1
|
Koc YE, Aycan M, Mitsui T. Exogenous proline suppresses endogenous proline and proline-production genes but improves the salinity tolerance capacity of salt-sensitive rice by stimulating antioxidant mechanisms and photosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108914. [PMID: 38981207 DOI: 10.1016/j.plaphy.2024.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Salinity is a critical environmental stress factor that significantly reduces crop productivity and yield. A mutant B-type response regulator gene (hst1) has been shown to promote salinity tolerance in the YNU genotype. Previous studies on the hst1 gene showed a higher proline production capacity under salt stress. Using almost identical genetic backgrounded salt-tolerant (YNU) and salt-sensitive (Sister line) rice genotypes, we tested the function of proline in the hst1 gene salinity-tolerance mechanism by applying exogenous proline under control and salt-stress conditions. Morpho-physiological, biochemical, and molecular analysis of ST and SS plants was performed to clarify the salinity tolerance mechanism mediated by the exogenous proline. The ST and SS genotypes accumulated exogenous proline, and the ST genotype has higher proline levels than the SS genotype. However, exogenous proline improved salt tolerance only in the SS genotype. Exogenous proline promotes plant and root growth by stimulating photosynthetic pigments and photosynthesis. The exogenous proline has a reductive effect on MDA, and H2O2 protects plants against ROS. Interestingly, exogenous proline lowers Na+ and raises K+ accumulations under salt stress. In the SS genotype, exogenous proline increases the activity of antioxidant enzymes (SOD, CAT, and APX) to protect against salinity-induced damage. The exogenous proline application down-regulates proline-synthesis genes (OsP5CS1 and OsP5CR) and up-regulates proline-degradation genes. Also, exogenous proline increases the expression of the OsSalT and OsGRAS29 genes, improving salinity tolerance in the SS genotype. Our study has demonstrated that proline plays a significant role in conferring salt tolerance with the salinity-tolerance-related hst1 mechanisms.
Collapse
Affiliation(s)
- Yunus Emre Koc
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, 950-21-81, Japan; General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, 06800, Turkiye
| | - Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.
| | - Toshiaki Mitsui
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, 950-21-81, Japan; Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.
| |
Collapse
|
2
|
Khokhar AA, Hui L, Khan D, You Z, Zaman QU, Usman B, Wang HF. Transcriptome Profiles Reveal Key Regulatory Networks during Single and Multifactorial Stresses Coupled with Melatonin Treatment in Pitaya ( Selenicereus undatus L.). Int J Mol Sci 2024; 25:8901. [PMID: 39201587 PMCID: PMC11354645 DOI: 10.3390/ijms25168901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
In response to evolving climatic conditions, plants frequently confront multiple abiotic stresses, necessitating robust adaptive mechanisms. This study focuses on the responses of Selenicereus undatus L. to both individual stresses (cadmium; Cd, salt; S, and drought; D) and their combined applications, with an emphasis on evaluating the mitigating effects of (M) melatonin. Through transcriptome analysis, this study identifies significant gene expression changes and regulatory network activations. The results show that stress decreases pitaya growth rates by 30%, reduces stem and cladode development by 40%, and increases Cd uptake under single and combined stresses by 50% and 70%, respectively. Under stress conditions, enhanced activities of H2O2, POD, CAT, APX, and SOD and elevated proline content indicate strong antioxidant defenses. We identified 141 common DEGs related to stress tolerance, most of which were related to AtCBP, ALA, and CBP pathways. Interestingly, the production of genes related to signal transduction and hormones, including abscisic acid and auxin, was also significantly induced. Several calcium-dependent protein kinase genes were regulated during M and stress treatments. Functional enrichment analysis showed that most of the DEGs were enriched during metabolism, MAPK signaling, and photosynthesis. In addition, weighted gene co-expression network analysis (WGCNA) identified critical transcription factors (WRKYs, MYBs, bZIPs, bHLHs, and NACs) associated with antioxidant activities, particularly within the salmon module. This study provides morpho-physiological and transcriptome insights into pitaya's stress responses and suggests molecular breeding techniques with which to enhance plant resistance.
Collapse
Affiliation(s)
- Aamir Ali Khokhar
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Liu Hui
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Darya Khan
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Zhang You
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Qamar U Zaman
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Babar Usman
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| | - Hua-Feng Wang
- Hainan Yazhou-Bay Seed Laboratory, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (A.A.K.); (L.H.); (D.K.); (Z.Y.); (Q.U.Z.)
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Hu H, Qiu K, Hao Q, He X, Qin L, Chen L, Yang C, Dai X, Liu H, Xu H, Guo H, Li J, Wu R, Feng J, Zhou Y, Han J, Xiao C, Wang X. Electromagnetic Field-Assisted Frozen Tissue Planarization Enhances MALDI-MSI in Plant Spatial Omics. Anal Chem 2024; 96:11809-11822. [PMID: 38975729 DOI: 10.1021/acs.analchem.4c01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Plant samples with irregular morphology are challenging for longitudinal tissue sectioning. This has restricted the ability to gain insight into some plants using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, we develop a novel technique termed electromagnetic field-assisted frozen tissue planarization (EMFAFTP). This technique involves using a pair of adjustable electromagnets on both sides of a plant tissue. Under an optimized electromagnetic field strength, nondestructive planarization and regularization of the frozen tissue is induced, allowing the longitudinal tissue sectioning that favors subsequent molecular profiling by MALDI-MSI. As a proof of concept, flowers, leaves and roots with irregular morphology from six plant species are chosen to evaluate the performance of EMFAFTP for MALDI-MSI of secondary metabolites, amino acids, lipids, and proteins among others in the plant samples. The significantly enhanced MALDI-MSI capabilities of these endogenous molecules demonstrate the robustness of EMFAFTP and suggest it has the potential to become a standard technique for advancing MALDI-MSI into a new era of plant spatial omics.
Collapse
Affiliation(s)
- Hao Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Kaidi Qiu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Qichen Hao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaojia He
- The Administrative Center for China's Agenda 21, Beijing 100038, China
| | - Liang Qin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Lulu Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Chenyu Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaoyan Dai
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Haiqiang Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Hualei Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Hua Guo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jinrong Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Ran Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jinchao Feng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jun Han
- Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| |
Collapse
|
4
|
Zhang X, Qin H, Kan Z, Liu D, Wang B, Fan S, Jiang P. Growth and non-structural carbohydrates response patterns of Eucommia ulmoides under salt and drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1436152. [PMID: 39091320 PMCID: PMC11291362 DOI: 10.3389/fpls.2024.1436152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Introduction Salinity and droughts are severe abiotic stress factors that limit plant growth and development. However, the differences and similarities of non-structural carbohydrates (NSCs) responses patterns of trees under the two stress conditions remain unclear. Methods We determined and compared the growth, physiology, and NSCs response patterns and tested the relationships between growth and NSCs concentrations (or pool size) of Eucommia ulmoides seedlings planted in field under drought and salt stress with different intensities and durations. Results and discussion We found that drought and salt stress can inhibit the growth of E. ulmoides, and E. ulmoides tended to enhance its stress resistance by increasing proline concentration and leaf thickness or density but decreasing investment in belowground biomass in short-term stress. During short-term drought and salt stress, the aboveground organs showed different NSCs response characteristics, while belowground organs showed similar change characteristics: the starch (ST) and NSCs concentrations in the coarse roots decreased, while the ST and soluble sugar (SS) concentrations in the fine roots increased to enhance stress resistance and maintain water absorption function. As salt and drought stress prolonged, the belowground organs represented different NSCs response patterns: the concentrations of ST and SS in fine roots decreased as salt stress prolonged; while ST in fine roots could still be converted into SS to maintain water absorption as drought prolonged, resulting in an increase of SS and a decrease of ST. Significant positive relationships were found between growth and the SS and total NSCs concentrations in leaves and branches, however, no significant correlations were found between growth and below-ground organs. Moreover, relationships between growth and NSCs pool size across organs could be contrast. Conclusion Our results provide important insights into the mechanisms of carbon balance and carbon starvation and the relationship between tree growth and carbon storage under stress, which were of great significance in guiding for the management of artificial forest ecosystem under the context of global change.
Collapse
Affiliation(s)
- Xuejie Zhang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying, China
| | - Hao Qin
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Zhenchao Kan
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji’nan, China
| | - Bingxin Wang
- Dalin Eucommia planting company of Gaomi County, Weifang, China
| | - Shoujin Fan
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying, China
| | - Peipei Jiang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying, China
| |
Collapse
|
5
|
Ullah H, Jan T. Germination test, seedling growth, and physiochemical traits are used to screen okra varieties for salt tolerance. Heliyon 2024; 10:e34152. [PMID: 39071552 PMCID: PMC11277744 DOI: 10.1016/j.heliyon.2024.e34152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Excess soil salinity is a major stress factor that inhibits plant growth, development, and production. Among the growth stages, seed germination is particularly susceptible to salt stress. Okra, a nutraceutical vegetable, has a low germination percentage. Literature has revealed genetic diversity in okra, which can be studied to develop salt-tolerant varieties. This study examined the salt tolerance of 13 okra varieties using germination tests and then tested five varieties in pot experiments with different NaCl levels (75, 100, and 125 mM NaCl). Results showed that salt levels affected all varieties, with differential variations in stress response. Salt stress reduced agronomic, and physiochemical traits in the studied varieties. In variety "MALAV-27", the highest salt concentration significantly reduced the shoot length (68.12 %), root length (65.11 %), shoot fresh weight (78.73 %), root fresh weight (68.32 %), shoot dry weight (75.60 %), and root dry weight (75.81 %), along with different physiochemical traits. Variety "NAYAB-F1" performed the best, and maintained the highest shoot length (57.12 %), root length (58.72 %), shoot fresh weight (68.26 %), and root fresh weight (58.34 %), shoot dry weight (69.23 %), root dry weight (62.50 %), and numerous physiochemical traits such as sugar (0.74 μg/g), proline (0.51 μmol/g), and chlorophyll 'a' (7.97 mg/g), chlorophyll 'b' (9.56 mg/g). The study recommended 'NAYAB-F1', 'Arka anamika', and 'Shehzadi' as salt-tolerant varieties suitable for selection in salt-tolerant okra breeding programs.
Collapse
Affiliation(s)
- Hayat Ullah
- Department of Botany, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, Pakistan
| | - Tour Jan
- Department of Botany, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
6
|
Renzetti M, Bertolini E, Trovato M. Proline Metabolism Genes in Transgenic Plants: Meta-Analysis under Drought and Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1913. [PMID: 39065440 PMCID: PMC11280441 DOI: 10.3390/plants13141913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
The amino acid proline accumulates in plants during abiotic stresses such as drought and salinity and is considered a reliable marker of environmental stress. While its accumulation is well established, its precise role in stress tolerance and its underlying molecular mechanism remain less clear. To address these issues, we performed a meta-analysis-a robust statistical technique that synthesizes results from multiple independent studies while accounting for experimental differences. We focused on 16 physiological and morphological parameters affected by drought and salt stress in transgenic plants expressing proline metabolic genes. For each parameter, we calculated the effect size as the response ratio (RR), which represents the logarithm of the mean value in the transgenic group over the mean value of the control group (lnRR). Under stress, most parameters exhibited significantly higher response ratios in the transgenic group, confirming the beneficial effects of proline during drought and salt stress. Surprisingly, under non-stressed conditions, most stress markers showed no significant differences between transgenic and non-transgenic plants, despite elevated proline levels in the former. These results suggest that the benefits of proline may be related to proline catabolism or may only become apparent during stress, possibly due to interactions with reactive oxygen species (ROS), which accumulate predominantly under stress conditions.
Collapse
Affiliation(s)
- Marco Renzetti
- Department of Biology and Biotechnologies, Sapienza University, 00185 Rome, Italy;
| | - Elisa Bertolini
- Biocomputing Group, Department of Pharmacy and Biotechnology, Bologna University, 40126 Bologna, Italy;
| | - Maurizio Trovato
- Department of Biology and Biotechnologies, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
7
|
Ma N, Han L, Hou S, Gui L, Yuan Z, Sun S, Wang Z, Yang B, Yang C. Insights into the effects of saline forage on the meat quality of Tibetan sheep by metabolome and multivariate analysis. Food Chem X 2024; 22:101411. [PMID: 38756473 PMCID: PMC11096943 DOI: 10.1016/j.fochx.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
This work aimed to investigate how two different types of forage (saline and alkaline) impact the meat quality and muscle metabolism of Tibetan sheep. An integrative multi-omics analysis of meat quality and different metabolites was performed using untargeted and targeted metabolomics approaches. The research results indicated that GG grass (saline and alkaline forage) possessed superior characteristics in terms of apparent quality and secondary metabolite content compared with HG grass (Non saline alkali forage), regardless of the targeted metabolites or non-targeted ones. Simultaneously, under stress conditions, the carbohydrates-rich salt-alkali grass play a significant role in slowing down the decline in pH, increasing the unsaturated fatty acid content and reducing the thawing loss in Tibetan sheep. This study provides an understanding of the impact of different salt-alkali grass on the quality of Tibetan sheep meat, while providing a scientific basis for the future development of salt-alkali livestock industry.
Collapse
Affiliation(s)
- Nana Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Lijuan Han
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Shengnan Sun
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Baochun Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Chao Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| |
Collapse
|
8
|
Chen X, Han H, Cong Y, Li X, Zhang W, Cui J, Xu W, Pang S, Liu H. Ascorbic Acid Improves Tomato Salt Tolerance by Regulating Ion Homeostasis and Proline Synthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1672. [PMID: 38931104 PMCID: PMC11207900 DOI: 10.3390/plants13121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
In this study, processing tomato (Solanum lycopersicum L.) 'Ligeer 87-5' was hydroponically cultivated under 100 mM NaCl to simulate salt stress. To investigate the impacts on ion homeostasis, osmotic regulation, and redox status in tomato seedlings, different endogenous levels of ascorbic acid (AsA) were established through the foliar application of 0.5 mM AsA (NA treatment), 0.25 mM lycorine (LYC, an inhibitor of AsA synthesis; NL treatment), and a combination of LYC and AsA (NLA treatment). The results demonstrated that exogenous AsA significantly increased the activities and gene expressions of key enzymes (L-galactono-1,4-lactone dehydrogenase (GalLDH) and L-galactose dehydrogenase (GalDH)) involved in AsA synthesis in tomato seedling leaves under NaCl stress and NL treatment, thereby increasing cellular AsA content to maintain its redox status in a reduced state. Additionally, exogenous AsA regulated multiple ion transporters via the SOS pathway and increased the selective absorption of K+, Ca2+, and Mg2+ in the aerial parts, reconstructing ion homeostasis in cells, thereby alleviating ion imbalance caused by salt stress. Exogenous AsA also increased proline dehydrogenase (ProDH) activity and gene expression, while inhibiting the activity and transcription levels of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and ornithine-δ-aminotransferase (OAT), thereby reducing excessive proline content in the leaves and alleviating osmotic stress. LYC exacerbated ion imbalance and osmotic stress caused by salt stress, which could be significantly reversed by AsA application. Therefore, exogenous AsA application increased endogenous AsA levels, reestablished ion homeostasis, maintained osmotic balance, effectively alleviated the inhibitory effect of salt stress on tomato seedling growth, and enhanced their salt tolerance.
Collapse
Affiliation(s)
- Xianjun Chen
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
- Key Laboratory of Molecular Breeding and Variety Creation of Horticultural Plants for Mountain Features in Guizhou Province, School of Life and Health Science, Kaili University, Kaili 556011, China
| | - Hongwei Han
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Yundan Cong
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Xuezhen Li
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Wenbo Zhang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Jinxia Cui
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Wei Xu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Shengqun Pang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Huiying Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| |
Collapse
|
9
|
Su TH, Shen Y, Chiang YY, Liu YT, You HM, Lin HC, Kung KN, Huang YM, Lai CM. Species selection as a key factor in the afforestation of coastal salt-affected lands: Insights from pot and field experiments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121126. [PMID: 38761629 DOI: 10.1016/j.jenvman.2024.121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Soil salinization is a significant global issue that leads to land degradation and loss of ecological function. In coastal areas, salinization hampers vegetation growth, and forestation efforts can accelerate the recovery of ecological functions and enhance resilience to extreme climates. However, the salinity tolerance of tree species varies due to complex biological factors, and results between lab/greenhouse and field studies are often inconsistent. Moreover, in salinized areas affected by extreme climatic and human impacts, afforestation with indigenous species may face adaptability challenges. Therefore, it is crucial to select appropriate cross-species salinity tolerance indicators that have been validated in the field to enhance the success of afforestation and reforestation efforts. This study focuses on five native coastal tree species in Taiwan, conducting afforestation experiments on salt-affected soils mixed with construction and demolition waste. It integrates short-term controlled experiments with potted seedlings and long-term field observations to establish growth performance and physiological and biochemical parameters indicative of salinity tolerance. Results showed that Heritiera littoralis Dryand. exhibited the highest salinity tolerance, accumulating significant leaf proline under increased salinity. Conversely, Melia azedarach Linn. had the lowest tolerance, evidenced by complete defoliation and reduced biomass under salt stress. Generally, the field growth performance of these species aligns with the results of short-term pot experiments. Leaf malondialdehyde content from pot experiments proved to be a reliable cross-species salinity tolerance indicator, correlating negatively with field relative height growth and survival rates. Additionally, parameters related to the photosynthetic system or water status, measured using portable devices, also moderately indicated field survival, aiding in identifying potential salt-tolerant tree species. This study underscores the pivotal role of species selection in afforestation success, demonstrating that small-scale, short-term salinity control experiments coupled with appropriate assessment tools can effectively identify species suitable for highly saline and degraded environments. This approach not only increases the success of afforestation but also conserves resources needed for field replanting and maintenance, supporting sustainable development goals.
Collapse
Affiliation(s)
- Tzu-Hao Su
- Silviculture Division, Taiwan Forestry Research Institute, Taipei City, 100060, Taiwan
| | - Yang Shen
- Department of Forestry, National Chung Hsing University, Taichung City, 402202, Taiwan
| | - Yao-Yu Chiang
- Silviculture Division, Taiwan Forestry Research Institute, Taipei City, 100060, Taiwan
| | - Yu-Ting Liu
- Department of Forestry, National Chung Hsing University, Taichung City, 402202, Taiwan
| | - Han-Ming You
- Silviculture Division, Taiwan Forestry Research Institute, Taipei City, 100060, Taiwan
| | - Hung-Chih Lin
- Silviculture Division, Taiwan Forestry Research Institute, Taipei City, 100060, Taiwan
| | - Kuan-Ning Kung
- Chiayi Research Center, Taiwan Forestry Research Institute, Chiayi City, 600054, Taiwan
| | - Yao-Moan Huang
- Forest Ecology Division, Taiwan Forestry Research Institute, Taipei City, 100060, Taiwan
| | - Chih-Ming Lai
- Silviculture Division, Taiwan Forestry Research Institute, Taipei City, 100060, Taiwan.
| |
Collapse
|
10
|
Liu R, Deng M, Zhang N, Li Y, Jia L, Niu D. NADK-mediated proline synthesis enhances high-salinity tolerance in the razor clam. Comp Biochem Physiol A Mol Integr Physiol 2024; 291:111610. [PMID: 38408517 DOI: 10.1016/j.cbpa.2024.111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Euryhaline organisms can accumulate organic osmolytes to maintain osmotic balance between their internal and external environments. Proline is a pivotal organic small molecule and plays an important role in osmoregulation that enables marine shellfish to tolerate high-salinity conditions. During high-salinity challenge, NAD kinase (NADK) is involved in de novo synthesis of NADP(H) in living organisms, which serves as a reducing agent for the biosynthetic reactions. However, the role of shellfish NADK in proline biosynthesis remains elusive. In this study, we show the modulation of NADK on proline synthesis in the razor clam (Sinonovacula constricta) in response to osmotic stress. Under acute hypersaline conditions, gill tissues exhibited a significant increase in the expression of ScNADK. To elucidate the role of ScNADK in proline biosynthesis, we performed dsRNA interference in the expression of ScNADK in gill tissues to assess proline content and the expression levels of key enzyme genes involved in proline biosynthesis. The results indicate that the knock-down of ScNADK led to a significant decrease in proline content (P<0.01), as well as the expression levels of two proline synthetase genes P5CS and P5CR involved in the glutamate pathway. Razor clams preferred to use ornithine as substrate for proline synthesis when the glutamate pathway is blocked. Exogenous administration of proline greatly improved cell viability and mitigated cell apoptosis in gills. In conclusion, our results demonstrate the important role of ScNADK in augmenting proline production under high-salinity stress, by which the razor clam is able to accommodate salinity variations in the ecological niche.
Collapse
Affiliation(s)
- Ruiqi Liu
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Min Deng
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Na Zhang
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Yifeng Li
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liang Jia
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.
| | - Donghong Niu
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
11
|
Inayat H, Mehmood H, Danish S, Alharbi SA, Ansari MJ, Datta R. Impact of cobalt and proline foliar application for alleviation of salinity stress in radish. BMC PLANT BIOLOGY 2024; 24:287. [PMID: 38627664 PMCID: PMC11020780 DOI: 10.1186/s12870-024-04998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Salinity stress ranks among the most prevalent stress globally, contributing to soil deterioration. Its negative impacts on crop productivity stem from mechanisms such as osmotic stress, ion toxicity, and oxidative stress, all of which impede plant growth and yield. The effect of cobalt with proline on mitigating salinity impact in radish plants is still unclear. That's why the current study was conducted with aim to explore the impact of different levels of Co and proline on radish cultivated in salt affected soils. There were four levels of cobalt, i.e., (0, 10, 15 and 20 mg/L) applied as CoSO4 and two levels of proline (0 and 0.25 mM), which were applied as foliar. The treatments were applied in a complete randomized design (CRD) with three replications. Results showed that 20 CoSO4 with proline showed improvement in shoot length (∼ 20%), root length (∼ 23%), plant dry weight (∼ 19%), and plant fresh weight (∼ 41%) compared to control. The significant increase in chlorophyll, physiological and biochemical attributes of radish plants compared to the control confirms the efficacy of 20 CoSO4 in conjunction with 10 mg/L proline for mitigating salinity stress. In conclusion, application of cobalt with proline can help to alleviate salinity stress in radish plants. However, multiple location experiments with various levels of cobalt and proline still needs in-depth investigations to validate the current findings.
Collapse
Affiliation(s)
- Hira Inayat
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Hassan Mehmood
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, Brno, 61300, Czech Republic
| |
Collapse
|
12
|
Chen L, Chen Y, Zhang H, Shen Y, Cui Y, Luo P. ERF54 regulates cold tolerance in Rosa multiflora through DREB/COR signalling pathways. PLANT, CELL & ENVIRONMENT 2024; 47:1185-1206. [PMID: 38164066 DOI: 10.1111/pce.14796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Ethylene-responsive factors (ERFs) participate in a wide range of physiological and biological processes. However, many of the functions of ERFs in cold stress responses remain unclear. We, therefore, characterised the cold responses of RmERF54 in Rosa multiflora, a rose-related cold-tolerant species. Overexpression of RmERF54, which is a nuclear transcription factor, increases the cold resistance of transgenic tobacco and rose somatic embryos. In contrast, virus-induced gene silencing (VIGS) of RmERF54 increased cold susceptibility of R. multiflora. The overexpression of RmERF54 resulted in extensive transcriptional reprogramming of stress response and antioxidant enzyme systems. Of these, the levels of transcripts encoding the PODP7 peroxidase and the cold-related COR47 protein showed the largest increases in the somatic embryos with ectopic expression of RmERF54. RmERF54 binds to the promoters of the RmPODP7 and RmCOR47 genes and activates expression. RmERF54-overexpressing lines had higher antioxidant enzyme activities and considerably lower levels of reactive oxygen species. Opposite effects on these parameters were observed in the VIGS plants. RmERF54 was identified as a target of Dehydration-Responsive-Element-Binding factor (RmDREB1E). Taken together, provide new information concerning the molecular mechanisms by which RmERF54 regulates cold tolerance.
Collapse
Affiliation(s)
- Linmei Chen
- Discipline of Ornamental Horticulture, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Yeni Chen
- Discipline of Ornamental Horticulture, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Huanyu Zhang
- Discipline of Ornamental Horticulture, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Yuxiao Shen
- Discipline of Landscape Architecture, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yongyi Cui
- Discipline of Ornamental Horticulture, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Ping Luo
- Discipline of Ornamental Horticulture, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Liang X, Li J, Yang Y, Jiang C, Guo Y. Designing salt stress-resilient crops: Current progress and future challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:303-329. [PMID: 38108117 DOI: 10.1111/jipb.13599] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Excess soil salinity affects large regions of land and is a major hindrance to crop production worldwide. Therefore, understanding the molecular mechanisms of plant salt tolerance has scientific importance and practical significance. In recent decades, studies have characterized hundreds of genes associated with plant responses to salt stress in different plant species. These studies have substantially advanced our molecular and genetic understanding of salt tolerance in plants and have introduced an era of molecular design breeding of salt-tolerant crops. This review summarizes our current knowledge of plant salt tolerance, emphasizing advances in elucidating the molecular mechanisms of osmotic stress tolerance, salt-ion transport and compartmentalization, oxidative stress tolerance, alkaline stress tolerance, and the trade-off between growth and salt tolerance. We also examine recent advances in understanding natural variation in the salt tolerance of crops and discuss possible strategies and challenges for designing salt stress-resilient crops. We focus on the model plant Arabidopsis (Arabidopsis thaliana) and the four most-studied crops: rice (Oryza sativa), wheat (Triticum aestivum), maize (Zea mays), and soybean (Glycine max).
Collapse
Affiliation(s)
- Xiaoyan Liang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Jianfang Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100194, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Ahmed M, Tóth Z, Decsi K. The Impact of Salinity on Crop Yields and the Confrontational Behavior of Transcriptional Regulators, Nanoparticles, and Antioxidant Defensive Mechanisms under Stressful Conditions: A Review. Int J Mol Sci 2024; 25:2654. [PMID: 38473901 DOI: 10.3390/ijms25052654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
One of the most significant environmental challenges to crop growth and yield worldwide is soil salinization. Salinity lowers soil solution water potential, causes ionic disequilibrium and specific ion effects, and increases reactive oxygen species (ROS) buildup, causing several physiological and biochemical issues in plants. Plants have developed biological and molecular methods to combat salt stress. Salt-signaling mechanisms regulated by phytohormones may provide additional defense in salty conditions. That discovery helped identify the molecular pathways that underlie zinc-oxide nanoparticle (ZnO-NP)-based salt tolerance in certain plants. It emphasized the need to study processes like transcriptional regulation that govern plants' many physiological responses to such harsh conditions. ZnO-NPs have shown the capability to reduce salinity stress by working with transcription factors (TFs) like AP2/EREBP, WRKYs, NACs, and bZIPs that are released or triggered to stimulate plant cell osmotic pressure-regulating hormones and chemicals. In addition, ZnO-NPs have been shown to reduce the expression of stress markers such as malondialdehyde (MDA) and hydrogen peroxide (H2O2) while also affecting transcriptional factors. Those systems helped maintain protein integrity, selective permeability, photosynthesis, and other physiological processes in salt-stressed plants. This review examined how salt stress affects crop yield and suggested that ZnO-NPs could reduce plant salinity stress instead of osmolytes and plant hormones.
Collapse
Affiliation(s)
- Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Zoltán Tóth
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
| | - Kincső Decsi
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
| |
Collapse
|
15
|
Ma P, Li J, Sun G, Zhu J. Comparative transcriptome analysis reveals the adaptive mechanisms of halophyte Suaeda dendroides encountering high saline environment. FRONTIERS IN PLANT SCIENCE 2024; 15:1283912. [PMID: 38419781 PMCID: PMC10899697 DOI: 10.3389/fpls.2024.1283912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Suaeda dendroides, a succulent euhalophyte of the Chenopodiaceae family, intermittently spread around northern Xinjiang, China, has the ability to grow and develop in saline and alkali environments. The objective of this study was therefore to investigate the underlying molecular mechanisms of S. dendroides response to high salt conditions. 27 sequencing libraries prepared from low salt (200 mM NaCl) and high salt (800 mM NaCl) treated plants at 5 different stages were sequenced using Illumina Hiseq 2000. A total of 133,107 unigenes were obtained, of which 4,758 were DEGs. The number of DEGs in the high salt group (3,189) was more than the low salt treatment group (733) compared with the control. GO and KEGG analysis of the DEGs at different time points of the high salt treatment group showed that the genes related to cell wall biosynthesis and modification, plant hormone signal transduction, ion homeostasis, organic osmolyte accumulation, and reactive oxygen species (ROS) detoxification were significantly expressed, which indicated that these could be the main mechanisms of S. dendroides acclimate to high salt stress. The study provides a new perspective for understanding the molecular mechanisms of halophytes adapting to high salinity. It also provides a basis for future investigations of key salt-responsive genes in S. dendroides.
Collapse
Affiliation(s)
- Panpan Ma
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jilian Li
- Key Laboratory of Cotton Biology and Genetic Breeding in Northwest Inland Region of the Ministry of Agriculture (Xinjiang), Institute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
16
|
Lee JHJ, Kasote DM. Nano-Priming for Inducing Salinity Tolerance, Disease Resistance, Yield Attributes, and Alleviating Heavy Metal Toxicity in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:446. [PMID: 38337979 PMCID: PMC10857146 DOI: 10.3390/plants13030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
In today's time, agricultural productivity is severely affected by climate change and increasing pollution. Hence, several biotechnological approaches, including genetic and non-genetic strategies, have been developed and adapted to increase agricultural productivity. One of them is nano-priming, i.e., seed priming with nanomaterials. Thus far, nano-priming methods have been successfully used to mount desired physiological responses and productivity attributes in crops. In this review, the literature about the utility of nano-priming methods for increasing seed vigor, germination, photosynthetic output, biomass, early growth, and crop yield has been summarized. Moreover, the available knowledge about the use of nano-priming methods in modulating plant antioxidant defenses and hormonal networks, inducing salinity tolerance and disease resistance, as well as alleviating heavy metal toxicity in plants, is reviewed. The significance of nano-priming methods in the context of phytotoxicity and environmental safety has also been discussed. For future perspectives, knowledge gaps in the present literature are highlighted, and the need for optimization and validation of nano-priming methods and their plant physiological outcomes, from lab to field, is emphasized.
Collapse
Affiliation(s)
- Jisun H. J. Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Deepak M. Kasote
- Agricultural Research Station, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
17
|
Rossini A, Ruggeri R, Mzid N, Rossini F, Di Miceli G. Codium fragile (Suringar) Hariot as Biostimulant Agent to Alleviate Salt Stress in Durum Wheat: Preliminary Results from Germination Trials. PLANTS (BASEL, SWITZERLAND) 2024; 13:283. [PMID: 38256836 PMCID: PMC10818485 DOI: 10.3390/plants13020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Soil salinization is a critical environmental problem in arid and semiarid regions of the world. The aim of the present study was to evaluate the effect of an algae-based biostimulant on germination and seedling vigour of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.), under different saline conditions (0, 100, and 200 mM NaCl). The experiment was carried out under controlled-environment conditions. Seeds were sprayed with a solution containing a combination of fungicide and different concentrations of Codium fragile (Suringar) Hariot algae (0%w/v, 10%w/v, 20%w/v, and 30%w/v). All experimental units were placed in a germination cabinet. The effect of the seaweed extract (SWE) on seed germination and seedling performance under salinity stress was evaluated over a period of 8 days. Coleoptile length and biomass were found to be significantly and positively affected by the application of different SWE doses as compared to the control treatment (0% algae). As for germination traits, seeds treated with SWE showed a final germination (from 82% to 88%), under severe saline conditions, significantly higher than that observed in the control treatment (61%). Our findings indicate that the appropriate dose of biostimulant can markedly improve the germination and the seedlings vigour of durum wheat seeds under saline conditions. Additional studies will be needed to understand the mechanism of action of this biostimulant and its effectiveness in longer studies under field conditions.
Collapse
Affiliation(s)
- Angelo Rossini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy; (A.R.); (R.R.); (N.M.)
| | - Roberto Ruggeri
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy; (A.R.); (R.R.); (N.M.)
| | - Nada Mzid
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy; (A.R.); (R.R.); (N.M.)
| | - Francesco Rossini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy; (A.R.); (R.R.); (N.M.)
| | - Giuseppe Di Miceli
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy;
| |
Collapse
|
18
|
Xu J, Wang T, Sun C, Liu P, Chen J, Hou X, Yu T, Gao Y, Liu Z, Yang L, Zhang L. Eugenol improves salt tolerance via enhancing antioxidant capacity and regulating ionic balance in tobacco seedlings. FRONTIERS IN PLANT SCIENCE 2024; 14:1284480. [PMID: 38293630 PMCID: PMC10825873 DOI: 10.3389/fpls.2023.1284480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Salt stress inhibits plant growth by disturbing plant intrinsic physiology. The application of exogenous plant growth regulators to improve the plant tolerance against salt stress has become one of the promising approaches to promote plant growth in saline environment. Eugenol (4-allyl-2- methoxyphenol) is the main ingredient in clove oil and it is known for its strong antioxidant and anti-microbial activities. Eugenol also has the ability of inhibiting several plant pathogens, implying the potential use of eugenol as an environmental friendly agrichemical. However, little is known about the possible role of eugenol in the regulation of plant tolerance against abiotic stress. Therefore, here we investigated the effectiveness of phytochemical eugenol in promoting salt tolerance in tobacco seedlings through physiological, histochemical, and biochemical method. The seedling roots were exposed to NaCl solution in the presence or absence of eugenol. Salt stress inhibited seedling growth, but eugenol supplementation effectively attenuated its effects in a dose-dependent manner, with an optimal effect at 20 µM. ROS (reactive oxygen species) accumulation was found in seedlings upon salt stress which was further resulted in the amelioration of lipid peroxidation, loss of membrane integrity, and cell death in salt-treated seedlings. Addition of eugenol highly suppressed ROS accumulation and reduced lipid peroxidation generation. Both enzymatic and non-enzymatic antioxidative systems were activated by eugenol treatment. AsA/DHA and GSH/GSSG were also enhanced upon eugenol treatment, which helped maintain redox homeostasis upon salinity. Eugenol treatment resulted in an increase in the content of osmoprotectants (e.g. proline, soluble sugar and starch) in salt-treated seedlings. Na+ levels decreased significantly in seedlings upon eugenol exposure. This may result from the upregulation of the expression of two ionic transporter genes, SOS1 (salt-hypersensitive 1) and NHX1 (Na+/H+ anti-transporter 1). Hierarchical cluster combined correlation analysis uncovered that eugenol induced salt tolerance was mediated by redox homeostasis and maintaining ionic balance in tobacco seedlings. This work reveals that eugenol plays a crucial role in regulating plant resistant physiology. This may extend its biological function as a novel biostimulant and opens up new possibilities for improving crop productivity in the saline agricultural environment.
Collapse
Affiliation(s)
- Jiaxin Xu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Tingting Wang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Changwei Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Tao Yu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Yun Gao
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| |
Collapse
|
19
|
Zhao H, Zuo Z, Yang L, Zhang L, Lv T, Yu D, Wang Z. Similarities and differences in the physiological adaptation to water salinity between two life forms of aquatic plants in alpine and arid wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168449. [PMID: 37952678 DOI: 10.1016/j.scitotenv.2023.168449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Aquatic plants play a crucial role in freshwater ecosystems as primary producers, but their survival is threatened by salinization. Understanding the physiological responses of aquatic plants to increasing water salinity is important for predicting their adaptive strategies under future climate change scenarios. In this study, we measured 15 physiological traits of 49 aquatic plant species along a large environmental gradient in alpine and arid regions of western China to explore their physiological adaptations and compare the similarities and differences in adaptive strategies between emergent and submerged life forms. We found that water salinity and low temperature were key factors affecting aquatic plants in these regions. Aquatic plants adapted to saline habitats by accumulating proline and sulfur (S) concentrations, and to cold habitats by increasing ascorbate peroxidase activity. Plant trait network analysis revealed that S was the hub trait in emergent plants, while proline was the hub trait in submerged plants, indicating that emergent plants balanced osmoregulation and reactive oxygen metabolism through S-containing compounds, while submerged plants prioritized the regulation of osmotic balance through proline.
Collapse
Affiliation(s)
- Haocun Zhao
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Zhenjun Zuo
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Lei Yang
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Liangjian Zhang
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Tian Lv
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Dan Yu
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Zhong Wang
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China; Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, 850000 Lhasa, China.
| |
Collapse
|
20
|
Zhang Z, Wang L, Chen W, Fu Z, Zhao S, E Y, Zhang H, Zhang B, Sun M, Han P, Chang Y, Tang K, Gao Y, Zhang H, Li X, Zheng W. Integration of mRNA and miRNA analysis reveals the molecular mechanisms of sugar beet (Beta vulgaris L.) response to salt stress. Sci Rep 2023; 13:22074. [PMID: 38086906 PMCID: PMC10716384 DOI: 10.1038/s41598-023-49641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/10/2023] [Indexed: 12/18/2023] Open
Abstract
The continuous increase of saline-alkali areas worldwide has led to the emergence of saline-alkali conditions, which are the primary abiotic stress or hindering the growth of plants. Beet is among the main sources of sugar, and its yield and sugar content are notably affected by saline-alkali stress. Despite sugar beet being known as a salt-tolerant crop, there are few studies on the mechanisms underlying its salt tolerance, and previous studies have mainly delineated the crop's response to stress induced by NaCl. Recently, advancements in miRNA-mRNA network analysis have led to an increased understanding of how plants, including sugar beet, respond to stress. In this study, seedlings of beet variety "N98122" were grown in the laboratory using hydroponics culture and were exposed to salt stress at 40 days of growth. According to the phenotypic adaptation of the seedlings' leaves from a state of turgidity to wilting and then back to turgidity before and after exposure, 18 different time points were selected to collect samples for analysis. Subsequently, based on the data of real-time quantitative PCR (qRT-PCR) of salt-responsive genes, the samples collected at the 0, 2.5, 7.5, and 16 h time points were subjected to further analysis with experimental materials. Next, mRNA-seq data led to the identification of 8455 differentially expressed mRNAs (DEMs) under exposure to salt stress. In addition, miRNA-seq based investigation retrieved 3558 miRNAs under exposure to salt stress, encompassing 887 known miRNAs belonging to 783 families and 2,671 novel miRNAs. With the integrated analysis of miRNA-mRNA network, 57 miRNA-target gene pairs were obtained, consisting of 55 DEMIs and 57 DEMs. Afterwards, we determined the pivotal involvement of aldh2b7, thic, and δ-oat genes in the response of sugar beet to the effect of salt stress. Subsequently, we identified the miRNAs novel-m035-5p and novel-m0365-5p regulating the aldh gene and miRNA novel-m0979-3p regulating the thic gene. The findings of miRNA and mRNA expression were validated by qRT-PCR.
Collapse
Affiliation(s)
- Ziqiang Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Liang Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Wenjin Chen
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Zengjuan Fu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Shangmin Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yuanyuan E
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hui Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Bizhou Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Mengyuan Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Pingan Han
- Inner Mongolia Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yue Chang
- Inner Mongolia Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Kuangang Tang
- Inner Mongolia Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yanyan Gao
- Linxi County Agriculture and Animal Husbandry Bureau, Chifeng, 025250, China
| | - Huizhong Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Xiaodong Li
- Inner Mongolia Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China.
| | - Wenzhe Zheng
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China.
| |
Collapse
|
21
|
Lei D, Cao H, Zhang K, Mao K, Guo Y, Huang JH, Yang G, Zhang H, Feng X. Coupling of different antioxidative systems in rice under the simultaneous influence of selenium and cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122526. [PMID: 37683757 DOI: 10.1016/j.envpol.2023.122526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
Selenium (Se) elevates the antioxidant ability of rice against cadmium (Cd) stress, but previous studies only focused on the variation in antioxidant enzymes or nonenzymatic substances induced by Se under Cd stress and ignored the relationships between different antioxidant parameters during the interaction. Here, hydroponic experiments with rice were performed by adding both Cd and Se at doses in the range of 0-50 μM to explore the physiological responses of rice and their relationships in the presence of different levels of Se and Cd. Exogenous Cd markedly promoted the activity of antioxidant enzymes with the exception of catalase (CAT) and the concentration of nonenzymatic substances in aerial parts. Se enhanced the antioxidant capacity by improving the activities of all the enzymes tested in this study and increasing the concentrations of nonenzymatic compounds. The couplings among different antioxidant substances within paddy rice were then determined based on cluster and linear fitting results and their metabolic process and physiological functions. The findings specifically highlight that couplings among the ascorbic acid (AsA)-glutathione (GSH) cycle, glutathione synthase (GS)-phytochelatin synthetase (PCS) coupling system and glutathione peroxidase (GPX)-superoxide dismutase (SOD) coupling system in aerial parts helps protect plants from Cd stress. These coupling systems form likely due to the fact that one enzyme generated a product that could be the substrate for another enzyme. Noticeably, such coupling systems do not emerge in roots because the stronger damage to roots than other organs activates the ascorbate peroxidase (APX)-GPX-CAT and PCS-GS-SOD systems with distinct functions and structures. This study provides new insights into the detoxification mechanisms of rice caused by the combined effect of Se and Cd.
Collapse
Affiliation(s)
- Da Lei
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kuankuan Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Yongkun Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Guili Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
22
|
Yang J, Qiu L, Mei Q, Sun Y, Li N, Gong X, Ma F, Mao K. MdHB7-like positively modulates apple salt tolerance by promoting autophagic activity and Na + efflux. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:669-689. [PMID: 37471682 DOI: 10.1111/tpj.16395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Salt stress adversely affects the yield and quality of crops and limits their geographical distribution. Studying the functions and regulatory mechanisms of key genes in the salt stress response is important for breeding crops with enhanced stress resistance. Autophagy plays an important role in modulating the tolerance of plants to various types of abiotic stressors. However, the mechanisms underlying salt-induced autophagy are largely unknown. Cation/Ca2+ exchanger proteins enhance apple salt tolerance by inhibiting Na+ accumulation but the mechanism underlying the response to salt stress remains unclear. Here, we show that the autophagy-related gene MdATG18a modulated apple salt tolerance. Under salt stress, the autophagic activity, proline content, and antioxidant enzyme activities were higher and Na+ accumulation was lower in MdATG18a-overexpressing transgenic plants than in control plants. The use of an autophagy inhibitor during the salt treatment demonstrated that the regulatory function of MdATG18a depended on autophagy. The yeast-one-hybrid assay revealed that the homeodomain-leucine zipper (HD-Zip) transcription factor MdHB7-like directly bound to the MdATG18a promoter. Transcriptional regulation and genetic analyses showed that MdHB7-like enhanced salt-induced autophagic activity by promoting MdATG18a expression. The analysis of Na+ efflux rate in transgenic yeast indicated that MdCCX1 expression significantly promoted Na+ efflux. Promoter binding, transcriptional regulation, and genetic analyses showed that MdHB7-like promoted Na+ efflux and apple salt tolerance by directly promoting MdCCX1 expression, which was independent of the autophagy pathway. Overall, our findings provide insight into the mechanism underlying MdHB7-like-mediated salt tolerance in apple through the MdHB7-like-MdATG18a and MdHB7-like-MdCCX1 modules. These results will aid future studies on the mechanisms underlying stress-induced autophagy and the regulation of stress tolerance in plants.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lina Qiu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Quanlin Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunxia Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Na Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
23
|
Patel M, Parida AK. Salinity alleviates arsenic stress-induced oxidative damage via antioxidative defense and metabolic adjustment in the root of the halophyte Salvadora persica. PLANTA 2023; 258:109. [PMID: 37907764 DOI: 10.1007/s00425-023-04263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023]
Abstract
MAIN CONCLUSION Arsenic tolerance in the halophyte Salvadora persica is achieved by enhancing antioxidative defense and modulations of various groups of metabolites like amino acids, organic acids, sugars, sugar alcohols, and phytohormones. Salvadora persica is a facultative halophyte that thrives under high saline and arid regions of the world. In present study, we examine root metabolic responses of S. persica exposed to individual effects of high salinity (750 mM NaCl), arsenic (600 µM As), and combined treatment of salinity and arsenic (250 mM NaCl + 600 µM As) to decipher its As and salinity resistance mechanism. Our results demonstrated that NaCl supplementation reduced the levels of reactive oxygen species (ROS) under As stress. The increased activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR) maintained appropriate levels of ROS [superoxide (O2•-) and hydrogen peroxide (H2O2)] under salinity and/or As stress. The metabolites like sugars, amino acids, polyphenols, and organic acids exhibited higher accumulations when salt was supplied with As. Furthermore, comparatively higher accumulations of glycine, glutamate, and cystine under combined stress of salt and As may indicate its role in glutathione and phytochelatins (PCs) synthesis in root. The levels of phytohormones such as salicylate, jasmonate, abscisic acid, and auxins were significantly increased under high As with and without salinity stress. The amino acid metabolism, glutathione metabolism, carbohydrate metabolism, tricarboxylic acid cycle (TCA cycle), phenylpropanoid biosynthesis, and phenylalanine metabolism are the most significantly altered metabolic pathways in response to NaCl and/or As stress. Our study decoded the important metabolites and metabolic pathways involved in As and/or salinity tolerance in root of the halophyte S. persica providing clues for development of salinity and As resistance crops.
Collapse
Affiliation(s)
- Monika Patel
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, 201002, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, 201002, India.
| |
Collapse
|
24
|
Qiu YM, Guo J, Jiang WZ, Ding JH, Song RF, Zhang JL, Huang X, Yuan HM. HbBIN2 Functions in Plant Cold Stress Resistance through Modulation of HbICE1 Transcriptional Activity and ROS Homeostasis in Hevea brasiliensis. Int J Mol Sci 2023; 24:15778. [PMID: 37958762 PMCID: PMC10649430 DOI: 10.3390/ijms242115778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Cold stress poses significant limitations on the growth, latex yield, and ecological distribution of rubber trees (Hevea brasiliensis). The GSK3-like kinase plays a significant role in helping plants adapt to different biotic and abiotic stresses. However, the functions of GSK3-like kinase BR-INSENSITIVE 2 (BIN2) in Hevea brasiliensis remain elusive. Here, we identified HbBIN2s of Hevea brasiliensis and deciphered their roles in cold stress resistance. The transcript levels of HbBIN2s are upregulated by cold stress. In addition, HbBIN2s are present in both the nucleus and cytoplasm and have the ability to interact with the INDUCER OF CBF EXPRESSION1(HbICE1) transcription factor, a central component in cold signaling. HbBIN2 overexpression in Arabidopsis displays decreased tolerance to chilling stress with a lower survival rate and proline content but a higher level of electrolyte leakage (EL) and malondialdehyde (MDA) than wild type under cold stress. Meanwhile, HbBIN2 transgenic Arabidopsis treated with cold stress exhibits a significant increase in the accumulation of reactive oxygen species (ROS) and a decrease in the activity of antioxidant enzymes. Further investigation reveals that HbBIN2 inhibits the transcriptional activity of HbICE1, thereby attenuating the expression of C-REPEAT BINDING FACTOR (HbCBF1). Consistent with this, overexpression of HbBIN2 represses the expression of CBF pathway cold-regulated genes under cold stress. In conclusion, our findings indicate that HbBIN2 functions as a suppressor of cold stress resistance by modulating HbICE1 transcriptional activity and ROS homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (Y.-M.Q.); (J.G.); (W.-Z.J.); (J.-H.D.); (R.-F.S.); (J.-L.Z.)
| | - Hong-Mei Yuan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (Y.-M.Q.); (J.G.); (W.-Z.J.); (J.-H.D.); (R.-F.S.); (J.-L.Z.)
| |
Collapse
|
25
|
Kambona CM, Koua PA, Léon J, Ballvora A. Intergenerational and transgenerational effects of drought stress on winter wheat (Triticum aestivum L.). PHYSIOLOGIA PLANTARUM 2023; 175:e13951. [PMID: 37310785 DOI: 10.1111/ppl.13951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
The environments where the progenitors are grown have the potential to affect the expression of traits in their offspring. Currently, there are various hypotheses regarding the evolutionary and ecological importance of stress memory effects. There is uncertainty regarding its occurrence, persistence, predictability, and adaptive value. In this study, 15 winter wheat cultivars were grown under drought and well-watered (control) treatments for two seasons to produce seeds with all possible combinations of drought exposure histories. A comprehensive analysis to estimate transgenerational (grandparental effects), intergenerational (parental effects), and their combined memory effects on offspring traits under both control and drought moisture treatments, was performed. There were significant memory effects in most of the evaluated traits ranging from +787% to -39.0% changes in both seed quality and plant traits. The expression of stress memory was highly dependent on the generation and number of exposures, traits, and seasons. Under drought treatment, the combination of grandparental and parental stress memories was additive in all traits, but their strengths were variable when considered separately. Stress memory enhanced the performance of offspring under similar stressful conditions: increased plant height, above-ground biomass, number of grains per plant, grain weight per plant and water potential. This study offers valuable new insights into the occurrence of drought stress memory, the complexities of the effects, possible physiological and metabolic alterations explaining the detected differences, and impacts toward a clearer understanding of their generation and context-dependency.
Collapse
Affiliation(s)
- Carolyn Mukiri Kambona
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
| | - Patrice Ahossi Koua
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
- Deutsche Saatveredelung AG, Salzkotten-Thüle, Germany
| | - Jens Léon
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
- Field Lab Campus Klein-Altendorf, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Agim Ballvora
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
| |
Collapse
|
26
|
Alavilli H, Yolcu S, Skorupa M, Aciksoz SB, Asif M. Salt and drought stress-mitigating approaches in sugar beet (Beta vulgaris L.) to improve its performance and yield. PLANTA 2023; 258:30. [PMID: 37358618 DOI: 10.1007/s00425-023-04189-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
MAIN CONCLUSION Although sugar beet is a salt- and drought-tolerant crop, high salinity, and water deprivation significantly reduce its yield and growth. Several reports have demonstrated stress tolerance enhancement through stress-mitigating strategies including the exogenous application of osmolytes or metabolites, nanoparticles, seed treatments, breeding salt/drought-tolerant varieties. These approaches would assist in achieving sustainable yields despite global climatic changes. Sugar beet (Beta vulgaris L.) is an economically vital crop for ~ 30% of world sugar production. They also provide essential raw materials for bioethanol, animal fodder, pulp, pectin, and functional food-related industries. Due to fewer irrigation water requirements and shorter regeneration time than sugarcane, beet cultivation is spreading to subtropical climates from temperate climates. However, beet varieties from different geographical locations display different stress tolerance levels. Although sugar beet can endure moderate exposure to various abiotic stresses, including high salinity and drought, prolonged exposure to salt and drought stress causes a significant decrease in crop yield and production. Hence, plant biologists and agronomists have devised several strategies to mitigate the stress-induced damage to sugar beet cultivation. Recently, several studies substantiated that the exogenous application of osmolytes or metabolite substances can help plants overcome injuries induced by salt or drought stress. Furthermore, these compounds likely elicit different physio-biochemical impacts, including improving nutrient/ionic homeostasis, photosynthetic efficiency, strengthening defense response, and water status improvement under various abiotic stress conditions. In the current review, we compiled different stress-mitigating agricultural strategies, prospects, and future experiments that can secure sustainable yields for sugar beets despite high saline or drought conditions.
Collapse
Affiliation(s)
- Hemasundar Alavilli
- Department of Biotechnology, GITAM (Deemed to be) University, Visakhapatnam, 530045, India
| | - Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey.
| | - Monika Skorupa
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Seher Bahar Aciksoz
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Muhammad Asif
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| |
Collapse
|
27
|
Ning D, Zhang Y, Li X, Qin A, Huang C, Fu Y, Gao Y, Duan A. The Effects of Foliar Supplementation of Silicon on Physiological and Biochemical Responses of Winter Wheat to Drought Stress during Different Growth Stages. PLANTS (BASEL, SWITZERLAND) 2023; 12:2386. [PMID: 37376009 DOI: 10.3390/plants12122386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Drought is one of the major environmental stresses, resulting in serious yield reductions in wheat production. Silicon (Si) has been considered beneficial to enhancing wheat resistance to drought stress. However, few studies have explored the mediated effects of foliar supplementation of Si on drought stress imposed at different wheat growth stages. Therefore, a field experiment was carried out to investigate the effects of Si supplementation on the physiological and biochemical responses of wheat to drought stress imposed at the jointing (D-jointing), anthesis (D-anthesis) and filling (D-filling) stages. Our results showed that a moderate water deficit markedly decreased the dry matter accumulation, leaf relative water content (LRWC), photosynthetic rate (Pn), stomatal conductance (Sc), transpiration rate (Tr) and antioxidant activity [peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT)]. On the contrary, it remarkably increased the content of osmolytes (proline, soluble sugar, soluble protein) and lipid peroxidation. The grain yields of D-jointing, D-anthesis and D-filling treatments were 9.59%, 13.9% and 18.9% lower, respectively, compared to the control treatment (CK). However, foliar supplementation of Si at the anthesis and filling stages significantly improved plant growth under drought stress due to the increased Si content. Consequently, the improvement in antioxidant activity and soluble sugar, and the reduction in the content of ROS, increased the LRWC, chlorophyll content, Pn, Sc and Tr, and ultimately boosted wheat yield by 5.71% and 8.9%, respectively, in comparison with the non-Si-treated plants subjected to water stress at the anthesis and filling stages. However, the mitigating effect of Si application was not significant at the jointing stage. It was concluded that foliar supplementation of Si, especially at the reproductive stage, was effective in alleviating drought-induced yield reduction.
Collapse
Affiliation(s)
- Dongfeng Ning
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Yingying Zhang
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Xiaojing Li
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Anzhen Qin
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Chao Huang
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Yuanyuan Fu
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Yang Gao
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Aiwang Duan
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation Research, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| |
Collapse
|
28
|
Trovato M, Brini F, Mseddi K, Rhizopoulou S, Jones MA. A holistic and sustainable approach linked to drought tolerance of Mediterranean crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1167376. [PMID: 37396645 PMCID: PMC10308116 DOI: 10.3389/fpls.2023.1167376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
The rapid increase in average temperatures and the progressive reduction in rainfalls caused by climate change is reducing crop yields worldwide, particularly in regions with hot and semi-arid climates such as the Mediterranean area. In natural conditions, plants respond to environmental drought stress with diverse morphological, physiological, and biochemical adaptations in an attempt to escape, avoid, or tolerate drought stress. Among these adaptations to stress, the accumulation of abscisic acid (ABA) is of pivotal importance. Many biotechnological approaches to improve stress tolerance by increasing the exogenous or endogenous content of ABA have proved to be effective. In most cases the resultant drought tolerance is associated with low productivity incompatible with the requirements of modern agriculture. The on-going climate crisis has provoked the search for strategies to increase crop yield under warmer conditions. Several biotechnological strategies, such as the genetic improvement of crops or the generation of transgenic plants for genes involved in drought tolerance, have been attempted with unsatisfactory results suggesting the need for new approaches. Among these, the genetic modification of transcription factors or regulators of signaling cascades provide a promising alternative. To reconcile drought tolerance with crop yield, we propose mutagenesis of genes controlling key signaling components downstream of ABA accumulation in local landraces to modulate responses. We also discuss the advantages of tackling this challenge with a holistic approach involving different knowledge and perspectives, and the problem of distributing the selected lines at subsidized prices to guarantee their use by small family farms.
Collapse
Affiliation(s)
- Maurizio Trovato
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), Sfax, Tunisia
| | - Khalil Mseddi
- Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Sophia Rhizopoulou
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Matthew Alan Jones
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
29
|
Zhao Z, Zheng H, Wang M, Guo Y, Wang Y, Zheng C, Tao Y, Sun X, Qian D, Cao G, Zhu M, Liang M, Wang M, Gong Y, Li B, Wang J, Sun Y. Reshifting Na + from Shoots into Long Roots Is Associated with Salt Tolerance in Two Contrasting Inbred Maize ( Zea mays L.) Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:1952. [PMID: 37653869 PMCID: PMC10220590 DOI: 10.3390/plants12101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Maize, as a glycophyte, is hypersensitive to salinity, but the salt response mechanism of maize remains unclear. In this study, the physiological, biochemical, and molecular responses of two contrasting inbred lines, the salt-tolerant QXH0121 and salt-sensitive QXN233 lines, were investigated in response to salt stress. Under salt stress, the tolerant QXH0121 line exhibited good performance, while in the sensitive QXN233 line, there were negative effects on the growth of the leaves and roots. The most important finding was that QXH0121 could reshift Na+ from shoots into long roots, migrate excess Na+ in shoots to alleviate salt damage to shoots, and also improve K+ retention in shoots, which were closely associated with the enhanced expression levels of ZmHAK1 and ZmNHX1 in QXH0121 compared to those in QXN233 under salt stress. Additionally, QXH0121 leaves accumulated more proline, soluble protein, and sugar contents and had higher SOD activity levels than those observed in QXN233, which correlated with the upregulation of ZmP5CR, ZmBADH, ZmTPS1, and ZmSOD4 in QXH0121 leaves. These were the main causes of the higher salt tolerance of QXH0121 in contrast to QXN233. These results broaden our knowledge about the underlying mechanism of salt tolerance in different maize varieties, providing novel insights into breeding maize with a high level of salt resistance.
Collapse
Affiliation(s)
- Zhenyang Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (Z.Z.); (M.W.); (Y.G.); (Y.W.); (C.Z.); (Y.T.); (X.S.); (D.Q.); (G.C.); (M.Z.); (M.L.); (M.W.); (Y.G.); (B.L.); (J.W.)
| | - Hongxia Zheng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China;
| | - Minghao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (Z.Z.); (M.W.); (Y.G.); (Y.W.); (C.Z.); (Y.T.); (X.S.); (D.Q.); (G.C.); (M.Z.); (M.L.); (M.W.); (Y.G.); (B.L.); (J.W.)
| | - Yaning Guo
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (Z.Z.); (M.W.); (Y.G.); (Y.W.); (C.Z.); (Y.T.); (X.S.); (D.Q.); (G.C.); (M.Z.); (M.L.); (M.W.); (Y.G.); (B.L.); (J.W.)
| | - Yingfei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (Z.Z.); (M.W.); (Y.G.); (Y.W.); (C.Z.); (Y.T.); (X.S.); (D.Q.); (G.C.); (M.Z.); (M.L.); (M.W.); (Y.G.); (B.L.); (J.W.)
| | - Chaoli Zheng
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (Z.Z.); (M.W.); (Y.G.); (Y.W.); (C.Z.); (Y.T.); (X.S.); (D.Q.); (G.C.); (M.Z.); (M.L.); (M.W.); (Y.G.); (B.L.); (J.W.)
| | - Ye Tao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (Z.Z.); (M.W.); (Y.G.); (Y.W.); (C.Z.); (Y.T.); (X.S.); (D.Q.); (G.C.); (M.Z.); (M.L.); (M.W.); (Y.G.); (B.L.); (J.W.)
| | - Xiaofeng Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (Z.Z.); (M.W.); (Y.G.); (Y.W.); (C.Z.); (Y.T.); (X.S.); (D.Q.); (G.C.); (M.Z.); (M.L.); (M.W.); (Y.G.); (B.L.); (J.W.)
| | - Dandan Qian
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (Z.Z.); (M.W.); (Y.G.); (Y.W.); (C.Z.); (Y.T.); (X.S.); (D.Q.); (G.C.); (M.Z.); (M.L.); (M.W.); (Y.G.); (B.L.); (J.W.)
| | - Guanglong Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (Z.Z.); (M.W.); (Y.G.); (Y.W.); (C.Z.); (Y.T.); (X.S.); (D.Q.); (G.C.); (M.Z.); (M.L.); (M.W.); (Y.G.); (B.L.); (J.W.)
| | - Mengqian Zhu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (Z.Z.); (M.W.); (Y.G.); (Y.W.); (C.Z.); (Y.T.); (X.S.); (D.Q.); (G.C.); (M.Z.); (M.L.); (M.W.); (Y.G.); (B.L.); (J.W.)
| | - Mengting Liang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (Z.Z.); (M.W.); (Y.G.); (Y.W.); (C.Z.); (Y.T.); (X.S.); (D.Q.); (G.C.); (M.Z.); (M.L.); (M.W.); (Y.G.); (B.L.); (J.W.)
| | - Mei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (Z.Z.); (M.W.); (Y.G.); (Y.W.); (C.Z.); (Y.T.); (X.S.); (D.Q.); (G.C.); (M.Z.); (M.L.); (M.W.); (Y.G.); (B.L.); (J.W.)
| | - Yan Gong
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (Z.Z.); (M.W.); (Y.G.); (Y.W.); (C.Z.); (Y.T.); (X.S.); (D.Q.); (G.C.); (M.Z.); (M.L.); (M.W.); (Y.G.); (B.L.); (J.W.)
| | - Bingxiao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (Z.Z.); (M.W.); (Y.G.); (Y.W.); (C.Z.); (Y.T.); (X.S.); (D.Q.); (G.C.); (M.Z.); (M.L.); (M.W.); (Y.G.); (B.L.); (J.W.)
| | - Jinye Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (Z.Z.); (M.W.); (Y.G.); (Y.W.); (C.Z.); (Y.T.); (X.S.); (D.Q.); (G.C.); (M.Z.); (M.L.); (M.W.); (Y.G.); (B.L.); (J.W.)
| | - Yanling Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China; (Z.Z.); (M.W.); (Y.G.); (Y.W.); (C.Z.); (Y.T.); (X.S.); (D.Q.); (G.C.); (M.Z.); (M.L.); (M.W.); (Y.G.); (B.L.); (J.W.)
| |
Collapse
|
30
|
Fiorillo A, Manai M, Visconti S, Camoni L. The Salt Tolerance-Related Protein (STRP) Is a Positive Regulator of the Response to Salt Stress in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1704. [PMID: 37111928 PMCID: PMC10145591 DOI: 10.3390/plants12081704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Salt stress is a major abiotic stress limiting plant survival and crop productivity. Plant adaptation to salt stress involves complex responses, including changes in gene expression, regulation of hormone signaling, and production of stress-responsive proteins. The Salt Tolerance-Related Protein (STRP) has been recently characterized as a Late Embryogenesis Abundant (LEA)-like, intrinsically disordered protein involved in plant responses to cold stress. In addition, STRP has been proposed as a mediator of salt stress response in Arabidopsis thaliana, but its role has still to be fully clarified. Here, we investigated the role of STRP in salt stress responses in A. thaliana. The protein rapidly accumulates under salt stress due to a reduction of proteasome-mediated degradation. Physiological and biochemical responses of the strp mutant and STRP-overexpressing (STRP OE) plants demonstrate that salt stress impairs seed germination and seedling development more markedly in the strp mutant than in A. thaliana wild type (wt). At the same time, the inhibitory effect is significantly reduced in STRP OE plants. Moreover, the strp mutant has a lower ability to counteract oxidative stress, cannot accumulate the osmocompatible solute proline, and does not increase abscisic acid (ABA) levels in response to salinity stress. Accordingly, the opposite effect was observed in STRP OE plants. Overall, obtained results suggest that STRP performs its protective functions by reducing the oxidative burst induced by salt stress, and plays a role in the osmotic adjustment mechanisms required to preserve cellular homeostasis. These findings propose STRP as a critical component of the response mechanisms to saline stress in A. thaliana.
Collapse
Affiliation(s)
- Anna Fiorillo
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (A.F.); (M.M.)
| | - Michela Manai
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (A.F.); (M.M.)
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (A.F.); (M.M.)
| | - Lorenzo Camoni
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (A.F.); (M.M.)
| |
Collapse
|
31
|
Fu ZW, Feng YR, Gao X, Ding F, Li JH, Yuan TT, Lu YT. Salt stress-induced chloroplastic hydrogen peroxide stimulates pdTPI sulfenylation and methylglyoxal accumulation. THE PLANT CELL 2023; 35:1593-1616. [PMID: 36695476 PMCID: PMC10118271 DOI: 10.1093/plcell/koad019] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 06/17/2023]
Abstract
High salinity, an adverse environmental factor affecting about 20% of irrigated arable land worldwide, inhibits plant growth and development by causing oxidative stress, damaging cellular components, and disturbing global metabolism. However, whether and how reactive oxygen species disturb the metabolism of salt-stressed plants remain elusive. Here, we report that salt-induced hydrogen peroxide (H2O2) inhibits the activity of plastid triose phosphate isomerase (pdTPI) to promote methylglyoxal (MG) accumulation and stimulates the sulfenylation of pdTPI at cysteine 74. We also show that MG is a key factor limiting the plant growth, as a decrease in MG levels completely rescued the stunted growth and repressed salt stress tolerance of the pdtpi mutant. Furthermore, targeting CATALASE 2 into chloroplasts to prevent salt-induced overaccumulation of H2O2 conferred salt stress tolerance, revealing a role for chloroplastic H2O2 in salt-caused plant damage. In addition, we demonstrate that the H2O2-mediated accumulation of MG in turn induces H2O2 production, thus forming a regulatory loop that further inhibits the pdTPI activity in salt-stressed plants. Our findings, therefore, illustrate how salt stress induces MG production to inhibit the plant growth.
Collapse
Affiliation(s)
- Zheng-Wei Fu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yu-Rui Feng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Feng Ding
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Jian-Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| |
Collapse
|
32
|
Lu W, Zhao Y, Liu J, Zhou B, Wei G, Ni R, Zhang S, Guo J. Comparative Analysis of Antioxidant System and Salt-Stress Tolerance in Two Hibiscus Cultivars Exposed to NaCl Toxicity. PLANTS (BASEL, SWITZERLAND) 2023; 12:1525. [PMID: 37050151 PMCID: PMC10097027 DOI: 10.3390/plants12071525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Hibiscus (Hibiscus syriacus L.) is known as a horticultural plant of great ornamental and medicinal value. However, the effect of NaCl stress on hibiscus seedlings is unclear. Little is known about H. syriacus 'Duede Brabaul' (DB) and H. syriacus 'Blueberry Smoothie' (BS). Here, the effects of solutions with different concentrations of NaCl on the organic osmolytes, ion accumulation, and antioxidant enzyme activity of hibiscus seedling leaves were determined. The results showed that the Na+/K+ ratio was imbalanced with increasing NaCl concentration, especially in BS (range 34% to 121%), which was more sensitive than DB (range 32% to 187%) under NaCl concentrations of 50 to 200 mM. To cope with the osmotic stress, the content of organic osmolytes increased significantly. Additionally, NaCl stress caused a large increase in O2·- and H2O2, and other reactive oxygen species (ROS), and antioxidant enzyme activity was significantly increased to remove excess ROS. The expression level of genes related to salt tolerance was significantly higher in DB than that in BS under different NaCl concentrations. Taken together, DB possessed a stronger tolerance to salt stress and the results suggest membrane stability, Na+/K+, H2O2, catalase and ascorbate peroxidase as salt tolerance biomarkers that can be used for gene transformation and breeding in future hibiscus research.
Collapse
|
33
|
Zhang H, Zhang X, Gao G, Ali I, Wu X, Tang M, Chen L, Jiang L, Liang T. Effects of various seed priming on morphological, physiological, and biochemical traits of rice under chilling stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1146285. [PMID: 36993861 PMCID: PMC10040639 DOI: 10.3389/fpls.2023.1146285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 06/01/2023]
Abstract
INTRODUCTION/BACKGROUND Direct-seeded rice is exceptionally vulnerable to chilling stress, especially at the seed germination and seedling growth stages in the early season of the double cropping system. METHODS Therefore, we conducted two experiments to evaluate the role of various seed primings and their different concentrations of plant growth regulators [experiment 1-abscisic acid (ABA), gibberellin (GA3), salicylic acid (SA), brassinolide (BR), paclobutrazol, uniconazole (UN), melatonin (MT), and jasmonic acid (JA)] and osmopriming substances (chitosan, polyethylene glycol 6000 (PEG6000), and CaCl2) and experiment 2-GA, BR (two best), CaCl2 (worst), and control (CK)] on rice seedlings under low temperature condition. RESULTS Results showed that the maximum germination rate of 98% was recorded in GA3 (10 mgL-1) and BR (0.3 mgL-1) among treatments. Compared to CK, root and shoot length were improved in ABA (0.5 mgL-1) and GA3 (100 mgL-1) by 64% and 68%, respectively. At the same time, root and shoot weights (fresh and dry) were enhanced in Paclobutrazol (300 mgL-1) and GA3 among treatments. Furthermore, the average root volume, average root diameter, and total root surface area were increased by 27%, 38%, and 33% in Paclobutrazol (300 mgL-1), Paclobutrazol (200 mgL-1) and JA (1 mgL-1) treatments, respectively compared to CK. In the second experiment, a respective increase of 26%, 19%, 38%, and 59% was noted in SOD, POD, CAT, and APX enzyme activities in GA treatment compared to CK. Similarly, proline, soluble sugar, soluble protein, and GA content were also improved by 42%, 25.74%, 27%, and 19%, respectively, in GA treatment compared to CK. However, a respective reduction of 21% and 18% was noted in MDA and ABA content in GA treatment compared to CK. Our finding highlighted that better germination of primed-rice seedlings was associated with fresh and dry weights of the roots and shoots and the average root volume of the seedlings. DISCUSSION Our results suggested that GA3 (10 mg L-1) and BR (0.3 mg L-1) seed priming prevent rice seedlings from chilling-induced oxidative stress by regulating antioxidant enzyme activities and maintaining ABA, GA, MDA, soluble sugar, and protein content. However, further studies (transcriptome and proteome) are needed to explore the molecular mechanisms involved in seed priming-induced chilling tolerance under field conditions.
Collapse
Affiliation(s)
- Hua Zhang
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, China
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Xiaoli Zhang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Guoqing Gao
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Izhar Ali
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, China
| | - Xiaoyan Wu
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, China
| | - Maoyan Tang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Lei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Ligeng Jiang
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, China
| | - Tianfeng Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| |
Collapse
|
34
|
Accumulation of Proline in Plants under Contaminated Soils—Are We on the Same Page? Antioxidants (Basel) 2023; 12:antiox12030666. [PMID: 36978914 PMCID: PMC10045403 DOI: 10.3390/antiox12030666] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Agricultural soil degradation is occurring at unprecedented rates, not only as an indirect effect of climate change (CC) but also due to intensified agricultural practices which affect soil properties and biodiversity. Therefore, understanding the impacts of CC and soil degradation on plant physiology is crucial for the sustainable development of mitigation strategies to prevent crop productivity losses. The amino acid proline has long been recognized for playing distinct roles in plant cells undergoing osmotic stress. Due to its osmoprotectant and redox-buffering ability, a positive correlation between proline accumulation and plants’ tolerance to abiotic stress has been pointed out in numerous reviews. Indeed, proline quantification is used systematically by plant physiologists as an indicator of the degree of tolerance and a measurement of the antioxidant potential in plants under stressful conditions. Moreover, the exogenous application of proline has been shown to increase resilience to several stress factors, including those related to soil degradation such as salinity and exposure to metals and xenobiotics. However, recent data from several studies often refer to proline accumulation as a signal of stress sensitivity with no clear correlation with improved antioxidant activity or higher stress tolerance, including when proline is used exogenously as a stress reliever. Nevertheless, endogenous proline levels are strongly modified by these stresses, proving its involvement in plant responses. Hence, one main question arises—is proline augmentation always a sign of improved stress resilience? From this perspective, the present review aims to provide a more comprehensive understanding of the implications of proline accumulation in plants under abiotic stress induced by soil degradation factors, reinforcing the idea that proline quantification should not be employed as a sole indicator of stress sensitivity or resilience but rather complemented with further biochemical and physiological endpoints.
Collapse
|
35
|
Afshar AS, Abbaspour H. Mycorrhizal symbiosis alleviate salinity stress in pistachio plants by altering gene expression and antioxidant pathways. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:263-276. [PMID: 36875732 PMCID: PMC9981847 DOI: 10.1007/s12298-023-01279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/18/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
This study investigated how inoculation of salt-stressed Pistacia vera seedlings with Rhizophagus irregularis, an arbuscular mycorrhizal fungus (AMF), affects their biomass, oxidative damage, antioxidant enzyme activity, and gene expression. Pistachio seedlings (N:36) were randomly assigned to AMF inoculation and non-inoculation groups in a pot experiment with 9 replications. Each group was further divided and randomly assigned to two salinity treatments (0 and 300 mM NaCl). At the end of week 4, three pistachio plantlets were randomly selected from each group for Rhizophagus irregularis colonization inspection, physiological and biochemical assays, and biomass measurements. Salinity activated enzymatic and non-enzymatic antioxidant systems in the pistachio plants were studied. The negative effects of salinity included reduced biomass and relative water content (RWC), increased O2 ·-, H2O2, MDA, and electrolytic leakage. Generally, Rhizophagus irregularis was found to mitigate the adverse effects of salinity in pistachio seedlings. AMF inoculation resulted in even further increases in the activities of SODs, POD, CAT, and GR enzymes, upregulating Cu/Zn-SOD, Fe-SOD, Mn-SOD, and GR genes expression in plants under salinity stress. Moreover, AMF significantly increased AsA, α-tocopherol, and carotenoids under both control and salinity conditions. The study concludes with a call for future research into the mechanisms of mycorrhiza-induced tolerance in plants under salinity stress. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01279-8.
Collapse
Affiliation(s)
| | - Hossein Abbaspour
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
36
|
Yang T, Tian M, Gao T, Wang C, Wang X, Chen C, Yang W. Genome-wide transcriptomic analysis identifies candidate genes involved in jasmonic acid-mediated salt tolerance of alfalfa. PeerJ 2023; 11:e15324. [PMID: 37168537 PMCID: PMC10166079 DOI: 10.7717/peerj.15324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Soil salinity imposes a major threat to plant growth and agricultural productivity. Despite being one of the most common fodder crops in saline locations, alfalfa is vulnerable to salt stress. Jasmonic acid (JA) is a phytohormone that influences plant response to abiotic stimuli such as salt stress. However, key genes and pathways by which JA-mediated salt tolerance of alfalfa are little known. A comprehensive transcriptome analysis was performed to elucidate the underlying molecular mechanisms of JA-mediated salt tolerance. The transcripts regulated by salt (S) compared to control (C) and JA+salt (JS) compared to C were investigated. Venn diagram and expression pattern of DEGs indicated that JS further altered a series of genes expression regulated by salt treatment, implying the roles of JA in priming salt tolerance. Enrichment analysis revealed that DEGs exclusively regulated by JS treatment belonged to primary or secondary metabolism, respiratory electron transport chain, and oxidative stress resistance. Alternatively, splicing (AS) was induced by salt alone or JA combined treatment, with skipped exon (SE) events predominately. DEGs undergo exon skipping involving some enriched items mentioned above and transcription factors. Finally, the gene expressions were validated using quantitative polymerase chain reaction (qPCR), which produced results that agreed with the sequencing results. Taken together, these findings suggest that JA modulates the expression of genes related to energy supply and antioxidant capacity at both the transcriptional and post-transcriptional levels, possibly through the involvement of transcription factors and AS events.
Collapse
Affiliation(s)
- Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Mei Tian
- Institute of Horticultural Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Chuan Wang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Xiaochun Wang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Caijin Chen
- Branch Institute of Guyuan, Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, Ningxia, China
| | - Weidi Yang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| |
Collapse
|
37
|
Feng C, Gao H, Zhou Y, Jing Y, Li S, Yan Z, Xu K, Zhou F, Zhang W, Yang X, Hussain MA, Li H. Unfolding molecular switches for salt stress resilience in soybean: recent advances and prospects for salt-tolerant smart plant production. FRONTIERS IN PLANT SCIENCE 2023; 14:1162014. [PMID: 37152141 PMCID: PMC10154572 DOI: 10.3389/fpls.2023.1162014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
The increasing sodium salts (NaCl, NaHCO3, NaSO4 etc.) in agricultural soil is a serious global concern for sustainable agricultural production and food security. Soybean is an important food crop, and their cultivation is severely challenged by high salt concentration in soils. Classical transgenic and innovative breeding technologies are immediately needed to engineer salt tolerant soybean plants. Additionally, unfolding the molecular switches and the key components of the soybean salt tolerance network are crucial for soybean salt tolerance improvement. Here we review our understandings of the core salt stress response mechanism in soybean. Recent findings described that salt stress sensing, signalling, ionic homeostasis (Na+/K+) and osmotic stress adjustment might be important in regulating the soybean salinity stress response. We also evaluated the importance of antiporters and transporters such as Arabidopsis K+ Transporter 1 (AKT1) potassium channel and the impact of epigenetic modification on soybean salt tolerance. We also review key phytohormones, and osmo-protectants and their role in salt tolerance in soybean. In addition, we discuss the progress of omics technologies for identifying salt stress responsive molecular switches and their targeted engineering for salt tolerance in soybean. This review summarizes recent progress in soybean salt stress functional genomics and way forward for molecular breeding for developing salt-tolerant soybean plant.
Collapse
Affiliation(s)
- Chen Feng
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Hongtao Gao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yonggang Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yan Jing
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Senquan Li
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhao Yan
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Keheng Xu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Fangxue Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Wenping Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xinquan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Muhammad Azhar Hussain
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Muhammad Azhar Hussain, ; Haiyan Li,
| | - Haiyan Li
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Muhammad Azhar Hussain, ; Haiyan Li,
| |
Collapse
|
38
|
Koteyeva NK, Voznesenskaya EV, Berim A, Gang DR, Edwards GE. Structural diversity in salt excreting glands and salinity tolerance in Oryza coarctata, Sporobolus anglicus and Urochondra setulosa. PLANTA 2022; 257:9. [PMID: 36482224 DOI: 10.1007/s00425-022-04035-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Unlike the bicellular glands characteristic of all known excreting grasses, unique single-celled salt glands were discovered in the only salt tolerant species of the genus Oryza, Oryza coarctata. Salt tolerance has evolved frequently in a large number of grass lineages with distinct difference in mechanisms. Mechanisms of salt tolerance were studied in three species of grasses characterized by salt excretion: C3 wild rice species Oryza coarctata, and C4 species Sporobolus anglicus and Urochondra setulosa. The leaf anatomy and ultrastructure of salt glands, pattern of salt excretion, gas exchange, accumulation of key photosynthetic enzymes, leaf water content and osmolality, and levels of some osmolytes, were compared when grown without salt, with 200 mM NaCl versus 200 mM KCl. Under salt treatments, there was little effect on the capacity for CO2 assimilation, while stomatal conductance decreased with a reduction in water loss by transpiration and an increase in water use efficiency. All three species accumulate compatible solutes but with drastic differences in osmolyte composition. Having high capacity for salt excretion, they have distinct structural differences in the salt excreting machinery. S. anglicus and U. setulosa have bicellular glands while O. coarctata has unique single-celled salt glands with a partitioning membrane system that are responsible for salt excretion rather than multiple hairs as previously suggested. The features of physiological responses and salt excretion indicate similar mechanisms are involved in providing tolerance and excretion of Na+ and K+.
Collapse
Affiliation(s)
- Nuria K Koteyeva
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg, 197376, Russia
| | - Elena V Voznesenskaya
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg, 197376, Russia
| | - Anna Berim
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-4236, USA
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-4236, USA
| | - Gerald E Edwards
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
39
|
Kaur G, Sanwal SK, Sehrawat N, Kumar A, Kumar N, Mann A. Getting to the roots of Cicer arietinum L. (chickpea) to study the effect of salinity on morpho-physiological, biochemical and molecular traits. Saudi J Biol Sci 2022; 29:103464. [PMID: 36199518 PMCID: PMC9527943 DOI: 10.1016/j.sjbs.2022.103464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Gurpreet Kaur
- Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
| | - Satish Kumar Sanwal
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
- Corresponding author.
| | - Nirmala Sehrawat
- Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Ashwani Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
| | - Naresh Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
| | - Anita Mann
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
| |
Collapse
|
40
|
H 2S Enhanced the Tolerance of Malus hupehensis to Alkaline Salt Stress through the Expression of Genes Related to Sulfur-Containing Compounds and the Cell Wall in Roots. Int J Mol Sci 2022; 23:ijms232314848. [PMID: 36499175 PMCID: PMC9736910 DOI: 10.3390/ijms232314848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Malus is an economically important plant that is widely cultivated worldwide, but it often encounters saline-alkali stress. The composition of saline-alkali land is a variety of salt and alkali mixed with the formation of alkaline salt. Hydrogen sulfide (H2S) has been reported to have positive effects on plant responses to abiotic stresses. Our previous study showed that H2S pretreatment alleviated the damage caused by alkaline salt stress to Malus hupehensis Rehd. var. pingyiensis Jiang (Pingyi Tiancha, PYTC) roots by regulating Na+/K+ homeostasis and oxidative stress. In this study, transcriptome analysis was used to investigate the overall mechanism through which H2S alleviates alkaline salt stress in PYTC roots. Simultaneously, differentially expressed genes (DEGs) were explored. Transcriptional profiling of the Control-H2S, Control-AS, Control-H2S + AS, and AS-H2S + AS comparison groups identified 1618, 18,652, 16,575, and 4314 DEGs, respectively. Further analysis revealed that H2S could alleviate alkaline salt stress by increasing the energy maintenance capacity and cell wall integrity of M. hupehensis roots and by enhancing the capacity for reactive oxygen species (ROS) metabolism because more upregulated genes involved in ROS metabolism and sulfur-containing compounds were identified in M. hupehensis roots after H2S pretreatment. qRT-PCR analysis of H2S-induced and alkaline salt-response genes showed that these genes were consistent with the RNA-seq analysis results, which indicated that H2S alleviation of alkaline salt stress involves the genes of the cell wall and sulfur-containing compounds in PYTC roots.
Collapse
|
41
|
Guo S, Ma X, Cai W, Wang Y, Gao X, Fu B, Li S. Exogenous Proline Improves Salt Tolerance of Alfalfa through Modulation of Antioxidant Capacity, Ion Homeostasis, and Proline Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212994. [PMID: 36365447 PMCID: PMC9657615 DOI: 10.3390/plants11212994] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 05/24/2023]
Abstract
Alfalfa (Medicago sativa L.) is an important forage crop, and its productivity is severely affected by salt stress. Although proline is a compatible osmolyte that plays an important role in regulating plant abiotic stress resistance, the basic mechanism of proline requires further clarification regarding the effect of proline in mitigating the harmful effects of salinity. Here, we investigate the protective effects and regulatory mechanisms of proline on salt tolerance of alfalfa. The results show that exogenous proline obviously promotes seed germination and seedling growth of salt-stressed alfalfa. Salt stress results in stunted plant growth, while proline application alleviates this phenomenon by increasing photosynthetic capacity and antioxidant enzyme activities and decreasing cell membrane damage and reactive oxygen species (ROS) accumulation. Plants with proline treatment maintain a better K+/Na+ ratio by reducing Na+ accumulation and increasing K+ content under salt stress. Additionally, proline induces the expression of genes related to antioxidant biosynthesis (Cu/Zn-SOD and APX) and ion homeostasis (SOS1, HKT1, and NHX1) under salt stress conditions. Proline metabolism is mainly regulated by ornithine-δ-aminotransferase (OAT) and proline dehydrogenase (ProDH) activities and their transcription levels, with the proline-treated plants displaying an increase in proline content under salt stress. In addition, OAT activity in the ornithine (Orn) pathway rather than Δ1-pyrroline-5-carboxylate synthetase (P5CS) activity in the glutamate (Glu) pathway is strongly increased under salt stress, made evident by the sharp increase in the expression level of the OAT gene compared to P5CS1 and P5CS2. Our study provides new insight into how exogenous proline improves salt tolerance in plants and that it might be used as a significant practical strategy for cultivating salt-tolerant alfalfa.
Collapse
Affiliation(s)
- Shuaiqi Guo
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xuxia Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Wenqi Cai
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Yuan Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xueqin Gao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Bingzhe Fu
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan 750021, China
| | - Shuxia Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan 750021, China
| |
Collapse
|
42
|
Wang J, Li Y, Wang Y, Du F, Zhang Y, Yin M, Zhao X, Xu J, Yang Y, Wang W, Fu B. Transcriptome and Metabolome Analyses Reveal Complex Molecular Mechanisms Involved in the Salt Tolerance of Rice Induced by Exogenous Allantoin. Antioxidants (Basel) 2022; 11:antiox11102045. [PMID: 36290768 PMCID: PMC9598814 DOI: 10.3390/antiox11102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Allantoin is crucial for plant growth and development as well as adaptations to abiotic stresses, but the underlying molecular mechanisms remain unclear. In this study, we comprehensively analyzed the physiological indices, transcriptomes, and metabolomes of rice seedlings following salt, allantoin, and salt + allantoin treatments. The results revealed that exogenous allantoin positively affects the salt tolerance by increasing the contents of endogenous allantoin with antioxidant activities, increasing the reactive oxygen species (ROS)–scavenging capacity, and maintaining sodium and potassium homeostasis. The transcriptome analysis detected the upregulated expression genes involved in ion transport and redox regulation as well as the downregulated expression of many salt-induced genes related to transcription and post-transcriptional regulation, carbohydrate metabolism, chromosome remodeling, and cell wall organization after the exogenous allantoin treatment of salt-stressed rice seedlings. Thus, allantoin may mitigate the adverse effects of salt stress on plant growth and development. Furthermore, a global metabolite analysis detected the accumulation of metabolites with antioxidant activities and intermediate products of the allantoin biosynthetic pathway in response to exogenous allantoin, implying allantoin enhances rice salt tolerance by inducing ROS scavenging cascades. These results have clarified the transcript-level and metabolic processes underlying the allantoin-mediated salt tolerance of rice.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Life Sciences, China Agricultural University, Beijing 100193, China
| | - Yingbo Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinxiao Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengping Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming Yin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuqin Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongqing Yang
- College of Life Sciences, China Agricultural University, Beijing 100193, China
- Correspondence: (Y.Y.); (W.W.); (B.F.)
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
- Correspondence: (Y.Y.); (W.W.); (B.F.)
| | - Binying Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.Y.); (W.W.); (B.F.)
| |
Collapse
|
43
|
Mazrou RM, Hassan S, Yang M, Hassan FA. Melatonin Preserves the Postharvest Quality of Cut Roses through Enhancing the Antioxidant System. PLANTS (BASEL, SWITZERLAND) 2022; 11:2713. [PMID: 36297737 PMCID: PMC9609555 DOI: 10.3390/plants11202713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The vase life of cut rose is relatively short, therefore; preserving its postharvest quality via eco-friendly approaches is of particular economic importance. From the previous literature, despite melatonin (MT) plays diverse important roles in the postharvest quality maintenance, its impact on preserving the postharvest quality of cut flowers is really scarce. This research therefore was undertaken to find out the possibility of exogenous MT as an eco-friendly preservative to extend the vase life of cut roses. The flowering stems of Rosa hybrida cv. 'First Red' were pulsed in MT solutions at 0, 0.1, 0.2 and 0.3 mM for 30 min and then transferred to distilled water for evaluation. The vase life was significantly prolonged and relative water content was considerably maintained due to MT application compared to the control, more so with 0.2 mM concentration which nearly doubled the vase life (1.9-fold) higher than the control. SEM investigation showed that MT treatment reduced the stomatal aperture in lower epidermis which was widely opened in control flowers. MT treatment significantly increased the phenol content, glutathione (GSH) content and CAT, APX and GR enzyme activities compared to untreated flowers. Additionally, the radical scavenging capacity in MT-treated flowers was considerably higher than that of control and therefore MT treatment reduced H2O2 production and lipid peroxidation, which altogether reflected in membrane stability maintenance.
Collapse
Affiliation(s)
- Ragia M. Mazrou
- Horticulture Department, Faculty of Agriculture, Menoufia University, Shebin El Kom 32516, Egypt
| | - Sabry Hassan
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mei Yang
- College of Forestry, Guangxi University, Nanning 530004, China
| | - Fahmy A.S. Hassan
- Horticulture Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
44
|
do Rêgo Meneses FJ, de Oliveira Lopes ÁL, Setubal IS, da Costa Neto VP, Bonifácio A. Inoculation of Trichoderma asperelloides ameliorates aluminum stress-induced damages by improving growth, photosynthetic pigments and organic solutes in maize. 3 Biotech 2022; 12:246. [PMID: 36033911 PMCID: PMC9411306 DOI: 10.1007/s13205-022-03310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/15/2022] [Indexed: 11/01/2022] Open
Abstract
Excess aluminum (Al) is a stressful condition that affects plant growth and yield quality. This study evaluates growth responses and changes in the contents of photosynthetic pigments and organic solute in maize (Zea mays L.) plants inoculated with Trichoderma asperelloides isolates (T01, T02, T74, T76, or T96) and treated with increasing doses of Al (0, 50, 100, 150, and 200 µM of Al). Uninoculated unstressed plants served as control. Absolute growth rate, root length, dry biomass (shoot, roots and total) and shoot:root ratio were significantly affected in Al-stressed maize plants inoculated with T. asperelloides. Also, chlorophylls (a, b and total) were significantly reduced, whereas carotenoids and anthocyanins increased in those plants. Except for carotenoids, all parameters increased in plants inoculated with T. asperelloides, especially T01 or T02 isolates. Anthocyanins increased by 50% in plants inoculated with T74 and treated with 100 or 150 µM Al as compared to control plants. Total soluble carbohydrates increased by 74% and 101% in plants inoculated with T74 and T76, respectively, and treated with 200 µM Al. Total free amino acids increased more than 50% in plants inoculated with T02 and treated with 150 and 200 µM Al. Free prolines increased by 90%, 145% and 165% in plants inoculated with T74 and treated 100, 150 and 200 µM Al, respectively, in comparison to the unstressed control plants. We concluded that T. asperelloides positively affected growth, photosynthetic pigments, and organic solutes of Al-stressed plants, especially those inoculated with T01, T02, or T74 isolates. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03310-3.
Collapse
Affiliation(s)
| | - Ágda Lorena de Oliveira Lopes
- Laboratory of Plant Physiology and Biochemistry, Center of Natural Science, Federal University of Piauí (UFPI), Teresina, PI Brazil
| | - Ingrid Silva Setubal
- Laboratory of Plant Physiology and Biochemistry, Center of Natural Science, Federal University of Piauí (UFPI), Teresina, PI Brazil
| | - Vicente Paulo da Costa Neto
- Laboratory of Plant Physiology and Biochemistry, Center of Natural Science, Federal University of Piauí (UFPI), Teresina, PI Brazil
| | - Aurenívia Bonifácio
- Laboratory of Plant Physiology and Biochemistry, Center of Natural Science, Federal University of Piauí (UFPI), Teresina, PI Brazil
| |
Collapse
|
45
|
Singh P, Choudhary KK, Chaudhary N, Gupta S, Sahu M, Tejaswini B, Sarkar S. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. FRONTIERS IN PLANT SCIENCE 2022; 13:1006617. [PMID: 36237504 PMCID: PMC9552866 DOI: 10.3389/fpls.2022.1006617] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/01/2023]
Abstract
Salinity stress is one of the significant abiotic stresses that influence critical metabolic processes in the plant. Salinity stress limits plant growth and development by adversely affecting various physiological and biochemical processes. Enhanced generation of reactive oxygen species (ROS) induced via salinity stress subsequently alters macromolecules such as lipids, proteins, and nucleic acids, and thus constrains crop productivity. Due to which, a decreasing trend in cultivable land and a rising world population raises a question of global food security. In response to salt stress signals, plants adapt defensive mechanisms by orchestrating the synthesis, signaling, and regulation of various osmolytes and phytohormones. Under salinity stress, osmolytes have been investigated to stabilize the osmotic differences between the surrounding of cells and cytosol. They also help in the regulation of protein folding to facilitate protein functioning and stress signaling. Phytohormones play critical roles in eliciting a salinity stress adaptation response in plants. These responses enable the plants to acclimatize to adverse soil conditions. Phytohormones and osmolytes are helpful in minimizing salinity stress-related detrimental effects on plants. These phytohormones modulate the level of osmolytes through alteration in the gene expression pattern of key biosynthetic enzymes and antioxidative enzymes along with their role as signaling molecules. Thus, it becomes vital to understand the roles of these phytohormones on osmolyte accumulation and regulation to conclude the adaptive roles played by plants to avoid salinity stress.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - Krishna Kumar Choudhary
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Nivedita Chaudhary
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shweta Gupta
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mamatamayee Sahu
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Boddu Tejaswini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Subrata Sarkar
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
46
|
Rozentsvet O, Shuyskaya E, Bogdanova E, Nesterov V, Ivanova L. Effect of Salinity on Leaf Functional Traits and Chloroplast Lipids Composition in Two C 3 and C 4 Chenopodiaceae Halophytes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2461. [PMID: 36235330 PMCID: PMC9572261 DOI: 10.3390/plants11192461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Salt stress is one of the most common abiotic kinds of stress. Understanding the key mechanisms of salt tolerance in plants involves the study of halophytes. The effect of salinity was studied in two halophytic annuals of Chenopodiaceae Salicornia perennans Willd. and Climacoptera crassa (Bied.) Botsch. These species are plants with C3 and C4-metabolism, respectively. We performed a comprehensive analysis of the photosynthetic apparatus of these halophyte species at different levels of integration. The C3 species S. perennans showed larger variation in leaf functional traits-both at the level of cell morphology and membrane system (chloroplast envelope and thylakoid). S. perennans also had larger photosynthetic cells, by 10-15 times, and more effective mechanisms of osmoregulation and protecting cells against the toxic effect of Na+. Salinity caused changes in photosynthetic tissues of C. crassa such as an increase of the mesophyll cell surface, the expansion of the interface area between mesophyll and bundle sheath cells, and an increase of the volume of the latter. These functional changes compensated for scarce CO2 supply when salinity increased. Overall, we concluded that these C3 and C4 Chenopodiaceae species demonstrated different responses to salinity, both at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Olga Rozentsvet
- Samara Federal Research Scientific Center Russian Academy of Sciences, Institute of Ecology of Volga River Basin, Russian Academy of Sciences, 445003 Togliatti, Russia
| | - Elena Shuyskaya
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Elena Bogdanova
- Samara Federal Research Scientific Center Russian Academy of Sciences, Institute of Ecology of Volga River Basin, Russian Academy of Sciences, 445003 Togliatti, Russia
| | - Viktor Nesterov
- Samara Federal Research Scientific Center Russian Academy of Sciences, Institute of Ecology of Volga River Basin, Russian Academy of Sciences, 445003 Togliatti, Russia
| | - Larisa Ivanova
- The Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| |
Collapse
|
47
|
Zhang H, Guo J, Chen X, Zhou Y, Pei Y, Chen L, ul Haq S, Lu M, Gong H, Chen R. Pepper bHLH transcription factor CabHLH035 contributes to salt tolerance by modulating ion homeostasis and proline biosynthesis. HORTICULTURE RESEARCH 2022; 9:uhac203. [PMID: 36349081 PMCID: PMC9634760 DOI: 10.1093/hr/uhac203] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Members of the bHLH family of transcription factors play important roles in multiple aspects of plant biological processes, for instance, abiotic stress responses. Previously, we characterized CaNAC035, a gene that positively regulates stress tolerance and identified CabHLH035, a CaNAC035-interacting protein in pepper (Capsicum annuum L.). In this study, we describe the role of CabHLH035 in the response to salt stress. Our results show that the expression of CabHLH035 increased following salt treatment. Transient expression of CabHLH035 (CabHLH035-To) in pepper enhanced salt tolerance, ectopic expression of CabHLH035 in Arabidopsis increased the salt stress tolerance, whereas knocking down the expression of CabHLH035 in pepper plants resulted in decreased salt tolerance. Homologs of the Salt Overly Sensitive 1 (SOS1) and pyrroline-5-carboxylate acid synthetase (P5CS) genes showed drastically increased expression in transgenic Arabidopsis plants expressing CabHLH035 and CabHLH035-To plants, but expression decreased in CabHLH035-silenced plants. Our results also showed that CabHLH035 can directly bind to the CaSOS1 and CaP5CS gene promoters and positively activate their expression. We found that transgenic Arabidopsis plants, ectopic expression of CabHLH035 and pepper plants transiently overexpressing CabHLH035 (CabHLH035-To) showed lower Na+ and higher proline contents in response to NaCl treatment, while CabHLH035-silenced plants had higher Na+ and lower proline concentrations. Overall, CabHLH035 plays important roles in salt tolerance through its effects on the intracellular Na+ : K+ ratio and proline biosynthesis.
Collapse
Affiliation(s)
| | | | | | - Yunyun Zhou
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yingping Pei
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Lang Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling 712100, China
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Minghui Lu
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | | | | |
Collapse
|
48
|
Dubrovna OV, Mykhalska SI, Komisarenko AG. Using Proline Metabolism Genes in Plant Genetic Engineering. CYTOL GENET+ 2022. [DOI: 10.3103/s009545272204003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Trehalose: a promising osmo-protectant against salinity stress-physiological and molecular mechanisms and future prospective. Mol Biol Rep 2022; 49:11255-11271. [PMID: 35802276 DOI: 10.1007/s11033-022-07681-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 01/09/2023]
Abstract
Salt stress is one of the leading threats to crop growth and productivity across the globe. Salt stress induces serious alterations in plant physiological, metabolic, biochemical functioning and it also disturbs antioxidant activities, cellular membranes, photosynthetic performance, nutrient uptake and plant water uptake and resulting in a significant reduction in growth and production. The application of osmoprotectants is considered as an important strategy to induce salt tolerance in plants. Trehalose (Tre) has emerged an excellent osmolyte to induce salinity tolerance and it got considerable attention in recent times. Under salinity stress, Tre helps to maintain the membrane integrity, and improves plant water relations, nutrient uptake and reduces the electrolyte leakage and lipid per-oxidation. Tre also improves gas exchange characteristics, protects the photosynthetic apparatus from salinity induced oxidative damages and brings ultra-structure changes in the plant body to induce salinity tolerance. Moreover, Tre also improves antioxidant activities and expression of stress responsive proteins and genes and confers salt tolerance in plants. Additionally, Tre is also involved in signaling association with signaling molecules and phytohormones and resultantly improved the plant performance under salt stress. Thus, it is interesting to understand the role of Tre in mediating the salinity tolerance in plants. Therefore, in this review we have summarized the different physiological and molecular roles of Tre to induce salt tolerance in plants. Moreover, we have also provided the information on Tre cross-talk with various osmolytes and hormones, and its role in stress responsive genes and antioxidant activities. Lastly, we also shed light on research gaps that need to be addressed in future studies. Therefore, this review will help the scientists to learn more about the Tre in changing climate conditions and it will also provide new insights to insights that could be used to develop salinity tolerance in plants.
Collapse
|
50
|
Effects of lime and oxalic acid on antioxidant enzymes and active components of Panax notoginseng under cadmium stress. Sci Rep 2022; 12:11410. [PMID: 35794170 PMCID: PMC9259564 DOI: 10.1038/s41598-022-15280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022] Open
Abstract
Cadmium (Cd) pollution poses potential safety risks for Panax notoginseng cultivation, a medicinal plant in Yunnan. Under exogenous Cd stress, field experiments were conducted to understand the effects of lime (0, 750, 2250 and 3750 kg hm−2) applied and oxalic acid (0, 0.1 and 0.2 mol L−1) leaves sprayed on Cd accumulation, antioxidant system and medicinal components of P. notoginseng. The results showed that Lime and foliar spray of oxalic acid were able to elevate Ca2+ and alleviate Cd2+ toxicity in P. notoginseng under Cd stress. The addition of lime and oxalic acid increased the activities of antioxidant enzymes and alters osmoregulator metabolism. The most significant increase in CAT activities increased by 2.77 folds. And the highest increase of SOD activities was 1.78 folds under the application of oxalic acid. While MDA content decreased by 58.38%. There were very significant correlation with soluble sugar, free amino acid, proline and soluble protein. Lime and oxalic acid were able to increase calcium ions (Ca2+), decrease Cd content and improve the stress resistance of P. notoginseng, while increasing the production of total saponins and flavonoids. Cd content were the lowest, 68.57% lower than controls, and met the standard value (Cd ≤ 0.5 mg kg−1, GB/T 19086-2008). The proportion of SPN was 7.73%, which reached the highest level of all treatments, the flavonoids content increased significantly by 21.74%, which reached the medicinal standard value and optimal yield.
Collapse
|