1
|
Guan Y, Jiang L, Wang Y, Liu G, Wu J, Luo H, Chen S, Chen F, Niinemets Ü, Chen F, Jiang Y. CmMYC2-CmMYBML1 module orchestrates the resistance to herbivory by synchronously regulating the trichome development and constitutive terpene biosynthesis in Chrysanthemum. THE NEW PHYTOLOGIST 2024; 244:914-933. [PMID: 39223898 DOI: 10.1111/nph.20081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Trichomes are specialized epidermal outgrowths covering the aerial parts of most terrestrial plants. There is a large species variability in occurrence of different types of trichomes such that the molecular regulatory mechanism underlying the formation and the biological function of trichomes in most plant species remain unexplored. Here, we used Chrysanthemum morifolium as a model plant to explore the regulatory network in trichome formation and terpenoid synthesis and unravel the physical and chemical roles of trichomes in constitutive defense against herbivore feeding. By analyzing the trichome-related genes from transcriptome database of the trichomes-removed leaves and intact leaves, we identified CmMYC2 to positively regulate both development of T-shaped and glandular trichomes as well as the content of terpenoids stored in glandular trichomes. Furthermore, we found that the role of CmMYC2 in trichome formation and terpene synthesis was mediated by interaction with CmMYBML1. Our results reveal a sophisticated molecular mechanism wherein the CmMYC2-CmMYBML1 feedback inhibition loop regulates the formation of trichomes (non-glandular and glandular) and terpene biosynthesis, collectively contributing to the enhanced resistance to Spodoptera litura larvae feeding. Our findings provide new insights into the novel regulatory network by which the plant synchronously regulates trichome density for the physical and chemical defense against herbivory.
Collapse
Affiliation(s)
- Yaqin Guan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - You Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanhua Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiayi Wu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Luo
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Yifan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
He B, Zhou Y, Peng Y, Xu D, Tong J, Dong Y, Fang L, Mao J. Comparative Metabolomic Responses of Three Rhododendron Cultivars to the Azalea Lace Bug ( Stephanitis pyrioides). PLANTS (BASEL, SWITZERLAND) 2024; 13:2569. [PMID: 39339545 PMCID: PMC11434956 DOI: 10.3390/plants13182569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Rhododendron, with its high ornamental value and ecological benefits, is severely impacted by the azalea lace bug (Stephanitis pyrioides), one of its primary pests. This study utilized three Rhododendron cultivars, 'Zihe', 'Yanzhimi', and 'Taile', to conduct a non-targeted metabolomic analysis of leaf samples before and after azalea lace bug stress using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GCMS) and liquid chromatography-mass spectrometry (LCMS). A total of 81 volatile metabolites across 11 categories and 448 nonvolatile metabolites across 55 categories were detected. Significant differences in metabolic profiles were observed among the different cultivars after pest stress. A total of 47 volatile compounds and 49 nonvolatile metabolites were upregulated in the most susceptible cultivar 'Zihe', including terpenes, alcohols, nucleotides, amino acids, and carbohydrates, which are involved in energy production and secondary metabolism. Conversely, 'Yanzhimi' showed a downtrend in both the differential volatiles and metabolites related to purine metabolism and zeatin biosynthesis under pest stress. The resistant cultivar 'Taile' exhibited moderate changes, with 17 volatile compounds and 17 nonvolatile compounds being upregulated and enriched in the biosynthesis of amino acids, pentose, glucuronate interconversions, carbon metabolism, etc. The phenylalanine metabolic pathway played an important role in the pest resistance of different susceptible cultivars, and relevant metabolites such as phenylethyl alcohol, methyl salicylate, and apigenin may be involved in the plant's resistance response. The results of this study provide a new perspective on the metabolomics of Rhododendron-insect interactions and offer references for the development of pest control strategies.
Collapse
Affiliation(s)
- Bei He
- Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
- Horticulture and Forestry College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Zhou
- Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - Yu Peng
- Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - Dongyun Xu
- Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - Jun Tong
- Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - Yanfang Dong
- Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - Linchuan Fang
- Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - Jing Mao
- Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| |
Collapse
|
3
|
Farhan M, Pan J, Hussain H, Zhao J, Yang H, Ahmad I, Zhang S. Aphid-Resistant Plant Secondary Metabolites: Types, Insecticidal Mechanisms, and Prospects for Utilization. PLANTS (BASEL, SWITZERLAND) 2024; 13:2332. [PMID: 39204768 PMCID: PMC11360209 DOI: 10.3390/plants13162332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Aphids pose a significant threat to global agricultural crop production, leading to widespread pesticide use and resistance. This necessitates the use of alternative substances, like plant secondary metabolites (PSMs). Plants have developed protective compounds known as alkaloids, terpenoids, phenolics, sulfur- and nitrogen-containing metabolites. These compounds exhibit promising characteristics against aphids, such as antifeedant, aphicidal, and disrupting survival fitness. This review highlights the importance and application of secondary metabolites in combating aphid populations. Different insect-resistant substances have different mechanisms for managing aphids and other pests, including defensive signaling, inhibiting growth, and attracting natural predators by releasing herbivore-induced volatiles (HIPV). The application of plant secondary metabolites as biopesticides has proven to be an effective, economical, and eco-friendly alternative to synthetic pesticide chemicals. Furthermore, this review comprehensively discusses the principle role of plant secondary metabolites, encouraging sustainable agricultural practices and emphasizing the integrated management of the aphid population.
Collapse
Affiliation(s)
- Muhammad Farhan
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.F.); (J.P.); (J.Z.); (H.Y.)
| | - Jilong Pan
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.F.); (J.P.); (J.Z.); (H.Y.)
| | - Hammad Hussain
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China;
| | - Jun Zhao
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.F.); (J.P.); (J.Z.); (H.Y.)
| | - Hanjing Yang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.F.); (J.P.); (J.Z.); (H.Y.)
| | - Ishtiaq Ahmad
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Shuai Zhang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.F.); (J.P.); (J.Z.); (H.Y.)
| |
Collapse
|
4
|
Annaz H, El Fakhouri K, Ben Bakrim W, Mahdi I, El Bouhssini M, Sobeh M. Bergamotenes: A comprehensive compile of their natural occurrence, biosynthesis, toxicity, therapeutic merits and agricultural applications. Crit Rev Food Sci Nutr 2024; 64:7343-7362. [PMID: 36876517 DOI: 10.1080/10408398.2023.2184766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Sesquiterpenoids constitute the largest subgroup of terpenoids that have numerous applications in pharmaceutical, flavor, and fragrance industries as well as biofuels. Bergamotenes, a type of bicyclic sesquiterpenes, are found in plants, insects, and fungi with α-trans-bergamotene as the most abundant compound. Bergamotenes and their related structures (Bergamotane sesquiterpenoids) have been shown to possess diverse biological activities such as antioxidant, anti-inflammatory, immunosuppressive, cytotoxic, antimicrobial, antidiabetic, and insecticidal effects. However, studies on their biotechnological potential are still limited. This review compiles the characteristics of bergamotenes and their related structures in terms of occurrence, biosynthesis pathways, and biological activities. It further discusses their functionalities and potential applications in pharmaceutical, nutraceuticals, cosmeceuticals, and pest management sectors. This review also opens novel perspectives in identifying and harnessing bergamotenes for pharmaceutical and agricultural purposes.
Collapse
Affiliation(s)
- Hassan Annaz
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Widad Ben Bakrim
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- African Sustainable Agriculture Research Institute (ASARI), College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Ismail Mahdi
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mustapha El Bouhssini
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mansour Sobeh
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
5
|
Pizzo JS, Rutz T, Ojeda AS, Kartowikromo KY, Hamid AM, Simmons A, da Silva ALBR, Rodrigues C. Quantifying terpenes in tomato leaf extracts from different species using gas chromatography-mass spectrometry (GC-MS). Anal Biochem 2024; 689:115503. [PMID: 38453049 DOI: 10.1016/j.ab.2024.115503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024]
Abstract
Terpenes play a vital role in plant defense; tomato plants produce a diverse range of terpenes within specialized glandular trichomes, influencing interactions with herbivores, predators, and pollinators. This study employed two distinct methods, namely leaf dip and maceration, to extract trichomes from tomato leaves. Terpene quantification was carried out using Gas Chromatography-Mass Spectrometry (GC-MS). The leaf dip method proved effective in selectively targeting trichome content, revealing unique extraction patterns compared to maceration. The GC-MS method demonstrated high linearity, accuracy, sensitivity, and low limits of detection and quantification. Application of the method to different tomato species (Solanum pennellii, Solanum pimpinellifolium, Solanum galapagense, Solanum habrochaites, and Solanum lycopersicum) identified significant variation in terpene content among these species, highlighting the potential of specific accessions for breeding programs. Notably, the terpene α-zingiberene, known for its repellency against whiteflies, was found in high quantities (211.90-9155.13 μg g-1) in Solanum habrochaites accession PI209978. These findings provide valuable insights into terpenoid diversity for plant defense mechanisms, guiding future research on developing pest-resistant tomato cultivars. Additionally, the study underscores the broader applications of terpenes in agriculture.
Collapse
Affiliation(s)
- Jessica S Pizzo
- Department of Horticulture, Auburn University, Auburn, AL, 36849, USA
| | - Thiago Rutz
- Department of Horticulture, Auburn University, Auburn, AL, 36849, USA
| | - Ann S Ojeda
- Department of Geosciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Ahmed M Hamid
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Alvin Simmons
- USDA-ARS, U.S., Vegetable Laboratory, Charleston, SC, 29414, USA
| | | | - Camila Rodrigues
- Department of Horticulture, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
6
|
Hung JC, Li NJ, Peng CY, Yang CC, Ko SS. Safe Farming: Ultrafine Bubble Water Reduces Insect Infestation and Improves Melon Yield and Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:537. [PMID: 38498517 PMCID: PMC10891724 DOI: 10.3390/plants13040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Melon pest management relies on the excessive application of pesticides. Reducing pesticide spraying has become a global issue for environmental sustainability and human health. Therefore, developing a new cropping system that is sustainable and eco-friendly is important. This study found that melon seedlings irrigated with ultrafine water containing H2 and O2 (UFW) produced more root hairs, increased shoot height, and produced more flowers than the control irrigated with reverse osmosis (RO) water. Surprisingly, we also discovered that UFW irrigation significantly reduced aphid infestation in melons. Based on cryo-scanning electron microscope (cryo-SEM) observations, UFW treatment enhanced trichome development and prevented aphid infestation. To investigate whether it was H2 or O2 that helped to deter insect infestation, we prepared UF water enrichment of H2 (UF+H2) and O2 (UF+O2) separately and irrigated melons. Cryo-SEM results indicated that both UF+H2 and UF+O2 can increase the density of trichomes in melon leaves and petioles. RT-qPCR showed that UF+H2 significantly increased the gene expression level of the trichome-related gene GLABRA2 (GL2). We planted melons in a plastic greenhouse and irrigated them with ultrafine water enrichment of hydrogen (UF+H2) and oxygen (UF+O2). The SPAD value, photosynthetic parameters, root weight, fruit weight, and fruit sweetness were all better than the control without ultrafine water irrigation. UFW significantly increased trichome development, enhanced insect resistance, and improved fruit traits. This system thus provides useful water management for pest control and sustainable agricultural production.
Collapse
Affiliation(s)
- Jo-Chi Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan;
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Ning-Juan Li
- Season Agricultural Technology Co., Ltd., Tainan 711, Taiwan; (N.-J.L.); (C.-Y.P.)
| | - Ching-Yen Peng
- Season Agricultural Technology Co., Ltd., Tainan 711, Taiwan; (N.-J.L.); (C.-Y.P.)
| | - Ching-Chieh Yang
- Season Agricultural Technology Co., Ltd., Tainan 711, Taiwan; (N.-J.L.); (C.-Y.P.)
| | - Swee-Suak Ko
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan;
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| |
Collapse
|
7
|
Dugan D, Bell RJ, Brkljača R, Rix C, Urban S. A Review of the Ethnobotanical Use, Chemistry and Pharmacological Activities of Constituents Derived from the Plant Genus Geijera ( Rutaceae). Metabolites 2024; 14:81. [PMID: 38392973 PMCID: PMC11154539 DOI: 10.3390/metabo14020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Geijera Schott is a plant genus of the Rutaceae Juss. (rue and citrus) family, comprising six species which are all native to Oceania. Of the plants belonging to this genus, the most significant species that has a customary use is Geijera parviflora, which was used by Indigenous Australians, primarily as a pain reliever. Herein, a comprehensive review of the literature published on the genus Geijera from 1930 to 2023 was conducted. This is the first review for this plant genus, and it highlights the chemical constituents reported to date, together with the range of pharmacological properties described from the various species and different parts of the plant. These properties include anti-inflammatory, anti-microbial, anti-parasitic, insect repellent, analgesic, neuroactive, and anti-cancer activities. Finally, a reflection on some of the important areas for future focused studies of this plant genus is provided.
Collapse
Affiliation(s)
- Deepika Dugan
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| | - Rachael J. Bell
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| | - Robert Brkljača
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia;
| | - Colin Rix
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| | - Sylvia Urban
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| |
Collapse
|
8
|
Greenleaf J, Holásková I, Rowen E, Gutensohn M, Turcotte R, Park YL. Arthropods Associated with Invasive Frangula alnus (Rosales: Rhamnaceae): Implications for Invasive Plant and Insect Management. INSECTS 2023; 14:913. [PMID: 38132587 PMCID: PMC10871088 DOI: 10.3390/insects14120913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
The invasive shrub glossy buckthorn (Frangula alnus) has been progressively colonizing the Northeastern United States and Southeastern Canada for more than a century. To determine the dominant arthropod orders and species associated with F. alnus, field surveys were conducted for two years across 16 plots within the Allegheny National Forest, Pennsylvania, USA. Statistical analyses were employed to assess the impact of seasonal variation on insect order richness and diversity. The comprehensive arthropod collection yielded 2845 insects and arachnids, with hemipterans comprising the majority (39.8%), followed by dipterans (22.3%) and arachnids (15.5%). Notably, 16.2% of the hemipterans collected were in the immature stages, indicating F. alnus as a host for development. The two dominant insect species of F. alnus were Psylla carpinicola (Hemiptera: Psyllidae) and Drosophila suzukii (Diptera: Drosophilidae); D. suzukii utilized F. alnus fruits for reproduction. Species richness and diversity exhibited significant variations depending on the phenology of F. alnus. The profiles of volatile compounds emitted from the leaves and flowers of F. alnus were analyzed to identify factors that potentially contribute to the attraction of herbivores and pollinators. The results of our study will advance the development of novel F. alnus management strategies leveraging the insects associated with this invasive species.
Collapse
Affiliation(s)
- Jennifer Greenleaf
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; (J.G.); (E.R.); (M.G.); (R.T.)
| | - Ida Holásková
- Office of Statistics and Data Analytics, West Virginia Agricultural and Forestry Experiment Station, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA;
| | - Elizabeth Rowen
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; (J.G.); (E.R.); (M.G.); (R.T.)
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; (J.G.); (E.R.); (M.G.); (R.T.)
| | - Richard Turcotte
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; (J.G.); (E.R.); (M.G.); (R.T.)
- State, Private and Tribal Forestry, USDA Forest Service, Morgantown, WV 26505, USA
| | - Yong-Lak Park
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; (J.G.); (E.R.); (M.G.); (R.T.)
| |
Collapse
|
9
|
Triplett E, Hayes C, Emendack Y, Longing S, Monclova C, Simpson C, Laza HE. Leaf structural traits mediating pre-existing physical innate resistance to sorghum aphid in sorghum under uninfested conditions. PLANTA 2023; 258:46. [PMID: 37468707 DOI: 10.1007/s00425-023-04194-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
KEY MESSAGE We found four indicative traits of innate immunity. Sorghum-resistant varieties had a greater trichome, stomatal and chloroplast density, and smaller mesophyll intercellular width than susceptible varieties. The sorghum aphid (SA), Melanaphis sorghi (Theobald), can severely reduce sorghum yield. The contribution of structural traits to SA resistance has not been extensively studied. Moreover, the current screening method for resistance is inherently subjective for resistance and requires infestation in plants. Quantifying the microanatomical basis of innate SA resistance is crucial for developing reliable screening tools requiring no infestation. The goal of this study was to identify structural traits linked to physical innate SA resistance in sorghum. We conducted controlled environment and field experiments under no SA infestation conditions, with two resistant (R. LBK1 and R. Tx2783) and two susceptible (R. Tx7000 and R. Tx430) varieties. Leaf tissues collected at the fifth leaf stage in the controlled environment experiment were analyzed for the epidermal and mesophyll traits using light and transmission electron microscopy. Leaf tissues collected at physiological maturity in the field experiment were analyzed for surface traits using scanning electron microscopy. Our results showed that stomatal density, trichome density, trichome length, and chloroplast density are key leaf structural traits indicative of physical innate SA resistance. We found that resistant varieties had a greater density of trichomes (39%), stomata (31%), and chloroplast (42%), and smaller mesophyll intercellular width (- 52%) than susceptible varieties. However, the chloroplast, mitochondria, and epidermal cell ultrastructural traits were ineffective indicators of SA resistance. Our findings provide the foundation for developing an objective high-throughput method for SA resistance screening. We suggest a follow-up validation experiment to confirm our outcomes under SA infestation conditions.
Collapse
Affiliation(s)
- Ethan Triplett
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Chad Hayes
- Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, 79415, USA
| | - Yves Emendack
- Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, 79415, USA
| | - Scott Longing
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | | | - Catherine Simpson
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Haydee E Laza
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
10
|
Salazar-Mendoza P, Magalhães DM, Lourenção AL, Bento JMS. Differential defensive and nutritional traits among cultivated tomato and its wild relatives shape their interactions with a specialist herbivore. PLANTA 2023; 257:76. [PMID: 36894799 DOI: 10.1007/s00425-023-04108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Cultivated tomato presented lower constitutive volatiles, reduced morphological and chemical defenses, and increased leaf nutritional quality that affect its resistance against the specialist herbivore Tuta absoluta compared to its wild relatives. Plant domestication process has selected desirable agronomic attributes that can both intentionally and unintentionally compromise other important traits, such as plant defense and nutritional value. However, the effect of domestication on defensive and nutritional traits of plant organs not exposed to selection and the consequent interactions with specialist herbivores are only partly known. Here, we hypothesized that the modern cultivated tomato has reduced levels of constitutive defense and increased levels of nutritional value compared with its wild relatives, and such differences affect the preference and performance of the South American tomato pinworm, Tuta absoluta-an insect pest that co-evolved with tomato. To test this hypothesis, we compared plant volatile emissions, leaf defensive (glandular and non-glandular trichome density, and total phenolic content), and nutritional traits (nitrogen content) among the cultivated tomato Solanum lycopersicum and its wild relatives S. pennellii and S. habrochaites. We also determined the attraction and ovipositional preference of female moths and larval performance on cultivated and wild tomatoes. Volatile emissions were qualitatively and quantitatively different among the cultivated and wild species. Glandular trichomes density and total phenolics were lower in S. lycopersicum. In contrast, this species had a greater non-glandular trichome density and leaf nitrogen content. Female moths were more attracted and consistently laid more eggs on the cultivated S. lycopersicum. Larvae fed on S. lycopersicum leaves had a better performance reaching shorter larval developmental times and increasing the pupal weight compared to those fed on wild tomatoes. Overall, our study documents that agronomic selection for increased yields has altered the defensive and nutritional traits in tomato plants, affecting their resistance to T. absoluta.
Collapse
Affiliation(s)
- Paolo Salazar-Mendoza
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| | - Diego M Magalhães
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - André L Lourenção
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - José Maurício S Bento
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
11
|
Phytochemical Profile, Preliminary Toxicity, and Antioxidant Capacity of the Essential Oils of Myrciaria floribunda (H. West ex Willd.) O. Berg. and Myrcia sylvatica (G. Mey) DC. (Myrtaceae). Antioxidants (Basel) 2022; 11:antiox11102076. [PMID: 36290799 PMCID: PMC9658195 DOI: 10.3390/antiox11102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
The essential oils (EOs) of Myrciaria floribunda (Mflo) and Myrcia sylvatica (Msyl) (Myrtaceae) were obtained by hydrodistillation. The analysis of volatile constituents was performed by GC/MS. Preliminary toxicity was assessed on Artemia salina Leach. The antioxidant capacity was measured by the ABTS•+ and DPPH• radical inhibitory activities. The results indicate that the Mflo EO had the highest yield (1.02%), and its chemical profile was characterized by high levels of hydrocarbon (65.83%) and oxygenated (25.74%) monoterpenes, especially 1,8-cineole (23.30%), terpinolene (22.23%) and α-phellandrene (22.19%). Regarding the Msyl EO, only hydrocarbon (51.60%) and oxygenated (46.52%) sesquiterpenes were identified in the sample, with (Z)-α-trans-bergamotene (24.57%), α-sinensal (13.44%), and (Z)-α-bisabolene (8.33%) at higher levels. The EO of Mflo exhibited moderate toxicity against A. salina (LC50 = 82.96 ± 5.20 µg.mL−1), while the EO of Msyl was classified as highly toxic (LC50 = 2.74 ± 0.50 µg.mL−1). In addition, relative to Trolox, the EOs of Mflo and Msyl showed significant inhibitory effects (p < 0.0001) against the DPPH• radical. This study contributes to the expansion of chemical and biological knowledge on the EOs of Myrtaceae species from the Amazon region.
Collapse
|
12
|
Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea. Food Microbiol 2022; 106:104040. [DOI: 10.1016/j.fm.2022.104040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
|
13
|
Wang F, Park YL, Gutensohn M. Epidermis-Specific Metabolic Engineering of Sesquiterpene Formation in Tomato Affects the Performance of Potato Aphid Macrosiphum euphorbiae. FRONTIERS IN PLANT SCIENCE 2021; 12:793313. [PMID: 35003184 PMCID: PMC8727598 DOI: 10.3389/fpls.2021.793313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Tomato produces a number of terpenes in their glandular trichomes that contribute to host plant resistance against pests. While glandular trichomes of cultivated tomato Solanum lycopersicum primarily accumulate a blend of monoterpenes, those of the wild tomato species Solanum habrochaites produce various sesquiterpenes. Recently, we have identified two groups of sesquiterpenes in S. habrochaites accessions that negatively affect the performance and choice behavior of the potato aphid (Macrosiphum euphorbiae). Aphids are piercing-sucking herbivores that use their mouthpart to penetrate and probe plant tissues in order to ultimately access vascular tissue and ingest phloem sap. Because secondary metabolites produced in glandular trichomes can affect the initial steps of the aphid feeding behavior, introducing the formation of defensive terpenes into additional plant tissues via metabolic engineering has the potential to reduce tissue penetration by aphids and in consequence virus transmission. Here, we have developed two multicistronic expression constructs based on the two sesquiterpene traits with activity toward M. euphorbiae previously identified in S. habrochaites. Both constructs are composed of sequences encoding a prenyl transferase and a respective S. habrochaites terpene synthase, as well as enhanced green fluorescent protein as a visible marker. All three coding sequences were linked by short nucleotide sequences encoding the foot-and-mouth disease virus 2A self-processing oligopeptide which allows their co-expression under the control of one promoter. Transient expression of both constructs under the epidermis-specific Arabidopsis CER5-promoter in tomato leaves demonstrated that formation of the two sets of defensive sesquiterpenes, β-caryophyllene/α-humulene and (-)-endo-α-bergamotene/(+)-α-santalene/(+)-endo-β-bergamotene, can be introduced into new tissues in tomato. The epidermis-specific transgene expression and terpene formation were verified by fluorescence microscopy and tissue fractionation with subsequent analysis of terpene profiles, respectively. In addition, the longevity and fecundity of M. euphorbiae feeding on these engineered tomato leaves were significantly reduced, demonstrating the efficacy of this novel aphid control strategy.
Collapse
|
14
|
Roy A, Bucksch A. Root hairs vs. trichomes: Not everyone is straight! CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102151. [PMID: 34864319 DOI: 10.1016/j.pbi.2021.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Trichomes show 47 morphological phenotypes, while literature reports only two root hair phenotypes in all plants. However, could hair-like structures exist below-ground in a similar wide range of morphologies like trichomes? Genetic mutants and root hair stress phenotypes point to the possibility of uncharacterized morphological variation existing belowground. For example, such root hairs in Arabidopsis (Arabidopsis thaliana) can be wavy, curled, or branched. We found hints in the literature about hair-like structures that emerge before root hairs belowground. As such, these early emerging hair structures can be potential exceptions to the contrasting morphological variation between trichomes and root hairs. Here, we show a previously unreported 'hooked' hair structure growing below-ground in common bean. The unique 'hooking' shape distinguishes the 'hooked hair' morphologically from root hairs. Currently, we cannot fully characterize the phenotype of our observation due to the lack of automated methods for phenotyping root hairs. This phenotyping bottleneck also handicaps the discovery of more morphology types that might exist below-ground as manual screening across species is slower than computer-assisted high-throughput screening.
Collapse
Affiliation(s)
- Ankita Roy
- University of Georgia Franklin College of Arts and Sciences, USA
| | | |
Collapse
|
15
|
Larcenaire C, Wang F, Holásková I, Turcotte R, Gutensohn M, Park YL. Characterization of the Insect Assemblage and Associated Floral Volatiles of Black Cherry (Prunus serotina). PLANTS 2021; 10:plants10102195. [PMID: 34686004 PMCID: PMC8538322 DOI: 10.3390/plants10102195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023]
Abstract
Black cherry is an ecologically important high-value wood. A decline of its regeneration has been reported in the USA, which could be associated with a lack of pollination. This study was conducted to identify insects visiting black cherry flowers, to determine whether insects captured on the flowers carry black cherry pollen and to identify the volatile organic compounds (VOCs) emitted by flowers of black cherry. A two-year insect survey was conducted before, during and after the black cherry bloom. A total of 9533 insects were captured in traps and Diptera was the most abundant (64.1%). Significantly more insects in Diptera, Lepidoptera and Thysanoptera were captured in the traps installed in the canopy than those on the ground, and Anthalia bulbosa (Diptera: Hybotidae) was the dominant species. Electron microscopy analyses demonstrated that insects captured in the canopy indeed carried black cherry pollen. Black cherry flowers emitted a VOC blend that is composed of 34 compounds and dominated by β-ocimene and several phenylpropanoids/benzenoids. This floral VOC profile is similar to that of other pollinator-dependent Prunus species. This study reports pollinator insects and associated VOCs, for the first time, that could play a significant role in the pollination and regeneration of black cherry.
Collapse
Affiliation(s)
- Craig Larcenaire
- Forest Health Protection, USDA Forest Service, Morgantown, WV 26505, USA; (C.L.); (R.T.)
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; (F.W.); (M.G.)
| | - Fumin Wang
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; (F.W.); (M.G.)
| | - Ida Holásková
- Office of Statistics, West Virginia Agriculture and Forestry Experiment Station, West Virginia University, Morgantown, WV 26506, USA;
| | - Richard Turcotte
- Forest Health Protection, USDA Forest Service, Morgantown, WV 26505, USA; (C.L.); (R.T.)
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; (F.W.); (M.G.)
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; (F.W.); (M.G.)
| | - Yong-Lak Park
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; (F.W.); (M.G.)
- Correspondence: ; Tel.: +1-304-293-2882
| |
Collapse
|
16
|
Backus EA, Shugart HJ, Gutierrez J, Ebert TA, Walker MA. Field-Collected Glassy-Winged Sharpshooters (Hemiptera: Cicadellidae) Perform More Xylella fastidiosa-Inoculating Behaviors on Susceptible Vitis vinifera cv. 'Chardonnay' Than on Resistant Vitis champinii Grapevines. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1991-2008. [PMID: 34494096 DOI: 10.1093/jee/toab141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 06/13/2023]
Abstract
The glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae: Cicadellinae), is an introduced vector of the xylem-dwelling bacterium Xylella fastidiosa Wells et al. (Xanthomonadales: Xanthomonadaceae) in California. Once acquired, X. fastidiosa colonizes the functional foregut of the vector. Bacteria can be inoculated directly into grapevine xylem during the xylem cell acceptance process in sharpshooter stylet probing, represented by the X wave using electropenetrography (EPG). Since 2001, an effort has been underway to develop PD-resistant grapevines, Vitis vinifera L., through classical breeding of various species of resistant wild grapevines with more susceptible V. vinifera. The present study used EPG to compare H. vitripennis stylet probing behaviors in a factorial experiment between V. champinii (a V. candicans/V. rupestris natural hybrid with moderate trichomes) and V. vinifera cv. 'Chardonnay' (which lacks trichomes) that had been gently scraped to remove trichomes or was not scraped. Results showed that sharpshooters performed significantly more X waves/X. fastidiosa inoculation behaviors of overall longer duration on Chardonnay than on V. champinii, regardless of shaving or not-shaving to remove trichomes. In addition, trichomes caused more frequent standing/walking/test-probing behaviors on V. champinii, whose xylem was rapidly accepted for sharpshooter ingestion once probing began. Thus, EPG can detect a novel type of grapevine resistance to X. fastidiosa-to the vector's probing process and inoculation of bacteria-in addition to the bacterial infection and symptom development processes that are the basis for most resistance breeding today. Future research could use EPG to screen grapevines for this novel type of resistance.
Collapse
Affiliation(s)
- Elaine A Backus
- USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - Holly J Shugart
- USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
- Present Address: Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Jose Gutierrez
- Department of Biology, California State University, Fresno, CA, USA
- Present Address: Nichino America, Inc., Fresno, CA, USA
| | - Timothy A Ebert
- Department of Entomology, University of Florida, Citrus Research and Education Center, Lake Alfred, FL, USA
| | - M Andrew Walker
- Department of Viticulture and Enology, One Shields Ave., University of California, Davis, CA, USA
| |
Collapse
|
17
|
Kortbeek RWJ, Galland MD, Muras A, van der Kloet FM, André B, Heilijgers M, van Hijum SAFT, Haring MA, Schuurink RC, Bleeker PM. Natural variation in wild tomato trichomes; selecting metabolites that contribute to insect resistance using a random forest approach. BMC PLANT BIOLOGY 2021; 21:315. [PMID: 34215189 PMCID: PMC8252294 DOI: 10.1186/s12870-021-03070-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/20/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Plant-produced specialised metabolites are a powerful part of a plant's first line of defence against herbivorous insects, bacteria and fungi. Wild ancestors of present-day cultivated tomato produce a plethora of acylsugars in their type-I/IV trichomes and volatiles in their type-VI trichomes that have a potential role in plant resistance against insects. However, metabolic profiles are often complex mixtures making identification of the functionally interesting metabolites challenging. Here, we aimed to identify specialised metabolites from a wide range of wild tomato genotypes that could explain resistance to vector insects whitefly (Bemisia tabaci) and Western flower thrips (Frankliniella occidentalis). We evaluated plant resistance, determined trichome density and obtained metabolite profiles of the glandular trichomes by LC-MS (acylsugars) and GC-MS (volatiles). Using a customised Random Forest learning algorithm, we determined the contribution of specific specialised metabolites to the resistance phenotypes observed. RESULTS The selected wild tomato accessions showed different levels of resistance to both whiteflies and thrips. Accessions resistant to one insect can be susceptible to another. Glandular trichome density is not necessarily a good predictor for plant resistance although the density of type-I/IV trichomes, related to the production of acylsugars, appears to correlate with whitefly resistance. For type VI-trichomes, however, it seems resistance is determined by the specific content of the glands. There is a strong qualitative and quantitative variation in the metabolite profiles between different accessions, even when they are from the same species. Out of 76 acylsugars found, the random forest algorithm linked two acylsugars (S3:15 and S3:21) to whitefly resistance, but none to thrips resistance. Out of 86 volatiles detected, the sesquiterpene α-humulene was linked to whitefly susceptible accessions instead. The algorithm did not link any specific metabolite to resistance against thrips, but monoterpenes α-phellandrene, α-terpinene and β-phellandrene/D-limonene were significantly associated with susceptible tomato accessions. CONCLUSIONS Whiteflies and thrips are distinctly targeted by certain specialised metabolites found in wild tomatoes. The machine learning approach presented helped to identify features with efficacy toward the insect species studied. These acylsugar metabolites can be targets for breeding efforts towards the selection of insect-resistant cultivars.
Collapse
Affiliation(s)
- Ruy W J Kortbeek
- Green Life Science Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Marc D Galland
- Green Life Science Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Aleksandra Muras
- Green Life Science Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Frans M van der Kloet
- Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Bart André
- Enza Zaden Research & Development B.V, Haling 1E, 1602 DB, Enkhuizen, The Netherlands
| | - Maurice Heilijgers
- Green Life Science Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Sacha A F T van Hijum
- Radboud University Medical Center, Bacterial Genomics Group, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Michel A Haring
- Green Life Science Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Robert C Schuurink
- Green Life Science Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Petra M Bleeker
- Green Life Science Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Therezan R, Kortbeek R, Vendemiatti E, Legarrea S, de Alencar SM, Schuurink RC, Bleeker P, Peres LEP. Introgression of the sesquiterpene biosynthesis from Solanum habrochaites to cultivated tomato offers insights into trichome morphology and arthropod resistance. PLANTA 2021; 254:11. [PMID: 34160697 PMCID: PMC8222033 DOI: 10.1007/s00425-021-03651-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/29/2021] [Indexed: 05/13/2023]
Abstract
Cultivated tomatoes harboring the plastid-derived sesquiterpenes from S. habrochaites have altered type-VI trichome morphology and unveil additional genetic components necessary for piercing-sucking pest resistance. Arthropod resistance in the tomato wild relative Solanum habrochaites LA1777 is linked to specific sesquiterpene biosynthesis. The Sesquiterpene synthase 2 (SsT2) gene cluster on LA1777 chromosome 8 controls plastid-derived sesquiterpene synthesis. The main genes at SsT2 are Z-prenyltransferase (zFPS) and Santalene and Bergamotene Synthase (SBS), which produce α-santalene, β-bergamotene, and α-bergamotene in LA1777 round-shaped type-VI glandular trichomes. Cultivated tomatoes have mushroom-shaped type-VI trichomes with much smaller glands that contain low levels of monoterpenes and cytosolic-derived sesquiterpenes, not presenting the same pest resistance as in LA1777. We successfully transferred zFPS and SBS from LA1777 to cultivated tomato (cv. Micro-Tom, MT) by a backcrossing approach. The trichomes of the MT-Sst2 introgressed line produced high levels of the plastid-derived sesquiterpenes. The type-VI trichome internal storage-cavity size increased in MT-Sst2, probably as an effect of the increased amount of sesquiterpenes, although it was not enough to mimic the round-shaped LA1777 trichomes. The presence of high amounts of plastid-derived sesquiterpenes was also not sufficient to confer resistance to various tomato piercing-sucking pests, indicating that the effect of the sesquiterpenes found in the wild S. habrochaites can be insect specific. Our results provide for a better understanding of the morphology of S. habrochaites type-VI trichomes and paves the way to obtain insect-resistant tomatoes.
Collapse
Affiliation(s)
- Rodrigo Therezan
- Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture, Laboratory of Plant Developmental Genetics, University of Sao Paulo, Piracicaba, SP, 13418-900, Brazil
- Department of Plant Physiology, Green Life Science Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Ruy Kortbeek
- Department of Plant Physiology, Green Life Science Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Eloisa Vendemiatti
- Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture, Laboratory of Plant Developmental Genetics, University of Sao Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Saioa Legarrea
- Molecular and Chemical Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Severino M de Alencar
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Robert C Schuurink
- Department of Plant Physiology, Green Life Science Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Petra Bleeker
- Department of Plant Physiology, Green Life Science Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Lázaro E P Peres
- Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture, Laboratory of Plant Developmental Genetics, University of Sao Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
19
|
Gutensohn M, Henry LK, Gentry SA, Lynch JH, Nguyen TTH, Pichersky E, Dudareva N. Overcoming Bottlenecks for Metabolic Engineering of Sesquiterpene Production in Tomato Fruits. FRONTIERS IN PLANT SCIENCE 2021; 12:691754. [PMID: 34220915 PMCID: PMC8248349 DOI: 10.3389/fpls.2021.691754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Terpenoids are a large and diverse class of plant metabolites that also includes volatile mono- and sesquiterpenes which are involved in biotic interactions of plants. Due to the limited natural availability of these terpenes and the tight regulation of their biosynthesis, there is strong interest to introduce or enhance their production in crop plants by metabolic engineering for agricultural, pharmaceutical and industrial applications. While engineering of monoterpenes has been quite successful, expression of sesquiterpene synthases in engineered plants frequently resulted in production of only minor amounts of sesquiterpenes. To identify bottlenecks for sesquiterpene engineering in plants, we have used two nearly identical terpene synthases, snapdragon (Antirrhinum majus) nerolidol/linalool synthase-1 and -2 (AmNES/LIS-1/-2), that are localized in the cytosol and plastids, respectively. Since these two bifunctional terpene synthases have very similar catalytic properties with geranyl diphosphate (GPP) and farnesyl diphosphate (FPP), their expression in target tissues allows indirect determination of the availability of these substrates in both subcellular compartments. Both terpene synthases were expressed under control of the ripening specific PG promoter in tomato fruits, which are characterized by a highly active terpenoid metabolism providing precursors for carotenoid biosynthesis. As AmNES/LIS-2 fruits produced the monoterpene linalool, AmNES/LIS-1 fruits were found to exclusively produce the sesquiterpene nerolidol. While nerolidol emission in AmNES/LIS-1 fruits was 60- to 584-fold lower compared to linalool emission in AmNES/LIS-2 fruits, accumulation of nerolidol-glucosides in AmNES/LIS-1 fruits was 4- to 14-fold lower than that of linalool-glucosides in AmNES/LIS-2 fruits. These results suggest that only a relatively small pool of FPP is available for sesquiterpene formation in the cytosol. To potentially overcome limitations in sesquiterpene production, we transiently co-expressed the key pathway-enzymes hydroxymethylglutaryl-CoA reductase (HMGR) and 1-deoxy-D-xylulose 5-phosphate synthase (DXS), as well as the regulator isopentenyl phosphate kinase (IPK). While HMGR and IPK expression increased metabolic flux toward nerolidol formation 5.7- and 2.9-fold, respectively, DXS expression only resulted in a 2.5-fold increase.
Collapse
Affiliation(s)
- Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Laura K. Henry
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Scott A. Gentry
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Joseph H. Lynch
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Thuong T. H. Nguyen
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
20
|
Wang F, Park YL, Gutensohn M. Glandular Trichome-Derived Mono- and Sesquiterpenes of Tomato Have Contrasting Roles in the Interaction with the Potato Aphid Macrosiphum euphorbiae. J Chem Ecol 2021; 47:204-214. [PMID: 33447946 DOI: 10.1007/s10886-021-01243-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022]
Abstract
Secondary metabolites produced in glandular trichomes of tomato are involved in interactions with herbivores. In cultivated tomato (Solanum lycopersicum) glandular trichomes accumulate a blend of abundant monoterpenes and smaller amounts of a few sesquiterpenes. These mono- and sesquiterpenes are synthesized by three terpene synthases, TPS20 as well as TPS9 and TPS12, respectively. To study effects of these terpenes on performance and choice behavior of potato aphid (Macrosiphum euphorbiae), we utilized two tomato trichome mutants, hairless and odorless-2, that are differently affected in mono- and sesquiterpene production. Non-choice assays demonstrated that longevity and fecundity of M. euphorbiae were increased when kept on the trichome mutants. A principal component analysis of these aphid performance parameters and terpene production in the trichome mutants indicated that longevity and fecundity of M. euphorbiae were negatively correlated with production of the TPS12-derived sesquiterpenes β-caryophyllene and α-humulene. While we had previously shown that addition of pure β-caryophyllene/α-humulene to an artificial feeding diet affected M. euphorbiae apterae survivorship and feeding behavior, no such effects were observed here upon addition of a mixture of pure TPS20-derived monoterpenes. In olfactometer assays M. euphorbiae alates displayed differential choice behaviors towards the hairless and odorless-2 mutants suggesting a role of TPS20-derived monoterpenes in aphid attraction, which was further confirmed using a mixture of pure monoterpenes. Our analyses revealed contrasting roles of glandular trichome-derived terpenes in S. lycopersicum. While TPS12-derived sesquiterpenes contribute to host plant resistance against M. euphorbiae, TPS20-derived monoterpenes appear to be exploited as cue for host plant orientation by aphids.
Collapse
Affiliation(s)
- Fumin Wang
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, 1194 Evansdale Drive, Morgantown, WV, 26506, USA
| | - Yong-Lak Park
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, 1194 Evansdale Drive, Morgantown, WV, 26506, USA
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, 1194 Evansdale Drive, Morgantown, WV, 26506, USA.
| |
Collapse
|