1
|
Wu ZH, Li FF, Ruan LL, Feng Q, Zhang S, Li ZH, Otoo A, Tang J, Fu LJ, Liu TH, Ding YB. miR-181d-5p, which is upregulated in fetal growth restriction placentas, inhibits trophoblast fusion via CREBRF. J Assist Reprod Genet 2023; 40:2725-2737. [PMID: 37610607 PMCID: PMC10643557 DOI: 10.1007/s10815-023-02917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
PURPOSE Fetal growth restriction (FGR) is a common complication characterized by impaired placental function and unfavorable pregnancy outcomes. This study aims to elucidate the expression pattern of miR-181d-5p in FGR placentas and explore its effects on trophoblast fusion. METHODS The expression pattern of miR-181d-5p in human FGR placentas were evaluated using qRT-PCR. Western blot, qRT-PCR, and Immunofluorescence analysis were performed in a Forskolin (FSK)-induced BeWo cell fusion model following the transfection of miR-181d-5p mimic or inhibitor. Potential target genes for miR-181d-5p were identified by screening miRNA databases. The interaction between miR-181d-5p and Luman/CREB3 Recruitment Factor (CREBRF) was determined through a luciferase assay. Moreover, the effect of CREBRF on BeWo cell fusion was examined under hypoxic conditions. RESULTS Aberrant up-regulation of miR-181d-5p and altered expression of trophoblast fusion makers, including glial cell missing 1 (GCM1), Syncytin1 (Syn1), and E-cadherin (ECAD), were found in human FGR placentas. A down-regulation of miR-181d-5p expression was observed in the FSK-induced BeWo cell fusion model. Transfection of the miR-181d-5p mimic resulted in the inhibition of BeWo cell fusion, characterized by a down-regulation of GCM1 and Syn1, accompanied by an up-regulation of ECAD. Conversely, the miR-181d-5p inhibitor promoted BeWo cell fusion. Furthermore, miR-181d-5p exhibited negative regulation of CREBRF, which was significantly down-regulated in the hypoxia-induced BeWo cell model. The overexpression of CREBRF was effectively ameliorated the impaired BeWo cell fusion induced by hypoxia. CONCLUSIONS Our study demonstrated that miR-181d-5p, which is elevated in FGR placenta, inhibited the BeWo cell fusion through negatively regulating the expression of CREBRF.
Collapse
Affiliation(s)
- Zhi-Hong Wu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Fang-Fang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Ling-Ling Ruan
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Qian Feng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Shuang Zhang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Zhuo-Hang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Antonia Otoo
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China
| | - Li-Juan Fu
- Department of Pharmacology, the School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China.
- Academician Workstation, Changsha Medical University, Changsha, China.
| | - Tai-Hang Liu
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China.
| | - Yu-Bin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China.
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Sakahashi Y, Higashisaka K, Isaka R, Izutani R, Seo J, Furuta A, Yamaki-Ushijima A, Tsujino H, Haga Y, Nakashima A, Tsutsumi Y. Silver nanoparticles suppress forskolin-induced syncytialization in BeWo cells. Nanotoxicology 2022; 16:883-894. [PMID: 36595448 DOI: 10.1080/17435390.2022.2162994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Opportunities for the exposure of pregnant women to engineered nanoparticles have been increasing with the expanding use of these materials. Therefore, there are concerns that nanoparticles could have adverse effects on the establishment and maintenance of pregnancy. The effects of nanoparticles on the mother and fetus have been evaluated from this perspective, but there is still little knowledge about the effects on placentation and function acquisition, which are essential for the successful establishment and maintenance of pregnancy. Formation of the syncytiotrophoblast is indispensable for the acquisition of placental function, and impairment of syncytialization inevitably affects pregnancy outcomes. Here, we assessed the effect of nanoparticles on placental formation by using forskolin-treated BeWo cells, a typical in vitro model of trophoblast syncytialization. Immunofluorescence staining analysis revealed that silver nanoparticles with a diameter of 10 nm (nAg10) (at 0.156 µg/mL) significantly decreased the proportion of syncytialized BeWo cells, but gold nanoparticles with a diameter of 10 nm did not. Consistently, only nAg10 (at 0.156 µg/mL) significantly suppressed forskolin-induced elevation of CGB and SDC1 mRNA expression levels and human chorionic gonadotropin β production in a dose-dependent manner; these molecules are all markers of syncytialization. Besides, nAg10 significantly decreased the expression of ERVFRD-1, which encodes proteins associated with cell fusion. Moreover, nAg10 tended to suppress the expression of sFlt-1 e15a, a placental angiogenesis marker. Collectively, our data suggest that nAg10 could suppress formation of the syncytiotrophoblast and that induce placental dysfunction and the following poor pregnancy outcomes.
Collapse
Affiliation(s)
- Yuji Sakahashi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, Japan
| | - Ryo Isaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Rina Izutani
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Jiwon Seo
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Atsushi Furuta
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Akemi Yamaki-Ushijima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Hirofumi Tsujino
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,The Museum of Osaka University, Toyonaka, Osaka, Japan
| | - Yuya Haga
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
3
|
Zhang Y, Gao X, Bai X, Yao S, Chang YZ, Gao G. The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Transl Neurodegener 2022; 11:39. [PMID: 35996194 PMCID: PMC9395820 DOI: 10.1186/s40035-022-00313-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Furin is an important mammalian proprotein convertase that catalyzes the proteolytic maturation of a variety of prohormones and proproteins in the secretory pathway. In the brain, the substrates of furin include the proproteins of growth factors, receptors and enzymes. Emerging evidence, such as reduced FURIN mRNA expression in the brains of Alzheimer's disease patients or schizophrenia patients, has implicated a crucial role of furin in the pathophysiology of neurodegenerative and neuropsychiatric diseases. Currently, compared to cancer and infectious diseases, the aberrant expression of furin and its pharmaceutical potentials in neurological diseases remain poorly understood. In this article, we provide an overview on the physiological roles of furin and its substrates in the brain, summarize the deregulation of furin expression and its effects in neurodegenerative and neuropsychiatric disorders, and discuss the implications and current approaches that target furin for therapeutic interventions. This review may expedite future studies to clarify the molecular mechanisms of furin deregulation and involvement in the pathogenesis of neurodegenerative and neuropsychiatric diseases, and to develop new diagnosis and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoqin Gao
- Shijiazhuang People's Hospital, Hebei Medical University, Shijiazhuang, 050027, China
| | - Xue Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shanshan Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
4
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|
5
|
Higashisaka K. Health Effects and Safety Assurance of Nanoparticles in Vulnerable Generations. Biol Pharm Bull 2022; 45:806-812. [PMID: 35786586 DOI: 10.1248/bpb.b22-00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nanoparticles have a variety of useful functions. They have already been put to practical use in products in many industrial arenas, such as the cosmetics and food fields. Therefore, we cannot avoid the unintentional nanoparticle exposure of vulnerable people such as pregnant women and infants, and the importance of evaluating the safety of such vulnerable generations, who are highly sensitive to chemical substances, has been pointed out worldwide. However, it is still difficult to determine the hazards posed by nanoparticle exposure in everyday life. From this perspective, to analyze the risk from nanoparticles to vulnerable generations, nano-safety science research has been conducted through the collection of toxicity information on nanoparticles based on their physicochemical properties and kinetics via the association analysis of physicochemical properties, kinetics, and toxicity. The results of this nano-safety science research have been used in nano-safety design research to develop safer forms of nanoparticles. The findings of these studies will not only provide insights that will help us to formulate new policies for the risk management of nanoparticles; they will also lead directly to the development of sustainable nanotechnology (nanotechnology that can be safely, usefully, and sustainably used). These developments will contribute not only to the development of the nano-industry and the promotion of its social acceptance, but also to future developments in the field of health science.
Collapse
Affiliation(s)
- Kazuma Higashisaka
- Institute for Advanced Co-Creation Studies, Osaka University.,Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
6
|
FURIN and placental syncytialisation: a cautionary tale. Cell Death Dis 2021; 12:635. [PMID: 34155192 PMCID: PMC8217546 DOI: 10.1038/s41419-021-03898-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022]
Abstract
FURIN is a pro-protein convertase previously shown to be important for placental syncytialisation (Zhou et al. [1]), a process of cell fusion whereby placental cytotrophoblast cells fuse to form a multinucleated syncytium. This finding has been broadly accepted however, we have evidence suggesting the contrary. Spontaneously syncytialising term primary human trophoblast cells and BeWo choriocarcinoma cells were treated with either FURIN siRNA or negative control siRNA or the protease inhibitor, DEC-RVKR-CMK, or vehicle. Cells were then left to either spontaneously syncytialise (primary trophoblasts) or were induced to syncytialise with forskolin (BeWo). Effects on syncytialisation were measured by determining human chorionic gonadotrophin secretion and E-cadherin protein levels. We showed that FURIN is not important for syncytialisation in either cell type. However, in primary trophoblasts another protease also inhibited by DEC-RVKR-CMK, may be involved. Our results directly contrast with those published by Zhou et al. Zhou et al. however, used first trimester villous explants to study syncytialisation, and we used term primary trophoblasts. Therefore, we suggest that FURIN may be involved in syncytialisation of first trimester trophoblasts, but not term trophoblasts. What is more concerning is that our results using BeWo cells do not agree with their results, even though for the most part, we used the same experimental design. It is unclear why these experiments yielded different results, however we wanted to draw attention to simple differences in measuring syncytialisation or flaws in method reporting (including omission of cell line source and passage numbers, siRNA concentration and protein molecular weights) and choice of immunoblot loading controls, that could impact on experimental outcomes. Our study shows that careful reporting of methods by authors and thorough scrutiny by referees are vital. Furthermore, a universal benchmark for measuring syncytialisation is required so that various studies of syncytialisation can be validated.
Collapse
|
7
|
Bukowska-Ośko I, Popiel M, Kowalczyk P. The Immunological Role of the Placenta in SARS-CoV-2 Infection-Viral Transmission, Immune Regulation, and Lactoferrin Activity. Int J Mol Sci 2021; 22:5799. [PMID: 34071527 PMCID: PMC8198160 DOI: 10.3390/ijms22115799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
A pandemic of acute respiratory infections, due to a new type of coronavirus, can cause Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) and has created the need for a better understanding of the clinical, epidemiological, and pathological features of COVID-19, especially in high-risk groups, such as pregnant women. Viral infections in pregnant women may have a much more severe course, and result in an increase in the rate of complications, including spontaneous abortion, stillbirth, and premature birth-which may cause long-term consequences in the offspring. In this review, we focus on the mother-fetal-placenta interface and its role in the potential transmission of SARS-CoV-2, including expression of viral receptors and proteases, placental pathology, and the presence of the virus in neonatal tissues and fluids. This review summarizes the current knowledge on the anti-viral activity of lactoferrin during viral infection in pregnant women, analyzes its role in the pathogenicity of pandemic virus particles, and describes the potential evidence for placental blocking/limiting of the transmission of the virus.
Collapse
Affiliation(s)
- Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-091Warsaw, Poland;
| | - Marta Popiel
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| |
Collapse
|
8
|
The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol 2021; 6:899-909. [PMID: 33907312 DOI: 10.1038/s41564-021-00908-w] [Citation(s) in RCA: 478] [Impact Index Per Article: 119.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 entry requires sequential cleavage of the spike glycoprotein at the S1/S2 and the S2' cleavage sites to mediate membrane fusion. SARS-CoV-2 has a polybasic insertion (PRRAR) at the S1/S2 cleavage site that can be cleaved by furin. Using lentiviral pseudotypes and a cell-culture-adapted SARS-CoV-2 virus with an S1/S2 deletion, we show that the polybasic insertion endows SARS-CoV-2 with a selective advantage in lung cells and primary human airway epithelial cells, but impairs replication in Vero E6, a cell line used for passaging SARS-CoV-2. Using engineered spike variants and live virus competition assays and by measuring growth kinetics, we find that the selective advantage in lung and primary human airway epithelial cells depends on the expression of the cell surface protease TMPRSS2, which enables endosome-independent virus entry by a route that avoids antiviral IFITM proteins. SARS-CoV-2 virus lacking the S1/S2 furin cleavage site was shed to lower titres from infected ferrets and was not transmitted to cohoused sentinel animals, unlike wild-type virus. Analysis of 100,000 SARS-CoV-2 sequences derived from patients and 24 human postmortem tissues showed low frequencies of naturally occurring mutants that harbour deletions at the polybasic site. Taken together, our findings reveal that the furin cleavage site is an important determinant of SARS-CoV-2 transmission.
Collapse
|
9
|
Wu PY, Li TM, Chen SI, Chen CJ, Chiou JS, Lin MK, Tsai FJ, Wu YC, Lin TH, Liao CC, Huang SM, Lin YN, Liang WM, Lin YJ. Complementary Chinese Herbal Medicine Therapy Improves Survival in Patients With Pemphigus: A Retrospective Study From a Taiwan-Based Registry. Front Pharmacol 2020; 11:594486. [PMID: 33362549 PMCID: PMC7756119 DOI: 10.3389/fphar.2020.594486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
Pemphigus is a life-threatening and skin-specific inflammatory autoimmune disease, characterized by intraepidermal blistering between the mucous membranes and skin. Chinese herbal medicine (CHM) has been used as an adjunct therapy for treating many diseases, including pemphigus. However, there are still limited studies in effects of CHM treatment in pemphigus, especially in Taiwan. To more comprehensively explore the effect of long-term CHM treatment on the overall mortality of pemphigus patients, we performed a retrospective analysis of 1,037 pemphigus patients identified from the Registry for Catastrophic Illness Patients database in Taiwan. Among them, 229 and 177 patients were defined as CHM users and non-users, respectively. CHM users were young, predominantly female, and had a lesser Charlson comorbidity index (CCI) than non-CHM users. After adjusting for age, sex, prednisolone use, and CCI, CHM users had a lower overall mortality risk than non-CHM users (multivariate model: hazard ratio (HR): 0.422, 95% confidence interval (CI): 0.242–0.735, p = 0.0023). The cumulative incidence of overall survival was significantly higher in CHM users than in non-users (p = 0.0025, log rank test). Association rule mining and network analysis showed that there was one main CHM cluster with Qi–Ju–Di–Huang–Wan (QJDHW), Dan–Shen (DanS; Radix Salviae miltiorrhizae; Salvia miltiorrhiza Bunge), Jia–Wei–Xiao–Yao-–San (JWXYS), Huang–Lian (HL; Rhizoma coptidis; Coptis chinensis Franch.), and Di–Gu–Pi (DGP; Cortex lycii; Lycium barbarum L.), while the second CHM cluster included Jin–Yin–Hua (JYH; Flos lonicerae; Lonicera hypoglauca Miq.) and Lian–Qiao (LQ; Fructus forsythiae; Forsythia suspensa (Thunb.) Vahl). In Taiwan, CHMs used as an adjunctive therapy reduced the overall mortality to approximately 20% among pemphigus patients after a follow-up of more than 6 years. A comprehensive CHM list may be useful in future clinical trials and further scientific investigations to improve the overall survival in these patients.
Collapse
Affiliation(s)
- Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shu-I Chen
- Department of Chinese Medicine, Asia University Hospital, Taichung, Taiwan
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Jian-Shiun Chiou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ming-Kuem Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Yang-Chang Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ning Lin
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
10
|
Wang HL, Liang N, Huang DX, Zhao XY, Dang QY, Jiang XY, Xiao R, Yu HL. The effects of high-density lipoprotein and oxidized high-density lipoprotein on forskolin-induced syncytialization of BeWo cells. Placenta 2020; 103:199-205. [PMID: 33160253 DOI: 10.1016/j.placenta.2020.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The negative relationship between maternal high-density lipoprotein-cholesterol (HDL-c) level during pregnancy and infant birth weight has been found. Syncytialization (differentiation and fusion) of trophoblast cells is important to fetal development. HDL has an antioxidant effect, and has been proved to protect trophoblast functions including hormone secretion and invasion. However, HDL is susceptible to oxidation, and high concentrations of HDL impair cell growth and oxidized HDL (oxHDL) inhibits cell proliferation and migration. Moreover, the effects of HDL and oxHDL on trophoblast syncytialization have not been characterized. The aim of this study was to investigate the effects of HDL and oxHDL on trophoblast syncytialization. METHODS Human choriocarcinoma trophoblasts (BeWo cells) were treated with human HDL or oxHDL and then induced to differentiate by forskolin in syncytialization assays. Expression levels of mRNAs and proteins regulating syncytialization were detected by real-time PCR and western blotting, respectively. RESULTS Treatments of HDL at high concentrations reduced human chorionic gonadotropin (hCG) secretion, placental alkaline phosphatase activity and fusion rates, and decreased the expressions of GCM1 and ERVW-1 mRNA as well as phospho-MAPK1/3 (p-MAPK1/3) and total MAPK1/3 protein in the forskolin-induced syncytialization of BeWo cells. Furthermore, treatment of oxHDL (20 μg/ml) decreased hCG secretion, but increased the expression of p-MAPK1/3 protein. DISCUSSION These data suggested that both HDL at high concentrations and oxHDL inhibited BeWo cells syncytialization, and might be harmful to placental and fetal development.
Collapse
Affiliation(s)
- Hong-Liang Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ning Liang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Dong-Xu Huang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiao-Yan Zhao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Qin-Yu Dang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xin-Yin Jiang
- Departments of Health and Nutrition Sciences, Brooklyn College of City University of New York, NY, 11210, USA
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Huan-Ling Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
11
|
Morosin SK, Delforce SJ, Lumbers ER, Pringle KG. Cleavage of the soluble (pro)renin receptor (sATP6AP2) in the placenta. Placenta 2020; 101:49-56. [PMID: 32920451 DOI: 10.1016/j.placenta.2020.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The (pro)renin receptor (ATP6AP2) is cleaved and released as soluble ATP6AP2 (sATP6AP2). The sATP6AP2 is detected in plasma and urine and is elevated in women with gestational diabetes and preeclampsia. The source and cleavage pathway of sATP6AP2 in pregnancy is unknown. The syncytiotrophoblast is the major placental secretory layer and is in direct contact with maternal blood. Both FURIN and Site 1 protease (MBTPS1) cleave sATP6AP2 in non-placental cells. We postulated that ATP6AP2 was cleaved by FURIN and/or MBTPS1 and that sATP6AP2 is secreted by the placental syncytiotrophoblast. METHODS Term primary trophoblast cells were transfected with FURIN siRNA, negative control siRNA or vehicle. In a separate experiment, primary trophoblasts were treated with a pro-protein convertase inhibitor (DEC-RVKR-CMK), an MBTPS1 inhibitor (PF 429242) or vehicle. Trophoblasts were left to spontaneously syncytialise before cells and supernatants were collected and intracellular and extracellular sATP6AP2 levels analysed by immunoblot. RESULTS sATP6AP2 is secreted by placental trophoblasts. Levels of intra and extra-cellular sATP6AP2 decrease with syncytialisation (P = 0.01 and P = 0.02, respectively), as do FURIN mRNA (P = 0.0003) and protein (P = 0.0007). FURIN siRNA decreased FURIN mRNA and protein levels (both P < 0.0001). Neither FURIN siRNA or PF 429242 affected sATP6AP2 levels. DEC-RVKR-CMK significantly decreased extracellular sATP6AP2 protein levels (P = 0.02). DISCUSSION Soluble ATP6AP2 is secreted by placental trophoblasts and levels decrease with syncytialisation. DEC-RVKR-CMK, a broad inhibitor of pro-protein convertases reduced extracellular sATP6AP2 levels, but FURIN siRNA and MBTPS1 inhibition had no effect. Hence, a convertase other than FURIN or MBTPS1 is most likely responsible for placental sATP6AP2 secretion.
Collapse
Affiliation(s)
- Saije K Morosin
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, 2300, New South Wales, Australia
| | - Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, 2300, New South Wales, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, 2300, New South Wales, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, 2300, New South Wales, Australia.
| |
Collapse
|
12
|
Kreis NN, Ritter A, Louwen F, Yuan J. A Message from the Human Placenta: Structural and Immunomodulatory Defense against SARS-CoV-2. Cells 2020; 9:E1777. [PMID: 32722449 PMCID: PMC7465902 DOI: 10.3390/cells9081777] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
The outbreak of the coronavirus disease 2019 (COVID-19) pandemic has caused a global public health crisis. Viral infections may predispose pregnant women to a higher rate of pregnancy complications, including preterm births, miscarriage, and stillbirth. Despite reports of neonatal COVID-19, definitive proof of vertical transmission is still lacking. In this review, we summarize studies regarding the potential evidence for transplacental transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), characterize the expression of its receptors and proteases, describe the placental pathology and analyze virus-host interactions at the maternal-fetal interface. We focus on the syncytium, the barrier between mother and fetus, and describe in detail its physical and structural defense against viral infections. We further discuss the potential molecular mechanisms, whereby the placenta serves as a defense front against pathogens by regulating the interferon type III signaling, microRNA-triggered autophagy and the nuclear factor-κB pathway. Based on these data, we conclude that vertical transmission may occur but rare, ascribed to the potent physical barrier, the fine-regulated placental immune defense and modulation strategies. Particularly, immunomodulatory mechanisms employed by the placenta may mitigate violent immune response, maybe soften cytokine storm tightly associated with severely ill COVID-19 patients, possibly minimizing cell and tissue damages, and potentially reducing SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (A.R.); (F.L.)
| | | | | | - Juping Yuan
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (A.R.); (F.L.)
| |
Collapse
|
13
|
Duan FM, Fu LJ, Wang YH, Adu-Gyamfi EA, Ruan LL, Xu ZW, Xiao SQ, Chen XM, Wang YX, Liu TH, Ding YB. THBS1 regulates trophoblast fusion through a CD36-dependent inhibition of cAMP, and its upregulation participates in preeclampsia. Genes Dis 2020; 8:353-363. [PMID: 33997182 PMCID: PMC8093648 DOI: 10.1016/j.gendis.2020.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia is a pregnancy complication which threatens the survival of mothers and fetuses. It originates from abnormal placentation, especially insufficient fusion of the cytotrophoblast cells to form the syncytiotrophoblast. In this study, we found that THBS1, a matricellular protein that mediates cell-to-cell and cell-to-matrix interactions, is downregulated during the fusion of primary cytotrophoblast and BeWo cells, but upregulated in the placenta of pregnancies complicated by preeclampsia. Also, THBS1 was observed to interact with CD36, a membrane signal receptor and activator of the cAMP signaling pathway, to regulate the fusion of cytotrophoblast cells. Overexpression of THBS1 inhibited the cAMP signaling pathway and reduced the BeWo cells fusion ratio, while the effects of THBS1 were abolished by a CD36-blocking antibody. Our results suggest that THBS1 signals through a CD36-mediated cAMP pathway to regulate syncytialization of the cytotrophoblast cells, and that its upregulation impairs placental formation to cause preeclampsia. Thus, THBS1 can serve as a therapeutic target regarding the mitigation of abnormal syncytialization and preeclampsia.
Collapse
Affiliation(s)
- Fu-Mei Duan
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Li-Juan Fu
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yong-Heng Wang
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Enoch Appiah Adu-Gyamfi
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Ling-Ling Ruan
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zeng-Wei Xu
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shi-Quan Xiao
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China.,Department of Reproductive Medicine, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 401120, PR China
| | - Xue-Mei Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Ying-Xiong Wang
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Tai-Hang Liu
- Department of Bioinformatics, The School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Yu-Bin Ding
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| |
Collapse
|
14
|
Farhat D, Ghayad SE, Icard P, Le Romancer M, Hussein N, Lincet H. Lipoic acid-induced oxidative stress abrogates IGF-1R maturation by inhibiting the CREB/furin axis in breast cancer cell lines. Oncogene 2020; 39:3604-3610. [PMID: 32060422 DOI: 10.1038/s41388-020-1211-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
The beneficial effects of lipoic acid (LA) in cancer treatment have been well documented in the last decade. Indeed, LA exerts crucial antiproliferative effects by reducing breast cancer cell viability, cell cycle progression and the epithelial-to-mesenchymal transition (EMT). However, the mechanisms of action (MOA) underlying these antiproliferative effects remain to be elucidated. Recently, we demonstrated that LA decreases breast cancer cell proliferation by inhibiting IGF-1R maturation via the downregulation of the proprotein convertase furin. The aim of the present study was to investigate the MOA by which LA inhibits furin expression in estrogen receptor α (ERα) (+) and (-) breast cancer cell lines. We unveil that LA exerts a pro-oxidant effect on these cell lines, the resulting reactive oxygen species (ROS) generated being responsible for the reduction in the expression of the major (CREB) protein. This transcription factor is overexpressed in many types of cancers and regulates the expression of furin in breast cancer cells independently of ERα, as evidenced herein by the inhibition of furin expression following CREB silencing. Consequently, our findings expose for the first time the complete MOA of LA via the CREB/furin axis leading to inhibition of breast cancer cell proliferation.
Collapse
Affiliation(s)
- Diana Farhat
- Université Lyon 1, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France.,Lebanese University, Faculty of Sciences, Cancer biology Stem Cells and Molecular Immunology, Hadath-Beirut, Lebanon
| | - Sandra E Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Fanar, Lebanon
| | - Philippe Icard
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U 119, 14000, Caen, France.,Service de chirurgie thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Muriel Le Romancer
- Université Lyon 1, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Nader Hussein
- Lebanese University, Faculty of Sciences, Cancer biology Stem Cells and Molecular Immunology, Hadath-Beirut, Lebanon
| | - Hubert Lincet
- Université Lyon 1, Lyon, France. .,Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France. .,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France. .,ISPB, Faculté de Pharmacie, Lyon, France.
| |
Collapse
|
15
|
Zhang Y, Dong HT, Duan L, Niu L, Yuan GQ, Dai JQ, Hou BR, Pan YW. HDAC4 gene silencing alleviates epilepsy by inhibition of GABA in a rat model. Neuropsychiatr Dis Treat 2019; 15:405-416. [PMID: 30787615 PMCID: PMC6366349 DOI: 10.2147/ndt.s181669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Despite the availability of effective antiepileptic drugs, epileptic patients still suffer from intractable seizures and adverse events. Better control of both seizures and fewer side effects is needed in order to enhance the patient's quality of life. We performed the present study with an attempt to explore the effect that HDAC4 gene silencing would have on epilepsy simulated by model rats. Furthermore, the study made additional analysis on the relativity of the HDAC4 gene in regard to its relationship with the gamma-aminobutyric acid (GABA) signaling pathway. MATERIALS AND METHODS Tremor rats were prepared in order to establish the epilepsy model. The rats would go on to be treated with si-HDAC4 in order to identify roles of the HDAC4 in levels of GABAARα1, GABAARα4, GAD65, GAT-1, and GAT-3. Finally, both electroencephalogram behavior and cognitive function of the rats following the treatment of si-HDAC4 were observed. RESULTS Levels of the GABAARα1 and GABAARα4 showed an evident increase, while GAD65, GAT-1, and GAT-3 displayed a decline in the epilepsy rats treated with the aforementioned si-HDAC4 when compared with the epilepsy rats. After injection of si-HDAC4, the epilepsy rats presented with a reduction in seizure degree, latency and duration of seizure, amount of scattered epileptic waves, and occurrence of epilepsy, with an improvement in their cognitive function. CONCLUSION The study highlighted the role that HDAC4 gene silencing played in easing the cases of epilepsy found in the model rats. This was shown to have occurred through the upregulation of both GABAARα1 and GABAARα4 levels, as well as in the downregulation of GAD65, GAT-1, and GAT-3 levels. The evidence provided shows that the HDAC4 gene is likely to present as a new objective in further experimentation in the treatment of epilepsy.
Collapse
Affiliation(s)
- Yinian Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Hua-Teng Dong
- Department of Pediatric Neurology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou 730050, People's Republic of China
| | - Lei Duan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Liang Niu
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Guo-Qiang Yuan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Jun-Qiang Dai
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Bo-Ru Hou
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Ya-Wen Pan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| |
Collapse
|
16
|
Liu Y, Ding D, Liu H, Sun X. The accessible chromatin landscape during conversion of human embryonic stem cells to trophoblast by bone morphogenetic protein 4. Biol Reprod 2018; 96:1267-1278. [PMID: 28430877 DOI: 10.1093/biolre/iox028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/14/2017] [Indexed: 12/12/2022] Open
Abstract
Human embryonic stem cells (hESCs) exposed to the growth factor bone morphogenetic protein 4 (BMP4) in the absence of FGF2 have been used as a model to study the development of placental development. However, little is known about the cis-regulatory mechanisms underlying this important process. In this study, we used the public available chromatin accessibility data of hESC H1 cells and BMP4-induced trophoblast (TB) cell lines to identify DNase I hypersensitive sites (DHSs) in the two cell lines, as well as the transcription factor (TF) binding sites within the DHSs. By comparing read profiles in H1 and TB, we identified 17 472 TB-specific DHSs. The TB-specific DHSs are enriched in terms of "blood vessel" and "trophectoderm," consisting of TF motifs family: Leucine Zipper, Helix-Loop-Helix, GATA, and ETS. To validate differential expression of the TFs binding to these motifs, we analyzed public available RNA-seq and microarray data in the same context. Finally, by integrating the protein-protein interaction data, we constructed a TF network for placenta development and identified top 20 key TFs through centrality analysis in the network. Our results indicate BMP4-induced TB system provided an invaluable model for the study of TB development and highlighted novel candidate genes in placenta development in human.
Collapse
Affiliation(s)
- Yajun Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P.R. China
| | - Dewu Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P.R. China.,Department of Mathematics and Computer Science, Chizhou College, Chizhou, P.R. China
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P.R. China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P.R. China
| |
Collapse
|
17
|
Cipolla GA, Park JK, Lavker RM, Petzl-Erler ML. Crosstalk between Signaling Pathways in Pemphigus: A Role for Endoplasmic Reticulum Stress in p38 Mitogen-Activated Protein Kinase Activation? Front Immunol 2017; 8:1022. [PMID: 28928733 PMCID: PMC5591886 DOI: 10.3389/fimmu.2017.01022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022] Open
Abstract
Pemphigus consists of a group of chronic blistering skin diseases mediated by autoantibodies (autoAbs). The dogma that pemphigus is caused by keratinocyte dissociation (acantholysis) as a distinctive and direct consequence of the presence of autoAb targeting two main proteins of the desmosome—desmoglein (DSG) 1 and/or DSG3—has been put to the test. Several outside-in signaling events elicited by pemphigus autoAb in keratinocytes have been described, among which stands out p38 mitogen-activated protein kinase (p38 MAPK) engagement and its apoptotic effect on keratinocytes. The role of apoptosis in the disease is, however, debatable, to an extent that it may not be a determinant event for the occurrence of acantholysis. Also, it has been verified that compromised DSG trans-interaction does not lead to keratinocyte dissociation when p38 MAPK is inhibited. These examples of conflicting results have been followed by recent work revealing an important role for endoplasmic reticulum (ER) stress in pemphigus’ pathogenesis. ER stress is known to activate the p38 MAPK pathway, and vice versa. However, this relationship has not yet been studied in the context of activated signaling pathways in pemphigus. Therefore, by reviewing and hypothetically connecting the role(s) of ER stress and p38 MAPK pathway in pemphigus, we highlight the importance of elucidating the crosstalk between all activated signaling pathways, which may in turn contribute for a better understanding of the role of apoptosis in the disease and a better management of this life-threatening condition.
Collapse
Affiliation(s)
- Gabriel A Cipolla
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil.,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Jong Kook Park
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Biomedical Science and Research, Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Robert M Lavker
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | |
Collapse
|
18
|
Zha JS, Zhu BL, Liu L, Lai YJ, Long Y, Hu XT, Deng XJ, Wang XF, Yan Z, Chen GJ. Phorbol esters dPPA/dPA promote furin expression involving transcription factor CEBPβ in neuronal cells. Oncotarget 2017; 8:60159-60172. [PMID: 28947961 PMCID: PMC5601129 DOI: 10.18632/oncotarget.18569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/10/2017] [Indexed: 02/03/2023] Open
Abstract
Using high-throughput small molecule screening targeting furin gene, we identified that phorbol esters dPPA (12-Deoxyphorbol 13-phenylacetate 20-acetate) and dPA (12-Deoxyphorbol 13-acetate) significantly increased furin protein and mRNA expression in SH-SY5Y cells. This effect was prevented by PKC (protein kinase C) inhibitor calphostin C but not Ro318220, suggesting that the C1 domain, rather than the catalytic domain of PKC plays an important role. Luciferase assay revealed that nucleotides -7925 to -7426 were sufficient to mediate dPPA/dPA enhancement of furin P1 promoter activity. RNA interference of transcriptional factors CEBPβ (CCAAT/enhancer-binding protein β) and GATA1 revealed that knockdown of CEBPβ significantly attenuated the effect of dPPA on furin expression. Pharmacological inhibition of ERK and PI3K but not TGFβ receptor diminished the up-regulation of furin by dPPA. These results suggested that in neuronal cells, transcriptional activation of furin by dPPA/dPA may be initiated by C1 domain containing proteins including PKC; the intracellular signaling involves ERK and PI3K and transcription factor CEBPβ.
Collapse
Affiliation(s)
- Jing-Si Zha
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Bing-Lin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Lu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yu-Jie Lai
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yan Long
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Xiao-Tong Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Xue-Feng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| |
Collapse
|
19
|
Baines K, Renaud S. Transcription Factors That Regulate Trophoblast Development and Function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 145:39-88. [DOI: 10.1016/bs.pmbts.2016.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Malhotra SS, Banerjee P, Gupta SK. Regulation of trophoblast differentiation during embryo implantation and placentation: Implications in pregnancy complications. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jrhm.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Zheng R, Li Y, Sun H, Lu X, Sun BF, Wang R, Cui L, Zhu C, Lin HY, Wang H. Deep RNA sequencing analysis of syncytialization-related genes during BeWo cell fusion. Reproduction 2016; 153:REP-16-0343. [PMID: 27742864 DOI: 10.1530/rep-16-0343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
The syncytiotrophoblast (STB) plays a key role in maintaining the function of the placenta during human pregnancy. However, the molecular network that orchestrates STB development remains elusive. The aim of this study was to obtain broad and deep insight into human STB formation via transcriptomics. We adopted RNA sequencing (RNA-Seq) to investigate genes and isoforms involved in forskolin (FSK)-induced fusion of BeWo cells. BeWo cells were treated with 50 μM FSK or dimethylsulfoxide (DMSO) as a vehicle control for 24 and 48 h, and the mRNAs at 0, 24 and 48 h was sequenced. We detected 28,633 expressed genes and identified 1,902 differentially expressed genes (DEGs) after FSK treatment for 24 and 48 h. Among the 1,902 DEGs, 461 were increased and 395 were decreased at 24 h, while 879 were up-regulated and 763 were down-regulated at 48 h. When the 856 DEGs identified at 24 h were traced individually at 48 h, they separated into 6 dynamic patterns via a K-means algorithm, and most were enriched in down-even and up-even patterns. Moreover, the Gene Ontology (GO) terms syncytium formation, cell junction assembly, cell fate commitment, calcium ion transport, regulation of epithelial cell differentiation and cell morphogenesis involved in differentiation were clustered, and the MAPK pathway was most significantly regulated. Analyses of alternative splicing isoforms detected 123,200 isoforms, of which 1,376 were differentially expressed. The present deep analysis of the RNA-Seq data of BeWo cell fusion provides important clues for understanding the mechanisms underlying human STB formation.
Collapse
Affiliation(s)
- Ru Zheng
- R Zheng, State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yue Li
- Y Li, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Huiying Sun
- H Sun, Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, CAS Center for Excellence in Molecular Cell Science, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyin Lu
- X Lu, State Key Laboratory of Reproductive Biology Beijing, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bao-Fa Sun
- B Sun, Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, CAS Center for Excellence in Molecular Cell Science, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- R Wang, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lina Cui
- L Cui, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chiense Academy of Sciences, Beijing, China
| | - Cheng Zhu
- C Zhu, State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hai-Yan Lin
- H Lin, State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongmei Wang
- H Wang, State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Costa MA. Scrutinising the regulators of syncytialization and their expression in pregnancy-related conditions. Mol Cell Endocrinol 2016; 420:180-93. [PMID: 26586208 DOI: 10.1016/j.mce.2015.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022]
Abstract
The placenta is important for the success of gestation and foetal development. In fact, this specialized pregnancy organ is essential for foetal nourishment, support, and protection. In the placenta, there are different cell populations, including four subtypes of trophoblasts. Cytotrophoblasts fuse and differentiate into the multinucleated syncytiotrophoblast (syncytialization). Syncytialization is a hallmark of placentation and is highly regulated by numerous molecules with distinct roles. Placentas from pregnancies complicated by preeclampsia, intrauterine growth restriction or trisomy 21 have been associated with a defective syncytialization and an altered expression of its modulators. This work proposes to review the molecules that promote or inhibit both fusion and biochemical differentiation of cytotrophoblasts. Moreover, it will also analyse the syncytialization modulators abnormally expressed in pathological placentas, highlighting the molecules that may contribute to the aetiology of these diseases.
Collapse
Affiliation(s)
- M A Costa
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
23
|
Lu X, He Y, Zhu C, Wang H, Chen S, Lin HY. Twist1 is involved in trophoblast syncytialization by regulating GCM1. Placenta 2016; 39:45-54. [PMID: 26992674 DOI: 10.1016/j.placenta.2016.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/21/2015] [Accepted: 01/08/2016] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The multinucleated syncytiotrophoblast (STB) is maintained and regenerated by the fusion of underlying cytotrophoblast cells (CTBs) and is responsible for a number of functions in the human placenta. Deficiencies in this structure may result in pregnancy-associated diseases. However, the detailed mechanisms underlying trophoblast syncytialization await further investigation. METHODS The location of the transcription factor Twist1 in human placental tissues was identified by immunohistochemistry. The expression of Twist1 and glial cells missing-1 (GCM1) was evaluated by qPCR or western blotting in two cell-fusion models including forskolin-induced fusion of BeWo cells and spontaneous syncytialization of CTBs. The key role of Twist1 in trophoblast differentiation was identified using BeWo cells transfected with Twist1-specific siRNA. We investigated the effect of hypoxia on the expression of Twist1 and GCM1 in primary CTBs cultured with 2% oxygen. The Twist1 binding region in the GCM1 gene was detected by chromatin-immunoprecipitation. RESULTS Twist1 was expressed in human placental tissues, and the expression of Twist1 and GCM1 increased in a time-dependent manner during spontaneous syncytialization of primary CTBs and forskolin-induced fusion of BeWo cells. A reduction in Twist1 and GCM1 expression was observed under hypoxic conditions and was accompanied by inhibition of trophoblast syncytialization. Moreover, siRNA-mediated silencing of Twist1 resulted in inhibition of BeWo cells fusion and down-regulation of GCM1 expression. Furthermore, Twist1 was found to bind to the E-box-enriched region in intron 2 of the GCM1 gene during forskolin-induced fusion of BeWo cells. DISCUSSION The above results suggest that Twist1 is required during trophoblast syncytialization. Twist1 may promote trophoblast syncytialization by regulating the expression of GCM1.
Collapse
Affiliation(s)
- Xiaoyin Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Yuxia He
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Cheng Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Shiling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| | - Hai-Yan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
24
|
Toufaily C, Lokossou AG, Vargas A, Rassart É, Barbeau B. A CRE/AP-1-like motif is essential for induced syncytin-2 expression and fusion in human trophoblast-like model. PLoS One 2015; 10:e0121468. [PMID: 25781974 PMCID: PMC4364025 DOI: 10.1371/journal.pone.0121468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 02/14/2015] [Indexed: 11/18/2022] Open
Abstract
Syncytin-2 is encoded by the envelope gene of Endogenous Retrovirus-FRD (ERVFRD-1) and plays a critical role in fusion of placental trophoblasts leading to the formation of the multinucleated syncytiotrophoblast. Its expression is consequently regulated in a strict manner. In the present study, we have identified a forskolin-responsive region located between positions -300 to -150 in the Syncytin-2 promoter region. This 150 bp region in the context of a minimal promoter mediated an 80-fold induction of promoter activity following forskolin stimulation. EMSA analyses with competition experiments with nuclear extracts from forskolin-stimulated BeWo cells demonstrated that the -211 to -177 region specifically bound two forskolin-induced complexes, one of them containing a CRE/AP-1-like motif. Site-directed mutagenesis of the CRE/AP-1 binding site in the context of the Syncytin-2 promoter or a heterologous promoter showed that this motif was mostly essential for forskolin-induced promoter activity. Transfection experiments with dominant negative mutants and constitutively activated CREB expression vectors in addition to Chromatin Immunoprecipitation suggested that a CREB family member, CREB2 was binding and acting through the CRE/AP-1 motif. We further demonstrated the binding of JunD to this same motif. Similar to forskolin and soluble cAMP, CREB2 and JunD overexpression induced Syncytin-2 promoter activity in a CRE/AP-1-dependent manner and Syncytin-2 expression. In addition, BeWo cell fusion was induced by both CREB2 and JunD overexpression, while being repressed following silencing of either gene. These results thereby demonstrate that induced expression of Syncytin-2 is highly dependent on the interaction of bZIP-containing transcription factors to a CRE/AP-1 motif and that this element is important for the regulation of Syncytin-2 expression, which results in the formation of the peripheral syncytiotrophoblast layer.
Collapse
Affiliation(s)
- Chirine Toufaily
- Département des Sciences Biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Canada
| | - Adjimon Gatien Lokossou
- Département des Sciences Biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Canada
| | - Amandine Vargas
- Département des Sciences Biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Canada
| | - Éric Rassart
- Département des Sciences Biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Canada
| | - Benoit Barbeau
- Département des Sciences Biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|