1
|
Liu X, Gao S, Cheng A, Lou H. Characterization and functional analysis of type III polyketide synthases in Selaginella moellendorffii. PLANTA 2025; 261:28. [PMID: 39786623 DOI: 10.1007/s00425-024-04602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025]
Abstract
MAIN CONCLUSION The evolutionary conservation of type III polyketide synthases (PKS) in Selaginella has been elucidated, and the critical amino acid residues of the anther-specific chalcone synthase-like enzyme (SmASCL) have been identified. Selaginella species are the oldest known vascular plants and a valuable resource for the study of metabolic evolution in land plants. Polyketides, especially flavonoids and sporopollenin precursors, are essential prerequisites for plant land colonization. Although type III polyketide synthases (PKS) are widely studied in seed plants, the related enzymes in Selaginella remain poorly characterized. Here, eight type III PKSs were identified in the Selaginella moellendorffii genome and classified into three clusters. Two PKSs were selected for further research based on their phylogenetic relationships and protein sequence similarity. Functional studies revealed that they were chalcone synthase (SmCHS) and anther-specific CHS-like enzyme (SmASCL). These enzymes are involved in the biosynthesis of flavonoids and sporopollenin, respectively. Their sequence information and enzymatic activity are similar to the orthologs in other plants. Phylogenetic analysis revealed that the ASCL and CHS enzymes were separated into two clades from the Bryophyta. These results suggest that CHS and ASCL emerged in the first land plants and then remained conserved during plant evolution. To study the structural basis of the enzymatic function of SmASCL, a series of mutants were constructed. The number of condensation reactions catalyzed by the P210L/Y211D and I200V/G201T double mutants exceeds that of the wild-type enzyme. Our study provides insight into the characteristics and functions of type III PKSs in S. moellendorffii. It also offers clues for a deeper understanding of the relationship between active sites and the enzymatic function of ASCLs.
Collapse
Affiliation(s)
- Xinyan Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Shuai Gao
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Aixia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| | - Hongxiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Han Y, Qiu Z, Ji S, Zhao GR. Construction and Optimization of Engineered Saccharomyces cerevisiae for De Novo Synthesis of Phloretin and Its Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:735-746. [PMID: 39723863 DOI: 10.1021/acs.jafc.4c09893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Phloretin and its derivatives are dihydrochalcone compounds with diverse pharmacological properties and biological activities, offering significant potential for applications in the food and pharmaceutical industries. Due to their structural similarity to flavonoids, their extraction and isolation were highly challenging. Although the biosynthesis of phloretin via three distinct pathways has been reported, a systematic comparison within the same host has yet to be conducted. In this study, we employed rational design and synthetic biology approaches to engineer Saccharomyces cerevisiae for de novo synthesis of phloretin and its derivatives. We constructed and evaluated three biosynthetic pathways for phloretin in S. cerevisiae, demonstrating that effective phloretin synthesis is achievable only via the p-coumaryl-CoA pathway. Additionally, by optimizing enzyme screening, strain engineering, and coordinating heterologous pathways with endogenous metabolism, we achieved the highest reported de novo titer of 287.2 mg/L for phloretin, 184.6 mg/L for phlorizin, 103.1 mg/L for trilobatin, and 164.5 mg/L for nothofagin and the first-time synthesis of 4-methylphloretin and hesperetin dihydrochalcone. This study was committed to addressing the growing demand for dihydrochalcones while laying the foundation for the biosynthesis of more complex derivatives.
Collapse
Affiliation(s)
- Yumei Han
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen 518055, China
| | - Zetian Qiu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Jimo District, Qingdao 266237, Shandong, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen 518055, China
| | - Shiqi Ji
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Jimo District, Qingdao 266237, Shandong, China
| | - Guang-Rong Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
3
|
Ge J, Lang X, Ji J, Qu C, Qiao H, Zhong J, Luo D, Hu J, Chen H, Wang S, Wang T, Li S, Li W, Zheng P, Xu J, Du H. Integration of biological and information technologies to enhance plant autoluminescence. THE PLANT CELL 2024; 36:4703-4715. [PMID: 39167833 PMCID: PMC11530770 DOI: 10.1093/plcell/koae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Autoluminescent plants have been genetically modified to express the fungal bioluminescence pathway (FBP). However, a bottleneck in precursor production has limited the brightness of these luminescent plants. Here, we demonstrate the effectiveness of utilizing a computational model to guide a multiplex five-gene-silencing strategy by an artificial microRNA array to enhance caffeic acid (CA) and hispidin levels in plants. By combining loss-of-function-directed metabolic flux with a tyrosine-derived CA pathway, we achieved substantially enhanced bioluminescence levels. We successfully generated eFBP2 plants that emit considerably brighter bioluminescence for naked-eye reading by integrating all validated DNA modules. Our analysis revealed that the luminous energy conversion efficiency of the eFBP2 plants is currently very low, suggesting that luminescence intensity can be improved in future iterations. These findings highlight the potential to enhance plant luminescence through the integration of biological and information technologies.
Collapse
Affiliation(s)
- Jieyu Ge
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuye Lang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Ji
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chengyi Qu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - He Qiao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jingling Zhong
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Daren Luo
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jin Hu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongyu Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shun Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tiange Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shiquan Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wei Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Peng Zheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jiming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Du
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
4
|
Tong Y, Li N, Zhou S, Zhang L, Xu S, Zhou J. Improvement of Chalcone Synthase Activity and High-Efficiency Fermentative Production of (2 S)-Naringenin via In Vivo Biosensor-Guided Directed Evolution. ACS Synth Biol 2024; 13:1454-1466. [PMID: 38662928 DOI: 10.1021/acssynbio.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Chalcone synthase (CHS) catalyzes the rate-limiting step of (2S)-naringenin (the essential flavonoid skeleton) biosynthesis. Improving the activity of the CHS by protein engineering enhances (2S)-naringenin production by microbial fermentation and can facilitate the production of valuable flavonoids. A (2S)-naringenin biosensor based on the TtgR operon was constructed in Escherichia coli and its detection range was expanded by promoter optimization to 0-300 mg/L, the widest range for (2S)-naringenin reported. The high-throughput screening scheme for CHS was established based on this biosensor. A mutant, SjCHS1S208N with a 2.34-fold increase in catalytic activity, was discovered by directed evolution and saturation mutagenesis. A pathway for de novo biosynthesis of (2S)-naringenin by SjCHS1S208N was constructed in Saccharomyces cerevisiae, combined with CHS precursor pathway optimization, increasing the (2S)-naringenin titer by 65.34% compared with the original strain. Fed-batch fermentation increased the titer of (2S)-naringenin to 2513 ± 105 mg/L, the highest reported so far. These findings will facilitate efficient flavonoid biosynthesis and further modification of the CHS in the future.
Collapse
Affiliation(s)
- Yingjia Tong
- School of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ning Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shenghu Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Liang Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Yang Y, Liu M, Huang Z. Genomic and Expression Analysis of Cassava ( Manihot esculenta Crantz) Chalcone Synthase Genes in Defense against Tetranychus cinnabarinus Infestation. Genes (Basel) 2024; 15:336. [PMID: 38540395 PMCID: PMC10970205 DOI: 10.3390/genes15030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 06/14/2024] Open
Abstract
Cassava is susceptible to mites, especially Tetranychus cinnabarinus. Secondary metabolism products such as flavonoids play an important role as antimicrobial metabolites protecting plants against biotic stressors including fungal, pathogen, bacterial, and pest defense. The chalcone synthase (CHS) is the initial step of the phenylpropanoid pathway for producing flavonoids and is the gatekeeper of the pathway. Until recently, the CHS genes family has not been systematically studied in cassava. Thirty-nine CHS genes were identified from the cassava genome database. Based on phylogenetic and sequence composition analysis, these CHSs were divided into 3 subfamilies. Within the same subfamily, the gene structure and motif compositions of these CHS genes were found to be quite conserved. Duplication events, particularly segmental duplication of the cassava CHS genes, were identified as one of the main driving force of its expansion. Various cis-elements contained in the promoter might regulate the gene expression patterns of MeCHS. Protein-protein interaction (PPI) network analysis showed that MeCHS1 and MeCHS10 protein are more closely related to other family members. The expression of MeCHS genes in young leaves was higher than that in other tissues, and their expression varies even within the same tissue. Coincidentally, these CHS genes of most LAP subclasses were highly expressed in young leaves. The verified MeCHS genes showed consistent with the real-time reverse transcription quantitative PCR (RT-qPCR) and proteomic expression in protected and affected leaves respectively, indicating that these MeCHS genes play crucial roles in the response to T. cinnabarinus. This study is the first to comprehensively expatiate the information on MeCHS family members. These data will further enhance our understanding both the molecular mechanisms and the effects of CHS genes. In addition, the results will help to further clarify the effects on T. cinnabarinus and provide a theoretical basis for the potential functions of the specific CHS gene in resistance to mites and other biotic stress.
Collapse
Affiliation(s)
- Yanni Yang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China;
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Ming Liu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China;
| | - Zenghui Huang
- Nanning New Technology Entrepreneur Center, Nanning 530007, China;
| |
Collapse
|
6
|
Zhou Y, Underhill SJR. Total Flavonoid Contents and the Expression of Flavonoid Biosynthetic Genes in Breadfruit ( Artocarpus altilis) Scions Growing on Lakoocha ( Artocarpus lakoocha) Rootstocks. PLANTS (BASEL, SWITZERLAND) 2023; 12:3285. [PMID: 37765449 PMCID: PMC10534935 DOI: 10.3390/plants12183285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Breadfruit (Artocarpus altilis) is a traditional fruit tree of 15-30 m height in the tropics. The presence of size-controlling rootstock in the species is not known. A small tropical tree species, lakoocha (Artocarpus lakoocha), was recently identified as a potential vigor-controlling rootstock, conferring over a 65% reduction in breadfruit tree height. To better understand the intriguing scion/rootstock interactions involved in dwarfing, we investigate flavonoid accumulation and its regulation in breadfruit scions in response to different rootstocks. To this end, we isolated a chalcone synthase cDNA, AaCHS, and a full-length bifunctional dihydroflavonol 4-reductase cDNA, AaDFR, from breadfruit scion stems. The expression of both AaCHS and AaDFR genes was examined over the period of 16 to 24 months following grafting. During the development of the dwarf phenotype, breadfruit scion stems on lakoocha rootstocks display significant increases in total flavonoid content, and show upregulated AaCHS expression when compared with those on self-grafts and non-grafts. There is a strong, positive correlation between the transcript levels of AaCHS and total flavonoid content in scion stems. The transcript levels of AaDFR are not significantly different across scions on different rootstocks. This work provides insights into the significance of flavonoid biosynthesis in rootstock-induced breadfruit dwarfing.
Collapse
Affiliation(s)
- Yuchan Zhou
- Australian Centre for Pacific Islands Research, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Steven J R Underhill
- Australian Centre for Pacific Islands Research, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| |
Collapse
|
7
|
Han Z, Gong Q, Huang S, Meng X, Xu Y, Li L, Shi Y, Lin J, Chen X, Li C, Ma H, Liu J, Zhang X, Chen D, Si J. Machine learning uncovers accumulation mechanism of flavonoid compounds in Polygonatum cyrtonema Hua. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107839. [PMID: 37352696 DOI: 10.1016/j.plaphy.2023.107839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
The compositions and yield of flavonoid compounds of Polygonatum cyrtonema Hua (PC) are important indices of the quality of medicinal materials. However, the flavonoids compositions and accumulation mechanism are still unclear in PC. Here, we identified 22 flavonoids using widely-targeted metabolome analysis in 15 genotypes of PC. Then weighted gene co-expression network analysis based on 45 transcriptome samples was performed to construct 12 co-expressed modules, in which blue module highly correlated with flavonoids was identified. Furthermore, 4 feature genes including PcCHS1, PcCHI, PcCHS2 and PcCHR5 were identified from 94 hub genes in blue module via machine learning methods support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF), and their functions on metabolic flux of flavonoids pathway were confirmed by tobacco transient expression system. Our findings identified representative flavonoids and key enzymes in PC that provided new insight for elite breeding rich in flavonoids, and thus will be beneficial for rapid development of great potential economic and medicinal value of PC.
Collapse
Affiliation(s)
- Zhigang Han
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Qiqi Gong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Suya Huang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Xinyue Meng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Yi Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Lige Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Yan Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Junhao Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Xueliang Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Cong Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Haijie Ma
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Xinfeng Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
8
|
Ou X, Wang X, Zhao B, Zhao Y, Liu H, Chang Y, Wang Z, Yang W, Zhang X, Yu K. Metabolome and transcriptome signatures shed light on the anti-obesity effect of Polygonatum sibiricum. FRONTIERS IN PLANT SCIENCE 2023; 14:1181861. [PMID: 37143889 PMCID: PMC10151794 DOI: 10.3389/fpls.2023.1181861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Obesity has become one of the major threats to human health across the globe. The rhizomes of Polygonatum sibiricum have shown promising anti-obesity effect. However, the metabolic and genetic basis mediating this beneficial effect are not fully resolved. It is well known that older rhizomes of P. sibiricum exert stronger pharmacological effects. Here, we performed high-resolution metabolome profiling of P. sibiricum rhizomes at different growth stages, and identified that three candidate anti-obesity metabolites, namely phloretin, linoleic acid and α-linolenic acid, accumulated more in adult rhizomes. To elucidate the genetic basis controlling the accumulation of these metabolites, we performed transcriptome profiling of rhizomes from juvenile and adult P. sibiricum. Through third-generation long-read sequencing, we built a high-quality transcript pool of P. sibiricum, and resolved the genetic pathways involved in the biosynthesis and metabolism of phloretin, linoleic acid and α-linolenic acid. Comparative transcriptome analysis revealed altered expression of the genetic pathways in adult rhizomes, which likely lead to higher accumulation of these candidate metabolites. Overall, we identified several metabolic and genetic signatures related to the anti-obesity effect of P. sibiricum. The metabolic and transcriptional datasets generated in this work could also facilitate future research on other beneficial effects of this medicinal plant.
Collapse
Affiliation(s)
- Xiaobin Ou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu, China
- *Correspondence: Xiaobin Ou, ; Xuebin Zhang, ; Ke Yu,
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yi Zhao
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu, China
| | - Haiqing Liu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu, China
| | - Yuankai Chang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zhiwei Wang
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu, China
| | - Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- *Correspondence: Xiaobin Ou, ; Xuebin Zhang, ; Ke Yu,
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- *Correspondence: Xiaobin Ou, ; Xuebin Zhang, ; Ke Yu,
| |
Collapse
|
9
|
Liu Z, Cheng S, Liu XQ, Kuča K, Hashem A, Al-Arjani ABF, Almutairi KF, Abd_Allah EF, Wu QS, Zou YN. Cloning of a CHS gene of Poncirus trifoliata and its expression in response to soil water deficit and arbuscular mycorrhizal fungi. FRONTIERS IN PLANT SCIENCE 2022; 13:1101212. [PMID: 36605949 PMCID: PMC9807919 DOI: 10.3389/fpls.2022.1101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Flavonoids are secondary metabolites widely found in plants with antioxidants, of which chalcone synthase (CHS) is a key enzyme required in flavonoid synthesis pathways. The objective of this study was to clone a CHS gene from trifoliate orange (Poncirus trifoliata) and analyze its biological information and partial functions. A PtCHS gene (NCBI accession: MZ350874) was cloned from the genome-wide of trifoliate orange, which has 1156 bp in length, encoding 391 amino acids, with a predicted protein relative molecular mass of 42640.19, a theoretical isoelectric point of 6.28, and a lipid coefficient of 89.82. The protein is stable, hydrophilic, and high sequence conservation (92.49% sequence homology with CHS gene of other species). PtCHS was highly expressed in stems, leaves and flowers, but very low expression in roots and seeds. Soil water deficit could up-regulate expressions of PtCHS in leaves. An arbuscular mycorrhizal fungus, Funneliformis mosseae, significantly increased plant biomass production, CHS activity, expressions of PtCHS, and total flavonoid content in leaves and roots, independent of soil water status. Total flavonoids were significantly positively correlated with PtCHS expression in leaves only and also positively with root mycorrhizal colonization. Such results provide insight into the important functions of PtCHS in trifoliate orange.
Collapse
Affiliation(s)
- Zhen Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Shen Cheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Xiao-Qing Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Khalid F. Almutairi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Ying-Ning Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
10
|
Chen Y, Li H, Zhang S, Du S, Wang G, Zhang J, Jiang J. Analysis of the Antioxidant Mechanism of Tamarix ramosissima Roots under NaCl Stress Based on Physiology, Transcriptomic and Metabolomic. Antioxidants (Basel) 2022; 11:2362. [PMID: 36552570 PMCID: PMC9774368 DOI: 10.3390/antiox11122362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
There is a serious problem with soil salinization that affects the growth and development of plants. Tamarix ramosissima Ledeb (T. ramosissima), as a halophyte, is widely used for afforestation in salinized soils. At present, there are few reports on the antioxidant mechanism of T. ramosissima under NaCl stress. In this study, we learned about the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, and hydrogen peroxide (H2O2) and malondialdehyde (MDA) content changes in T. ramosissima. We also mined the relevant metabolic pathways in the antioxidant mechanism, candidate key genes, and their related differential metabolites and verified them using quantitative real-time PCR (qRT-PCR). The results show that the SOD, POD, and CAT activities, and the H2O2 and MDA content reached the highest values in the roots of T. ramosissima. Simultaneously, 92 differentially expressed genes (DEGs) related to antioxidant enzyme activities changed during 48 and 168 h of NaCl stress, and these DEGs were mainly upregulated in 168 h. Based on the association analysis of transcriptomic and metabolomic data, we found Unigene0089358 and Unigene0007782 as genes related to key enzymes in the flavonoid biosynthesis pathway. They were located in the upstream positive regulation at 48 and 168 h under NaCl stress, and their respective related metabolites (phloretin and pinocembrin) were involved in resistance to NaCl stress, and they were significantly correlated with their respective metabolites. In conclusion, at 48 and 168 h under NaCl stress, the roots of T. ramosissima resist NaCl stress by enhancing enzymatic and nonenzymatic antioxidant mechanisms, scavenging ROS generated by high-salt stress, alleviating NaCl toxicity, and maintaining the growth of T. ramosissima. This study provides genetic resources and a scientific theoretical basis for further breeding of salt-tolerant Tamarix plants and the molecular mechanism of antioxidants to alleviate NaCl toxicity.
Collapse
Affiliation(s)
- Yahui Chen
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
- Department of Forest Resources Management and Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Haijia Li
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Shiyang Zhang
- Department of Forest Resources Management and Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shanfeng Du
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Guangyu Wang
- Department of Forest Resources Management and Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jinchi Zhang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Yuan F, Yin X, Zhao K, Lan X. Transcriptome and Metabolome Analyses of Codonopsis convolvulacea Kurz Tuber, Stem, and Leaf Reveal the Presence of Important Metabolites and Key Pathways Controlling Their Biosynthesis. Front Genet 2022; 13:884224. [PMID: 35957691 PMCID: PMC9359469 DOI: 10.3389/fgene.2022.884224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Codonopsisconvolvulacea Kurz. var. vinciflora (Kom.) L.T. Shen is a member of Campanulaceae, which is used in traditional Chinese medicine. However, apart from a few Codonopsis species, no detailed knowledge is available on the metabolite composition and respective transcriptome signatures. We performed a combined transcriptome and metabolome analysis of the tuber, stem, and leaf of C. convolvulacea and found 1,144 metabolites and 231,840 unigenes in three experimental groups. The analysis revealed considerable variations in the three tissues. Tubers were rich in amino acids and derivatives, flavonoids, and organic acids, whereas the stems and leaves were rich in alkaloids and flavonoids, respectively. Transcriptome sequencing revealed candidate genes being involved in flavonoid, tryptophan, and alkaloid biosyntheses. In particular, we indicated that the variation in the isoflavone content is linked to the expressions of CHI, CYP73A, C3′H, F3H, CYP75B1, anthocyanidin synthase, and FLS. In a similar way, the levels of indole, L-tyrosine, and tryptamine were also consistent with the expressions of TDC/DDCs in the respective tissues. In addition, the expression levels of ASP5, ARO8, GOT, and AOC3 indicated that L-tryptophan is being converted to downstream metabolites. Overall, our datasets present a useful resource for future research on the uses of this medicinal plant and put forward many research questions.
Collapse
|
12
|
Ahmad S, Gao J, Wei Y, Lu C, Zhu G, Yang F. The Transcriptome Profiling of Flavonoids and Bibenzyls Reveals Medicinal Importance of Rare Orchid Arundina graminifolia. FRONTIERS IN PLANT SCIENCE 2022; 13:923000. [PMID: 35812923 PMCID: PMC9260279 DOI: 10.3389/fpls.2022.923000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Orchids are very important flowering plants that spend long juvenile phases before flowering. Along with aesthetic importance, they are rich sources of medicinal components. However, their long reproductive cycle is the major hurdle to study the medicinal efficacy. Arundina graminifolia is a rare orchid that grows fast, unlike other orchids, and this characteristic makes it an ideal plant to study the medicinal enrichment of orchids. Therefore, this study presents the identification of important medicinal components in various parts of A. graminifolia. Transcriptome analysis was performed for five stages (FD1-FD5) of flower development and four tissue types (mature flower, silique, root, and leaf) to ascertain genetic regulators of flavonoids and bibenzyls. Most of the genes showed the highest expression in roots as compared with other tissues. Weighted gene coexpression network analysis (WGCNA) was performed to identify the coexpression modules and the candidate genes involving biosynthesis pathways of these chemicals. MEyellow module contained the highly coexpressed genes. Moreover, the concentrations of phenylpropanoid, bibenzyls, and flavone were ascertained through high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Phenylpropanoid and bibenzyl were comparatively high in the leaf, while flavone showed a high concentration in the stem. The selected candidate genes [bibenzyl biosynthesis (BIBSY212), CYP84A1, CYP73A4, 4CLL7, UGT88B1, UGT73C3, anthocyanin synthase (ANS), phenylalanine ammonia-lyase (PAL), flavanone synthase FLS, and CHS8] were validated through quantitative real-time PCR (qRT-PCR). Most of these genes showed high expression in leaf and root as compared with other tissue. Therefore, the presence of bibenzyls and flavonoids in different parts of A. graminifolia and their molecular regulators can provide a quick source to decipher the medicinal efficacy of orchids.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
13
|
Jiao P, Chaoyang L, Wenhan Z, Jingyi D, Yunlin Z, Zhenggang X. Integrative Metabolome and Transcriptome Analysis of Flavonoid Biosynthesis Genes in Broussonetia papyrifera Leaves From the Perspective of Sex Differentiation. FRONTIERS IN PLANT SCIENCE 2022; 13:900030. [PMID: 35668799 PMCID: PMC9163962 DOI: 10.3389/fpls.2022.900030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Flavonoids are important secondary metabolites involved in plant development and environmental responses. Sex differences in flavonoids are common in plants. Broussonetia papyrifera is a dioecious plant that is rich in flavonoids. However, few studies have been done on its molecular mechanism, especially sex differences. In the present study, we performed an integrated transcriptomics and metabolomics analysis of the sex differences in the accumulation of flavonoids in B. papyrifera leaves at different developmental stages. In general, flavonoids accumulated gradually with developmental time, and the content in female plants was higher than that in male plants. The composition of flavonoids in female and male plants was similar, and 16 kinds of flavonoids accumulated after flowering. Correspondingly, a significant enrichment of differentially expressed genes and metabolites was observed in the flavonoid biosynthesis pathway. WGCNA and qRT-PCR analyses identified several key genes regulating the accumulation of flavonoids, such as those encoding CHS, CHI and DFR. In addition, 8 TFs were found to regulate flavonoid biosynthesis by promoting the expression of multiple structural genes. These findings provide insight into flavonoid biosynthesis in B. papyrifera associated molecular regulation.
Collapse
Affiliation(s)
- Peng Jiao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Li Chaoyang
- Central South Inventory and Planning Institute of National Forestry and Grassland Administration, Changsha, China
| | - Zhai Wenhan
- College of Forestry, Northwest A&F University, Yangling, China
| | - Dai Jingyi
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Zhao Yunlin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Xu Zhenggang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Majda M. Engineering lignin: getting more from woody biomass. PLANT PHYSIOLOGY 2022; 188:926-927. [PMID: 35135001 PMCID: PMC8825301 DOI: 10.1093/plphys/kiab559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Mateusz Majda
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
15
|
Mahon EL, de Vries L, Jang SK, Middar S, Kim H, Unda F, Ralph J, Mansfield SD. Exogenous chalcone synthase expression in developing poplar xylem incorporates naringenin into lignins. PLANT PHYSIOLOGY 2022; 188:984-996. [PMID: 34718804 PMCID: PMC8825309 DOI: 10.1093/plphys/kiab499] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 05/03/2023]
Abstract
Lignin, a polyphenolic polymer, is a major chemical constituent of the cell walls of terrestrial plants. The biosynthesis of lignin is a highly plastic process, as highlighted by an increasing number of noncanonical monomers that have been successfully identified in an array of plants. Here, we engineered hybrid poplar (Populus alba x grandidentata) to express chalcone synthase 3 (MdCHS3) derived from apple (Malus domestica) in lignifying xylem. Transgenic trees displayed an accumulation of the flavonoid naringenin in xylem methanolic extracts not inherently observed in wild-type trees. Nuclear magnetic resonance analysis revealed the presence of naringenin in the extract-free, cellulase-treated xylem lignin of MdCHS3-poplar, indicating the incorporation of this flavonoid-derived compound into poplar secondary cell wall lignins. The transgenic trees also displayed lower total cell wall lignin content and increased cell wall carbohydrate content and performed significantly better in limited saccharification assays than their wild-type counterparts.
Collapse
Affiliation(s)
- Elizabeth L Mahon
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, USA
| | - Lisanne de Vries
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, USA
| | - Soo-Kyeong Jang
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Sandeep Middar
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Hoon Kim
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, USA
| | - Faride Unda
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, USA
| | - John Ralph
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, USA
- Author for communication:
| |
Collapse
|
16
|
Zhou K, Hu L, Yue H, Zhang Z, Zhang J, Gong X, Ma F. MdUGT88F1-mediated phloridzin biosynthesis coordinates carbon and nitrogen accumulation in apple. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:886-902. [PMID: 34486649 DOI: 10.1093/jxb/erab410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
The high accumulation of phloridzin makes apple (Malus domestica) unique in the plant kingdom, which suggests a vital role of its biosynthesis in physiological processes. In our previous study, silencing MdUGT88F1 (a key UDP-GLUCOSE: PHLORETIN 2'-O-GLUCOSYLTRANSFERASE gene) revealed the importance of phloridzin biosynthesis in apple development and Valsa canker resistance. Here, results from MdUGT88F1-silenced lines showed that phloridzin biosynthesis was indispensable for normal chloroplast development and photosynthetic carbon fixation by maintaining MdGLK1/2 (GOLDEN2-like1/2) expression. Interestingly, increased phloridzin biosynthesis did not affect plant (or chloroplast) development, but reduced nitrogen accumulation, leading to chlorophyll deficiency, light sensitivity, and sugar accumulation in MdUGT88F1-overexpressing apple lines. Further analysis revealed that MdUGT88F1-mediated phloridzin biosynthesis negatively regulated the cytosolic glutamine synthetase1-asparagine synthetase-asparaginase (GS1-AS-ASPG) pathway of ammonium assimilation and limited chlorophyll synthesis in apple shoots. The interference of phloridzin biosynthesis in the GS1-AS-ASPG pathway was also assumed to be associated with its limitation of the carbon skeleton of ammonium assimilation through metabolic competition with the tricarboxylic acid cycle. Taken together, our findings shed light on the role of MdUGT88F1-mediated phloridzin biosynthesis in the coordination between carbon and nitrogen accumulation in apple trees.
Collapse
Affiliation(s)
- Kun Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingyun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
17
|
Hou Q, Li S, Shang C, Wen Z, Cai X, Hong Y, Qiao G. Genome-wide characterization of chalcone synthase genes in sweet cherry and functional characterization of CpCHS1 under drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:989959. [PMID: 36061761 PMCID: PMC9437463 DOI: 10.3389/fpls.2022.989959] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/03/2022] [Indexed: 05/22/2023]
Abstract
Cherries are one of the important fruit trees. The growth of cherry is greatly affected by abiotic stresses such as drought, which hinders its development. Chalcone synthase (CHS, EC 2.3.1.74) is a crucial rate-limiting enzyme in the flavonoid biosynthetic pathway that plays an important role in regulating plant growth, development, and abiotic stress tolerance. In the current study, three genes encoding chalcone synthase were identified in the genome of sweet cherry (Prunus avium L.). The three genes contained fewer introns and showed high homology with CHS genes of other Rosaceae members. All members are predicted to localize in the cytoplasm. The conserved catalytic sites may be located at the Cys163, Phe214, His302, and Asn335 residues. These genes were differentially expressed during flower bud dormancy and fruit development. The total flavonoid content of Chinese cherry (Cerasus pseudocerasus Lindl.) was highest in the leaves and slightly higher in the pulp than in the peel. No significant difference in total flavonoid content was detected between aborted kernels and normally developing kernels. Overexpression of Chinese cherry CpCHS1 in tobacco improved the germination frequency of tobacco seeds under drought stress, and the fresh weight of transgenic seedlings under drought stress was higher than that of the wild type, and the contents of SOD, POD, CAT, and Pro in OE lines were significantly increased and higher than WT under drought stress. These results indicate cherry CHS genes are conserved and functionally diverse and will assist in elucidating the functions of flavonoid synthesis pathways in cherry and other Rosaceae species under drought stress.
Collapse
Affiliation(s)
- Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Shuang Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Chunqiong Shang
- College of Forestry, Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, China
| | - Zhuang Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Xiaowei Cai
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Yi Hong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- *Correspondence: Guang Qiao,
| |
Collapse
|
18
|
Liu X, Liu J, Lei D, Zhao GR. Modular metabolic engineering for production of phloretic acid, phloretin and phlorizin in Escherichia coli. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.116931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Li X, Fan J, Luo S, Yin L, Liao H, Cui X, He J, Zeng Y, Qu J, Bu Z. Comparative transcriptome analysis identified important genes and regulatory pathways for flower color variation in Paphiopedilum hirsutissimum. BMC PLANT BIOLOGY 2021; 21:495. [PMID: 34706650 PMCID: PMC8549352 DOI: 10.1186/s12870-021-03256-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/08/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Paphiopedilum hirsutissimum is a member of Orchidaceae family that is famous for its ornamental value around the globe, it is vulnerable due to over-exploitation and was listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora, which prevents its trade across borders. Variation in flower color that gives rise to different flower patterns is a major trait contributing to its high ornamental value. However, the molecular mechanism underlying color formation in P. hirsutissimum still remains unexplored. In the present study, we exploited natural variation in petal and labellum color of Paphiopedilum plants and used comparative transcriptome analysis as well as pigment measurements to explore the important genes, metabolites and regulatory pathways linked to flower color variation in P. hirsutissimum. RESULT We observed that reduced anthocyanin and flavonoid contents along with slightly higher carotenoids are responsible for albino flower phenotype. Comparative transcriptome analysis identified 3287 differentially expressed genes (DEGs) among normal and albino labellum, and 3634 DEGs between normal and albino petals. Two genes encoding for flavanone 3-hydroxylase (F3H) and one gene encoding for chalcone synthase (CHS) were strongly downregulated in albino labellum and petals compared to normal flowers. As both F3H and CHS catalyze essentially important steps in anthocyanin biosynthesis pathway, downregulation of these genes is probably leading to albino flower phenotype via down-accumulation of anthocyanins. However, we observed the downregulation of major carotenoid biosynthesis genes including VDE, NCED and ABA2 which was inconsistent with the increased carotenoid accumulation in albino flowers, suggesting that carotenoid accumulation was probably controlled at post-transcriptional or translational level. In addition, we identified several key transcription factors (MYB73, MYB61, bHLH14, bHLH106, MADS-SOC1, AP2/ERF1, ERF26 and ERF87) that may regulate structural genes involved in flower color formation in P. hirsutissimum. Importantly, over-expression of some of these candidate TFs increased anthocyanin accumulation in tobacco leaves which provided important evidence for the role of these TFs in flower color formation probably via regulating key structural genes of the anthocyanin pathway. CONCLUSION The genes identified here could be potential targets for breeding P. hirsutissimum with different flower color patterns by manipulating the anthocyanin and carotenoid biosynthesis pathways.
Collapse
Affiliation(s)
- Xiuling Li
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Jizheng Fan
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Shuming Luo
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Ling Yin
- Guangxi Key Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Hongying Liao
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Xueqiang Cui
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Jingzhou He
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Yanhua Zeng
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Junjie Qu
- Guangxi Key Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.
| | - Zhaoyang Bu
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.
| |
Collapse
|
20
|
Yu C, Lian B, Fang W, Guo A, Ke Y, Jiang Y, Chen Y, Liu G, Zhong F, Zhang J. Transcriptome-based analysis reveals that the biosynthesis of anthocyanins is more active than that of flavonols and proanthocyanins in the colorful flowers of Lagerstroemia indica. Biol Futur 2021; 72:473-488. [PMID: 34554492 DOI: 10.1007/s42977-021-00094-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/16/2021] [Indexed: 11/30/2022]
Abstract
Mechanisms associated with the control of flower color in crape myrtle varieties have yet to be sufficiently elucidated, which has tended to hamper the use of modern molecular and genetic strategies in the breeding programs for this plant. The whole transcriptome of four L. indica varieties characterized by different flower colors (white, light purple, deep purplish pink, and strong red) was sequenced, and we performed bioinformatic, quantitative PCR, and co-expression analyses of R2R3 MYB transcription factor and anthocyanin/flavonol pathway genes. We obtained a total of 49,980 transcripts with full-length coding sequences. Both transcriptome and qPCR analyses revealed that anthocyanin/flavonol pathway genes were differentially expressed among the four different flowers types, with the expression of LiPAL, LiCHS, LiCHI, LiDFR, LiANS/LDOX, and LiUFGT being induced in colorful flowers, whereas that of LiF3´5´H, LiFLS, and LiLAR was found to be inhibited. Base on phylogenetic analysis, seven R2R3 MYB transcriptional factors were identified as putative regulators of flower color. The molecular characteristics and co-expression patterns indicated that these MYBs differentially modulate their target genes, with two probably acting as activators, three as repressors, and one contributing to the regulation of vacuolar pH. The findings of this study indicate that the anthocyanin biosynthesis is more active than the flavonol and proanthocyanin in the colorful flowers. These observations provide new genomic information on L. indica and contribute gene resources for the flower color-targeted breeding of crape myrtle.
Collapse
Affiliation(s)
- Chunmei Yu
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Bolin Lian
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Wei Fang
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Anfang Guo
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Yongchao Ke
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Yuna Jiang
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Yanhong Chen
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Guoyuan Liu
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Fei Zhong
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Jian Zhang
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China.
| |
Collapse
|
21
|
Weissensteiner J, Molitor C, Marinovic S, Führer L, Waqas Hassan S, Hutabarat OS, Spornberger A, Stich K, Hausjell J, Spadiut O, Haselmair-Gosch C, Halbwirth H. Molecular and Enzymatic Characterization of Flavonoid 3'-Hydroxylase of Malus × domestica. PLANTS (BASEL, SWITZERLAND) 2021; 10:1956. [PMID: 34579488 PMCID: PMC8469728 DOI: 10.3390/plants10091956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023]
Abstract
Malus × domestica (apple) accumulates particularly high amounts of dihydrochalcones in various tissues, with phloridzin (phloretin 2'-O-glucoside) being prevalent, although small amounts of 3-hydroxyphloretin and 3-hydroxyphloridzin are also constitutively present. The latter was shown to correlate with increased disease resistance of transgenic M. × domestica plants. Two types of enzymes could be involved in 3-hydroxylation of dihydrochalcones: polyphenol oxidases or the flavonoid 3'-hydroxylase (F3'H), which catalyzes B-ring hydroxylation of flavonoids. We isolated two F3'H cDNA clones from apple leaves and tested recombinant Malus F3'Hs for their substrate specificity. From the two isolated cDNA clones, only F3'HII encoded a functionally active enzyme. In the F3'HI sequence, we identified two putatively relevant amino acids that were exchanged in comparison to that of a previously published F3'HI. Site directed mutagenesis, which exchanged an isoleucine into methionine in position 211 restored the functional activity, which is probably because it is located in an area involved in interaction with the substrate. In contrast to high activity with various flavonoid substrates, the recombinant enzymes did not accept phloretin under assay conditions, making an involvement in the dihydrochalcone biosynthesis unlikely.
Collapse
Affiliation(s)
- Julia Weissensteiner
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christian Molitor
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Silvija Marinovic
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Lisa Führer
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Syed Waqas Hassan
- Department of Bio-Sciences, University of Wah, Quaid Avenue, Wah 47040, Pakistan
| | - Olly Sanny Hutabarat
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Department of Agricultural Engineering, Hasanuddin University, Makassar 90245, Indonesia
| | - Andreas Spornberger
- Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Karl Stich
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Johanna Hausjell
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christian Haselmair-Gosch
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
22
|
Tong Y, Lyu Y, Xu S, Zhang L, Zhou J. Optimum chalcone synthase for flavonoid biosynthesis in microorganisms. Crit Rev Biotechnol 2021; 41:1194-1208. [PMID: 33980085 DOI: 10.1080/07388551.2021.1922350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chalcones and the subsequently generated flavonoids, as well as flavonoid derivatives, have been proven to have a variety of physiological activities and are widely used in: the pharmaceutical, food, feed, and cosmetic industries. As the content of chalcones and downstream products in native plants is low, the production of these compounds by microorganisms has gained the attention of many researchers and has a history of more than 20 years. The mining and engineering of chalcone synthase (CHS) could be one of the most important ways to achieve more efficient production of chalcones and downstream products in microorganisms. CHS has a broad spectrum of substrates, and its enzyme activity and expression level can significantly affect the efficiency of the biosynthesis of flavonoids. This review summarizes the recent advances in the: structure, mechanism, evolution, substrate spectrum, transformation, and expression regulation in the flavonoid biosynthesis of this vital enzyme. Future development directions were also suggested. The findings may further promote the research and development of flavonoids and health products, making them vital in the fields of human diet and health.
Collapse
Affiliation(s)
- Yingjia Tong
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yunbin Lyu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Liang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
23
|
Transcriptomic Analyses Shed Light on Critical Genes Associated with Bibenzyl Biosynthesis in Dendrobium officinale. PLANTS 2021; 10:plants10040633. [PMID: 33810588 PMCID: PMC8065740 DOI: 10.3390/plants10040633] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
The Dendrobium plants (members of the Orchidaceae family) are used as traditional Chinese medicinal herbs. Bibenzyl, one of the active compounds in Dendrobium officinale, occurs in low amounts among different tissues. However, market demands require a higher content of thes compounds to meet the threshold for drug production. There is, therefore, an immediate need to dissect the physiological and molecular mechanisms underlying how bibenzyl compounds are biosynthesized in D. officinale tissues. In this study, the accumulation of erianin and gigantol in tissues were studied as representative compounds of bibenzyl. Exogenous application of Methyl-Jasmonate (MeJA) promotes the biosynthesis of bibenzyl compounds; therefore, transcriptomic analyses were conducted between D. officinale-treated root tissues and a control. Our results show that the root tissues contained the highest content of bibenzyl (erianin and gigantol). We identified 1342 differentially expressed genes (DEGs) with 912 up-regulated and 430 down-regulated genes in our transcriptome dataset. Most of the identified DEGs are functionally involved in the JA signaling pathway and the biosynthesis of secondary metabolites. We also identified two candidate cytochrome P450 genes and nine other enzymatic genes functionally involved in bibenzyl biosynthesis. Our study provides insights on the identification of critical genes associated with bibenzyl biosynthesis and accumulation in Dendrobium plants, paving the way for future research on dissecting the physiological and molecular mechanisms of bibenzyl synthesis in plants as well as guide genetic engineering for the improvement of Dendrobium varieties through increasing bibenzyl content for drug production and industrialization.
Collapse
|
24
|
Nawade B, Yahyaa M, Davidovich-Rikanati R, Lewinsohn E, Ibdah M. Optimization of Culture Conditions for the Efficient Biosynthesis of Trilobatin from Phloretin by Engineered Escherichia coli Harboring the Apple Phloretin-4'- O-glycosyltransferase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14212-14220. [PMID: 33089679 DOI: 10.1021/acs.jafc.0c04964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Trilobatin, a dihydrochalcone glucoside and natural sweetener, has diverse biological and therapeutic properties. In the present study, we developed a microbial system to produce trilobatin from phloretin using Escherichia coli (E. coli) overexpressing the phloretin-4'-O-glycosyltransferase from Malus x domestica Borkh. Various optimization strategies were employed for the efficient production of trilobatin using a one-factor-at-a-time method. The effect of UDP-glucose supplementation, substrate, and inducer concentrations, time of substrate feeding as well as protein induction, and different culture media combinations were evaluated and optimized to enhance the production of trilobatin. As a result, the highest trilobatin production, 246.83 μM (107.64 mg L-1), was obtained with an LB-TB medium combination, 22 h of induction with 0.1 mM IPTG followed by 4 h of feeding with 250 μM phloretin and without extracellular UDP-glucose supplementation. These results demonstrate the efficient production of trilobatin and constitute a promising foundation for large-scale production of the dihydrochalcone glycosides in engineered E. coli.
Collapse
Affiliation(s)
- Bhagwat Nawade
- Newe Ya'ar Research Center, ARO, Ramat Yishay 30095, Israel
| | - Mosaab Yahyaa
- Newe Ya'ar Research Center, ARO, Ramat Yishay 30095, Israel
| | | | | | - Mwafaq Ibdah
- Newe Ya'ar Research Center, ARO, Ramat Yishay 30095, Israel
| |
Collapse
|
25
|
Raising the production of phloretin by alleviation of by-product of chalcone synthase in the engineered yeast. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1734-1743. [DOI: 10.1007/s11427-019-1634-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/17/2020] [Indexed: 12/25/2022]
|
26
|
Couttolenc-Brenis E, Carrión GL, Villain L, Ortega-Escalona F, Ramírez-Martínez D, Mata-Rosas M, Méndez-Bravo A. Prehaustorial local resistance to coffee leaf rust in a Mexican cultivar involves expression of salicylic acid-responsive genes. PeerJ 2020; 8:e8345. [PMID: 32002327 PMCID: PMC6982411 DOI: 10.7717/peerj.8345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Background
In Mexico, coffee leaf rust (CLR) is the main disease that affects the Arabica coffee crop. In this study, the local response of two Mexican cultivars of Coffea arabica (Oro Azteca and Garnica) in the early stages of Hemileia vastatrix infection was evaluated.
Methods
We quantified the development of fungal structures in locally-infected leaf disks from both cultivars, using qRT-PCR to measure the relative expression of two pathogenesis recognition genes (CaNDR1 and CaNBS-LRR) and three genes associated with the salicylic acid (SA)-related pathway (CaNPR1, CaPR1, and CaPR5).
Results
Resistance of the cv. Oro Azteca was significantly higher than that of the cv. Garnica, with 8.2% and 53.3% haustorial detection, respectively. In addition, the non-race specific disease resistance gene (CaNDR1), a key gene for the pathogen recognition, as well as the genes associated with SA, CaNPR1, CaPR1, and CaPR5, presented an increased expression in response to infection by H. vastatrix in cv. Oro Azteca if comparing with cv. Garnica. Our results suggest that Oro Azteca’s defense mechanisms could involve early recognition of CLR by NDR1 and the subsequent activation of the SA signaling pathway.
Collapse
Affiliation(s)
- Edgar Couttolenc-Brenis
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología, A.C., Xalapa, Veracruz, México
- Instituto Nacional de Investigaciones Forestales Agrìcolas y Pecuarias, C.E. Cotaxtla, Veracruz, México
| | - Gloria L. Carrión
- Red de Biodiversidad y Sistemática de Hongos, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Luc Villain
- La Recherche Agronomique pour le Développement, UMR, RPB, CIRAD, Montpellier, France
| | | | - Daniel Ramírez-Martínez
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Martín Mata-Rosas
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Alfonso Méndez-Bravo
- CONACYT-Escuela Nacional de Estudios Superiores Unidad Morelia, Laboratorio Nacional de Análisis y Síntesis Ecológica, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| |
Collapse
|
27
|
Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, Habtemariam S, Suntar I, Rastrelli L, Daglia M, Xiao J, Giampieri F, Battino M, Sobarzo-Sanchez E, Nabavi SF, Yousefi B, Jeandet P, Xu S, Shirooie S. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol Adv 2020; 38:107316. [PMID: 30458225 DOI: 10.1016/j.biotechadv.2018.11.005] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/28/2018] [Accepted: 11/14/2018] [Indexed: 02/08/2023]
Abstract
Plants, fungi, and microorganisms are equipped with biosynthesis machinery for producing thousands of secondary metabolites. These compounds have important functions in nature as a defence against predators or competitors as well as other ecological significances. The full utilization of these compounds for food, medicine, and other purposes requires a thorough understanding of their structures and the distinct biochemical pathways of their production in cellular systems. In this review, flavonoids as classical examples of secondary metabolites are employed to highlight recent advances in understanding how valuable compounds can be regulated at various levels. With extensive diversity in their chemistry and pharmacology, understanding the metabolic engineering of flavonoids now allows us to fine-tune the eliciting of their production, accumulation, and extraction from living systems. More specifically, recent advances in the shikimic acid and acetate biosynthetic pathways of flavonoids production from metabolic engineering point of view, from genes expression to multiple principles of regulation, are addressed. Specific examples of plants and microorganisms as the sources of flavonoids-based compounds with particular emphasis on therapeutic applications are also discussed.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Dunja Šamec
- Department of Molecular Biology, Institute 'Ruđer Bošković', Zagreb, Croatia
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, Białystok, Poland
| | - Luigi Milella
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Daniela Russo
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| | - Ipek Suntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, - Vigo Campus, Vigo, Spain
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, - Vigo Campus, Vigo, Spain
| | - Eduardo Sobarzo-Sanchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago, Spain; Instituto de Investigación en Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Seyed Fazel Nabavi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Philippe Jeandet
- Unité de Recherche RIBP EA 4707, SFR Condorcet FR CNRS 3417, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP, 1039, 51687 Reims CEDEX, France
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
28
|
Pandith SA, Ramazan S, Khan MI, Reshi ZA, Shah MA. Chalcone synthases (CHSs): the symbolic type III polyketide synthases. PLANTA 2019; 251:15. [PMID: 31776718 DOI: 10.1007/s00425-019-03307-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/02/2019] [Indexed: 05/08/2023]
Abstract
Present review provides a thorough insight on some significant aspects of CHSs over a period of about past three decades with a better outlook for future studies toward comprehending the structural and mechanistic intricacy of this symbolic enzyme. Polyketide synthases (PKSs) form a large family of iteratively acting multifunctional proteins that are involved in the biosynthesis of spectrum of natural products. They exhibit remarkable versatility in the structural configuration and functional organization with an incredible ability to generate different classes of compounds other than the characteristic secondary metabolite constituents. Architecturally, chalcone synthase (CHS) is considered to be the simplest representative of Type III PKSs. The enzyme is pivotal for phenylpropanoid biosynthesis and is also well known for catalyzing the initial step of the flavonoid/isoflavonoid pathway. Being the first Type III enzyme to be discovered, CHS has been subjected to ample investigations which, to a greater extent, have tried to understand its structural complexity and promiscuous functional behavior. In this context, we vehemently tried to collect the fragmented information entirely focussed on this symbolic enzyme from about past three-four decades. The aim of this review is to selectively summarize data on some of the fundamental aspects of CHSs viz, its history and distribution, localization, structure and analogs in non-plant hosts, promoter analyses, and role in defense, with an emphasis on mechanistic studies in different species and vis-à-vis mutation-led changes, and evolutionary significance which has been discussed in detail. The present review gives an insight with a better perspective for the scientific community for future studies devoted towards delimiting the mechanistic and structural basis of polyketide biosynthetic machinery vis-à-vis CHS.
Collapse
Affiliation(s)
- Shahzad A Pandith
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Salika Ramazan
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Mohd Ishfaq Khan
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
29
|
Vilperte V, Lucaciu CR, Halbwirth H, Boehm R, Rattei T, Debener T. Hybrid de novo transcriptome assembly of poinsettia (Euphorbia pulcherrima Willd. Ex Klotsch) bracts. BMC Genomics 2019; 20:900. [PMID: 31775622 PMCID: PMC6882326 DOI: 10.1186/s12864-019-6247-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Poinsettia is a popular and important ornamental crop, mostly during the Christmas season. Its bract coloration ranges from pink/red to creamy/white shades. Despite its ornamental value, there is a lack of knowledge about the genetics and molecular biology of poinsettia, especially on the mechanisms of color formation. We performed an RNA-Seq analysis in order to shed light on the transcriptome of poinsettia bracts. Moreover, we analyzed the transcriptome differences of red- and white-bracted poinsettia varieties during bract development and coloration. For the assembly of a bract transcriptome, two paired-end cDNA libraries from a red and white poinsettia pair were sequenced with the Illumina technology, and one library from a red-bracted variety was used for PacBio sequencing. Both short and long reads were assembled using a hybrid de novo strategy. Samples of red- and white-bracted poinsettias were sequenced and comparatively analyzed in three color developmental stages in order to understand the mechanisms of color formation and accumulation in the species. RESULTS The final transcriptome contains 288,524 contigs, with 33% showing confident protein annotation against the TAIR10 database. The BUSCO pipeline, which is based on near-universal orthologous gene groups, was applied to assess the transcriptome completeness. From a total of 1440 BUSCO groups searched, 77% were categorized as complete (41% as single-copy and 36% as duplicated), 10% as fragmented and 13% as missing BUSCOs. The gene expression comparison between red and white varieties of poinsettia showed a differential regulation of the flavonoid biosynthesis pathway only at particular stages of bract development. An initial impairment of the flavonoid pathway early in the color accumulation process for the white poinsettia variety was observed, but these differences were no longer present in the subsequent stages of bract development. Nonetheless, GSTF11 and UGT79B10 showed a lower expression in the last stage of bract development for the white variety and, therefore, are potential candidates for further studies on poinsettia coloration. CONCLUSIONS In summary, this transcriptome analysis provides a valuable foundation for further studies on poinsettia, such as plant breeding and genetics, and highlights crucial information on the molecular mechanism of color formation.
Collapse
Affiliation(s)
- Vinicius Vilperte
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany.,Klemm + Sohn GmbH & Co., 70379, Stuttgart, KG, Germany
| | - Calin Rares Lucaciu
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060, Vienna, Austria
| | - Robert Boehm
- Klemm + Sohn GmbH & Co., 70379, Stuttgart, KG, Germany
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria.
| | - Thomas Debener
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany.
| |
Collapse
|
30
|
Da L, Liu Y, Yang J, Tian T, She J, Ma X, Xu W, Su Z. AppleMDO: A Multi-Dimensional Omics Database for Apple Co-Expression Networks and Chromatin States. FRONTIERS IN PLANT SCIENCE 2019; 10:1333. [PMID: 31695717 PMCID: PMC6817610 DOI: 10.3389/fpls.2019.01333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/25/2019] [Indexed: 05/17/2023]
Abstract
As an economically important crop, apple is one of the most cultivated fruit trees in temperate regions worldwide. Recently, a large number of high-quality transcriptomic and epigenomic datasets for apple were made available to the public, which could be helpful in inferring gene regulatory relationships and thus predicting gene function at the genome level. Through integration of the available apple genomic, transcriptomic, and epigenomic datasets, we constructed co-expression networks, identified functional modules, and predicted chromatin states. A total of 112 RNA-seq datasets were integrated to construct a global network and a conditional network (tissue-preferential network). Furthermore, a total of 1,076 functional modules with closely related gene sets were identified to assess the modularity of biological networks and further subjected to functional enrichment analysis. The results showed that the function of many modules was related to development, secondary metabolism, hormone response, and transcriptional regulation. Transcriptional regulation is closely related to epigenetic marks on chromatin. A total of 20 epigenomic datasets, which included ChIP-seq, DNase-seq, and DNA methylation analysis datasets, were integrated and used to classify chromatin states. Based on the ChromHMM algorithm, the genome was divided into 620,122 fragments, which were classified into 24 states according to the combination of epigenetic marks and enriched-feature regions. Finally, through the collaborative analysis of different omics datasets, the online database AppleMDO (http://bioinformatics.cau.edu.cn/AppleMDO/) was established for cross-referencing and the exploration of possible novel functions of apple genes. In addition, gene annotation information and functional support toolkits were also provided. Our database might be convenient for researchers to develop insights into the function of genes related to important agronomic traits and might serve as a reference for other fruit trees.
Collapse
|
31
|
Wang Z, Yu Q, Shen W, El Mohtar CA, Zhao X, Gmitter FG. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids. BMC PLANT BIOLOGY 2018; 18:189. [PMID: 30208944 PMCID: PMC6134715 DOI: 10.1186/s12870-018-1418-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/05/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Citrus flavonoids are considered as the important secondary metabolites because of their biological and pharmacological activities. Chalcone synthase (CHS) is a key enzyme that catalyses the first committed step in the flavonoid biosynthetic pathway. CHS genes have been isolated and characterized in many plants. Previous studies indicated that CHS is a gene superfamily. In citrus, the number of CHS members and their contribution to the production of flavonoids remains a mystery. In our previous study, the copies of CitCHS2 gene were found in different citrus species and the sequences are highly conserved, but the flavonoid content varied significantly among those species. RESULTS From seventy-seven CHS and CHS-like gene sequences, ten CHS members were selected as candidates according to the features of their sequences. Among these candidates, expression was detected from only three genes. A predicted CHS sequence was identified as a novel CHS gene. The structure analysis showed that the gene structure of this novel CHS is very similar to other CHS genes. All three CHS genes were highly conserved and had a basic structure that included one intron and two exons, although they had different expression patterns in different tissues and developmental stages. These genes also presented different sensitivities to methyl jasmonate (MeJA) treatment. In transgenic plants, the expression of CHS genes was significantly correlated with the production of flavonoids. The three CHS genes contributed differently to the production of flavonoids. CONCLUSION Our study indicated that CitCHS is a gene superfamily including at least three functional members. The expression levels of the CHS genes are highly correlated to the biosynthesis of flavonoids. The CHS enzyme is dynamically produced from several CHS genes, and the production of total flavonoids is regulated by the overall expression of CHS family genes.
Collapse
Affiliation(s)
- Zhibin Wang
- Citrus Research Institute, Southwest University, Xiema, Beibei, Chongqing, 400715 China
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, Florida, 33850 USA
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, Florida, 33850 USA
| | - Wanxia Shen
- Citrus Research Institute, Southwest University, Xiema, Beibei, Chongqing, 400715 China
| | - Choaa A. El Mohtar
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, Florida, 33850 USA
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University, Xiema, Beibei, Chongqing, 400715 China
| | - Fredrick G. Gmitter
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, Florida, 33850 USA
| |
Collapse
|
32
|
Ibdah M, Martens S, Gang DR. Biosynthetic Pathway and Metabolic Engineering of Plant Dihydrochalcones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2273-2280. [PMID: 29171271 DOI: 10.1021/acs.jafc.7b04445] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dihydrochalcones are plant natural products containing the phenylpropanoid backbone and derived from the plant-specific phenylpropanoid pathway. Dihydrochalcone compounds are important in plant growth and response to stresses and, thus, can have large impacts on agricultural activity. In recent years, these compounds have also received increased attention from the biomedical community for their potential as anticancer treatments and other benefits for human health. However, they are typically produced at relatively low levels in plants. Therefore, an attractive alternative is to express the plant biosynthetic pathway genes in microbial hosts and to engineer the metabolic pathway/host to improve the production of these metabolites. In the present review, we discuss in detail the functions of genes and enzymes involved in the biosynthetic pathway of the dihydrochalcones and the recent strategies and achievements used in the reconstruction of multi-enzyme pathways in microorganisms in efforts to be able to attain higher amounts of desired dihydrochalcones.
Collapse
Affiliation(s)
- Mwafaq Ibdah
- Newe Ya'ar Research Center , Agriculture Research Organization , Post Office Box 1021, Ramat Yishay 30095 , Israel
| | - Stefan Martens
- Department of Food Quality and Nutrition, Centro Ricerca e Innovazione , Fondazione Edmund Mach , Via E. Mach 1 , 38010 San Michele all'Adige , Trentino , Italy
| | - David R Gang
- Institute of Biological Chemistry , Washington State University , Post Office Box 646340, Pullman , Washington 99164-6340 , United States
| |
Collapse
|