AR, Giavalisco P. The integration of MS-based metabolomics and multivariate data analysis allows for improved quality assessment of Zingiber officinale Roscoe. PHYTOCHEMISTRY 2021; 190:112843. [PMID: 34311278 DOI: 10.1016/j.phytochem.2021.112843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Ginger (Zingiber officinale Roscoe) is consumed for health-promoting effects and as a food condiment. Comprehensive phytochemical analysis, other than gingerols and shogaols, has not yet been deeply investigated. Hence, the current research aimed to establish a non-targeted metabolomics approach for the discrimination between fresh ginger rhizome samples collected from four different producing countries, i.e., China, India, Pakistan, and Peru. In addition, lab-dried samples were analyzed to trace drying-induced metabolites. A comprehensive extraction procedure was carried out resulting in production of polar and non-polar fractions. The polar fraction was analyzed by ultra-performance liquid chromatography coupled with Fourier transform tandem mass spectrometry (UPLC-C18-FT-MS/MS) and gas chromatography coupled with time-of-flight mass spectrometry (GC-TOF-MS) post derivatization. UPLC-C8-FT-MS/MS was used for analysis of non-polar fraction. Results revealed for identification of a total of 253 metabolites. In addition, multivariate data analysis (MVDA), including principal component analysis (PCA) demonstrated clustering of Asian specimens. Several metabolites with a characteristic pattern for the origin revealing the highest contents of bioactive metabolites in the Peruvian product. Moreover, chemical markers identified, including [6]-gingerol and [6]-shogaol discriminating between fresh and dried samples. Furthermore, abundances of some primary metabolites, including amino acids and cinnamic acid, have confirmed the biosynthetic pathway of gingerols and their transformation upon drying to shogaols. The proposed approach can be applied as a potential candidate for quality assessment of ginger and other medicinal plants.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin Elkom, 32511, Menoufia, Egypt.
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Elguish Street, Medical Campus, 31527, Tanta, Egypt; Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany.
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Patrick Giavalisco
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9b, 50931, Cologne, Germany.
| |
Collapse
|
17
|
Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers (Basel) 2021; 13:4570. [PMID: 34572797 PMCID: PMC8468934 DOI: 10.3390/cancers13184570] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is regarded as one of the most deadly and mirthless diseases and it develops due to the uncontrolled proliferation of cells. To date, varieties of traditional medications and chemotherapies have been utilized to fight tumors. However, their immense drawbacks, such as reduced bioavailability, insufficient supply, and significant adverse effects, make their use limited. Nanotechnology has evolved rapidly in recent years and offers a wide spectrum of applications in the healthcare sectors. Nanoscale materials offer strong potential for curing cancer as they pose low risk and fewer complications. Several metal oxide NPs are being developed to diagnose or treat malignancies, but zinc oxide nanoparticles (ZnO NPs) have remarkably demonstrated their potential in the diagnosis and treatment of various types of cancers due to their biocompatibility, biodegradability, and unique physico-chemical attributes. ZnO NPs showed cancer cell specific toxicity via generation of reactive oxygen species and destruction of mitochondrial membrane potential, which leads to the activation of caspase cascades followed by apoptosis of cancerous cells. ZnO NPs have also been used as an effective carrier for targeted and sustained delivery of various plant bioactive and chemotherapeutic anticancerous drugs into tumor cells. In this review, at first we have discussed the role of ZnO NPs in diagnosis and bio-imaging of cancer cells. Secondly, we have extensively reviewed the capability of ZnO NPs as carriers of anticancerous drugs for targeted drug delivery into tumor cells, with a special focus on surface functionalization, drug-loading mechanism, and stimuli-responsive controlled release of drugs. Finally, we have critically discussed the anticancerous activity of ZnO NPs on different types of cancers along with their mode of actions. Furthermore, this review also highlights the limitations and future prospects of ZnO NPs in cancer theranostic.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Sara Asad Malik
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Maha Khan
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avenida de Galicia 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Eure & Loir Campus, University of Orleans, 28000 Chartres, France;
| |
Collapse
|
18
|
Wang ZB, Jiang SL, Liu SB, Peng JB, Hu S, Wang X, Zhuo W, Liu T, Guo JW, Zhou HH, Yang ZQ, Mao XY, Liu ZQ. Metabolomics of Artichoke Bud Extract in Spontaneously Hypertensive Rats. ACS OMEGA 2021; 6:18610-18622. [PMID: 34337201 PMCID: PMC8319930 DOI: 10.1021/acsomega.1c01135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/05/2021] [Indexed: 05/10/2023]
Abstract
Hypertension adversely affects the quality of life in humans across modern society. Studies have attributed increased reactive oxygen species production to the pathophysiology of hypertension. So far, a specific drug to control the disease perfectly has not been developed. However, artichoke, an edible vegetable, plays an essential role in treating many diseases due to its potent antioxidant activities. The objective of this study is to evaluate the effect of artichoke bud extract (ABE) on heart tissue metabolomics of hypertensive rats. Spontaneously hypertensive rats and Wistar-Kyoto (WKY) rats were divided into six groups, then exposed to different doses comprising ABE, Enalapril Maleate, or 1% carboxylmethyl cellulose for 4 weeks. Their blood pressures were recorded at 0, 2, 3, and 4 weeks after the start of the test period. Thereafter, all rats were anesthetized, and blood was collected from their cardiac apexes. Then, we measured the levels for 15 kinds of serum biochemical parameters. An established orthogonal partial least square-discriminant analysis model completed the metabolomic analysis. Hypertensive rats in the ABE group exhibited well-controlled blood pressure, relative to those in the model group. Specifically, artichoke significantly lowered serum levels for total protein (TP), albumin (ALB), and uric acid (UA) in the hypertensive rats. This effect involved the action of eight metabolites, including guanine, 1-methylnicotinamide, p-aminobenzoic acid, NAD, NADH, uridine 5'-monophosphate, adenosine monophosphate, and methylmalonic acid. Collectively, these findings suggest that ABE may play a role in affecting oxidative stress and purine, nicotinate, and nicotinamide metabolism.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Shi-Long Jiang
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Shao-Bo Liu
- Department
of Pharmacy, Xiangya Hospital, Central South
University, Changsha 410008, P. R. China
| | - Jing-Bo Peng
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Shuo Hu
- Department
of Nuclear Medicine and Key Laboratory of Biological Nanotechnology
of National Health Commission, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xu Wang
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Wei Zhuo
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Tong Liu
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Ji-Wei Guo
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Hong-Hao Zhou
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Zhi-Quan Yang
- Department
of Neurosurgery, Xiangya Hospital, Central
South University, Changsha 410008, P. R. China
- . Phone: +86 731 89753845. Fax: +86 731 82354476
| | - Xiao-Yuan Mao
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Zhao-Qian Liu
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| |
Collapse
|
19
|
Hegazi NM, El-Shamy S, Fahmy H, Farag MA. Pomegranate juice as a super-food: A comprehensive review of its extraction, analysis, and quality assessment approaches. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Mena-García A, Ruiz-Matute AI, Soria AC, Sanz ML. A multi-analytical strategy for evaluation of quality and authenticity of artichoke food supplements for overweight control. J Chromatogr A 2021; 1647:462102. [PMID: 33964619 DOI: 10.1016/j.chroma.2021.462102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 11/16/2022]
Abstract
Despite the widespread use of artichoke-based food supplements for obesity control (FSOC), studies on evaluation of the quality/authenticity of these commercial products are scarce. To that aim, a new multi-analytical strategy, based on the use of gas chromatography coupled to mass spectrometry (GC-MS) and high performance liquid chromatography coupled to ultraviolet and mass spectrometry detection (HPLC-UV-MS), in combination with chemometrics, has been developed. Twenty-one artichoke FSOC and different bract and leaf extracts (used as reference samples) were analysed. Sugars, inositols, caffeoylquinic acids, dicaffeoylquinic acids, flavonoids and their glycosides were detected in reference samples and in most artichoke FSOC. Low concentrations of bioactives, and the presence of other compounds probably related to heat treatment during manufacturing (difructosyl anhydrides, 3-deoxyglucosone), or to the addition of caloric additives (maltose, maltotriose) or non-declared plants (e.g. pinitol, disaccharides, silybin derivatives) were also detected in some FSOC by either GC-MS or HPLC-UV-MS. Application of Principal Component Analysis to the combined GC-MS + HPLC-UV data matrix, proved that this multi-analytical strategy provides advantages over single analytical techniques for the detection of the wide variety of fraudulent practices affecting authenticity of artichoke FSOC and for assessment of their quality.
Collapse
Affiliation(s)
- Adal Mena-García
- Instituto de Química Orgánica General (CSIC). Juan de la Cierva, 3 28006 Madrid Spain
| | | | - Ana Cristina Soria
- Instituto de Química Orgánica General (CSIC). Juan de la Cierva, 3 28006 Madrid Spain
| | - María Luz Sanz
- Instituto de Química Orgánica General (CSIC). Juan de la Cierva, 3 28006 Madrid Spain.
| |
Collapse
|
21
|
El-Newary SA, Afifi SM, Aly MS, Ahmed RF, El Gendy AENG, Abd-ElGawad AM, Farag MA, Elgamal AM, Elshamy AI. Chemical Profile of Launaea nudicaulis Ethanolic Extract and Its Antidiabetic Effect in Streptozotocin-Induced Rats. Molecules 2021; 26:1000. [PMID: 33668635 PMCID: PMC7918448 DOI: 10.3390/molecules26041000] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/07/2021] [Accepted: 02/07/2021] [Indexed: 11/24/2022] Open
Abstract
Launaea nudicaulis is used in folk medicine worldwide to treat several diseases. The present study aimed to assess the antidiabetic activity of L. nudicaulis ethanolic extract and its effect on diabetic complications in streptozotocin-induced hyperglycemic rats. The extract was orally administrated at 250 and 500 mg/kg/day for 5-weeks and compared to glibenclamide as a reference drug at a dose of 5 mg/kg/day. Administration of the extract exhibited a potential hypoglycemic effect manifested by a significant depletion of serum blood glucose concurrent with a significant elevation in serum insulin secretion. After 5-weeks, extract at 250 and 500 mg/kg/day decreased blood glucose levels by about 53.8 and 68.1%, respectively, compared to the initial values (p ≤ 0.05). The extract at the two dosages prevented weight loss of rats from the 2nd week till the end of the experiment, compared to diabetic control rats. The extract further exhibited marked improvement in diabetic complications including liver, kidney and testis performance, oxidative stress, and relative weight of vital organs, with respect to diabetic control. Histopathological examinations confirmed the previous biochemical analysis, where the extract showed a protective effect on the pancreas, liver, kidney, and testis that degenerated in diabetic control rats. To characterize extract composition, UPLC-ESI-qTOF-MS identified 85 chromatographic peaks belonging to flavonoids, phenolics, acyl glycerols, nitrogenous compounds, and fatty acids, with four novel phenolics reported. The potential anti-diabetic effect warrants its inclusion in further studies and or isolation of the main bioactive agent(s).
Collapse
Affiliation(s)
- Samah A. El-Newary
- Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt; (S.A.E.-N.); (A.E.-N.G.E.G.)
| | - Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt;
| | - Mohamed S. Aly
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Rania F. Ahmed
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt; (R.F.A.); (A.I.E.)
| | - Abd El-Nasser G. El Gendy
- Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt; (S.A.E.-N.); (A.E.-N.G.E.G.)
| | - Ahmed M. Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., Cairo P.B. 11562, Egypt;
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Abdelbaset M. Elgamal
- Department of Chemistry of Microbial and Natural Products, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Abdelsamed I. Elshamy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt; (R.F.A.); (A.I.E.)
| |
Collapse
|
22
|
Wei J, Ren W, Wang L, Liu M, Tian X, Ding G, Ma Z. Microbial dynamics, metabolomic profiles, and the correlation between them during fermentation of serofluid dish. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5627-5636. [PMID: 32712996 DOI: 10.1002/jsfa.10690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/19/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Serofluid dish, a traditional Chinese fermented food, possesses unique flavors and health beneficial effects. These properties are likely due to the sophisticated metabolic networks during fermentation, which are mainly driven by microbiota. However, the exact roles of metabolic pathways and the microbial community during this process remain equivocal. RESULTS Here, we investigated the microbial dynamics by next-generation sequencing, and outlined a differential non-targeted metabolite profiling in the process of serofluid dish fermentation using the method of hydrophilic interaction liquid chromatography column with ultra-high-performance liquid chromatography-quadruple time-of-flight mass spectrometry. Lactobacillus was the leading genus of bacteria, while Pichia and Issatchenkia were the dominant fungi. They all accumulated during fermentation. In total, 218 differential metabolites were identified, of which organic acids, amino acids, sugar and sugar alcohols, fatty acids, and esters comprised the majority. The constructed metabolic network showed that tricarboxylic acid cycle, urea cycle, sugar metabolism, amino acids metabolism, choline metabolism, and flavonoid metabolism were regulated by the fermentation. Furthermore, correlation analysis revealed that the leading fungi, Pichia and Issatchenkia, were linked to organic acids, amino acid and sugar metabolism, flavonoids, and several other flavor and functional components. Antibacterial tests indicated the antibacterial effect of serofluid soup against Salmonella and Staphylococcus. CONCLUSION This work provides new insights into the complex microbial and metabolic networks during serofluid dish fermentation, and a theoretical basis for the optimization of its industrial production. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia Wei
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, PR China
- School of Life Science and Bioengineering, Northwest Minzu University, Lanzhou, PR China
- Gannan Research Institute of Yak Milk, Ecological Industrial Park, Hezuo City, PR China
| | - Weihe Ren
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, PR China
- School of Life Science and Bioengineering, Northwest Minzu University, Lanzhou, PR China
| | - Liping Wang
- School of Life Science and Bioengineering, Northwest Minzu University, Lanzhou, PR China
| | - Menghao Liu
- School of Life Science and Bioengineering, Northwest Minzu University, Lanzhou, PR China
| | - Xiaojing Tian
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, PR China
- School of Life Science and Bioengineering, Northwest Minzu University, Lanzhou, PR China
- Gannan Research Institute of Yak Milk, Ecological Industrial Park, Hezuo City, PR China
| | - Gongtao Ding
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, PR China
- Gannan Research Institute of Yak Milk, Ecological Industrial Park, Hezuo City, PR China
| | - Zhongren Ma
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, PR China
- Gannan Research Institute of Yak Milk, Ecological Industrial Park, Hezuo City, PR China
| |
Collapse
|
23
|
Zayed A, Farag MA. Valorization, extraction optimization and technology advancements of artichoke biowastes: Food and non-food applications. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Protective effects of Coreopsis tinctoria buds extract against cognitive impairment and brain aging induced by d-galactose. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
25
|
Farag MA, Hegazi NM, Donia MS. Molecular networking based LC/MS reveals novel biotransformation products of green coffee by ex vivo cultures of the human gut microbiome. Metabolomics 2020; 16:86. [PMID: 32748036 DOI: 10.1007/s11306-020-01704-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Unroasted green coffee bean is an increasingly popular beverage and weight loss supplement that contains higher levels of chlorogenic acid derivatives and lower alkaloid levels than roasted beans. Nonetheless, how the gut microbiome metabolizes green coffee constituents has not been studied. OBJECTIVES To identify possible biotransformation products of green coffee extract by the human gut microbiome, and the potential implications of this process on its biological effects or fate inside the body. METHODS Molecular networking via the GNPS platform was employed for the visualization of green coffee metabolite profiles acquired using LC-tandem mass spectrometry post-incubation with an ex vivo culture of the human gut microbiome. RESULTS 36 Metabolites were annotated including four unreported alkyl cinnamate esters in green coffee along with six novel biotransformation products. CONCLUSION Our finding reveals new biotransformation products of cinnamate esters by the gut microbiome mediated via oxidative reactions such as dehydrogenation and hydroxylation, along with methylation, decarboxylation, and deglycosylation. These findings reveal potential interactions between the gut microbiome and green coffee constituents, and paves the way towards studying the effects of these interactions on both microbiome and the human host.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt.
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, New Cairo, 11835, Egypt.
| | - Nesrine M Hegazi
- Department of Phytochemistry and Plant Systematics, Division of Pharmaceutical Industries, National Research Centre, Cairo, 12622, Egypt
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
26
|
Cynara cardunculus L.: Outgoing and potential trends of phytochemical, industrial, nutritive and medicinal merits. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103937] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
27
|
Fu C, Yu P, Wang M, Qiu F. Phytochemical analysis and geographic assessment of flavonoids, coumarins and sesquiterpenes in Artemisia annua L. based on HPLC-DAD quantification and LC-ESI-QTOF-MS/MS confirmation. Food Chem 2020; 312:126070. [DOI: 10.1016/j.foodchem.2019.126070] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/02/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
|
28
|
Euryops pectinatus L. Flower Extract Inhibits P-glycoprotein and Reverses Multi-Drug Resistance in Cancer Cells: A Mechanistic Study. Molecules 2020; 25:molecules25030647. [PMID: 32028621 PMCID: PMC7038149 DOI: 10.3390/molecules25030647] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 11/17/2022] Open
Abstract
Euryops pectinatus is a South African ornamental plant belonging to family Asteraceae. The present work evaluates the cytotoxic activity and phytochemical profile of the flower extract. Metabolite profiling was performed using HPLC-PDA-ESI-MS/MS. Total phenolics and flavonoids content were assessed. Cytotoxicity was evaluated against 6 different cancer cell lines using MTT assay. The possible underlying mechanism was proposed. We analyzed whether the extract could overcome the resistance of multidrug-resistant cancer cells for doxorubicin. The effect of combination of E. pectinatus with doxorubicin was also studied. Additionally, the potential inhibitory activity of the identified phytochemicals to PB1 protein was analyzed using in silico molecular docking. Twenty-five compounds were tentatively identified. Total phenolic and flavonoid contents represented 49.41 ± 0.66 and 23.37 ± 0.23 µg/mg dried flower extract, respectively. The extract showed selective cytotoxicity against Caco2 cells but its main effect goes beyond mere cytotoxicity. It showed strong inhibition of P-glycoprotein, which helps to overcome multidrug resistance to classical chemotherapeutic agents. In silico molecular docking showed that dicaffeoyl quinic acid, kaempferol-O-rutinoside, rutin, and isorhamnetin-O-rutinoside exhibited the most potent inhibitory activity to PB1 involved in tumor progression. Euryops pectinatus flower heads could have promising selective cytotoxicity alone or in combination with other chemotherapeutic agents to counteract multidrug resistance.
Collapse
|
29
|
Awin T, Mediani A, Mohd Faudzi SM, Maulidiani, Leong SW, Shaari K, Abas F. Identification of α-glucosidase inhibitory compounds from Curcuma mangga fractions. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1716792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tahani Awin
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya
| | - Ahmed Mediani
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Bandar Puncak Alam, Malaysia
| | - Siti Munirah Mohd Faudzi
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Maulidiani
- School of Fundamental Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Sze Wei Leong
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
30
|
Barracosa P, Barracosa M, Pires E. Cardoon as a Sustainable Crop for Biomass and Bioactive Compounds Production. Chem Biodivers 2019; 16:e1900498. [PMID: 31778035 DOI: 10.1002/cbdv.201900498] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/22/2019] [Indexed: 01/12/2023]
Abstract
Cardoon is a multi-purpose and versatile Mediterranean crop, adapted to climate change, with a wide spectrum of potential applications due its added value as a rich source of fibers, oils and bioactive compounds. The Cynara species are a component of the Mediterranean diet and have been used as food and medicine since ancient times. The important role of cardoon in human nutrition, as a functional food, is due to its high content of nutraceutical and bioactive compounds such as oligofructose inulin, caffeoylquinic acids, flavonoids, anthocyanins, sesquiterpenes lactones, triterpenes, fatty acids and aspartic proteases. The present review highlights the characteristics and functions of cardoon biomass which permits the development of innovative products in food and nutrition, pharmaceutics and cosmetics, plant protection and biocides, oils and energy, lignocellulose materials, and healthcare industries following the actual trends of a circular economy.
Collapse
Affiliation(s)
- Paulo Barracosa
- Escola Superior Agrária de Viseu - Instituto Politécnico de Viseu, 3500-606, Viseu, Portugal.,CI&DETS - Centro de Estudos em Educação, Tecnologias e Saúde, 3504-510, Viseu, Portugal.,Centro de Investigação e de Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
| | - Mariana Barracosa
- Faculdade de Ciências da Nutrição e Alimentação -, Universidade do Porto, 4200-465, Porto, Portugal
| | - Euclides Pires
- Departamento Ciências da Vida - FCTUC, Universidade de Coimbra, 3000-456, Coimbra, Portugal
| |
Collapse
|
31
|
Mena-García A, Rodríguez-Sánchez S, Ruiz-Matute AI, Sanz ML. Exploitation of artichoke byproducts to obtain bioactive extracts enriched in inositols and caffeoylquinic acids by Microwave Assisted Extraction. J Chromatogr A 2019; 1613:460703. [PMID: 31753483 DOI: 10.1016/j.chroma.2019.460703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 10/25/2022]
Abstract
Byproducts from artichoke represent the majority of the mass collected from the plant and constitute an interesting source of bioactive compounds such as inositols and caffeoylquinic acids. In this work, a microwave assisted extraction (MAE) methodology was developed for the simultaneous extraction of these compounds from artichoke stalks, leaves, receptacles and external bracts. Optimal MAE conditions to maximize the extraction of these bioactives and the antioxidant activity were 97 °C, 3 min, ethanol:water (50:50, v/v). Moreover, a GC-MS methodology was also developed for the simultaneous determination of these compounds in a single run; optimal derivatization conditions were achieved using hexamethyldisilazane and N,O-bis(trimethylsilyl)trifluoroacetamide with 1% trimethylchlorosilane. Artichoke receptacle extracts were the richest in caffeoylquinic acids (28-35 mg g-1 dry sample), followed by the bracts (9-18 mg g-1 dry sample), while those from leaves showed the highest concentrations of inositols (up to 15 mg g-1 dry sample). Receptacle extracts also had the highest antioxidant activity (123 mg TE g-1 dry sample) and the greatest concentration of total phenolic compounds (47 mg GAE g-1 dry sample). Therefore, the developed methodology could be considered as a valuable procedure to obtain and characterize bioactive ingredients with industrial interest from artichoke byproducts, opening new routes of revalorization of artichoke agro-industrial residues.
Collapse
Affiliation(s)
- A Mena-García
- Instituto de Química Orgánica General (CSIC) Juan de la Cierva, 3, 28006 Madrid, Spain
| | - S Rodríguez-Sánchez
- Instituto de Química Orgánica General (CSIC) Juan de la Cierva, 3, 28006 Madrid, Spain
| | - A I Ruiz-Matute
- Instituto de Química Orgánica General (CSIC) Juan de la Cierva, 3, 28006 Madrid, Spain.
| | - M L Sanz
- Instituto de Química Orgánica General (CSIC) Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
32
|
Synthesis and Characterization of Zinc Oxide Nanoparticles Using Cynara scolymus Leaves: Enhanced Hemolytic, Antimicrobial, Antiproliferative, and Photocatalytic Activity. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01686-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Tian Y, Wen Z, Lei L, Li F, Zhao J, Zhi Q, Li F, Yin R, Ming J. Coreopsis tinctoria flowers extract ameliorates D-galactose induced aging in mice via regulation of Sirt1-Nrf2 signaling pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
34
|
Awin T, Buzgaia N, Abd Ghafar SZ, Mediani A, Mohd Faudzi SM, Maulidiani M, Shaari K, Abas F. Identification of nitric oxide inhibitory compounds from the rhizome of Curcuma xanthorrhiza. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Farag MA, Shakour ZTA. Metabolomics driven analysis of 11 Portulaca leaf taxa as analysed via UPLC-ESI-MS/MS and chemometrics. PHYTOCHEMISTRY 2019; 161:117-129. [PMID: 30825706 DOI: 10.1016/j.phytochem.2019.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 05/23/2023]
Abstract
Portulaca oleracea, commonly known as purslane, is a popular plant of considerable value for its nutritive composition as well as traditional medicinal uses. P. oleracea is reported to possess neuroprotective, antimicrobial, antidiabetic, antioxidant, anti-inflammatory, antiulcerogenic, and anticancer activities. Three taxa of P. oleracea L. (P. oleracea, P. rausii and P. granulatostellulata) are grown as mixed populations in several locations in Egypt. The close morphological similarities among these taxa warrants development of methods for their correct identification or classification. We aimed in this study to assess metabolome differences among three P. oleracea taxa via ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) in the context of their genetic diversity and/or geographical origin. A total of 85 metabolites were identified including 6 amino acids, 22 phenolic compounds, 16 alkaloids, and 11 fatty acids characterized based on their MSn and UV spectra. Methoxylated flavone glycosides, O-flavonoids, C-flavonoids and four previously undescribed cyclodopa alkaloids are reported in P. oleracea for the first time. Multivariate data analyses were used for samples classification and revealing that cyclodopa alkaloids (oleracein A, C, K and N) contributed the most for accessions classification. To the best of our knowledge, this study presents the first metabolite profile of Portulaca and its compositional differences that provide chemical based evidence for its nutritive and/or health benefits.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt; Department of Chemistry, School of Sciences & Engineering, American University in Cairo, New Cairo, 11835, Egypt.
| | - Zeinab T Abdel Shakour
- Laboratory of Phytochemistry, National Organization for Drug Control and Research, Cairo, Egypt
| |
Collapse
|
36
|
Fayek NM, Farag MA, Abdel Monem AR, Moussa MY, Abd-Elwahab SM, El-Tanbouly ND. Comparative Metabolite Profiling of Four Citrus Peel Cultivars via Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-of-Flight-Mass Spectrometry and Multivariate Data Analyses. J Chromatogr Sci 2019; 57:349-360. [PMID: 30796772 DOI: 10.1093/chromsci/bmz006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 10/22/2018] [Indexed: 12/19/2022]
Abstract
Citrus plants are one of the most economical fruit bearing trees grown worldwide for their medicinal use as well as for the flavor and food industry. This study attempts to characterize the metabolome difference in polyphenols of four Citrus species fruit peels; C. reticulata Blanco cv. Egyptian, C. sinensis (L.) Osbeck cv. Olinda Valencia, C. aurantiifolia Swingle cv. Mexican and C. paradisi Macfad. cv. Duncan via ultra-performance liquid chromatography coupled with quadrupole-time-of-flight-mass spectrometry platform. A total of 163 metabolites were characterized of which 28 were detected for the first time in Citrus cultivars including eight coumarin derivatives, three cinnamic acids conjugates, one polymethoxyflavone, 5 O-glycosides, 2 C-glycosides, three flavone-di-O-glucosides and six acetyl sugar derivatives of luteolin and kaempferol in addition to oxygenated and methylated fatty acids. Flavonoids amounted for the most abundant secondary metabolites class in the studied Citrus peels. The relative variability among these Citrus peels was estimated using clustering analysis with flavonoids accounting for cvs. segregation. Hierarchical clustering analysis revealed the chemical similarity of C. reticulata, C. sinensis and C. paradise peels and being distant them from that of C. aurantiifolia. To the best of our knowledge, this study provides the first report for metabolite compositional differences in these four Citrus peels.
Collapse
Affiliation(s)
- Nesrin M Fayek
- Department of Pharmacognosy, Faculty of pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of pharmacy, Cairo University, Cairo, Egypt.,Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Azza R Abdel Monem
- Department of Pharmacognosy, Faculty of pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed Y Moussa
- Department of Pharmacognosy, Faculty of pharmacy, Cairo University, Cairo, Egypt
| | - Samia M Abd-Elwahab
- Department of Pharmacognosy, Faculty of pharmacy, Cairo University, Cairo, Egypt
| | - Nebal D El-Tanbouly
- Department of Pharmacognosy, Faculty of pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
37
|
Profiling Metabolites and Biological Activities of Sugarcane ( Saccharum officinarum Linn.) Juice and its Product Molasses via a Multiplex Metabolomics Approach. Molecules 2019; 24:molecules24050934. [PMID: 30866484 PMCID: PMC6429268 DOI: 10.3390/molecules24050934] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/31/2022] Open
Abstract
Sugarcane (Saccharum officinarum L.) is an important perennial grass in the Poaceae family cultivated worldwide due to its economical and medicinal value. In this study, a combined approach using mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy was employed for the large-scale metabolite profiling of sugarcane juice and its by-product molasses. The polyphenols were analysed via UPLC-UV-ESI-MS, whereas the primary metabolites such as sugars and organic and amino acids were profiled using NMR spectroscopy and gas chromatography/mass spectrometry (GC/MS). UPLC/MS was more effective than NMR spectroscopy or GC/MS for determining differences among the metabolite compositions of the products. Under the optimized conditions, UPLC/MS led to the identification of 42 metabolites, including nine flavonoids, nine fatty acids, and two sterols. C/O Flavone glycosides were the main subclass detected, with tricin-7-O-deoxyhexosyl glucuronide being detected in sugarcane and molasses for the first time. Based on GC/MS analysis, disaccharides were the predominant species in the sugarcane juice and molasses, with sucrose accounting for 66% and 59%, respectively, by mass of all identified metabolites. The phenolic profiles of sugarcane and molasses were further investigated in relation to their in vitro antioxidant activities using free radical scavenging assays such as 2,2-Diphenyl-1-picrylhydrazyl free radical-scavenging ability (DPPH), Trolox equivalent antioxidant capacity (TEAC) and ferric reducing antioxidant power (FRAP). In view of its higher total phenolic content (TPC) (196 ± 2.1 mg GAE/100 g extract) compared to that of sugarcane juice (93 ± 2.9 mg GAE/100 g extract), molasses exhibited a substantially higher antioxidant effect. Interestingly, both extracts were also found to inhibit α-glucosidase and α-amylase enzymes, suggesting a possible antihyperglycaemic effect. These findings suggest molasses may be a new source of natural antioxidants for functional foods.
Collapse
|
38
|
Hashem MM, Salama MM, Mohammed FF, Tohamy AF, El Deeb KS. Metabolic profile and hepatoprotective effect of Aeschynomene elaphroxylon (Guill. & Perr.). PLoS One 2019; 14:e0210576. [PMID: 30629685 PMCID: PMC6328266 DOI: 10.1371/journal.pone.0210576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022] Open
Abstract
Liver diseases are life-threatening and need urgent medical treatments. Conventional treatment is expensive and toxic, so the urge for nutraceutical hepatoprotective agents is crucial. This study is considered the first metabolic profile of Aeschynomene elaphroxylon (Guill. & Perr.) extracts of; flowers, leaves & bark adopting UPLC-Orbitrap HRMS analysis to determine their bioactive metabolites, and it was designed to investigate the potential hepatoprotective activity of A. elaphroxylon flowers and bark extracts against CCl4-induced hepatic fibrosis in rats. Forty-nine compounds of various classes were detected in the three extracts, with triterpenoid saponins as the major detected metabolite. Flowers and bark extracts presented similar chemical profile while leaves extract was quite different. The antioxidant activities of the flowers, leaves & bark extracts were measured by in vitro assays as Fe+3 reducing antioxidant power and Oxygen radical absorbance capacity. It revealed that flowers and bark extracts had relatively high antioxidant activity as compared to leaves extract. Based on the metabolic profile and in vitro antioxidant activity, flowers and bark ethanolic extracts were chosen for alleviation of hepatotoxicity induced by CCl4 in rats. The hepatoprotective activity was studied through measuring hepatotoxicity biomarkers in serum (ALT, AST, and Albumin). Liver tissues were examined histopathologically and their homogenates were used in determining the intracellular levels of oxidative stress biomarkers (MDA, GSH), inflammatory markers (TNF-α). Flowers and bark ethanolic extracts exerted a significant hepatoprotective effect through reduction in the activities of ALT, AST and Albumin, the tested extracts reduced oxidative stress by increasing GSH content and reducing the MDA level. Furthermore, the extracts decreased levels of pro-inflammatory TNF-α. Moreover, the present study revealed the potentiality of A. elaphroxylon in ameliorating the CCl4-induced hepatic fibrosis in rats. In this aspect, A. elaphroxylon can be used with other agents as a complementary drug.
Collapse
Affiliation(s)
- Mona M. Hashem
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
- * E-mail:
| | - Maha M. Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Faten F. Mohammed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel F. Tohamy
- Department of Toxicology and Forensic medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Institute of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kadriya S. El Deeb
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|
39
|
Isolation of anticancer and anti-trypanosome secondary metabolites from the endophytic fungus Aspergillus flocculus via bioactivity guided isolation and MS based metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1106-1107:71-83. [PMID: 30658264 DOI: 10.1016/j.jchromb.2018.12.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Accepted: 12/28/2018] [Indexed: 11/21/2022]
Abstract
This study aims to identify bioactive anticancer and anti-trypanosome secondary metabolites from the fermentation culture of Aspergillus flocculus endophyte assisted by modern metabolomics technologies. The endophyte was isolated from the stem of the medicinal plant Markhamia platycalyx and identified using phylogenetics. Principle component analysis was employed to screen for the optimum growth endophyte culturing conditions and revealing that the 30-days rice culture (RC-30d) provided the highest levels of the bioactive agents. To pinpoint for active chemicals in endophyte crude extracts and successive fractions, a new application of molecular interaction network is implemented to correlate the chemical and biological profiles of the anti-trypanosome active fractions to highlight the metabolites mediating for bioactivity prior to purification trials. Multivariate data analysis (MVDA), with the aid of dereplication studies, efficiently annotated the putatively active anticancer molecules. The small-scale RC-30d fungal culture was purified using high-throughput chromatographic techniques to yield compound 1, a novel polyketide molecule though inactive. Whereas, active fractions revealed from the bioactivity guided fractionation of medium scale RC-30d culture were further purified to yield 7 metabolites, 5 of which namely cis-4-hydroxymellein, 5-hydroxymellein, diorcinol, botryoisocoumarin A and mellein, inhibited the growth of chronic myelogenous leukemia cell line K562 at 30 μM. 3-Hydroxymellein and diorcinol exhibited a respective inhibition of 56% and 97% to the sleeping sickness causing parasite Trypanosoma brucei brucei. More interestingly, the anti-trypanosomal activity of A. flocculus extract appeared to be mediated by the synergistic effect of the active steroidal compounds i.e. ergosterol peroxide, ergosterol and campesterol. The isolated structures were elucidated by using 1D, 2D NMR and HR-ESIMS.
Collapse
|
40
|
Farag MA, Elsebai MF, Khattab AR. Metabolome based classification of artichoke leaf: A prospect for phyto-equivalency of its different leaf origins and commercial preparations. J Pharm Biomed Anal 2018; 158:151-159. [DOI: 10.1016/j.jpba.2018.05.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 01/23/2023]
|
41
|
El Sayed AM, Hussein R, Motaal AA, Fouad MA, Aziz MA, El-Sayed A. Artichoke edible parts are hepatoprotective as commercial leaf preparation. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018. [DOI: 10.1016/j.bjp.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Elsebai MF, Abass K, Hakkola J, Atawia AR, Farag MA. The wild Egyptian artichoke as a promising functional food for the treatment of hepatitis C virus as revealed via UPLC-MS and clinical trials. Food Funct 2018; 7:3006-16. [PMID: 27296047 DOI: 10.1039/c6fo00656f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infection by hepatitis C virus (HCV) and its subsequent complications are a major cause of mortality worldwide. The water extract of the wild Egyptian artichoke (WEA) (Cynara cardunculus L. var. sylvestris (Lam.) Fiori) leaves is a freely available herbal product that is used for treatment of HCV-infection complications such as jaundice and ascites. The purpose of this study was to evaluate whether WEA exhibits activity against HCV, identify bioactive chemicals in its extract and to tentatively examine the potential inhibitory interactions of WEA with human drug-metabolizing enzymes. The current pilot clinical trial revealed that the water extract of a WEA plant decreased the HCV viral load below the detection level in 12 out of 15 patients. Furthermore, the liver enzymes ALT and AST, as well as the level of bilirubin were normalized. The total WEA extract inhibited CYP2B6 (OH-BUP) and CYP2C19 (5-OH-OME) with high affinity, IC50 ∼ 20 μg ml(-1), while moderate inhibitory interactions were observed for CYP1A2, CYP2D6, CYP2E1 and CYP3A4. Results presented herein suggest that the WEA exhibits strong antiviral activity against HCV and may be useful for its treatment. Compared to the artichoke product "Hepar SL Forte(®)", WEA was found to be more enriched in sesquiterpenes versus the abundance of phenolic compounds, especially flavonoids in Hepar SL Forte(®) as revealed via UPLC-MS analysis coupled to chemometrics.
Collapse
Affiliation(s)
| | - Khaled Abass
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, FIN-90014, Oulu, Finland and Centre for Arctic Medicine, Thule Institute, University of Oulu, FIN-90014, Finland and Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, FIN-90014, Oulu, Finland
| | - Jukka Hakkola
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, FIN-90014, Oulu, Finland and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FIN-90014, Oulu, Finland
| | - Ahmed Rezk Atawia
- Department of Horticulture, Faculty of Agriculture, Moshtohor, Benha University, Egypt
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt.
| |
Collapse
|
43
|
Tamura Y, Mori T, Nakabayashi R, Kobayashi M, Saito K, Okazaki S, Wang N, Kusano M. Metabolomic Evaluation of the Quality of Leaf Lettuce Grown in Practical Plant Factory to Capture Metabolite Signature. FRONTIERS IN PLANT SCIENCE 2018; 9:665. [PMID: 29997631 PMCID: PMC6030546 DOI: 10.3389/fpls.2018.00665] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/30/2018] [Indexed: 05/11/2023]
Abstract
Vegetables produce metabolites that affect their taste and nutritional value and compounds that contribute to human health. The quality of vegetables grown in plant factories under hydroponic cultivation, e.g., their sweetness and softness, can be improved by controlling growth factors including the temperature, humidity, light source, and fertilizer. However, soil is cheaper than hydroponic cultivation and the visual phenotype of vegetables grown under the two conditions is different. As it is not clear whether their metabolite composition is also different, we studied leaf lettuce raised under the hydroponic condition in practical plant factory and strictly controlled soil condition. We chose two representative cultivars, "black rose" (BR) and "red fire" (RF) because they are of high economic value. Metabolite profiling by comprehensive gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) resulted in the annotation of 101 metabolites from 223 peaks detected by GC-MS; LC-MS yielded 95 peaks. The principal component analysis (PCA) scatter plot showed that the most distinct separation patterns on the first principal component (PC1) coincided with differences in the cultivation methods. There were no clear separations related to cultivar differences in the plot. PC1 loading revealed the discriminant metabolites for each cultivation method. The level of amino acids such as lysine, phenylalanine, tryptophan, and valine was significantly increased in hydroponically grown leaf lettuce, while soil-cultivation derived leaf lettuce samples contained significantly higher levels of fatty-acid derived alcohols (tetracosanol and hexacosanol) and lettuce-specific sesquiterpene lactones (lactucopicrin-15-oxalate and 15-deoxylactucin-8-sulfate). These findings suggest that the metabolite composition of leaf lettuce is primarily affected by its cultivation condition. As the discriminant metabolites reveal important factors that contribute to the nutritional value and taste characteristics of leaf lettuce, we performed comprehensive metabolite profiling to identify metabolite compositions, i.e., metabolite signature, that directly improve its quality and value.
Collapse
Affiliation(s)
- Yoshio Tamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Central Research Institute for Feed and Livestock, National Federation of Agricultural Co-operative Associations, Tsukuba, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Seiichi Okazaki
- Keystone Technology, Yokohama, Japan
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Ning Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Miyako Kusano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- *Correspondence: Miyako Kusano,
| |
Collapse
|
44
|
Rácz A, Andrić F, Bajusz D, Héberger K. Binary similarity measures for fingerprint analysis of qualitative metabolomic profiles. Metabolomics 2018; 14:29. [PMID: 29568246 PMCID: PMC5846857 DOI: 10.1007/s11306-018-1327-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Contemporary metabolomic fingerprinting is based on multiple spectrometric and chromatographic signals, used either alone or combined with structural and chemical information of metabolic markers at the qualitative and semiquantitative level. However, signal shifting, convolution, and matrix effects may compromise metabolomic patterns. Recent increase in the use of qualitative metabolomic data, described by the presence (1) or absence (0) of particular metabolites, demonstrates great potential in the field of metabolomic profiling and fingerprint analysis. OBJECTIVES The aim of this study is a comprehensive evaluation of binary similarity measures for the elucidation of patterns among samples of different botanical origin and various metabolomic profiles. METHODS Nine qualitative metabolomic data sets covering a wide range of natural products and metabolomic profiles were applied to assess 44 binary similarity measures for the fingerprinting of plant extracts and natural products. The measures were analyzed by the novel sum of ranking differences method (SRD), searching for the most promising candidates. RESULTS Baroni-Urbani-Buser (BUB) and Hawkins-Dotson (HD) similarity coefficients were selected as the best measures by SRD and analysis of variance (ANOVA), while Dice (Di1), Yule, Russel-Rao, and Consonni-Todeschini 3 ranked the worst. ANOVA revealed that concordantly and intermediately symmetric similarity coefficients are better candidates for metabolomic fingerprinting than the asymmetric and correlation based ones. The fingerprint analysis based on the BUB and HD coefficients and qualitative metabolomic data performed equally well as the quantitative metabolomic profile analysis. CONCLUSION Fingerprint analysis based on the qualitative metabolomic profiles and binary similarity measures proved to be a reliable way in finding the same/similar patterns in metabolomic data as that extracted from quantitative data.
Collapse
Affiliation(s)
- Anita Rácz
- Plasma Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| | - Filip Andrić
- Department of Analytical Chemistry, University of Belgrade - Faculty of Chemistry, Studentski trg. 12-16, 11000, Belgrade, Serbia.
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| | - Károly Héberger
- Plasma Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| |
Collapse
|
45
|
Youssef FS, Labib RM, Eldahshan OA, Singab ANB. Synergistic Hepatoprotective and Antioxidant Effect of Artichoke, Fig, Blackberry Herbal Mixture on HepG2 Cells and Their Metabolic Profiling Using NMR Coupled with Chemometrics. Chem Biodivers 2017; 14. [PMID: 28898531 DOI: 10.1002/cbdv.201700206] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/08/2017] [Indexed: 12/16/2022]
Abstract
The edible plants have long been reported to possess a lot of biological activities. Herein, the hepatoprotective and the antioxidant activities of the aqueous infusion of the edible parts of Cynara cardunculus, Ficus carica, and Morus nigra and their herbal mixture (CFM) was investigated in vitro using CCl4 induced damage in HepG2 cells. The highest amelioration was observed via the consumption of CFM at 1 mg/ml showing 47.00% and 37.09% decline in aspartate transaminase and alanine transaminase and 77.32% and 101.02% increase in reduced glutathione and superoxide dismutase comparable to CCl4 treated cells. Metabolic profiling of their aqueous infusions was done using nuclear magnetic resonance spectroscopic experiments coupled with chemometrics particularly hierarchical cluster analysis (HCA) and principal component analysis (PCA). The structural closeness of the various metabolites existing in black berry and the mixture as reflected in the PCA score plot and HCA processed from the 1 H-NMR spectral data could eventually explained the close values in their biological behavior. For fig and artichoke, the existence of different phenolic metabolites that act synergistically could greatly interpret their potent biological behavior. Thus, it can be concluded that a herbal mixture composed of black berry, artichoke, and fig could afford an excellent natural candidate to combat oxidative stress and counteract hepatic toxins owing to its phenolic compounds.
Collapse
Affiliation(s)
- Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Rola M Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
46
|
La Barbera G, Capriotti AL, Cavaliere C, Montone CM, Piovesana S, Samperi R, Zenezini Chiozzi R, Laganà A. Liquid chromatography-high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages. Food Res Int 2017; 100:28-52. [PMID: 28873689 DOI: 10.1016/j.foodres.2017.07.080] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023]
Abstract
The recent years witnessed a change in the perception of nutrition. Diet does not only provide nutrients to meet the metabolic requirements of the body, but it also constitutes an active way for the consumption of compounds beneficial for human health. Fruit and vegetables are an excellent source of such compounds, thus the growing interest in characterizing phytochemical sources, structures and activities. Given the interest for phytochemicals in food, the development of advanced and suitable analytical techniques for their identification is fundamental for the advancement of food research. In this review, the state of the art of phytochemical research in food plants is described, starting from sample preparation, throughout extract clean-up and compound separation techniques, to the final analysis, considering both qualitative and quantitative investigations. In this regard, from an analytical point of view, fruit and vegetable extracts are complex matrices, which greatly benefit from the use of modern hyphenated techniques, in particular from the combination of high performance liquid chromatography separation and high resolution mass spectrometry, powerful tools which are being increasingly used in the recent years. Therefore, selected applications to real samples are presented and discussed, in particular for the analysis of phenols, polyphenols and phenolic acids. Finally, some hot points are discussed, such as waste characterization for high value-compounds recovery and the untargeted metabolomics approach.
Collapse
Affiliation(s)
- Giorgia La Barbera
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmela Maria Montone
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Susy Piovesana
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Roberto Samperi
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
47
|
Phytochemical Profiles and Antimicrobial Activities of Allium cepa Red cv. and A. sativum Subjected to Different Drying Methods: A Comparative MS-Based Metabolomics. Molecules 2017; 22:molecules22050761. [PMID: 28481316 PMCID: PMC6154556 DOI: 10.3390/molecules22050761] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/17/2017] [Accepted: 05/05/2017] [Indexed: 11/16/2022] Open
Abstract
Plants of the Allium genus produce sulphur compounds that give them a characteristic (alliaceous) flavour and mediate for their medicinal use. In this study, the chemical composition and antimicrobial properties of Allium cepa red cv. and A. sativum in the context of three different drying processes were assessed using metabolomics. Bulbs were dried using either microwave, air drying, or freeze drying and further subjected to chemical analysis of their composition of volatile and non-volatile metabolites. Volatiles were collected using solid phase micro-extraction (SPME) coupled to gas chromatography–mass spectrometry (GC/MS) with 42 identified volatiles including 30 sulphur compounds, four nitriles, three aromatics, and three esters. Profiling of the polar non-volatile metabolites via ultra-performance liquid chromatography coupled to high resolution MS (UPLC/MS) annotated 51 metabolites including dipeptides, flavonoids, phenolic acids, and fatty acids. Major peaks in GC/MS or UPLC/MS contributing to the discrimination between A. sativum and A. cepa red cv. were assigned to sulphur compounds and flavonoids. Whereas sulphur conjugates amounted to the major forms in A. sativum, flavonoids predominated in the chemical composition of A. cepa red cv. With regard to drying impact on Allium metabolites, notable and clear separations among specimens were revealed using principal component analysis (PCA). The PCA scores plot of the UPLC/MS dataset showed closer metabolite composition of microwave dried specimens to freeze dried ones, and distant from air dried bulbs, observed in both A. cepa and A. sativum. Compared to GC/MS, the UPLC/MS derived PCA model was more consistent and better in assessing the impact of drying on Allium metabolism. A phthalate derivative was found exclusively in a commercial garlic preparation via GC/MS, of yet unknown origin. The freeze dried samples of both Allium species exhibited stronger antimicrobial activities compared to dried specimens with A. sativum being in general more active than A. cepa red cv.
Collapse
|
48
|
UHPLC high resolution orbitrap metabolomic fingerprinting of the unique species Ophryosporus triangularis Meyen from the Atacama Desert, Northern Chile. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2016.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Albergamo A, Rotondo A, Salvo A, Pellizzeri V, Bua DG, Maggio A, Cicero N, Dugo G. Metabolite and mineral profiling of “Violetto di Niscemi” and “Spinoso di Menfi” globe artichokes by 1H-NMR and ICP-MS. Nat Prod Res 2016; 31:990-999. [DOI: 10.1080/14786419.2016.1258563] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ambrogina Albergamo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
| | - Archimede Rotondo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
| | - Andrea Salvo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
| | - Vito Pellizzeri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
| | - Daniel G. Bua
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
| | - Antonella Maggio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
- Science4Life, Spin Off Company, University of Messina, Messina, Italy
| | - Giacomo Dugo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
- Science4Life, Spin Off Company, University of Messina, Messina, Italy
- Co.Ri.Bi.A. (Consorzio di Ricerca sul Rischio Biologico in Agricoltura- Palermo), Palermo, Italy
| |
Collapse
|
50
|
Rouphael Y, Bernardi J, Cardarelli M, Bernardo L, Kane D, Colla G, Lucini L. Phenolic Compounds and Sesquiterpene Lactones Profile in Leaves of Nineteen Artichoke Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8540-8548. [PMID: 27792334 DOI: 10.1021/acs.jafc.6b03856] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Leaves of globe artichoke are food industry byproducts gaining interest due to their therapeutic and nutraceutical potential. The total phenolics, flavonoids, and flavonols content as well as radical scavenging capacity and reducing antioxidant power were determined in leaves of 19 artichoke cultivars. An untargeted analysis based on high-resolution mass spectrometry was then carried out to profile phenolic compounds and sesquiterpene lactones (STLs). The phenolic profile of leaf extracts from different cultivars was widely diverse and included flavonoids, hydroxycinnamic acids, tyrosols, and lignans. Grosheimin and its derivative were the most abundant STLs in all artichoke cultivars. Among the examined cultivars, "Campagnano", "Grato 1", and "Violetto di Provenza" were found to be the richest in polyphenols and presented the highest antioxidant activity, whereas "Blanca de Tudela" and "Carderas" were characterized by a high STLs content. Hence, specific artichoke cultivars can be selected as the source of natural antioxidants with a desired profile of nutraceutical compounds like phenolics and STLs.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II , Portici, Italy
| | | | - Mariateresa Cardarelli
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia agraria, Centro di ricerca per lo studio delle Relazioni tra Pianta e Suolo , Rome, Italy
| | | | - David Kane
- Knoell Iberia S.L., Paseo de la Castellana 95, 28046 Madrid, Spain
| | - Giuseppe Colla
- Department of Agricultural and Forestry Sciences, University of Tuscia , Viterbo, Italy
| | | |
Collapse
|