1
|
Fozi V, Esmaeili H, Alizadeh A, Eghlima G, Mirjalili MH. The interaction effect of water deficit stress and seaweed extract on phytochemical characteristics and antioxidant activity of licorice ( Glycyrrhiza glabra L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1474399. [PMID: 39435025 PMCID: PMC11491410 DOI: 10.3389/fpls.2024.1474399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024]
Abstract
Introduction With increasing drought stress due to climate change and water scarcity, the agricultural sector has sought innovative strategies to mitigate the detrimental effects on crop productivity. One approach that has received significant attention is the use of fertilizers and biostimulants as potential means of alleviating drought stress. Methods In this study, five different irrigation levels including 100% (control), 80% (slight stress), 60% (mild stress), 40% (moderate stress), and 20% (severe stress) of field capacity (FC) and seaweed extract (SWE) at three concentrations (0, 5, and 10 g/L) were applied to the pots containing one-year-old licorice (Glycyrrhiza glabra L.) plants in a factorial completely randomized design experiment with three replications for eight weeks. Results and discussion The glycyrrhizic acid content increased with water stress intensity without the application of SWE until severe (20% FC) water stress treatment. The application of 10 g/L SWE under 100% FC led to a significant increase in the glycyrrhizic acid value (32.5±0.889 mg/g DW) compared with non-SWE application (30.0±1.040 mg/g DW). The maximum glabridin content (0.270±0.010 mg/g DW) was obtained under irrigation of 20% field capacity with 10 g/L SWE application. In addition, the activity of the all studied enzymes such as APX (ascorbate peroxidase), CAT (catalase), POD (peroxidase), and SOD (superoxide dismutase) were boosted by increasing the water stress levels. The use of SWE further enhanced the increase of some of these metabolites and enzymes, which, in turn, helped the plant to tolerate stress conditions through the scavenging of more ROS (Reactive oxygen species), wherein for this purpose, the SWE 10 g/L was more effective than other concentration. The plants efficiently eliminated ROS driven from drought stress by both non-enzymatic and enzymatic systems.
Collapse
Affiliation(s)
- Vahid Fozi
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hassan Esmaeili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Abouzar Alizadeh
- Faculty of Agriculture, Lorestan University, Khorramabad, Lorestan, Iran
| | - Ghasem Eghlima
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Majidi M, Mirjalili MH, Farzaneh M, Rezadoost H. Fungal endophytes Fusarium solani SGGF14 and Alternaria tenuissima SGGF21 enhance the glycyrrhizin production by modulating its key biosynthetic genes in licorice (Glycyrrhiza glabra L.). J Appl Microbiol 2024; 135:lxae199. [PMID: 39182158 DOI: 10.1093/jambio/lxae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
AIMS To identify promising fungal endophytes that are able to produce glycyrrhizin and enhance it in licorice and the mechanisms involved. METHODS AND RESULTS Fifteen fungal endophytes were isolated from Glycyrrhiza glabra L. rhizomes among which SGGF14 and SGGF21 isolates were found to produce glycyrrhizin by 4.29 and 2.58 µg g-1 dry weight in the first generation of their culture. These isolates were identified as Fusarium solani and Alternaria tenuissima, respectively, based on morphological characteristics and sequence analysis of internal transcribed spacer, TEF1, ATPase, and CAL regions. Subsequently, G. glabra plants were inoculated with these fungal isolates to examine their effect on glycyrrhizin production, plant growth parameters and the expression of key genes involved in glycyrrhizin pathway: SQS1, SQS2, bAS, CAS, LUS, CYP88D6, and CYP72A154. Endophytes were able to enhance glycyrrhizin content by 133%-171% in the plants. Natural control (NC) plants, harboring all natural endophytes, had better growth compared to SGGF14- and SGGF21-inoculated and endophyte-free (EF) plants. Expression of SQS1, SQS2, CYP88D6, and CYP72A154 was upregulated by inoculation with endophytes. LUS and CAS were downregulated after endophyte inoculation. Expression of bAS was higher in SGGF21-inoculated plants when compared with NC, EF, and SGGF14-inoculated plants. CONCLUSIONS Two selected fungal endophytes of G. glabra can produce glycyrrhizin and enhance glycyrrhizin content in planta by modulating the expression of key genes in glycyrrhizin biosynthetic pathway.
Collapse
Affiliation(s)
- Mehdi Majidi
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Mohsen Farzaneh
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| |
Collapse
|
3
|
Abdelhameed RE, Soliman ERS, Gahin H, Metwally RA. Enhancing drought tolerance in Malva parviflora plants through metabolic and genetic modulation using Beauveria bassiana inoculation. BMC PLANT BIOLOGY 2024; 24:662. [PMID: 38987668 PMCID: PMC11238386 DOI: 10.1186/s12870-024-05340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Enhancing crops' drought resilience is necessary to maintain productivity levels. Plants interact synergistically with microorganisms like Beauveria bassiana to improve drought tolerance. Therefore, the current study investigates the effects of biopriming with B. bassiana on drought tolerance in Malva parviflora plants grown under regular irrigation (90% water holding capacity (WHC)), mild (60% WHC), and severe drought stress (30% WHC). RESULTS The results showed that drought stress reduced the growth and physiological attributes of M. parviflora. However, those bioprimed with B. bassiana showed higher drought tolerance and enhanced growth, physiological, and biochemical parameters: drought stress enriched malondialdehyde and H2O2 contents. Conversely, exposure to B. bassiana reduced stress markers and significantly increased proline and ascorbic acid content under severe drought stress; it enhanced gibberellic acid and reduced ethylene. Bioprimed M. parviflora, under drought conditions, improved antioxidant enzymatic activity and the plant's nutritional status. Besides, ten Inter-Simple Sequence Repeat primers detected a 25% genetic variation between treatments. Genomic DNA template stability (GTS) decreased slightly and was more noticeable in response to drought stress; however, for drought-stressed plants, biopriming with B. bassiana retained the GTS. CONCLUSION Under drought conditions, biopriming with B. bassiana enhanced Malva's growth and nutritional value. This could attenuate photosynthetic alterations, up-regulate secondary metabolites, activate the antioxidant system, and maintain genome integrity.
Collapse
Affiliation(s)
- Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Elham R S Soliman
- Cytogenetics and Molecular Genetics Unit, Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Hanan Gahin
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
4
|
Wang S, Zhao X, Li C, Dong J, Ma J, Long Y, Xing Z. DNA methylation regulates the secondary metabolism of saponins to improve the adaptability of Eleutherococcus senticosus during drought stress. BMC Genomics 2024; 25:330. [PMID: 38565995 PMCID: PMC10986080 DOI: 10.1186/s12864-024-10237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Plant growth and development can be significantly impacted by drought stress. Plants will adjust the synthesis and accumulation of secondary metabolites to improve survival in times of water constraint. Simultaneously, drought stress can lead to modifications in the DNA methylation status of plants, and these modifications can directly impact gene expression and product synthesis by changing the DNA methylation status of functional genes involved in secondary metabolite synthesis. However, further research is needed to fully understand the extent to which DNA methylation modifies the content of secondary metabolites to mediate plants' responses to drought stress, as well as the underlying mechanisms involved. Our study found that in Eleutherococcus senticosus (E. senticosus), moderate water deprivation significantly decreased DNA methylation levels throughout the genome and at the promoters of EsFPS, EsSS, and EsSE. Transcription factors like EsMYB-r1, previously inhibited by DNA methylation, can re-bind to the EsFPS promotor region following DNA demethylation. This process promotes gene expression and, ultimately, saponin synthesis and accumulation. The increased saponin levels in E. senticosus acted as antioxidants, enhancing the plant's adaptability to drought stress.
Collapse
Affiliation(s)
- Shuo Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - XueLei Zhao
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Chang Li
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Jing Dong
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - JiaCheng Ma
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - YueHong Long
- College of Life Sciences, North China University of Science and Technology, Tangshan, China.
| | - ZhaoBin Xing
- College of Life Sciences, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
5
|
Naderi S, Maali-Amiri R, Sadeghi L, Hamidi A. Physio-biochemical and DNA methylation analysis of the defense response network of wheat to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108516. [PMID: 38537384 DOI: 10.1016/j.plaphy.2024.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
In the present work, physio-biochemical and DNA methylation analysis were conducted in wheat (Triticum aestivum L.) cultivars "Bolani" (drought-tolerant) and "Sistan" (drought-sensitive) during drought treatments: well-watered (at 90% field capacity (FC)), mild stress (at 50% FC, and severe stress (at 25% FC). During severe stress, O2•- and H2O2 content in cultivar Sistan showed significant increase (by 1.3 and 2.5-fold, respectively) relative to cultivar Bolani. In Bolani, the increased levels of radical scavenging activity (by 32%), glycine betaine (GB) (by 11.44%), proline (4-fold), abscisic acid (by 63.76%), and more stability of relative water content (RWC) (2-fold) were observed against drought-induced oxidative stress. Methylation level significantly decreased from 70.26% to 60.64% in Bolani and from 69.06% to 59.85% in Sistan during stress, and higher decreased tendency was related to CG and CHG in Bolani but CG in Sistan under severe stress. Methylation patterns showed that the highest polymorphism in Bolani was mainly as CG. As the intensity of stress increased, the enhanced physio-biochemical responses of Bolani cultivar were accompanied by a more decrease in the number of unchanged bands. According to heat map analysis, the highest difference (84.38%) in methylation patterns was observed between control and severe stress. Multivariate analysis using principal component analysis (PCA) showed a cultivar-specific methylation during stress and that methylation changes between cultivars are much higher than that of within a cultivar. Higher methylation to demethylation in Bolani (30.06 vs. 22.12%) compared to that of cultivar Sistan (23.21 vs. 30.15%) indicated more demethylation did not induce tolerance responses in Sistan. Sequencing differentially methylated fragments along with qRT-PCR analysis showed the efficient role of various DNA fragments, including demethylated fragments such as phosphoenol pyruvate carboxylase (PEPC), beta-glucosidase (BGlu), glycosyltransferase (GT), glutathione S-transferase (GST) and lysine demethylase (LSD) genes and methylated fragments like ubiquitin E2 enzyme genes in the development of drought tolerance. These results suggested the specific roles of DNA methylation in development of drought tolerance in wheat landrace.
Collapse
Affiliation(s)
- Salehe Naderi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran.
| | - Leila Sadeghi
- Seed and Plant Certification and Registration Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31368-63111, Karaj, Iran
| | - Aidin Hamidi
- Seed and Plant Certification and Registration Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31368-63111, Karaj, Iran
| |
Collapse
|
6
|
Gul-Lalay, Ullah S, Shah S, Jamal A, Saeed MF, Mihoub A, Zia A, Ahmed I, Seleiman MF, Mancinelli R, Radicetti E. Combined Effect of Biochar and Plant Growth-Promoting Rhizbacteria on Physiological Responses of Canola (Brassica napus L.) Subjected to Drought Stress. JOURNAL OF PLANT GROWTH REGULATION 2024. [DOI: 10.1007/s00344-023-11219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/07/2023] [Indexed: 02/07/2024]
Abstract
AbstractBiochar (BC) and plant growth-promoting microbes (PGPR) could represent a suitable agronomical strategy to mitigate the impacts of drought in arid agro-environmental conditions. However, there is currently little understanding of the synergistic benefit of combining BC and PGPR to increase drought tolerance in oilseeds. In this study, the physiological response of two water-stressed canola (Brassica napus L.) plants subjected to the application of BC obtained from waste wood of Morus alba applied solely or in combination with PGPR strains (Pseudomonas sp.) was evaluated. The experiment consists of two genotypes and nine treatments [(C-Control, T1-15 days drought (15DD), T2-30 days drought (30DD), T3-15 days of drought + PG (15DD + PG), T4-30 days of drought + PG (30DD + PG), T5-15 days drought + biochar (15DD + BC), T6-30 days drought + biochar (30DD + BC), T7-15 days drought + biochar + PG (15DD + BC + PG), T8-30 days drought + biochar + PG (30DD + BC + PG)]. Drought stress decreased emergence energy (EE), leaf area index (LAI), leaf area ratio (LAR), root shoot ratio (RSR), moisture content of leaves (MCL), percent moisture content (%MC), moisture content of shoot (MCS) and moisture content of root (MCR), and relative water content (RWC) in both varieties of Brassica napus L., which in contrast, it is increased by the collective application of both biochar and PGPR. In both varieties, N, P, K, Mg, and Ca concentrations were highest in all the biochar and PGPRs separate and combined treatments, while lowest in 15 and 30 days drought treatments. Osmolyte contents like Glycine betaine (GB) and sugar remarkably increased in the stress condition and then reduced due to the synergistic application of biochar and PGPR. Drought stress has a repressive effect on the antioxidant enzymatic system like Peroxidase (POD), Superoxide dismutase (SOD), and glutathione reductase (GR) as well as total flavonoids, phenolics, and protein content. The antioxidant enzymes and phenolic compounds were dramatically increased by the combined action of biochar and PGPRs. A significant increase in EE, LAR, RSR, and RWC under 15 and 30 days drought conditions, evidently highlighting the synergistic effect of BC and PGPR. The results conclude a substantial and positive effect of the combined use of BC and PGPR strains on canola's response to induced drought stress, by regulating the physiological, biochemical, and agronomic traits of the plants.
Graphical Abstract
Collapse
|
7
|
Han M, Yang H, Huang H, Du J, Zhang S, Fu Y. Allelopathy and allelobiosis: efficient and economical alternatives in agroecosystems. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:11-27. [PMID: 37751515 DOI: 10.1111/plb.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023]
Abstract
Chemical interactions in plants often involve plant allelopathy and allelobiosis. Allelopathy is an ecological phenomenon leading to interference among organisms, while allelobiosis is the transmission of information among organisms. Crop failures and low yields caused by inappropriate management can be related to both allelopathy and allelobiosis. Therefore, research on these two phenomena and the role of chemical substances in both processes will help us to understand and upgrade agroecosystems. In this review, substances involved in allelopathy and allelobiosis in plants are summarized. The influence of environmental factors on the generation and spread of these substances is discussed, and relationships between allelopathy and allelobiosis in interspecific, intraspecific, plant-micro-organism, plant-insect, and mechanisms, are summarized. Furthermore, recent results on allelopathy and allelobiosis in agroecosystem are summarized and will provide a reference for the future application of allelopathy and allelobiosis in agroecosystem.
Collapse
Affiliation(s)
- M Han
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - H Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - H Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - J Du
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - S Zhang
- The College of Forestry, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, China
| | - Y Fu
- The College of Forestry, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, China
| |
Collapse
|
8
|
Ma J, Hua Z, Noreen S, Malik Z, Riaz M, Kamran M, Ali S, Elshikh MS, Chen F. Chemical and mechanical coating of sulfur on baby corn biochar and their role in soil Pb availability, uptake, and growth of tomato under Pb contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122654. [PMID: 37778489 DOI: 10.1016/j.envpol.2023.122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
In recent ages, industrial revolution and natural weathering processes have been increasing lead (Pb) contamination in agricultural soils, therefore, green remediation technologies are becoming attractive and cost-effective. In the current pot study, 1% and 2% (w/w) application rates of sulfur (S) alone and novel chemo-mechanically S-modified baby corn biochars (CSB and MSB) were applied in a Pb-contaminated (500 mg/kg) soil to evaluate tomato (Lycopersicon esculentum L.) growth, Pb uptake and its soil availability. The results from SEM-EDS and XRD patterns confirmed the S enrichment on the surface of baby-corn biochar. Further, Pb treatment alone imposed a significant reduction in biomass accumulation, photosynthetic pigments, antioxidative mechanism, root traits, and Pb-tolerance index because of increased soil Pb availability and its uptake, translocation and biological accumulation in various tissues of tomato. However, incorporation of lower rate of elemental S (1%) and higher rates of biochars, especially chemically S-modified biochar, CSB (2%) significantly improved dry biomass production, Pb-tolerance index, physiological attributes and antioxidative defense system of tomato plants. These results might be due to a prominent decrease in soil Pb availability by 37.5%, Pb concentration in shoot by 66.7% and root by 58.3%, soil to root transfer by 33.8%, and root to shoot transfer by 20.2% in tomato plants under 2% application rate of CSB, as compared with the Pb treatment without any amendment. Moreover, sulfur treatment induced a significant impact in reduction of soil pH (from 8.97-7.47) as compared to the biochar treatments under Pb-toxicity. The current findings provided an insight that 2% chemically S-modified biochar (CSB) has significant potential to improve the tomato growth by reducing Pb bioavailability in the Pb-contaminated soil, compared to the S alone and MSB amendments.
Collapse
Affiliation(s)
- Jing Ma
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Ziyi Hua
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Sana Noreen
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur 63100, Pakistan
| | - Zaffar Malik
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur 63100, Pakistan
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Muhamamd Kamran
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur 63100, Pakistan; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Shafaqat Ali
- Department of Environmental Science, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China
| |
Collapse
|
9
|
Wang C, Wu D, Jiang L, Liu X, Xie T. Multi-Omics Elucidates Difference in Accumulation of Bioactive Constituents in Licorice ( Glycyrrhiza uralensis) under Drought Stress. Molecules 2023; 28:7042. [PMID: 37894521 PMCID: PMC10609028 DOI: 10.3390/molecules28207042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Licorice is a frequently applied herb with potential edible and medicinal value based on various flavonoids and triterpenes. However, studies on detailed flavonoid and triterpene metabolism and the molecular basis of their biosynthesis in licorice are very limited, especially under drought conditions. In the present study, we carried out transcriptome, proteome, and metabolome experiments. To ultimately combine three omics for analysis, we performed a bioinformatics comparison, integrating transcriptome data and proteome data through a Cloud platform, along with a simplified biosynthesis of primary flavonoids and triterpenoids in the KEGG pathway based on metabolomic results. The biosynthesis pathways of triterpenes and flavonoids are enriched at both gene and protein levels. Key flavonoid-related genes (PAL, 4CL, CHS, CHI, CYP93C, HIDH, HI4OMT, and CYP81E1_7) and representative proteins (HIDH, CYP81E1_7, CYP93C, and VR) were obtained, which all showed high levels after drought treatment. Notably, one R2R3-MYB transcription factor (Glyur000237s00014382.1), a critical regulator of flavonoid biosynthesis, achieved a significant upregulated expression as well. In the biosynthesis of glycyrrhizin, both gene and protein levels of bAS and CYP88D6 have been found with upregulated expression under drought conditions. Most of the differentially expressed genes (DEGs) and proteins (DEPs) showed similar expression patterns and positively related to metabolic profiles of flavonoid and saponin. We believe that suitable drought stress may contribute to the accumulation of bioactive constituents in licorice, and our research provides an insight into the genetic study and quality breeding in this plant.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, China; (D.W.); (L.J.); (T.X.)
| | - Dawei Wu
- School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, China; (D.W.); (L.J.); (T.X.)
| | - Liying Jiang
- School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, China; (D.W.); (L.J.); (T.X.)
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiantian Xie
- School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, China; (D.W.); (L.J.); (T.X.)
| |
Collapse
|
10
|
Feng Y, Liu L, Yu J, Chen R, Hu C, Wang H, Li D, Wang Z, Zhao Z. Combined transcriptomic and metabolomic analyses reveal the mechanism of debagged ‘Fuji’ apple sunburn. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Sun Y, Alseekh S, Fernie AR. Plant secondary metabolic responses to global climate change: A meta-analysis in medicinal and aromatic plants. GLOBAL CHANGE BIOLOGY 2023; 29:477-504. [PMID: 36271675 DOI: 10.1111/gcb.16484] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Plant secondary metabolites (SMs) play crucial roles in plant-environment interactions and contribute greatly to human health. Global climate changes are expected to dramatically affect plant secondary metabolism, yet a systematic understanding of such influences is still lacking. Here, we employed medicinal and aromatic plants (MAAPs) as model plant taxa and performed a meta-analysis from 360 publications using 1828 paired observations to assess the responses of different SMs levels and the accompanying plant traits to elevated carbon dioxide (eCO2 ), elevated temperature (eT), elevated nitrogen deposition (eN) and decreased precipitation (dP). The overall results showed that phenolic and terpenoid levels generally respond positively to eCO2 but negatively to eN, while the total alkaloid concentration was increased remarkably by eN. By contrast, dP promotes the levels of all SMs, while eT exclusively exerts a positive influence on the levels of phenolic compounds. Further analysis highlighted the dependence of SM responses on different moderators such as plant functional types, climate change levels or exposure durations, mean annual temperature and mean annual precipitation. Moreover, plant phenolic and terpenoid responses to climate changes could be attributed to the variations of C/N ratio and total soluble sugar levels, while the trade-off supposition contributed to SM responses to climate changes other than eCO2 . Taken together, our results predicted the distinctive SM responses to diverse climate changes in MAAPs and allowed us to define potential moderators responsible for these variations. Further, linking SM responses to C-N metabolism and growth-defence balance provided biological understandings in terms of plant secondary metabolic regulation.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-Sen), Nanjing, China
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
12
|
Zhu F, Sun Y, Jadhav SS, Cheng Y, Alseekh S, Fernie AR. The Plant Metabolic Changes and the Physiological and Signaling Functions in the Responses to Abiotic Stress. Methods Mol Biol 2023; 2642:129-150. [PMID: 36944876 DOI: 10.1007/978-1-0716-3044-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Global climate change has altered, and will further alter, rainfall patterns and temperatures likely causing more frequent drought and heat waves, which will consequently exacerbate abiotic stresses of plants and significantly decrease the yield and quality of crops. On the one hand, the global demand for food is ever-increasing owing to the rapid increase of the human population. On the other hand, metabolic responses are one of the most important mechanisms by which plants adapt to and survive to abiotic stresses. Here we therefore summarize recent progresses including the plant primary and secondary metabolic responses to abiotic stresses and their function in plant resistance acting as antioxidants, osmoregulatory, and signaling factors, which enrich our knowledge concerning commonalities of plant metabolic responses to abiotic stresses, including their involvement in signaling processes. Finally, we discuss potential methods of metabolic fortification of crops in order to improve their abiotic stress tolerance.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Yuming Sun
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Sagar Sudam Jadhav
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| |
Collapse
|
13
|
Yeganeh E, Vatankhah E, Toghranegar Z, Amanifar S. Arbuscular Mycorrhiza Alters Metal Uptake and the Physio-biochemical Responses of Glycyrrhiza glabra in a Lead Contaminated Soil. GESUNDE PFLANZEN 2022; 75:1-17. [PMID: 38625265 PMCID: PMC9584271 DOI: 10.1007/s10343-022-00752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/19/2022] [Indexed: 04/17/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi can affect the host's ability to cope with several environmental stresses, such as heavy metal stress. Therefore, an experiment was conducted to assess the effect of the Funneliformis mosseae inoculation on growth and physio-biochemical parameters and lead (Pb) accumulation in liquorice (Glycyrrhiza glabra L.) under Pb stress. A factorial experiment was performed with the combination of two factors, fungi (inoculated and non-inoculated (NM)) and soil Pb levels (0, 150, 300, and 450 mg kg-1 soil) with four replicates. In the presence of Pb, symbiosis with F. mosseae exert positive effect on growth parameters, which was more significant in shoots than roots. Mycorrhization improved fresh and dry weights and length in shoot by 147, 112.5 and 83%, respectively, compared to NM plants at Pb150 level. Moreover, F. mosseae significantly increased tolerance index and the concentrations of soluble sugars and flavonoids in shoots and proline, phosphorus, potassium, calcium, zinc and manganese in shoots and roots but decreased their malondialdehyde concentrations under Pb stress. The Pb concentrations, transfer and bioaccumulation factors of mycorrhizal plants were less than non-mycorrhizal ones. A positive correlation was also observed between glomalin secretion and colonization rate in Pb treated soils. These results indicate the importance of mycorrhizal colonization in alleviating the Pb-induced stress in liquorice, mainly through improving the nutrition, modifying reactive oxygen species detoxifying metabolites and reducing the translocation of Pb to shoots. Observations revealed that mycorrhization of liquorice would be an efficient strategy to use in the phytoremediation practices of Pb-contaminated soils.
Collapse
Affiliation(s)
- Elham Yeganeh
- Department of Biology, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Elahe Vatankhah
- Department of Biology, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Zohreh Toghranegar
- Department of Biology, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Setareh Amanifar
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| |
Collapse
|
14
|
Zhang D, Yang Z, Song X, Zhang F, Liu Y. TMT-based proteomic analysis of liquorice root in response to drought stress. BMC Genomics 2022; 23:524. [PMID: 35854220 PMCID: PMC9297632 DOI: 10.1186/s12864-022-08733-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drought stress is a serious threat to land use efficiency and crop yields worldwide. Understanding the mechanisms that plants use to withstand drought stress will help breeders to develop drought-tolerant medicinal crops. Liquorice (Glycyrrhiza uralensis Fisch.) is an important medicinal crop in the legume family and is currently grown mostly in northwest China, it is highly tolerant to drought. Given this, it is considered an ideal crop to study plant stress tolerance and can be used to identify drought-resistant proteins. Therefore, to understand the effects of drought stress on protein levels of liquorice, we undertook a comparative proteomic analysis of liquorice seedlings grown for 10 days in soil with different relative water content (SRWC of 80%, 65%, 50% and 35%, respectively). We used an integrated approach of Tandem Mass Tag labeling in conjunction with LC-MS/MS. RESULTS A total of 7409 proteins were identified in this study, of which 7305 total proteins could be quantified. There were 837 differentially expressed proteins (DEPs) identified after different drought stresses. Compared with CK, 123 DEPs (80 up-regulated and 43 down-regulated) were found in LS; 353 DEPs (254 up-regulated and 99 down-regulated) in MS; and 564 DEPs (312 up-regulated and 252 down-regulated) in SS.The number of differentially expressed proteins increased with increasing water stress, and the number of up-regulated proteins was higher than that of down-regulated proteins in the different drought stress treatments compared with the CK. Used systematic bioinformatics analysis of these data to identify informative proteins we showed that osmolytes such as cottonseed sugars and proline accumulated under light drought stress and improved resistance. Under moderate and severe drought stress, oxidation of unsaturated fatty acids and accumulation of glucose and galactose increased in response to drought stress. Under moderate and severe drought stress synthesis of the terpene precursors, pentacene 2,3-epoxide and β-coumarin, was inhibited and accumulation of triterpenoids (glycyrrhetinic acid) was also affected. CONCLUSIONS These data provide a baseline reference for further study of the downstream liquorice proteome in response to drought stress. Our data show that liquorice roots exhibit specific response mechanisms to different drought stresses.
Collapse
Affiliation(s)
- Dong Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China.,Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Zhongren Yang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China. .,Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| | - Xiaoqing Song
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China.,Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Fenglan Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China.,Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Yan Liu
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| |
Collapse
|
15
|
Chaudhry S, Sidhu GPS. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. PLANT CELL REPORTS 2022; 41:1-31. [PMID: 34351488 DOI: 10.1007/s00299-021-02759-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/18/2021] [Indexed: 05/20/2023]
Abstract
Global climate change is identified as a major threat to survival of natural ecosystems. Climate change is a dynamic, multifaceted system of alterations in environmental conditions that affect abiotic and biotic components of the world. It results in alteration in environmental conditions such as heat waves, intensity of rainfall, CO2 concentration and temperature that lead to rise in new pests, weeds and pathogens. Climate change is one of the major constraints limiting plant growth and development worldwide. It impairs growth, disturbs photosynthesis, and reduces physiological responses in plants. The variations in global climate have gained the attention of researchers worldwide, as these changes negatively affect the agriculture by reducing crop productivity and food security. With this background, this review focuses on the effects of elevated atmospheric CO2 concentration, temperature, drought and salinity on the morphology, physiology and biochemistry of plants. Furthermore, this paper outlines an overview on the reactive oxygen species (ROS) production and their impact on the biochemical and molecular status of plants with increased climatic variations. Also additionally, different tolerance strategies adopted by plants to combat environmental adversities have been discussed.
Collapse
Affiliation(s)
- Smita Chaudhry
- Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Gagan Preet Singh Sidhu
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
16
|
Pant P, Pandey S, Dall'Acqua S. The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chem Biodivers 2021; 18:e2100345. [PMID: 34533273 DOI: 10.1002/cbdv.202100345] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022]
Abstract
Medicinal plants, a source of different phytochemical compounds, are now subjected to a variety of environmental stresses during their growth and development. Different ecologically limiting factors including temperature, carbon dioxide, lighting, ozone, soil water, soil salinity and soil fertility has significant impact on medicinal plants' physiological and biochemical responses, as well as the secondary metabolic process. Secondary metabolites (SMs) are useful for assessing the quality of therapeutic ingredients and nowadays, these are used as important natural derived drugs such as immune suppressant, antibiotics, anti-diabetic, and anti-cancer. Plants have the ability to synthesize a variety of secondary metabolites to cope with the negative effects of stress. Here, we focus on how individual environmental variables influence the accumulation of plant secondary metabolites. A total of 48 articles were found to be relevant to the review topic during our systematic review. The review showed the influence of different environmental variables on SMs production and accumulation is complex suggesting the relationship are not only species-specific but also related to increases and decline in SMs by up to 50 %. Therefore, this review improves our understanding of plant SMs ability to adapt to key environmental factors. This can aid in the efficient and long-term optimization of cultivation techniques under ambient environmental conditions in order to maximize the quality and quantity of SMs in plants.
Collapse
Affiliation(s)
- Poonam Pant
- Central Institute of Science and Technology, Kathmandu, Nepal
| | - Sudip Pandey
- Madan Bhandari University of Science and Technology, Lalitpur, Nepal
| | - Stefano Dall'Acqua
- DSF Department of Pharmaceutical and Pharmacological Science, via Marzolo, University of Padova, 35121, Padova, Italy
| |
Collapse
|
17
|
Hosseini MS, Samsampour D, Zahedi SM, Zamanian K, Rahman MM, Mostofa MG, Tran LSP. Melatonin alleviates drought impact on growth and essential oil yield of lemon verbena by enhancing antioxidant responses, mineral balance, and abscisic acid content. PHYSIOLOGIA PLANTARUM 2021; 172:1363-1375. [PMID: 33462814 DOI: 10.1111/ppl.13335] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 05/18/2023]
Abstract
Melatonin has recently emerged as a multifunctional biomolecule with promising aspects in plant stress tolerance. The present study examined the effects of foliar-sprayed melatonin (0, 100, and 200 μM) on growth and essential oil yield attributes of lemon verbena (Lippia citriodora) under water-shortage (mild, moderate and severe). Results revealed that melatonin minimized drought effects on lemon verbena, resulting in improved growth and essential oils yield. Drought impositions gradually and significantly reduced several growth parameters, such as plant height and biomass, whereas melatonin application revived the growth performance of lemon verbena. Melatonin protected the photosynthetic pigments and helped maintain the mineral balance at all levels of drought. Melatonin stimulated the accumulation of proline, soluble sugars and abscisic acid, which were positively correlated with a better preservation of leaf water status in drought-stressed plants. Melatonin also prevented oxidative damages by enhancing the superoxide dismutase, ascorbate peroxidase and catalase activities. Furthermore, increased levels of total phenolic compounds, chicoric acid, caffeic acid and chlorogenic acid, as well as ascorbate and total antioxidant capacity in melatonin-sprayed drought-stressed plants indicated that melatonin helped verbena plants to sustain antioxidant and medicinal properties during drought. Finally, melatonin treatments upheld the concentrations and yield of essential oils in the leaves of lemon verbena regardless of drought severities. These results provided new insights into melatonin-mediated drought tolerance in lemon verbena, and this strategy could be implemented for the successful cultivation of lemon verbena, and perhaps other medicinal plants, in drought-prone areas worldwide.
Collapse
Affiliation(s)
- Marjan Sadat Hosseini
- Department of Horticultural Science, Faculty of Agriculture, University of Hormozgan, Bandar Abbas, Iran
| | - Davood Samsampour
- Department of Horticultural Science, Faculty of Agriculture, University of Hormozgan, Bandar Abbas, Iran
| | - Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Kazem Zamanian
- Department of Soil Science of Temperate Ecosystems, Georg August University of Goettingen, Goettingen, Germany
| | - Md Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
18
|
Hosseini MS, Ebrahimi M, Samsampour D, Abadía J, Khanahmadi M, Amirian R, Ghafoori IN, Ghaderi-Zefrehei M, Gogorcena Y. Association analysis and molecular tagging of phytochemicals in the endangered medicinal plant licorice (Glycyrrhiza glabra L.). PHYTOCHEMISTRY 2021; 183:112629. [PMID: 33516043 DOI: 10.1016/j.phytochem.2020.112629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 05/12/2023]
Abstract
Licorice (Glycyrrhiza glabra L.) is a medicinal plant species valued in many countries in Asia and Europe for its phytochemical characteristics. Licorice biodiversity is becoming threatened nowadays in Iran due to increasing demand and a drastic decline of its natural habitats. Therefore, licorice domestication would be necessary in the near future, and molecular breeding would help to introduce genotypes suitable for cultivation. The present study was carried out with 170 individual licorice plants sampled in the wild in 59 localizations in 21 provinces of Iran. The association of 436 polymorphic AFLP markers, produced by 15 primer combinations (EcoRI/MseI), with six phenotypic phytochemical traits was studied. The AMOVA analysis show gene diversity among and within localizations. The population structure analysis identified two main sub-populations with significant genetic variation. Significant associations were identified between three markers (E3/M40-4, E34/M4-12 and E12/M31-15) and glycyrrhizin concentration, and between four markers (E11/M34-12, E11/M34-15, E9/M7-29, and E9/M7-30) and phenolic compounds contents. Markers detected can be useful in the domestication of licorice as well as in breeding programs. Licorice sampled in four localizations (KBA1, KBA2, SKh2 and Fa1) were found to be superior in terms of glycyrrhizin and antioxidants content, and therefore they can be considered as elite genotypes which could be included in the domestication process.
Collapse
Affiliation(s)
- Marjan Sadat Hosseini
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 85135-487, Isfahan, Iran; Department of Horticultural Science, Faculty of Agriculture, University of Hormozgan, P.O.Box, 3995, Bandar Abbas, Iran.
| | - Morteza Ebrahimi
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 85135-487, Isfahan, Iran.
| | - Davood Samsampour
- Department of Horticultural Science, Faculty of Agriculture, University of Hormozgan, P.O.Box, 3995, Bandar Abbas, Iran.
| | - Javier Abadía
- Department of Plant Nutrition, Aula Dei Experimental Station (CSIC), P.O. Box 13034, 50059, Zaragoza, Spain.
| | - Morteza Khanahmadi
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 85135-487, Isfahan, Iran.
| | - Rasool Amirian
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 85135-487, Isfahan, Iran.
| | - Iman Naseh Ghafoori
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 85135-487, Isfahan, Iran.
| | - Mostafa Ghaderi-Zefrehei
- Department of Genetic and Animal Breeding, Faculty of Agriculture, Yasouj University, P.O. Box 75918-74831, Yasouj, Iran.
| | - Yolanda Gogorcena
- Department of Pomology, Aula Dei Experimental Station (CSIC), P.O. Box 13034, 50059, Zaragoza, Spain.
| |
Collapse
|
19
|
Han YX, Jia QJ, Yang DF, Chai WG, Zhang XM, He QL, Liang ZS. Current advances in environmental stimuli regulating the glycyrrhizic acid biosynthesis pathway. Fitoterapia 2021; 151:104860. [PMID: 33582265 DOI: 10.1016/j.fitote.2021.104860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/23/2021] [Accepted: 02/06/2021] [Indexed: 11/29/2022]
Abstract
Glycyrrhizic acid, the main active ingredient of licorice, has good antibacterial, anti-tumor, anti-viral, anti-inflammatory, and immunostimulatory activities. However, the content of glycyrrhizic acid fluctuates greatly in different licorice cultivars, and production depends on plant sources, which greatly limits its development and applications. Therefore, increasing glycyrrhizic acid content has become a research priority. In recent years, regulation of the glycyrrhizic acid biosynthesis pathway has been analyzed, the downstream synthesis pathway in licorice has been fully investigated, some key genes have been cloned, polymorphisms have been studied, and the content of glycyrrhizic acid was shown to be regulated by environmental stimuli. This work has provided a basis for studying the regulation mechanism of the glycyrrhizic acid synthesis pathway. This review summarizes and discusses relevant research to provide a current understanding of the glycyrrhizic acid synthesis pathway and its regulation in licorice.
Collapse
Affiliation(s)
- Yu-Xuan Han
- Zhejiang Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiao-Jun Jia
- Zhejiang Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dong-Feng Yang
- Zhejiang Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wei-Guo Chai
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Xue-Min Zhang
- Tianjing Tasly Modern TCM Resources CO.,LTD, Tianjin, China
| | - Qiu-Ling He
- Zhejiang Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Zong-Suo Liang
- Zhejiang Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
20
|
Zhao D, Luan Y, Shi W, Zhang X, Meng J, Tao J. A Paeonia ostii caffeoyl-CoA O-methyltransferase confers drought stress tolerance by promoting lignin synthesis and ROS scavenging. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110765. [PMID: 33487350 DOI: 10.1016/j.plantsci.2020.110765] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 05/23/2023]
Abstract
Paeonia ostii is an emerging woody oil crop, but drought severely inhibits its growth and promotion in arid or semiarid areas, and little is known about the mechanism governing this inhibition. In this study, the full-length cDNA of a caffeoyl-CoA O-methyltransferase gene (CCoAOMT) from P. ostii was isolated, and determined to be comprised of 987 bp. PoCCoAOMT encoded a 247-amino acid protein, which was located in the nucleus and cytosol. Significantly higher PoCCoAOMT transcription was detected in P. ostii treated with drought stress. Subsequently, the constitutive overexpression of PoCCoAOMT in tobacco significantly conferred drought stress tolerance. Under drought stress, transgenic lines exhibited lower reactive oxygen species (ROS) accumulation, and higher antioxidant enzyme activities and photosynthesis. Moreover, the expression levels of senescence-associated genes were significantly downregulated, whereas the expression levels of lignin biosynthetic genes and PoCCoAOMT were significantly upregulated in transgenic lines. Similarly, transgenic lines produced significantly higher lignin, especially guaiacyl-lignin. These results suggest that PoCCoAOMT is a vital gene in promoting lignin synthesis and ROS scavenging to confer drought stress tolerance in P. ostii.
Collapse
Affiliation(s)
- Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yuting Luan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wenbo Shi
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiayan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiasong Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
21
|
Svensk M, Coste S, Gérard B, Gril E, Julien F, Maillard P, Stahl C, Leroy C. Drought effects on resource partition and conservation among leaf ontogenetic stages in epiphytic tank bromeliads. PHYSIOLOGIA PLANTARUM 2020; 170:488-507. [PMID: 32623731 DOI: 10.1111/ppl.13161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Studying the response to drought stress of keystone epiphytes such as tank bromeliads is essential to better understand their resistance capacity to future climate change. The objective was to test whether there is any variation in the carbon, water and nutrient status among different leaf ontogenetic stages in a bromeliad rosette subjected to a gradient of drought stress. We used a semi-controlled experiment consisting in a gradient of water shortage in Aechmea aquilega and Lutheria splendens. For each bromeliad and drought treatment, three leaves were collected based on their position in the rosette and several functional traits related to water and nutrient status, and carbon metabolism were measured. We found that water status traits (relative water content, leaf succulence, osmotic and midday water potentials) and carbon metabolism traits (carbon assimilation, maximum quantum yield of photosystem II, chlorophyll and starch contents) decreased with increasing drought stress, while leaf soluble sugars and carbon, nitrogen and phosphorus contents remained unchanged. The different leaf ontogenetic stages showed only marginal variations when subjected to a gradient of drought. Resources were not reallocated between different leaf ontogenetic stages but we found a reallocation of soluble sugars from leaf starch reserves to the root system. Both species were capable of metabolic and physiological adjustments in response to drought. Overall, this study advances our understanding of the resistance of bromeliads faced with increasing drought stress and paves the way for in-depth reflection on their strategies to cope with water shortage.
Collapse
Affiliation(s)
- Mia Svensk
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, 97310, France
- Grazing Systems, Agroscope, Route de Duillier 50, Nyon, 1260, Suisse
| | - Sabrina Coste
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Bastien Gérard
- INRAE, UMR Silva, AgroParisTech, Université de Lorraine, Nancy, F-54000, France
| | - Eva Gril
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, 97310, France
- UMR 'Ecologie et Dynamique des Systèmes Anthropisées' (EDYSAN, UMR 7058 CNRS-UPJV), Univ. de Picardie Jules Verne, Amiens, France
| | - Frédéric Julien
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, 31062, France
| | - Pascale Maillard
- INRAE, UMR Silva, AgroParisTech, Université de Lorraine, Nancy, F-54000, France
| | - Clément Stahl
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Céline Leroy
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, 97310, France
| |
Collapse
|
22
|
Đurić M, Subotić A, Prokić L, Trifunović-Momčilov M, Cingel A, Vujičić M, Milošević S. Morpho-Physiological and Molecular Evaluation of Drought and Recovery in Impatiens walleriana Grown Ex Vitro. PLANTS 2020; 9:plants9111559. [PMID: 33202704 PMCID: PMC7697770 DOI: 10.3390/plants9111559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
This study was carried out to examine the drought effect on development, physiological, biochemical and molecular parameters in Impatiens walleriana grown ex vitro. Experiment design included three treatments: Control plants—grown under optimal watering (35%–37% of soil moisture content), drought-stressed plants—non-irrigated to reach 15% and 5% of soil moisture content and recovery plants—rehydrated for four days to reach optimal soil moisture content. Drought reduced fresh weight, total leaf area, as well as dry weight of I. walleriana shoots. Drought up-regulated expression of abscisic acid (ABA) biosynthesis genes 9-cis-epoxycarotenoid dioxygenase 4 (NCED4) and abscisic aldehyde oxidase 2 (AAO2) and catabolic gene ABA 8′-hydroxylase 3 (ABA8ox3) which was followed by increased ABA content in the leaves. Decrement in water potential of shoots during the drought was not accompanied with increased amino acid proline content. We detected an increase in chlorophyll, carotenoid, total polyphenols and flavonols content under drought conditions, as well as malondialdehyde, hydrogen peroxide and DPPH (1,1′-diphenyl-2-picrylhydrazyl) activity. Increased antioxidant enzyme activities (superoxide dismutase, peroxidase and catalase) throughout drought were also determined. Recovery treatment was significant for neutralizing drought effect on growth parameters, shoot water potential, proline content and genes expression.
Collapse
Affiliation(s)
- Marija Đurić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (A.S.); (M.T.-M.); (A.C.); (S.M.)
- Correspondence: ; Tel.: +381-11-207-8425
| | - Angelina Subotić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (A.S.); (M.T.-M.); (A.C.); (S.M.)
| | - Ljiljana Prokić
- Department for Agrochemistry and Physiology of Plants, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Milana Trifunović-Momčilov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (A.S.); (M.T.-M.); (A.C.); (S.M.)
| | - Aleksandar Cingel
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (A.S.); (M.T.-M.); (A.C.); (S.M.)
| | - Milorad Vujičić
- Department of Plant Physiology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia;
| | - Snežana Milošević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (A.S.); (M.T.-M.); (A.C.); (S.M.)
| |
Collapse
|
23
|
The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165692] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plants are often exposed to unfavorable environmental conditions, for instance abiotic stresses, which dramatically alter distribution of plant species among ecological niches and limit the yields of crop species. Among these, drought stress is one of the most impacting factors which alter seriously the plant physiology, finally leading to the decline of the crop productivity. Drought stress causes in plants a set of morpho-anatomical, physiological and biochemical changes, mainly addressed to limit the loss of water by transpiration with the attempt to increase the plant water use efficiency. The stomata closure, one of the first consistent reactions observed under drought, results in a series of consequent physiological/biochemical adjustments aimed at balancing the photosynthetic process as well as at enhancing the plant defense barriers against drought-promoted stress (e.g., stimulation of antioxidant systems, accumulation of osmolytes and stimulation of aquaporin synthesis), all representing an attempt by the plant to overcome the unfavorable period of limited water availability. In view of the severe changes in water availability imposed by climate change factors and considering the increasing human population, it is therefore of outmost importance to highlight: (i) how plants react to drought; (ii) the mechanisms of tolerance exhibited by some species/cultivars; and (iii) the techniques aimed at increasing the tolerance of crop species against limited water availability. All these aspects are necessary to respond to the continuously increasing demand for food, which unfortunately parallels the loss of arable land due to changes in rainfall dynamics and prolonged period of drought provoked by climate change factors. This review summarizes the most updated findings on the impact of drought stress on plant morphological, biochemical and physiological features and highlights plant mechanisms of tolerance which could be exploited to increase the plant capability to survive under limited water availability. In addition, possible applicative strategies to help the plant in counteracting unfavorable drought periods are also discussed.
Collapse
|
24
|
Zahedi SM, Hosseini MS, Abadía J, Marjani M. Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry (Fragaria × ananassa Duch.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:313-323. [PMID: 32135480 DOI: 10.1016/j.plaphy.2020.02.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 05/18/2023]
Abstract
The increasing salinity in soils and irrigation water is a major concern for growers of strawberry, a salt-sensitive horticultural crop. The hormone melatonin (N-acetyl-5-methoxytryptamine) is involved in many biological processes and affects plant responses to environmental stresses. The effects of weekly 100 and 200 μM melatonin sprays on leaf composition parameters (photosynthetic pigment and macronutrient concentrations, oxidative stress markers, antioxidant defense systems and abscisic acid concentrations), fruit yield and quality parameters (soluble solids, total acidity, ascorbic acid, total antioxidants and phenolics and sugars), and leaf and fruit melatonin have been studied in strawberry grown under non-saline, moderate and intense salinity conditions (0, 40 and 80 mM NaCl, respectively). Salinity led to decreases in yield, fruit quality parameters and leaf photosynthetic pigments and macronutrient concentrations, as well as to increases in oxidative stress, with melatonin foliar application alleviating all these changes. On the other hand, salinity led to increases in the leaf levels of antioxidant enzymes, abscisic acid and melatonin, with foliar applications of melatonin boosting those increases. In the absence of salinity stress, melatonin led to smaller changes in all parameters in the same direction to that observed in the presence of salinity. Furthermore, melatonin resulted in increases in strawberry fruit yield and quality, especially in plants grown under salinity. Results indicate that the effects of melatonin application are associated with a boost in leaf antioxidant enzymes and abscisic acid, and support that the application of melatonin is a promising tool for mitigating salt stress in strawberry.
Collapse
Affiliation(s)
- Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Marjan Sadat Hosseini
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Javier Abadía
- Department of Plant Nutrition, Aula Dei Experimental Station (CSIC), Zaragoza, Spain
| | - Mina Marjani
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| |
Collapse
|
25
|
Behdad A, Mohsenzadeh S, Azizi M, Moshtaghi N. Salinity effects on physiological and phytochemical characteristics and gene expression of two Glycyrrhiza glabra L. populations. PHYTOCHEMISTRY 2020; 171:112236. [PMID: 31923723 DOI: 10.1016/j.phytochem.2019.112236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/01/2019] [Accepted: 12/19/2019] [Indexed: 05/28/2023]
Abstract
Glycyrrhiza glabra (licorice) is a medicinal plant with valuable specialised metabolites such as triterpene sweetener glycyrrhizin. Salinity stress is the main environmental stress limiting plant growth and development. The effects of six levels of NaCl (0, 100, 200, 400, 600, and 800 mM) on growth, osmolyte content, oxidative stress markers, antioxidant enzyme activities, K+/Na+ ratio, glycyrrhizin content, and gene expression of glycyrrhizin biosynthesis (bAS, CYP88D6, and CYP72A154) were investigated in licorice rhizomes of two populations. The results showed that the salt stress progressively reduced the growth parameters and increased the proline concentrations in the rhizomes. K+/Na+ ratio showed a significant decrease under salinity as compared to the controls. Salt stress resulted in oxidative stress on the rhizomes, as indicated by increased lipid peroxidation and hydrogen peroxide concentrations and elevated the activities of antioxidant enzymes (i.e., ascorbate peroxidase and superoxide dismutase). The glycyrrhizin content increased only under 100 and 200 mM NaCl treatments. The same trend was observed in the expression of bAS, CYP88D6, and CYP72A154 genes in Fars population. Fars population was found to have more glycyrrhizin content than Khorasan population. But, growth, glycyrrhizin content, and biosynthesis genes of glycyrrhizin showed more reduction in Khorasan population as compared to those of Fars population. The results indicate that the application of 100 mM NaCl up-regulated the expression of key genes involved in the biosynthesis of triterpenoid saponins and directly enhanced the production of glycyrrhizin. Accordingly, G. glabra can be introduced as a halophyte plant.
Collapse
Affiliation(s)
- Assieh Behdad
- Biology Department, Shiraz University, Shiraz, 71454, Iran.
| | | | - Majid Azizi
- Department of Horticultural Science, Ferdowsi University of Mashhad, Iran.
| | - Nasrin Moshtaghi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran.
| |
Collapse
|
26
|
Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:80-89. [PMID: 31951944 DOI: 10.1016/j.plaphy.2020.01.006] [Citation(s) in RCA: 371] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/12/2019] [Accepted: 01/04/2020] [Indexed: 05/25/2023]
Abstract
Secondary metabolites (SMs) of medicinal plants are the material basis of their clinically curative effects. They are also important indicators for evaluating the quality of medicinal materials. However, the synthesis and accumulation of SMs are very complex, which are affected by many factors including internal developmental genetic circuits (regulated gene, enzyme) and by external environment factors (light, temperature, water, salinity, etc.). Currently, lots of literatures focused on the effect of environmental factors on the synthesis and accumulation of SMs of medicinal plants, the effect of the developmental growth and genetic factors on the synthesis and accumulation of SMs still lack systematic classification and summary. Here, we have given the review base on our previous works on the morphological development of medicinal plants and their secondary metabolites, and systematically outlined the literature reports how different environmental factors affected the synthesis and accumulation of SMs. The results of our reviews can know how developmental and environmental factors qualitatively and quantitatively influence SMs of medicinal plants and how these can be integrated as tools to quality control, as well as on the improvement of clinical curative effects by altering their genomes, and/or growth conditions.
Collapse
Affiliation(s)
- Yanqun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Fu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China
| | - Michael R Sussman
- Biotechnology Center, University of Wisconsin, Madison, WI, 53706, USA
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
27
|
Cordell GA. Cyberecoethnopharmacolomics. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112134. [PMID: 31377262 DOI: 10.1016/j.jep.2019.112134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Development of a new term which describes the contemporary, composite, constituent sciences of ethnopharmacology. AIM OF THE STUDY To discuss the polysyllabic term cyberecoethnopharmacolomics in the context of the future of ethnopharmacology in global health care. MATERIALS AND METHODS Literature background and assessment from the prior literature, diverse databases, and personal discussions. RESULTS The profiles and literature background with contemporary and future thoughts regarding the concepts and practices of cyber-, eco-, ethno-, pharmacol-, and -omics, and their impact in ethnopharmacology for the future are presented in the context of integrated health care systems. CONCLUSIONS Ethnopharmacology has a major role to play in global health care if the relevant sciences and cutting-edge technologies can coalesce synergistically as a responsive, evidence-based health care practice.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., Evanston, IL, USA; Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
28
|
Tay S, He J, Yam TW. CAM plasticity in epiphytic tropical orchid species responding to environmental stress. BOTANICAL STUDIES 2019; 60:7. [PMID: 31087187 PMCID: PMC6513927 DOI: 10.1186/s40529-019-0255-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/30/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND To counteract its dramatic species endangerment caused by extensive loss of habitat, Singapore is currently re-introducing into nature some of the native orchids to conserve and improve their germplasm. A main challenge of re-introduction is growing and establishing these plants under natural conditions, which are semi-arid with periodic drought. In this study, six native species were examined, of which three, Bulbophyllum vaginatum, Dendrobium leonis and Phalaenopsis cornu-cervi, are viewed as CAM species while the other three, Coelogyne rochussenii, Coelogyne mayeriana, and Bulbophyllum membranaceum are usually characterized as C3 species. We aimed to compare their physiological responses to drought under two different light conditions: (1) moderate light (photosynthetic photon flux density, PPFD of 900 μmol m-2 s-1) and (2) low light (PPFD < 100 μmol m-2 s-1). RESULTS After 7 weeks of drought under moderate light (DRML), photosynthetic light utilization was reduced in all six species, and relative water content (RWC) in leaves decreased to < 50% in CAM orchids, compared to > 50% in C3 species, while RWC in pseudobulbs (produced by 4 of the species) fell to < 50%. Both effects were reversed after 14 weeks of re-watering. Proline concentration in leaves increased in the CAM orchids and B. membranaceum (60-130 µmol g-1 FW), and CAM acidity increased (0.2 to 0.8 mmol H+/g fresh weight) in leaves and pseudobulbs of most species including C3 orchids after 7 weeks of DRML, but to lesser extent in B. membranaceum. CONCLUSION In the six native orchid species tested, osmoregulation by proline and CAM expression were adaptive responses to maintain photosynthesis under drought stress. Expression of CAM is a significant adaptive mechanism to drought in both C3 and CAM orchids. For C3 B. membranaceum, this CAM activity is best described as 'CAM-idling'. We propose that any future work in understanding adaptive responses in Singapore's native epiphytic orchids to periodic water deficit should also analyse the significance of CAM plasticity on water conservation within the plant and the regulation of CAM by prevailing water status and light intensity.
Collapse
Affiliation(s)
- Shawn Tay
- Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637 616, Singapore
| | - Jie He
- Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637 616, Singapore.
| | - Tim Wing Yam
- Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, Singapore, 259 569, Singapore
| |
Collapse
|
29
|
Abstract
Ornamental plants use unique adaptive mechanisms to overcome the negative effects of drought stress. A large number of species grown in the Mediterranean area offer the opportunity to select some for ornamental purposes with the ability to adapt to drought conditions. The plants tolerant to drought stress show different adaptation mechanisms to overcome drought stress, including morphological, physiological, and biochemical modifications. These responses include increasing root/shoot ratio, growth reduction, leaf anatomy change, and reduction of leaf size and total leaf area to limit water loss and guarantee photosynthesis. In this review, the effect of drought stress on photosynthesis and chlorophyll a fluorescence is discussed. Recent information on the mechanisms of signal transduction and the development of drought tolerance in ornamental plants is provided. Finally, drought-induced oxidative stress is analyzed and discussed. The purpose of this review is to deepen our knowledge of how drought may modify the morphological and physiological characteristics of plants and reduce their aesthetic value—that is, the key parameter of assessment of ornamental plants.
Collapse
|