1
|
Parenti M, Schmidt RJ, Tancredi DJ, Miller M, Hertz-Picciotto I, Walker CK, Slupsky CM. Placental metabolism is linked to prenatal vitamin supplement use in the first month of pregnancy in the MARBLES cohort. J Nutr 2025:S0022-3166(25)00298-6. [PMID: 40414302 DOI: 10.1016/j.tjnut.2025.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 05/03/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND The first month of pregnancy is a key time in early developmental programming. Prenatal vitamin/mineral supplement use during the first month of pregnancy (PNVmo1) was associated with reduced risk of autism spectrum disorder (ASD) in the Markers of Autism Risk in Babies, Learning Early Signs (MARBLES) cohort. OBJECTIVE We aimed to evaluate the associations between PNVmo1, the placental and umbilical cord serum metabolomes, and the child's later neurodevelopmental outcome in the MARBLES pregnancy cohort. METHODS Placental (n=78) and umbilical cord serum (n=132) metabolomes were investigated using 1H nuclear magnetic resonance spectroscopy. PNVmo1 was determined by self-report. At 36 months of age, child neurodevelopmental outcomes were classified by MARBLES clinicians into three groups: typically developing (TD), ASD, or non-typically developing (Non-TD) but not ASD, which was dominated by developmental delays and/or elevated autism symptoms but not meeting ASD criteria. RESULTS After adjustment for covariates, permutational multivariate analysis of variance (PERMANOVA) revealed that PNVmo1 was significantly (p<0.05) associated with the placental and umbilical cord serum metabolomes. In the placenta, higher concentrations of amino acids were observed in the PNVmo1 group (FDR<0.1). After adjustment for PNVmo1 and other covariates, PERMANOVA revealed a significant association (p<0.05) between the placental metabolome and Non-TD outcome status. No associations were observed in the analyses of umbilical cord serum metabolism or with ASD outcome. We tested for but did not find evidence that the placental metabolome explained the relationship between PNVmo1 and Non-TD outcome in an exploratory mediation analysis. CONCLUSIONS These findings suggest that the placental metabolome could be sensitive to nutrient supplementation during the earliest stages of pregnancy.
Collapse
Affiliation(s)
- Mariana Parenti
- Department of Nutrition, University of California, Davis, 95616, CA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California, Davis, 95616, CA, USA; MIND Institute, University of California, Davis, 95616, CA, USA
| | - Daniel J Tancredi
- Department of Pediatrics, School of Medicine, University of California, Davis, 95616, CA, USA
| | - Meghan Miller
- MIND Institute, University of California, Davis, 95616, CA, USA; Department of Psychiatry & Behavioral Sciences, School of Medicine, University of California, Davis, 95616, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, 95616, CA, USA; MIND Institute, University of California, Davis, 95616, CA, USA
| | - Cheryl K Walker
- MIND Institute, University of California, Davis, 95616, CA, USA; Department of Obstetrics & Gynecology, School of Medicine, University of California, Davis, 95616, CA, USA
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, 95616, CA, USA; Department of Food Science and Technology, University of California, Davis, 95616, CA, USA.
| |
Collapse
|
2
|
Li S, Zhu J, Zhao Y, An P, Zhao H, Xiong Y. Metabolic disorder of nutrients-an emerging field in the pathogenesis of preeclampsia. Front Nutr 2025; 12:1560610. [PMID: 40123939 PMCID: PMC11925777 DOI: 10.3389/fnut.2025.1560610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
It is well acknowledged that metabolic disorder binds closely with preeclampsia, though some of the causal relationships are still ambiguous. This review systematically summarizes the metabolic characteristics of carbohydrates, lipids, amino acids, and glycans in preeclampsia, highlighting their roles in oxidative stress, trophoblast autophagy, inflammatory response, and vascular tone regulation. Key findings include upregulated glycolysis and impaired mitochondrial function contributing to ATP deficiency, dysregulated lipid metabolism exacerbating oxidative stress and vascular dysfunction, and amino acid imbalances disrupting immune responses and redox homeostasis. Emerging therapies, such as metformin and pravastatin, demonstrate potential in targeting these pathways for prevention and treatment. Here, we reviewed thoroughly the related literature with a view to delineating the potential association of nutrient metabolism with preeclampsia, so that we could explore a promising therapeutic approach.
Collapse
Affiliation(s)
- Shuyue Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Jie Zhu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Ying Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Ping An
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Huanqiang Zhao
- Shenzhen Maternal and Child Health Hospital, Shenzhen, China
| | - Yu Xiong
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
3
|
Cao Y, Meng L, Wang Y, Zhao S, Zheng Y, Ran R, Du J, Wu H, Han J, Xu Z, Lu Y, Liu L, Chen L, Wang J, Li Y, Zhai Y, Sun Z, Cao Z. Large-scale prospective serum metabolomic profiling reveals candidate predictive biomarkers for suspected preeclampsia patients. Sci Rep 2025; 15:4807. [PMID: 39922859 PMCID: PMC11807192 DOI: 10.1038/s41598-025-87905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/22/2025] [Indexed: 02/10/2025] Open
Abstract
Preeclampsia (PE) is a serious pregnancy complication that contributes to maternal and perinatal morbidity and mortality. Understanding its pathogenesis and revealing predictive biomarkers are essential for guiding treatment decisions. In order to explore the global changes of serum metabolites in PE patients and identify potential predictive biomarkers for suspected PE patients (pregnant women who had already shown PE-related symptoms in the middle to late stages of pregnancy, but were not yet confirmatively diagnosed as PE.), a large-scale serum metabolomic analysis was conducted in this study with a prospective cohort of 328 suspected PE patients in the middle or late pregnancy stages, as well as a retrospective cohort of 30 healthy pregnant women and 30 PE patients. Using liquid chromatography mass spectrometry (LC - MS), serum metabolomic profiling revealed that the development of PE was closely associated with disturbed amino acid metabolism. Moreover, a panel of seven predictive biomarkers including 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate, gamma-glutamyl-leucine, 2-hydroxyvaleric acid, LysoPC(16:1(9Z)/0:0), PC(DiMe(13,5)/MonoMe(13,5)), ADP-D-glycero-beta-D-manno-heptose and phenylalanyl-tryptophan were identified for PE development by performing multiple statistical analysis and LASSO regression analysis. The combination of these biomarkers showed promise in the prediction of PE development for suspected PE patients, with an AUC of 0.753 and 0.885 for the discovery and validation cohorts, respectively. These findings highlight the potential of large-scale prospective metabolomic studies combined with machine learning algorithms in identifying key biomarkers for predicting PE development, while retrospective metabolomics studies provide insights into the pathogenesis of PE.
Collapse
Affiliation(s)
- Yan Cao
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 251 Yaojiayuan Road, Beijing, 100026, China
- Center of Clinical Mass Spectrometry, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Lanlan Meng
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 251 Yaojiayuan Road, Beijing, 100026, China
- Center of Clinical Mass Spectrometry, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yifei Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Shenglong Zhao
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yuanyuan Zheng
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Rui Ran
- Biotree Metabolomics Technology Research Center, Shanghai, China
| | - Jie Du
- Biotree Metabolomics Technology Research Center, Shanghai, China
| | - Hongqiang Wu
- Biotree Metabolomics Technology Research Center, Shanghai, China
| | - Jiaqi Han
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 251 Yaojiayuan Road, Beijing, 100026, China
- Center of Clinical Mass Spectrometry, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zhengwen Xu
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 251 Yaojiayuan Road, Beijing, 100026, China
- Center of Clinical Mass Spectrometry, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yifan Lu
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 251 Yaojiayuan Road, Beijing, 100026, China
- Center of Clinical Mass Spectrometry, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Lin Liu
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 251 Yaojiayuan Road, Beijing, 100026, China
- Center of Clinical Mass Spectrometry, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Lu Chen
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 251 Yaojiayuan Road, Beijing, 100026, China
- Center of Clinical Mass Spectrometry, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jing Wang
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 251 Yaojiayuan Road, Beijing, 100026, China
- Center of Clinical Mass Spectrometry, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Youran Li
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 251 Yaojiayuan Road, Beijing, 100026, China
- Center of Clinical Mass Spectrometry, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yanhong Zhai
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 251 Yaojiayuan Road, Beijing, 100026, China.
- Center of Clinical Mass Spectrometry, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| | - Zheng Cao
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 251 Yaojiayuan Road, Beijing, 100026, China.
- Center of Clinical Mass Spectrometry, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.
| |
Collapse
|
4
|
Ye M, Zhou C, Li L, Wang L, Zhang M. Effects of pregnancy-induced hypertension on early-onset neonatal thrombocytopenia. BMC Pregnancy Childbirth 2025; 25:67. [PMID: 39856602 PMCID: PMC11761212 DOI: 10.1186/s12884-025-07193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Gestational hypertension and preeclampsia are potentially linked to similar pathophysiological processes. Maternal preeclampsia increases the occurrence of early-onset neonatal thrombocytopenia. We hypothesized that maternal gestational hypertension may impact the incident early-onset neonatal thrombocytopenia. METHODS We included 538 neonates, comprising 318 and 220 neonates born to healthy mothers and those with pregnancy-induced hypertension. The minimum platelet count within 72 h of birth was recorded for these neonates. The incidence of early-onset thrombocytopenia in neonates in relation to maternal gestational hypertension, preeclampsia, and health status was evaluated. Logistic regression analysis was conducted to assess the relationship between maternal gestational hypertension and the risk of early-onset neonatal thrombocytopenia. RESULTS The incidence of early-onset thrombocytopenia was significantly higher in neonates born to mothers with preeclampsia than in those born to mothers with gestational hypertension or healthy mothers. Significant differences were observed among the three groups (30.0% vs. 13.3% vs. 7.9%, p < 0.001). Maternal gestational hypertension (OR = 2.79, 95%CI 1.19-6.54) increased the risk of early-onset neonatal thrombocytopenia when compared to healthy mothers. CONCLUSIONS Maternal gestational hypertension increases the occurrence of early-onset neonatal thrombocytopenia. Therefore, we recommend conducting platelet count screening at the early stages of neonates of mothers with gestational hypertension.
Collapse
Affiliation(s)
- Meiling Ye
- Department of Neonatology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Enze Hospital, Taizhou Enze Medical Center (Group), 1 East Tongyang Road, Tongyu Street, Luqiao, 318050, Zhejiang, China
| | - Cailing Zhou
- Department of Neonatology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Enze Hospital, Taizhou Enze Medical Center (Group), 1 East Tongyang Road, Tongyu Street, Luqiao, 318050, Zhejiang, China
| | - Lu Li
- Department of Neonatology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Enze Hospital, Taizhou Enze Medical Center (Group), 1 East Tongyang Road, Tongyu Street, Luqiao, 318050, Zhejiang, China
| | - Lizhen Wang
- Department of Neonatology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Enze Hospital, Taizhou Enze Medical Center (Group), 1 East Tongyang Road, Tongyu Street, Luqiao, 318050, Zhejiang, China.
| | - Meixian Zhang
- Department of Neonatology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Enze Hospital, Taizhou Enze Medical Center (Group), 1 East Tongyang Road, Tongyu Street, Luqiao, 318050, Zhejiang, China.
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, 150 Ximen Street, Zhejiang, 317000, Zhejiang, China.
| |
Collapse
|
5
|
Kaihara JNS, de Moraes FR, Nunes PR, Alves MG, Cavalli RC, Tasic L, Sandrim VC. Plasma metabolic profile reveals signatures of maternal health during gestational hypertension and preeclampsia without and with severe features. PLoS One 2024; 19:e0314053. [PMID: 39591465 PMCID: PMC11594399 DOI: 10.1371/journal.pone.0314053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Preeclampsia, a pregnancy-specific syndrome, poses substantial risks to maternal and neonatal health, particularly in cases with severe features. Our study focuses on evaluating the impact of low molecular weight metabolites on the intricate mechanisms and pathways involved in the pathophysiology of preeclampsia when severe features are present. We aim to pinpoint the distinct metabolomic profile in maternal plasma during pregnancies affected by hypertensive disorders and to correlate the metabolite levels with the clinical characteristics of the study cohort. A total of 173 plasma samples were collected, comprising 36 healthy pregnant women (HP), 52 patients with gestational hypertension (GH), 43 with preeclampsia without (PE-), and 42 with severe features (PE+). Nuclear magnetic resonance spectroscopy and metabolite identification were conducted to establish the metabolomic profiles. Univariate and chemometric analyses were conducted using MetaboAnalyst, and correlations were performed using GraphPad Prism. Our study unveils distinct metabolomic profiles differentiating HP women, patients featuring GH, and patients with PE-and PE+. Our analysis highlights an increase in acetate, N,N-dimethylglycine, glutamine, alanine, valine, and creatine levels in the PE+ group compared to the HP and GH groups. The PE+ group exhibited higher concentrations of N,N-dimethylglycine, glutamine, alanine, and valine compared to the PE-group. Moreover, elevated levels of specific metabolites, including N,N-dimethylglycine, alanine, and valine, were associated with increased blood pressure, worse obstetric outcomes, and poorer end-organ function, particularly renal and hepatic damage. Metabolomic analysis of PE+ individuals indicates heightened disturbances in nitrogen metabolism, methionine, and urea cycles. Additionally, the exacerbated metabolic disturbance may have disclosed renal impairment and hepatic dysfunction, evidenced by elevated levels of creatine and alanine. These findings not only contribute novel insights but also provide a more comprehensive understanding of the pathophysiological mechanisms at play in cases of PE+.
Collapse
Affiliation(s)
- Julyane N. S. Kaihara
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Fabio Rogerio de Moraes
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences, Sao Paulo State University (UNESP), Sao Jose do Rio Preto, SP, Brazil
| | - Priscila Rezeck Nunes
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marco G. Alves
- Institute of Biomedicine and Department of Medical Science (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ricardo C. Cavalli
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Ljubica Tasic
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Valeria Cristina Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
6
|
Li H, Chen C, Liu S, Shi Y, Kuang X, Song X, Li D, Li K. Differential Effects of n-3 and n-6 Polyunsaturated Fatty Acids on Placental and Embryonic Growth and Development in Diabetic Pregnant Mice. Nutrients 2024; 16:1182. [PMID: 38674874 PMCID: PMC11054179 DOI: 10.3390/nu16081182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The present study aimed to investigate the differential effects of n-3 and n-6 polyunsaturated fatty acids (PUFAs) on placental and embryonic development. Pregnant mice were assigned to five groups: healthy control (HC), diabetes mellitus control (DMC), diabetes + low-dose n-3 PUFA (Ln-3), diabetes + high-dose n-3 PUFA (Hn-3), and diabetes + n-6 PUFA (n-6). On E12.5d, the Hn-3 group, but not the n-6 group, had a higher placenta weight. The weight ratio of embryo to placenta in the n-6 group was significantly lower than in the Hn-3 group but higher than in the DMC group. The Hn-3 group had significantly higher protein levels of VEGF, IGF-1, and IGFBP3, while the n-6 group had lower VEGF than the DMC group. Compared with the DMC group, embryonic Cer-16:0 was significantly higher in the Hn-3 group, while embryonic PC (36:6), PC (38:7), and PE (40:7) were significantly lower in the n-6 group. The embryo and placenta weights were positively correlated with placental VEGF, IGFBP3, and embryonic Cer-16:0, and they were negatively correlated with embryonic PC (36:6) and PE (40:7). The weight ratio of embryo to placenta was negatively correlated with embryonic PC (36:6). In addition, embryonic Cer-16:0 was positively correlated with placental VEGF and IGFBP3. In conclusion, n-3 PUFA and n-6 PUFA improved placental and embryonic growth through different mechanisms.
Collapse
Affiliation(s)
- Huiying Li
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.L.); (S.L.); (Y.S.); (X.K.); (X.S.); (D.L.)
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| | - Chuanjing Chen
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| | - Shiyi Liu
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.L.); (S.L.); (Y.S.); (X.K.); (X.S.); (D.L.)
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| | - Yan Shi
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.L.); (S.L.); (Y.S.); (X.K.); (X.S.); (D.L.)
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| | - Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.L.); (S.L.); (Y.S.); (X.K.); (X.S.); (D.L.)
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| | - Xiaolei Song
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.L.); (S.L.); (Y.S.); (X.K.); (X.S.); (D.L.)
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.L.); (S.L.); (Y.S.); (X.K.); (X.S.); (D.L.)
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| | - Kelei Li
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.L.); (S.L.); (Y.S.); (X.K.); (X.S.); (D.L.)
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| |
Collapse
|
7
|
Wang Q, Xiong Z, Wang B, Wang W, Zheng H. Ferroptosis and Preeclampsia: Genetic Analysis of Potential Biomarkers and Therapeutic Targets. Biochem Genet 2024; 62:853-875. [PMID: 37474873 DOI: 10.1007/s10528-023-10449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Ferroptosis is the oxidative death of cells attributed to an imbalance in intracellular lipid reactive oxygen species metabolism, a reduction in cell antioxidant capacity, and an accumulation of membrane lipid peroxides. Trophoblast cells are a group of cells susceptible to ferroptosis. The ferroptosis of trophoblast cells has a major effect on the development of preeclampsia (PE), although the impact of ferroptosis-related genes (FRGs) on PE has not been well characterized. This study obtained PE-related information from the Gene Expression Omnibus database and FRGs from the FerrDb ferroptosis database. Seventeen PE-related differentially expressed ferroptosis-related genes (DE-FRGs) that were closely associated with cellular regulation and immune response were obtained. According to the results of a subsequent functional enrichment analysis, it was found that the above marker genes may impact PE by regulating immune response, amino acid metabolism, the cell cycle, and multiple pathways correlated with PE pathogenesis. Subsequently, we used LASSO and support vector machine recursive feature elimination algorithms to help identify GOT1, CFL1, FZD7, VDR, PARP6, TMSB4X, VCP, and ENO3 as marker genes from the 17 obtained genes. According to the results of single-sample gene set enrichment analysis (ssGSEA), the immune microenvironment of PE changed, possibly due to the GOT1 and TMSB4X genes. Furthermore, 23 drugs targeting one marker gene were determined. A constructed ceRNA network revealed a complicated regulatory link based on the eight marker genes. In this study, diagnostic potency was developed, and insight into the mechanism of PE was provided. In-depth research should be conducted before clinical application to evaluate the diagnostic value of DE-FRGs in PE.
Collapse
Affiliation(s)
- Qingmin Wang
- Department of Obstetrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Zhihui Xiong
- Department of Obstetrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Baimiao Wang
- Department of Obstetrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Wei Wang
- Department of Obstetrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China.
| | - Huiling Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310005, China.
| |
Collapse
|
8
|
Mercer GV, Stapleton D, Barrett C, Ringer LCM, Lambe S, Critch A, Newman G, Pelley A, Biswas RG, Wolff W, Kock FC, Soong R, Simpson AJ, Cahill LS. Identifying placental metabolic biomarkers of preterm birth using nuclear magnetic resonance of intact tissue samples. Placenta 2023; 143:80-86. [PMID: 37864887 DOI: 10.1016/j.placenta.2023.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
INTRODUCTION Our understanding of the etiology of preterm birth (PTB) is incomplete; however, recent evidence has found a strong association between placental dysfunction and PTB. Altered placental metabolism may precede placental dysfunction and therefore the study of placental metabolic profiles could identify early biomarkers of PTB. In this study, we evaluated the placental metabolome in PTB in intact tissue samples using nuclear magnetic resonance (NMR) and spectral editing. METHODS Placental tissue samples were collected from nine term pregnancies and nine preterm pregnancies (<37 weeks' gestation). 1H NMR experiments on unprocessed tissue samples were performed using a high field magnet (500 MHz spectrometer) and a comprehensive multiphase NMR probe. The relative concentrations of 23 metabolites were corrected for gestational age and compared between groups. RESULTS The relative concentration of valine, glutamate and creatine were significantly decreased while alanine, choline and glucose were elevated in placentas from PTB pregnancies compared to controls (p < 0.05). Multivariate analysis using principal component analysis showed the PTB and control groups were significantly separated (p < 0.0001) and pathway analysis identified perturbations in the glycine, serine and threonine metabolism, aminoacyl-tRNA biosynthesis and valine, leucine and isoleucine biosynthesis pathways. CONCLUSION PTB is associated with significant alterations in placental metabolism. This study helps improve our understanding of the etiology of PTB. It also highlights the potential for small molecule metabolites to serve as placental metabolic biomarkers to aid in the prediction and diagnosis of PTB. The results can be translated to clinical use via in utero magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Grace V Mercer
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Darcie Stapleton
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Catherine Barrett
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lauren C M Ringer
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Stacy Lambe
- Department of Obstetrics and Gynaecology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Amanda Critch
- Department of Obstetrics and Gynaecology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Gabrielle Newman
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ashley Pelley
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Rajshree Ghosh Biswas
- Environmental NMR Center, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - William Wolff
- Environmental NMR Center, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - André J Simpson
- Environmental NMR Center, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada; Discipline of Radiology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
9
|
Contini T, Béranger R, Multigner L, Klánová J, Price EJ, David A. A Critical Review on the Opportunity to Use Placenta and Innovative Biomonitoring Methods to Characterize the Prenatal Chemical Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15301-15313. [PMID: 37796725 DOI: 10.1021/acs.est.3c04845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Adverse effects associated with chemical exposures during pregnancy include several developmental and reproductive disorders. However, considering the tens of thousands of chemicals present on the market, the effects of chemical mixtures on the developing fetus is still likely underestimated. In this critical review, we discuss the potential to apply innovative biomonitoring methods using high-resolution mass spectrometry (HRMS) on placenta to improve the monitoring of chemical exposure during pregnancy. The physiology of the placenta and its relevance as a matrix for monitoring chemical exposures and their effects on fetal health is first outlined. We then identify several key parameters that require further investigations before placenta can be used for large-scale monitoring in a robust manner. Most critical is the need for standardization of placental sampling. Placenta is a highly heterogeneous organ, and knowledge of the intraplacenta variability of chemical composition is required to ensure unbiased and robust interindividual comparisons. Other important variables include the time of collection, the sex of the fetus, and mode of delivery. Finally, we discuss the first applications of HRMS methods on the placenta to decipher the chemical exposome and describe how the use of placenta can complement biofluids collected on the mother or the fetus.
Collapse
Affiliation(s)
- Thomas Contini
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Rémi Béranger
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Luc Multigner
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Arthur David
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
10
|
Placental Metabolomics of Fetal Growth Restriction. Metabolites 2023; 13:metabo13020235. [PMID: 36837853 PMCID: PMC9959525 DOI: 10.3390/metabo13020235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Fetal growth restriction is an obstetrical pathological condition that causes high neonatal mortality and morbidity. The mechanisms of its onset are not completely understood. Metabolites were extracted from 493 placentas from non-complicated pregnancies in Hamilton Country, TN (USA), and analyzed by gas chromatography-mass spectrometry (GC-MS). Newborns were classified according to raw fetal weight (low birth weight (LBW; <2500 g) and non-low birth weight (Non-LBW; >2500 g)), and according to the calculated birth weight centile as it relates to gestational age (small for gestational age (SGA), large for gestational age (LGA), and adequate for gestational age (AGA)). Mothers of LBW infants had a lower pre-pregnancy weight (66.2 ± 17.9 kg vs. 73.4 ± 21.3 kg, p < 0.0001), a lower body mass index (BMI) (25.27 ± 6.58 vs. 27.73 ± 7.83, p < 0.001), and a shorter gestation age (246.4 ± 24.0 days vs. 267.2 ± 19.4 days p < 0.001) compared with non-LBW. Marital status, tobacco use, and fetus sex affected birth weight centile classification according to gestational age. Multivariate statistical comparisons of the extracted metabolomes revealed that asparagine, aspartic acid, deoxyribose, erythritol, glycerophosphocholine, tyrosine, isoleucine, serine, and lactic acid were higher in both SGA and LBW placentas, while taurine, ethanolamine, β-hydroxybutyrate, and glycine were lower in both SGA and LBW. Several metabolic pathways are implicated in fetal growth restriction, including those related to the hypoxia response and amino-acid uptake and metabolism. Inflammatory pathways are also involved, suggesting that fetal growth restriction might share some mechanisms with preeclampsia.
Collapse
|
11
|
Lombó M, Giommi C, Paolucci M, Notarstefano V, Montik N, Delli Carpini G, Ciavattini A, Ragusa A, Maradonna F, Giorgini E, Carnevali O. Preeclampsia Correlates with an Increase in Cannabinoid Receptor 1 Levels Leading to Macromolecular Alterations in Chorionic Villi of Term Placenta. Int J Mol Sci 2022; 23:12931. [PMID: 36361721 PMCID: PMC9656520 DOI: 10.3390/ijms232112931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 09/06/2023] Open
Abstract
Preeclampsia is a human pregnancy-specific disease characterized by abnormal placentation that usually presents with maternal hypertension and proteinuria. The main hallmark of preeclampsia, impaired trophoblast migration, and the subsequent disruption of uterine arteries remodeling lead to several molecular alterations in the placental compartments with those occurring in the chorionic villi being of the utmost importance. Given the essential role of the endocannabinoid system during preimplantation and trophoblast migration, we have combined the histological and hyperspectral imaging analyses to shed light on the involvement of two cannabinoid receptors in the macromolecular alterations related to preeclampsia. The results obtained by immunohistochemistry showed a significant increase in the protein levels of cannabinoid receptor 1 (CB1) in the preeclamptic chorionic villi. However, no changes were reported regarding transient receptor potential vanilloid 1 (TRPV-1) levels either in the bulk placental samples or chorionic villi when comparing control and preeclamptic patients. Histological analysis and Fourier-transform infrared spectroscopy (FTIRI) showed an increase in collagen deposition together with higher levels of lipid peroxidation and phosphorylated compounds in the pathological villi. Since CB1 enhancement has been described as promoting fibrosis and oxidative stress in several tissues, we proposed that the higher receptor abundance in preeclampsia could be triggering similar molecular effects in preeclamptic term placentas.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, 24071 León, Spain
| | - Christian Giommi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Michela Paolucci
- Department of Odontostomatological and Specialized Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Nina Montik
- Department of Odontostomatological and Specialized Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Giovanni Delli Carpini
- Department of Odontostomatological and Specialized Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Andrea Ciavattini
- Department of Odontostomatological and Specialized Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Antonio Ragusa
- Department of Obstetrics and Gynecology, Università Campus Bio Medico di Roma, 00128 Roma, Italy
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| |
Collapse
|
12
|
Rani-AGARWAL N, Sarovar BHAVESH N, KACHHAWA G, Fatai OYEYEMI B. Metabolic profiling of Serum and urine in preeclampsia and gestational diabetes in early pregnancy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Yang Y, Wang Y, Lv Y, Ding H. Dissecting the Roles of Lipids in Preeclampsia. Metabolites 2022; 12:metabo12070590. [PMID: 35888713 PMCID: PMC9323219 DOI: 10.3390/metabo12070590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Preeclampsia is a multisystem pregnancy disorder that is characterized by different degrees of placental malperfusion, with release of antiangiogenic factors into the circulation, leading to maternal vascular endothelial injury and high blood pressure. As a major cause of maternal and perinatal mortality and morbidity worldwide, once preeclampsia has been diagnosed, there are no curative treatments except for delivery. Lipids serve as ubiquitous and multifunctional metabolites that are integral and essential to many diverse functions on both a cellular and organismal level. Lipid metabolic abnormalities have emerged as potential risk factors for the development and progression of preeclampsia. This review comprehensively examines decades of discovery to illuminate the roles of lipids and dysregulation in the levels of various lipid classes in preeclampsia. In addition, the roles of lipids are summarized to further understand the pathogenic mechanisms of preeclampsia. Overall, the review highlights the promising potential of pathophysiology and lipid-targeting therapeutic strategies in preeclampsia.
Collapse
Affiliation(s)
| | | | - Yan Lv
- Correspondence: (Y.L.); (H.D.)
| | | |
Collapse
|
14
|
Ilgisonis EV, Shalina R, Kasum-Zade N, Burkova KG, Trifonova OP, Maslov DL, Kaysheva AL, Markin SS. Metabolomic Markers for Predicting Preeclampsia in the First Trimester of Pregnancy: A Retrospective Study. Molecules 2022; 27:molecules27082475. [PMID: 35458675 PMCID: PMC9025490 DOI: 10.3390/molecules27082475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
Abstract
We sought to identify the characteristic metabolite profile of blood plasma samples obtained from patients with preeclampsia. Direct high-resolution mass spectrometry was used to analyze samples from 79 pregnant women, 34 of whom had preeclampsia. We performed a comparative analysis of the metabolite profiles and found that they differed between pregnant women with and without preeclampsia. Lipids and sugars were identified as components of the metabolite profile that are likely to be associated with the development of preeclampsia. While PE was established only in the third trimester, a set of metabolites specific for the third trimester, including 2-(acetylamino)-1,5-anhydro-2-deoxy-4-O-b-D-galactopyranosyl-D-arabino-Hex-1-enitol, N-Acetyl-D-glucosaminyldiphosphodolichol, Cer(d18:0/20:0), and allolithocholic acid, was already traced in the first trimester. These components are also likely involved in lipid metabolism disorders and the development of oxidative stress.
Collapse
Affiliation(s)
- Ekaterina V. Ilgisonis
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.V.I.); (O.P.T.); (D.L.M.); (S.S.M.)
| | - Raisa Shalina
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia; (R.S.); (N.K.-Z.); (K.G.B.)
| | - Nigyar Kasum-Zade
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia; (R.S.); (N.K.-Z.); (K.G.B.)
| | - Kristina G. Burkova
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia; (R.S.); (N.K.-Z.); (K.G.B.)
| | - Oxana P. Trifonova
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.V.I.); (O.P.T.); (D.L.M.); (S.S.M.)
| | - Dmitry L. Maslov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.V.I.); (O.P.T.); (D.L.M.); (S.S.M.)
| | - Anna L. Kaysheva
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.V.I.); (O.P.T.); (D.L.M.); (S.S.M.)
- Correspondence: ; Tel.: +7-499-764-98-78
| | - Sergey S. Markin
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (E.V.I.); (O.P.T.); (D.L.M.); (S.S.M.)
| |
Collapse
|
15
|
Yao M, Xiao Y, Yang Z, Ge W, Liang F, Teng H, Gu Y, Yin J. Identification of Biomarkers for Preeclampsia Based on Metabolomics. Clin Epidemiol 2022; 14:337-360. [PMID: 35342309 PMCID: PMC8943653 DOI: 10.2147/clep.s353019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 01/15/2023] Open
Abstract
Background Preeclampsia (PE) is a significant cause of maternal and neonatal morbidity and mortality worldwide. However, the pathogenesis of PE is unclear and reliable early diagnostic methods are still lacking. The purpose of this review is to summarize potential metabolic biomarkers and pathways of PE, which might facilitate risk prediction and clinical diagnosis, and obtain a better understanding of specific metabolic mechanisms of PE. Methods This review included human metabolomics studies related to PE in the PubMed, Google Scholar, and Web of Science databases from January 2000 to November 2021. The reported metabolic biomarkers were systematically examined and compared. Pathway analysis was conducted through the online software MetaboAnalyst 5.0. Results Forty-one human studies were included in this systematic review. Several metabolites, such as creatinine, glycine, L-isoleucine, and glucose and biomarkers with consistent trends (decanoylcarnitine, 3-hydroxyisovaleric acid, and octenoylcarnitine), were frequently reported. In addition, eight amino acid metabolism-related, three carbohydrate metabolism-related, one translation-related and one lipid metabolism-related pathways were identified. These biomarkers and pathways, closely related to renal dysfunction, insulin resistance, lipid metabolism disorder, activated inflammation, and impaired nitric oxide production, were very likely to contribute to the progression of PE. Conclusion This study summarized several metabolites and metabolic pathways, which may be associated with PE. These high-frequency differential metabolites are promising to be biomarkers of PE for early diagnosis, and the prominent metabolic pathway may provide new insights for the understanding of the pathogenesis of PE.
Collapse
Affiliation(s)
- Mengxin Yao
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Yue Xiao
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Zhuoqiao Yang
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Wenxin Ge
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Fei Liang
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Haoyue Teng
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Yingjie Gu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jieyun Yin
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, People’s Republic of China
- Correspondence: Jieyun Yin, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, People’s Republic of China, Tel/Fax +86 0512 6588036, Email
| |
Collapse
|
16
|
Zhang L, Bi S, Liang Y, Huang L, Li Y, Huang M, Huang B, Deng W, Liang J, Gu S, Chen J, Du L, Chen D, Wang Z. Integrated Metabolomic and Lipidomic Analysis in the Placenta of Preeclampsia. Front Physiol 2022; 13:807583. [PMID: 35185616 PMCID: PMC8854797 DOI: 10.3389/fphys.2022.807583] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 01/31/2023] Open
Abstract
Preeclampsia is one of the most common severe pregnancy complications in obstetrics, which is considered a placental source disease. However, the mechanisms underlying preeclampsia remain largely unknown. In this study, UPLC-MS/MS-based metabolomic and lipidomic analysis was used to explore the characteristic placental metabolites in preeclampsia. The results revealed that there were significant changes in metabolites between preeclampsia and normotensive placentas. Weighted correlation network analysis (WGCNA) identified the correlation network module of metabolites highly related to preeclampsia and the clinical traits reflecting disease severity. The metabolic perturbations were primarily associated with glycerophospholipid and glutathione metabolism, which might influent membrane structures of organisms and mitochondria function. Using linear models, three metabolites had an area under receiver operating characteristic curves (AUROC) ≥ 0.80 and three lipids had an AUROC ≥ 0.90. Therefore, metabolomics and lipidomics may offer a novel insight for a better understanding of preeclampsia and provide a useful molecular mechanism underlying preeclampsia.
Collapse
Affiliation(s)
- Lizi Zhang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shilei Bi
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingyu Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulian Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Minshan Huang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baoying Huang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weinan Deng
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingying Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shifeng Gu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Lili Du
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
- *Correspondence: Lili Du,
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
- Dunjin Chen,
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Zhijian Wang,
| |
Collapse
|
17
|
Myatt L. The prediction of preeclampsia: the way forward. Am J Obstet Gynecol 2022; 226:S1102-S1107.e8. [PMID: 33785181 DOI: 10.1016/j.ajog.2020.10.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022]
Abstract
Despite intensive investigation, we still cannot adequately predict, treat, or prevent preeclampsia. We have gained awareness that preeclampsia is a syndrome not a disease and is heterogeneous in its presentation and pathophysiology, which may indicate differing underlying phenotypes, and that the impact extends beyond pregnancy per se. Effects on the fetus and mother extend many years after pregnancy, as evidenced by fetal programming of adult disease and increased risk of the development of maternal cardiovascular disease. The increased occurrence of preeclampsia in women with preexisting risk factors suggests that the stress of pregnancy may expose subclinical vascular disease as opposed to preeclampsia damaging the vasculature. The heterogeneity of preeclampsia has blighted efforts to predict preeclampsia early in gestation and has thwarted success in attempts at therapy with treatments, such as low-dose aspirin or global antioxidants. There is a critical need to identify the phenotypes to enable their specific prediction and treatment. Such studies require considerably larger collections of patients than employed in past and current studies. This does not necessarily imply much larger patient numbers in single studies but can be facilitated by the ability to easily combine many smaller studies. This can be accomplished by agreeing on a priori standardized and harmonized clinical data and biospecimen collection across new studies. Such standards are being established by international groups of investigators. Leadership by international organizations, perhaps adopting a carrot and stick approach, to overcome investigator, institutional and funder reticence toward data sharing is required to ensure adoption of such standards. Future studies should include women in both low- and high-resource settings and employ social media and novel methods for data collection and analysis, including machine learning and artificial intelligence. The goal is to identify the pathophysiology underlying differing preeclampsia phenotypes, their successful prediction with the design, and the implementation of phenotype-specific therapies.
Collapse
Affiliation(s)
- Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR.
| |
Collapse
|
18
|
Aye IL, Aiken CE, Charnock-Jones DS, Smith GC. Placental energy metabolism in health and disease-significance of development and implications for preeclampsia. Am J Obstet Gynecol 2022; 226:S928-S944. [PMID: 33189710 DOI: 10.1016/j.ajog.2020.11.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
The placenta is a highly metabolically active organ fulfilling the bioenergetic and biosynthetic needs to support its own rapid growth and that of the fetus. Placental metabolic dysfunction is a common occurrence in preeclampsia although its causal relationship to the pathophysiology is unclear. At the outset, this may simply be seen as an "engine out of fuel." However, placental metabolism plays a vital role beyond energy production and is linked to physiological and developmental processes. In this review, we discuss the metabolic basis for placental dysfunction and propose that the alterations in energy metabolism may explain many of the placental phenotypes of preeclampsia such as reduced placental and fetal growth, redox imbalance, oxidative stress, altered epigenetic and gene expression profiles, and the functional consequences of these aberrations. We propose that placental metabolic reprogramming reflects the dynamic physiological state allowing the tissue to adapt to developmental changes and respond to preeclampsia stress, whereas the inability to reprogram placental metabolism may result in severe preeclampsia phenotypes. Finally, we discuss common tested and novel therapeutic strategies for treating placental dysfunction in preeclampsia and their impact on placental energy metabolism as possible explanations into their potential benefits or harm.
Collapse
|
19
|
Karaer A, Mumcu A, Arda Düz S, Tuncay G, Doğan B. Metabolomics analysis of placental tissue obtained from patients with fetal growth restriction. J Obstet Gynaecol Res 2022; 48:920-929. [PMID: 35104920 DOI: 10.1111/jog.15173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/07/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022]
Abstract
AIM The aim of this study was to determine whether there was a difference in placental metabolite profiles between patients with fetal growth restriction (FGR) and healthy controls. METHODS The study included 10 patients with FGR diagnosis with 14 healthy controls with both matched maternal age and body mass index. 1 H HR-MAS NMR spectroscopy data obtained from placental tissue samples of patients with FGR and healthy control group were analyzed with bioinformatics methods. The obtained results of metabolite levels were further validated with the internal standard (IS) quantification method. RESULTS Principal component analysis (PCA) and the partial least squares discriminant analysis (PLS-DA) score plots obtained with the multivariate statistical analysis of preprocessed spectral data shows a separation between the samples from patients with FGR and healthy controls. Bioinformatics analysis results suggest that the placental levels of lactate, glutamine, glycerophosphocholine, phosphocholine, taurine, and myoinositol are increased in patients with FGR compared to the healthy controls. CONCLUSIONS Placental metabolic dysfunctions are a common occurrence in FGR.
Collapse
Affiliation(s)
- Abdullah Karaer
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Turkey.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Inonu University, School of Medicine, Malatya, Turkey
| | - Akın Mumcu
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Turkey.,Laboratory of NMR, Scientific and Technological Research Center, Inonu University, Malatya, Turkey
| | - Senem Arda Düz
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Turkey.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Inonu University, School of Medicine, Malatya, Turkey
| | - Görkem Tuncay
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Turkey.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Inonu University, School of Medicine, Malatya, Turkey
| | - Berat Doğan
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Turkey.,Department of Biomedical Engineering, School of Engineering, Inonu University, Malatya, Turkey
| |
Collapse
|
20
|
Schneider CM, Steeves KL, Mercer GV, George H, Paranavitana L, Simpson MJ, Simpson AJ, Cahill LS. Placental metabolite profiles in late gestation for healthy mice. Metabolomics 2022; 18:10. [PMID: 34993719 DOI: 10.1007/s11306-021-01868-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION During pregnancy, appropriate placental metabolism is essential for fetuses to reach their growth potential. However, metabolic mechanisms during pregnancy remain poorly understood. Determination of the levels of placental metabolites in healthy pregnancy and how they change throughout gestation is critical for understanding placental function. OBJECTIVE To determine the effects of gestational age on placental metabolites using healthy pregnant mice. METHODS In the present study, we collected placental tissue samples from healthy pregnant mice at three timepoints in late gestation (n = 16 placentas per gestational age). Metabolite profiles were determined using 1H high-resolution magic angle spinning magnetic resonance spectroscopy (HRMAS MRS). RESULTS Using HRMAS MRS, we identified 14 metabolites in murine placental tissue samples. The relative concentration of 12 of the 14 metabolites remains unchanged throughout late gestation. Lysine was found to decrease significantly (p = 0.04) and glucose showed an inverted U-shape relationship (p = 0.03) with gestational age. CONCLUSION This study demonstrated the feasibility of HRMAS MRS to determine relative metabolite concentrations in murine placental tissue. These findings establish baseline levels of placental tissue metabolite profiles and will serve as reference ranges for future studies using mouse models of fetal distress.
Collapse
Affiliation(s)
- Céline M Schneider
- Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John's, NL, A1B 3X7, Canada
| | - Katherine L Steeves
- Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John's, NL, A1B 3X7, Canada
| | - Grace V Mercer
- Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John's, NL, A1B 3X7, Canada
| | - Hannah George
- Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John's, NL, A1B 3X7, Canada
| | - Leah Paranavitana
- Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John's, NL, A1B 3X7, Canada
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, Canada
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John's, NL, A1B 3X7, Canada.
| |
Collapse
|
21
|
Ortega MA, Sáez MA, Fraile-Martínez O, Álvarez-Mon MA, García-Montero C, Guijarro LG, Asúnsolo Á, Álvarez-Mon M, Bujan J, García-Honduvilla N, De León-Luis JA, Bravo C. Overexpression of glycolysis markers in placental tissue of pregnant women with chronic venous disease: a histological study. Int J Med Sci 2022; 19:186-194. [PMID: 34975312 PMCID: PMC8692115 DOI: 10.7150/ijms.65419] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic Venous Disease (CVD) refers to a wide variety of venous disorders being the varicose veins its most common manifestation. It is well-established the link between pregnancy and the risk of suffering CVD, due to hormonal or haematological factors, especially during the third trimester. In the same manner, previous studies have demonstrated the detrimental effect of this condition in the placental tissue of pregnant women, including in the normal physiology and the metabolomic profile of this organ. In this context, the aim of this study was to evaluate the glucose homeostasis in the placental tissue of women presenting CVD. Through immunohistochemistry, we studied the protein expression of the glucose transporter 1 (GLUT-1), Phosphoglycerate kinase 1 (PGK1), aldolase (ALD), Glyceraldehyde-3-phosphate dehydrogenase (GA3PDH) and lactate dehydrogenase (LDH). Our results have reported a significative increase in the expression of GLUT-1, PGK1, ALD, GA3PDH and the isoenzyme LDHA in placentas of women with CVD. This work has proven for the first-time an altered glucose metabolism in the placental tissue of women affected by CVD, what may aid to understand the pathophysiological mechanisms of this condition in more distant organs such as placenta. Furthermore, our research also supports the basis for further studies in the metabolic phenotyping of the human placenta due to CVD, which may be considered during the late pregnancy in these women.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, Alcalá de Henares, Spain
| | - Miguel A Sáez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, Spain
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Miguel A Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology and Oncology Service, University Hospital Príncipe de Asturias, CIBEREHD, Alcalá de Henares, Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Juan A De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, Madrid 28009, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, Madrid 28009, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| |
Collapse
|
22
|
Wang X, Liu J, Hui X, Song Y. Metabolomics Applied to Cord Serum in Preeclampsia Newborns: Implications for Neonatal Outcomes. Front Pediatr 2022; 10:869381. [PMID: 35547553 PMCID: PMC9082809 DOI: 10.3389/fped.2022.869381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Preeclampsia (PE) is one of the leading causes of maternal and perinatal morbidity and mortality. However, it is still uncertain how PE affects neonate metabolism. We conducted an untargeted metabolomics analysis of cord blood to explore the metabolic changes in PE neonates. Umbilical cord serum samples from neonates with preeclampsia (n = 29) and non-preeclampsia (non-PE) (n = 32) pregnancies were analyzed using the UHPLC-QE-MS metabolomic platform. Different metabolites were screened, and pathway analysis was conducted. A subgroup analysis was performed among PE neonates to compare the metabolome between appropriate-for-gestational-age infants (n = 21) and small-for-gestational-age (SGA) infants (n = 8). A total of 159 different metabolites were detected in PE and non-PE neonates. Creatinine, N4-acetylcytidine, sphingomyelin (D18:1/16:0), pseudouridine, uric acid, and indolelactic acid were the most significant differential metabolites in the cord serum of PE neonates. Differential metabolite levels were elevated in PE neonates and were involved in the following metabolic pathways: glycine, serine, and threonine metabolism; sphingolipid, glyoxylate, and dicarboxylate metabolism; and arginine biosynthesis. In PE neonates, SGA neonates showed increased levels of hexacosanoyl carnitine and decreased abundance of 3-hydroxybutyric acid and 3-sulfinoalanine. Taurine-related metabolism and ketone body-related pathways were mainly affected. Based on the UHPLC-QE-MS metabolomics analysis, we identified the metabolic profiles of PE and SGA neonates. The abundance of metabolites related to certain amino acid, sphingolipid, and energy metabolism increased in the umbilical cord serum of PE neonates.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric and Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jieying Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Hui
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingna Song
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric and Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Monaco-Brown M, Lawrence DA. Obesity and Maternal-Placental-Fetal Immunology and Health. Front Pediatr 2022; 10:859885. [PMID: 35573953 PMCID: PMC9100592 DOI: 10.3389/fped.2022.859885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity rates in women of childbearing age is now at 29%, according to recent CDC reports. It is known that obesity is associated with oxidative stress and inflammation, including disruptions in cellular function and cytokine levels. In pregnant women who are obese, associated placental dysfunction can lead to small for gestational age (SGA) infants. More frequently, however, maternal obesity is associated with large for gestational age (LGA) newborns, who also have higher incidence of metabolic disease and asthma due to elevated levels of inflammation. In addition, anthropogenic environmental exposures to "endocrine disrupting" and "forever" chemicals affect obesity, as well as maternal physiology, the placenta, and fetal development. Placental function is intimately associated with the control of inflammation during pregnancy. There is a large amount of literature examining the relationship of placental immunology, both cellular and humoral, with pregnancy and neonatal outcomes. Cells such as placental macrophages and NK cells have been implicated in spontaneous miscarriage, preeclampsia, preterm birth, perinatal neuroinflammation, and other post-natal conditions. Differing levels of placental cytokines and molecular inflammatory mediators also have known associations with preeclampsia and developmental outcomes. In this review, we will specifically examine the literature regarding maternal, placental, and fetal immunology and how it is altered by maternal obesity and environmental chemicals. We will additionally describe the relationship between placental immune function and clinical outcomes, including neonatal conditions, autoimmune disease, allergies, immunodeficiency, metabolic and endocrine conditions, neurodevelopment, and psychiatric disorders.
Collapse
Affiliation(s)
- Meredith Monaco-Brown
- Department of Pediatrics, Bernard and Millie Duker Children's Hospital at Albany Medical Center, Albany, NY, United States
| | - David A Lawrence
- New York State Department of Health, Wadsworth Center, Albany, NY, United States.,Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, NY, United States
| |
Collapse
|
24
|
Yang Y, Pan Z, Guo F, Wang H, Long W, Wang H, Yu B. Placental metabolic profiling in gestational diabetes mellitus: An important role of fatty acids. J Clin Lab Anal 2021; 35:e24096. [PMID: 34752662 PMCID: PMC8649376 DOI: 10.1002/jcla.24096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023] Open
Abstract
Aim Gestational diabetes mellitus (GDM) is the most common metabolic disorder during pregnancy. Accumulating studies have reported metabolites that are significantly associated with the development of GDM. However, studies on the metabolism of placenta, the most important organ of maternal‐fetal energy and material transport, are extremely rare. This study aimed to identify and discuss the relationship between differentially expressed metabolites (DEM) and clinical parameters of the mothers and newborns. Methods In this study, metabolites from 63 placenta tissues (32 GDM and 31 normal controls) were assayed by ultra‐performance liquid chromatography‐high resolution mass spectrometry (UPLC‐HRMS). Results A total of 1297 annotated metabolites were detected, of which 87 significantly different in GDM placenta. Lipids and lipid‐like molecules accounted for 62.1% of DEM as they were significantly enriched via the “biosynthesis of unsaturated fatty acids” and “fatty acid biosynthesis” pathways. Linoleic acid and α‐linolenic acid appeared to be good biomarkers for the prediction and diagnosis of GDM. In addition, the level of PC(14:0/18:0) was negatively correlated with neonatal weight. 14 metabolites significantly different in male and female offspring, with the most increase in female newborns. Conclusion Even if maternal blood glucose level is well controlled, there are still metabolic abnormalities in GDM. Lipids and lipid‐like molecules were the main differential metabolites, especially unsaturated fatty acids.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital affiliated with Nanjing Medical University, Changzhou, China
| | - Zhaoping Pan
- Department of Obstetrics, Changzhou Maternal and Child Health Care Hospital affiliated with Nanjing Medical University, Changzhou, China
| | - Fang Guo
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital affiliated with Nanjing Medical University, Changzhou, China
| | - Huihui Wang
- Department of Obstetrics, Changzhou Maternal and Child Health Care Hospital affiliated with Nanjing Medical University, Changzhou, China
| | - Wei Long
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital affiliated with Nanjing Medical University, Changzhou, China
| | - Huiyan Wang
- Department of Obstetrics, Changzhou Maternal and Child Health Care Hospital affiliated with Nanjing Medical University, Changzhou, China
| | - Bin Yu
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital affiliated with Nanjing Medical University, Changzhou, China
| |
Collapse
|
25
|
Mohammad S, Bhattacharjee J, Vasanthan T, Harris CS, Bainbridge SA, Adamo KB. Metabolomics to understand placental biology: Where are we now? Tissue Cell 2021; 73:101663. [PMID: 34653888 DOI: 10.1016/j.tice.2021.101663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Metabolomics, the application of analytical chemistry methodologies to survey the chemical composition of a biological system, is used to globally profile and compare metabolites in one or more groups of samples. Given that metabolites are the terminal end-products of cellular metabolic processes, or 'phenotype' of a cell, tissue, or organism, metabolomics is valuable to the study of the maternal-fetal interface as it has the potential to reveal nuanced complexities of a biological system as well as differences over time or between individuals. The placenta acts as the primary site of maternal-fetal exchange, the success of which is paramount to growth and development of offspring during pregnancy and beyond. Although the study of metabolomics has proven moderately useful for the screening, diagnosis, and understanding of the pathophysiology of pregnancy complications, the placental metabolome in the context of a healthy pregnancy remains poorly characterized and understood. Herein, we discuss the technical aspects of metabolomics and review the current literature describing the placental metabolome in human and animal models, in the context of health and disease. Finally, we highlight areas for future opportunities in the emerging field of placental metabolomics.
Collapse
Affiliation(s)
- S Mohammad
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - J Bhattacharjee
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - T Vasanthan
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - C S Harris
- Department of Biology & Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - S A Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada
| | - K B Adamo
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
26
|
Andescavage N, Limperopoulos C. Emerging placental biomarkers of health and disease through advanced magnetic resonance imaging (MRI). Exp Neurol 2021; 347:113868. [PMID: 34562472 DOI: 10.1016/j.expneurol.2021.113868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022]
Abstract
Placental dysfunction is a major cause of fetal demise, fetal growth restriction, and preterm birth, as well as significant maternal morbidity and mortality. Infant survivors of placental dysfunction are at elevatedrisk for lifelong neuropsychiatric morbidity. However, despite the significant consequences of placental disease, there are no clinical tools to directly and non-invasively assess and measure placental function in pregnancy. In this work, we will review advanced MRI techniques applied to the study of the in vivo human placenta in order to better detail placental structure, architecture, and function. We will discuss the potential of these measures to serve as optimal biomarkers of placental dysfunction and review the evidence of these tools in the discrimination of health and disease in pregnancy. Efforts to advance our understanding of in vivo placental development are necessary if we are to optimize healthy pregnancy outcomes and prevent brain injury in successive generations. Current management of many high-risk pregnancies cannot address placental maldevelopment or injury, given the standard tools available to clinicians. Once accurate biomarkers of placental development and function are constructed, the subsequent steps will be to introduce maternal and fetal therapeutics targeting at optimizing placental function. Applying these biomarkers in future studies will allow for real-time assessments of safety and efficacy of novel interventions aimed at improving maternal-fetal well-being.
Collapse
Affiliation(s)
- Nickie Andescavage
- Developing Brain Institute, Department of Radiology, Children's National, Washington DC, USA; Department of Neonatology, Children's National, Washington DC, USA
| | | |
Collapse
|
27
|
Jaremek A, Jeyarajah MJ, Jaju Bhattad G, Renaud SJ. Omics Approaches to Study Formation and Function of Human Placental Syncytiotrophoblast. Front Cell Dev Biol 2021; 9:674162. [PMID: 34211975 PMCID: PMC8240757 DOI: 10.3389/fcell.2021.674162] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023] Open
Abstract
Proper development of the placenta is vital for pregnancy success. The placenta regulates exchange of nutrients and gases between maternal and fetal blood and produces hormones essential to maintain pregnancy. The placental cell lineage primarily responsible for performing these functions is a multinucleated entity called syncytiotrophoblast. Syncytiotrophoblast is continuously replenished throughout pregnancy by fusion of underlying progenitor cells called cytotrophoblasts. Dysregulated syncytiotrophoblast formation disrupts the integrity of the placental exchange surface, which can be detrimental to maternal and fetal health. Moreover, various factors produced by syncytiotrophoblast enter into maternal circulation, where they profoundly impact maternal physiology and are promising diagnostic indicators of pregnancy health. Despite the multifunctional importance of syncytiotrophoblast for pregnancy success, there is still much to learn about how its formation is regulated in normal and diseased states. ‘Omics’ approaches are gaining traction in many fields to provide a more holistic perspective of cell, tissue, and organ function. Herein, we review human syncytiotrophoblast development and current model systems used for its study, discuss how ‘omics’ strategies have been used to provide multidimensional insights into its formation and function, and highlight limitations of current platforms as well as consider future avenues for exploration.
Collapse
Affiliation(s)
- Adam Jaremek
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Gargi Jaju Bhattad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
28
|
Joseph S, Walejko JM, Zhang S, Edison AS, Keller-Wood M. Maternal hypercortisolemia alters placental metabolism: a multiomics view. Am J Physiol Endocrinol Metab 2020; 319:E950-E960. [PMID: 32954824 PMCID: PMC7790119 DOI: 10.1152/ajpendo.00190.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies have suggested that increases in maternal cortisol or maternal stress in late pregnancy increase the risk of stillbirth at term. In an ovine model with increased maternal cortisol over the last 0.20 of gestation, we have previously found evidence of disruption of fetal serum and cardiac metabolomics and altered expression of genes related to mitochondrial function and metabolism in biceps femoris, diaphragm, and cardiac muscle. The present studies were designed to test for effects of chronically increased maternal cortisol on gene expression and metabolomics in placentomes near term. We hypothesized that changes in placenta might underlie or contribute to the alterations in fetal serum metabolomics and thereby contribute to changes in striated muscle metabolism. Placentomes were collected from pregnancies in early labor (143 ± 1 days gestation) of control ewes (n = 7) or ewes treated with cortisol (1 mg·kg-1·day-1 iv; n = 5) starting at day 115 of gestation. Transcriptomics and metabolomics were performed using an ovine gene expression microarray (Agilent 019921) and HR-MAS NMR, respectively. Multiomic analysis indicates that amino acid metabolism, particularly of branched-chain amino acids and glutamate, occur in placenta; changes in amino acid metabolism, degradation, or biosynthesis in placenta were consistent with changes in valine, isoleucine, leucine, and glycine in fetal serum. The analysis also indicates changes in glycerophospholipid metabolism and suggests changes in endoplasmic reticulum stress and antioxidant status in the placenta. These findings suggest that changes in placental function occurring with excess maternal cortisol in late gestation may contribute to metabolic dysfunction at birth.
Collapse
Affiliation(s)
- Serene Joseph
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| | - Jacquelyn M Walejko
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville Florida
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Sicong Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Arthur S Edison
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
- Department of Genetics, Institute of Bioinformatics, University of Georgia, Athens, Georgia
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
- D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida
| |
Collapse
|
29
|
Bowman CE, Arany Z, Wolfgang MJ. Regulation of maternal-fetal metabolic communication. Cell Mol Life Sci 2020; 78:1455-1486. [PMID: 33084944 DOI: 10.1007/s00018-020-03674-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
Pregnancy may be the most nutritionally sensitive stage in the life cycle, and improved metabolic health during gestation and early postnatal life can reduce the risk of chronic disease in adulthood. Successful pregnancy requires coordinated metabolic, hormonal, and immunological communication. In this review, maternal-fetal metabolic communication is defined as the bidirectional communication of nutritional status and metabolic demand by various modes including circulating metabolites, endocrine molecules, and other secreted factors. Emphasis is placed on metabolites as a means of maternal-fetal communication by synthesizing findings from studies in humans, non-human primates, domestic animals, rabbits, and rodents. In this review, fetal, placental, and maternal metabolic adaptations are discussed in turn. (1) Fetal macronutrient needs are summarized in terms of the physiological adaptations in place to ensure their proper allocation. (2) Placental metabolite transport and maternal physiological adaptations during gestation, including changes in energy budget, are also discussed. (3) Maternal nutrient limitation and metabolic disorders of pregnancy serve as case studies of the dynamic nature of maternal-fetal metabolic communication. The review concludes with a summary of recent research efforts to identify metabolites, endocrine molecules, and other secreted factors that mediate this communication, with particular emphasis on serum/plasma metabolomics in humans, non-human primates, and rodents. A better understanding of maternal-fetal metabolic communication in health and disease may reveal novel biomarkers and therapeutic targets for metabolic disorders of pregnancy.
Collapse
Affiliation(s)
- Caitlyn E Bowman
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zoltan Arany
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Dai Y, Huo X, Cheng Z, Faas MM, Xu X. Early-life exposure to widespread environmental toxicants and maternal-fetal health risk: A focus on metabolomic biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139626. [PMID: 32535459 DOI: 10.1016/j.scitotenv.2020.139626] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
Prenatal exposure to widespread environmental toxicants is detrimental to maternal health and fetal development. The effects of environmental toxicants on maternal and fetal metabolic profile changes have not yet been summarized. This systematic review aims to summarize the current studies exploring the association between prenatal exposure to environmental toxicants and metabolic profile alterations in mother and fetus. We searched the MEDLINE (PubMed) electronic database for relevant literature conducted up to September 18, 2019 with some key terms. From the initial 155 articles, 15 articles met the inclusion and exclusion criteria, and consist of highly heterogeneous research methods. Seven studies assessed the effects of multiple environmental pollutants (metals, organic pollutants, nicotine, air pollutants) on the maternal urine and blood metabolomic profile; five studies evaluated the effects of arsenic, polychlorinated biphenyls (PCBs), nicotine, and ambient fine particulate matter (PM2.5) on the cord blood metabolomic profile; and one study assessed the effects of smoking exposure on the amniotic fluid metabolomic profile. The alteration of metabolic pathways in these studies mainly involve energy metabolism, hormone metabolism, oxidative stress and inflammation. No population study investigated the association between environmental toxicants and placental metabolomics. This systematic review provides evidence that prenatal exposure to a variety of environmental pollutants can affect maternal and fetal metabolomic characteristics. Integration of environmental toxicant exposure and metabolomics data in maternal-fetal samples is helpful to understand the interaction between toxicants and metabolites, so as to reveal the pathogenesis of fetal disease or diseases of fetal origin.
Collapse
Affiliation(s)
- Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
31
|
Lee SM, Kang Y, Lee EM, Jung YM, Hong S, Park SJ, Park CW, Norwitz ER, Lee DY, Park JS. Metabolomic biomarkers in midtrimester maternal plasma can accurately predict the development of preeclampsia. Sci Rep 2020; 10:16142. [PMID: 32999354 PMCID: PMC7527521 DOI: 10.1038/s41598-020-72852-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023] Open
Abstract
Early identification of patients at risk of developing preeclampsia (PE) would allow providers to tailor their prenatal management and adopt preventive strategies, such as low-dose aspirin. Nevertheless, no mid-trimester biomarkers have as yet been proven useful for prediction of PE. This study investigates the ability of metabolomic biomarkers in mid-trimester maternal plasma to predict PE. A case–control study was conducted including 33 pregnant women with mid-trimester maternal plasma (gestational age [GA], 16–24 weeks) who subsequently developed PE and 66 GA-matched controls with normal outcomes (mid-trimester cohort). Plasma samples were comprehensively profiled for primary metabolic and lipidomic signatures based on gas chromatography time-of-flight mass spectrometry (GC-TOF MS) and liquid chromatography Orbitrap mass spectrometry (LC-Orbitrap MS). A potential biomarker panel was computed based on binary logistic regression and evaluated using receiver operating characteristic (ROC) analysis. To evaluate whether this panel can be also used in late pregnancy, a retrospective cohort study was conducted using plasma collected from women who delivered in the late preterm period because of PE (n = 13) or other causes (n = 21) (at-delivery cohort). Metabolomic biomarkers were compared according to the indication for delivery. Performance of the metabolomic panel to identify patients with PE was compared also to a commonly used standard, the plasma soluble fms-like tyrosine kinase-1/placental growth factor (sFlt-1/PlGF) ratio. In the mid-trimester cohort, a total of 329 metabolites were identified and semi-quantified in maternal plasma using GC-TOF MS and LC-Orbitrap-MS. Binary logistic regression analysis proposed a mid-trimester biomarker panel for the prediction of PE with five metabolites (SM C28:1, SM C30:1, LysoPC C19:0, LysoPE C20:0, propane-1,3-diol). This metabolomic model predicted PE better than PlGF (AUC [95% CI]: 0.868 [0.844–0.891] vs 0.604 [0.485–0.723]) and sFlt-1/PlGF ratio. Analysis of plasma from the at-delivery cohort confirmed the ability of this biomarker panel to distinguish PE from non-PE, with comparable discrimination power to that of the sFlt-1/PlGF ratio. In conclusion, an integrative metabolomic biomarker panel in mid-trimester maternal plasma can accurately predict the development of PE and showed good discriminatory power in patients with PE at delivery.
Collapse
Affiliation(s)
- Seung Mi Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yujin Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Eun Mi Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Young Mi Jung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Subeen Hong
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Soo Jin Park
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Chan-Wook Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Errol R Norwitz
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
32
|
Saoi M, Kennedy KM, Gohir W, Sloboda DM, Britz-McKibbin P. Placental Metabolomics for Assessment of Sex-specific Differences in Fetal Development During Normal Gestation. Sci Rep 2020; 10:9399. [PMID: 32523064 PMCID: PMC7286906 DOI: 10.1038/s41598-020-66222-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
The placenta is a metabolically active interfacial organ that plays crucial roles in fetal nutrient delivery, gas exchange and waste removal reflecting dynamic maternal and fetal interactions during gestation. There is growing evidence that the sex of the placenta influences fetal responses to external stimuli in utero, such as changes in maternal nutrition and exposure to environmental stressors. However, the exact biochemical mechanisms associated with sex-specific metabolic adaptations during pregnancy and its link to placental function and fetal development remain poorly understood. Herein, multisegment injection-capillary electrophoresis-mass spectrometry is used as a high throughput metabolomics platform to characterize lyophilized placental tissue (~2 mg dried weight) from C57BL/6J mice fed a standardized diet. Over 130 authentic metabolites were consistently measured from placental extracts when using a nontargeted metabolomics workflow with stringent quality control and robust batch correction. Our work revealed distinct metabolic phenotype differences that exist between male (n = 14) and female (n = 14) placentae collected at embryonic day E18.5. Intracellular metabolites associated with fatty acid oxidation and purine degradation were found to be elevated in females as compared to male placentae (p < 0.05, effect size >0.40), including uric acid, valerylcarnitine, hexanoylcarnitine, and 3-hydroxyhexanolycarnitine. This murine model sheds new insights into sex-specific differences in placental mitochondrial function and protective mechanisms against deleterious oxidative stress that may impact fetal growth and birth outcomes later in life.
Collapse
Affiliation(s)
- Michelle Saoi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Katherine M Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Wajiha Gohir
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.,Department of Pediatrics and Obstetrics and Gynecology, McMaster University, Hamilton, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada.
| |
Collapse
|
33
|
Zhang L, Cao Z, Feng F, Xu YN, Li L, Gao H. A maternal GOT1 novel variant associated with early-onset severe preeclampsia identified by whole-exome sequencing. BMC MEDICAL GENETICS 2020; 21:49. [PMID: 32143588 PMCID: PMC7060644 DOI: 10.1186/s12881-020-0989-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/02/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND This study wants to know the genetic cause of preeclampsia (PE) which is a leading cause of maternal and perinatal death, but the underlying molecular mechanisms that cause PE remain poorly understood. Many single nucleotide polymorphisms have been identified by genome-wide association studies and were found to be associated with PE; however, few studies have used whole-exome sequencing (WES) to identify PE variants. METHODS Five patients with severe early-onset preeclampsia (EOPE) were recruited, and WES was performed on each patient. Sanger sequencing was used to confirm the potential causative genetic variant. RESULTS After a stringent bioinformatics analysis, a rare variant in the GOT1 gene, c.44C > G:p.P15R, was found in one patient. Bioinformatics analysis showed that the variant site is highly conserved across several species and was predicted to be a pathogenic variant according to several online mutational function prediction software packages. Further structural biology homology modeling suggested that P15R would change the electric environment of enzymatic center, and might affect the binding affinity of substrate or product. CONCLUSION We demonstrated for the first time that the variant in GOT1 may be associated with EOPE, the results of this study provide researchers and clinicians with a better understanding of the molecular mechanisms that underlie maternal severe EOPE.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, 100026, China
| | - Zheng Cao
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, 100026, China
| | - Fan Feng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Haidian, Beijing, 100084, China
| | - Ya-Nan Xu
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, 100026, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, 100026, China.
| | - Hong Gao
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, 100026, China.
| |
Collapse
|
34
|
Ma LN, Huang XB, Muyayalo KP, Mor G, Liao AH. Lactic Acid: A Novel Signaling Molecule in Early Pregnancy? Front Immunol 2020; 11:279. [PMID: 32180770 PMCID: PMC7057764 DOI: 10.3389/fimmu.2020.00279] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Aerobic glycolysis is a recognized feature shared by tumors, leading to the accumulation of lactic acid in their local microenvironments. Like the tumors, the blastocysts, placenta, trophoblasts and decidual immune cells can also produce a large amount of lactic acid through aerobic glycolysis during the early pregnancy. Moreover, the placenta expresses the transporters of the lactic acid. While several studies have described the role of lactic acid in the tumor microenvironment, especially lactic acid's modulation of immune cells, the role of lactic acid produced during pregnancy is still unclear. In this paper, we reviewed the scientific evidence detailing the effects of lactic acid in the tumor microenvironment. Based on the influence of the lactic acid on immune cells and tumors, we proposed that lactic acid released in the unique uterine environment could have similar effects on the trophoblast cells and immune cells during the early pregnancy.
Collapse
Affiliation(s)
- Li-Na Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Bo Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ai-Hua Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Abstract
Preeclampsia is a medical condition affecting 5-10% of pregnancies. It has serious effects on the health of the pregnant mother and developing fetus. While possible causes of preeclampsia are speculated, there is no consensus on its etiology. The advancement of big data and high-throughput technologies enables to study preeclampsia at the new and systematic level. In this review, we first highlight the recent progress made in the field of preeclampsia research using various omics technology platforms, including epigenetics, genome-wide association studies (GWAS), transcriptomics, proteomics and metabolomics. Next, we integrate the results in individual omic level studies, and show that despite the lack of coherent biomarkers in all omics studies, inhibin is a potential preeclamptic biomarker supported by GWAS, transcriptomics and DNA methylation evidence. Using network analysis on the biomarkers of all the literature reviewed here, we identify four striking sub-networks with clear biological functions supported by previous molecular-biology and clinical observations. In summary, omics integration approach offers the promise to understand molecular mechanisms in preeclampsia.
Collapse
|
36
|
Li Y, Zhao S, Yu Y, Ma C, Zheng Y, Niu Y, Wei D, Ma J. Risk factors associated with pre-eclampsia in pregnancies conceived by ART. Reprod Biomed Online 2019; 39:969-975. [DOI: 10.1016/j.rbmo.2019.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/13/2019] [Accepted: 09/11/2019] [Indexed: 10/26/2022]
|
37
|
Austdal M, Silva GB, Bowe S, Thomsen LCV, Tangerås LH, Bjørge L, Bathen TF, Iversen AC. Metabolomics Identifies Placental Dysfunction and Confirms Flt-1 (FMS-Like Tyrosine Kinase Receptor 1) Biomarker Specificity. Hypertension 2019; 74:1136-1143. [PMID: 31495279 DOI: 10.1161/hypertensionaha.119.13184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Clinical end-stage parameters define the pregnancy disorders preeclampsia and fetal growth restriction while classification of the underlying placental dysfunction is missing and urgently needed. Flt-1 (FMS-like tyrosine kinase receptor 1) is the most promising placenta-derived predictive biomarker for preeclampsia. We aimed to classify placental dysfunction in preeclampsia and fetal growth restriction at delivery by metabolic profiling and authenticate the biomarker Flt-1 for placental dysfunction. We studied 143 pregnancies with or without preeclampsia and/or fetal growth restriction delivered by cesarean section. Metabolic placenta profiles were created by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy and the resulting placental phenotypes obtained by hierarchical clustering. Placental Flt-1 expression (membrane-bound and soluble isoforms combined) and maternal serum Flt-1 expression (soluble isoforms) were analyzed by immunohistochemistry and ELISA, respectively. We identified 3 distinct placenta groups by 21 metabolites and diagnostic outcome parameters; normal placentas, moderate placental dysfunction, and severe placental dysfunction. Increased placental Flt-1 was associated with severe placental dysfunction, and increased serum Flt-1 was associated with moderate and severe placental dysfunction. The preeclamptic pregnancies with and without placental dysfunction could be distinguished by 5 metabolites and placental Flt-1. Placental Flt-1 alone could separate normal pregnancies with and without placental dysfunction. In conclusion, metabolomics could classify placental dysfunction and provide information not identified by traditional diagnostics and metabolites with biomarker potential were identified. Flt-1 was confirmed as precision biomarker for placental dysfunction, substantiating its usefulness for identification of high-risk pregnancies for preeclampsia and fetal growth restriction with placental involvement.
Collapse
Affiliation(s)
- Marie Austdal
- From the Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) (M.A., G.B.S., L.C.V.T., L.H.T., A.-C.I.), Trondheim University Hospital, Norway.,Department of Circulation and Medical Imaging, NTNU (M.A., T.F.B.), Trondheim University Hospital, Norway.,Department of Research, Stavanger University Hospital, Norway (M.A.)
| | - Gabriela Brettas Silva
- From the Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) (M.A., G.B.S., L.C.V.T., L.H.T., A.-C.I.), Trondheim University Hospital, Norway.,Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Norway (G.B.S., S.B., L.H.T.)
| | - Sophie Bowe
- Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Norway (G.B.S., S.B., L.H.T.)
| | - Liv Cecilie Vestrheim Thomsen
- From the Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) (M.A., G.B.S., L.C.V.T., L.H.T., A.-C.I.), Trondheim University Hospital, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital and Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Norway (L.C.V.T., L.B.)
| | - Line Haugstad Tangerås
- From the Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) (M.A., G.B.S., L.C.V.T., L.H.T., A.-C.I.), Trondheim University Hospital, Norway.,Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Norway (G.B.S., S.B., L.H.T.)
| | - Line Bjørge
- Department of Gynecology and Obstetrics, Haukeland University Hospital and Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Norway (L.C.V.T., L.B.)
| | - Tone Frost Bathen
- Department of Circulation and Medical Imaging, NTNU (M.A., T.F.B.), Trondheim University Hospital, Norway
| | - Ann-Charlotte Iversen
- From the Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) (M.A., G.B.S., L.C.V.T., L.H.T., A.-C.I.), Trondheim University Hospital, Norway
| |
Collapse
|
38
|
Kawasaki K, Kondoh E, Chigusa Y, Kawamura Y, Mogami H, Takeda S, Horie A, Baba T, Matsumura N, Mandai M, Konishi I. Metabolomic Profiles of Placenta in Preeclampsia. Hypertension 2019; 73:671-679. [DOI: 10.1161/hypertensionaha.118.12389] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kaoru Kawasaki
- From the Department of Gynaecology and Obstetrics, Kyoto University, Japan (K.K., E.K., Y.C., Y.K., H.M., A.H., T.B., N.M., M.M.)
- Department of Obstetrics and Gynaecology, National Hospital Organization Kyoto Medical Center, Japan (K.K., I.K.)
| | - Eiji Kondoh
- From the Department of Gynaecology and Obstetrics, Kyoto University, Japan (K.K., E.K., Y.C., Y.K., H.M., A.H., T.B., N.M., M.M.)
| | - Yoshitsugu Chigusa
- From the Department of Gynaecology and Obstetrics, Kyoto University, Japan (K.K., E.K., Y.C., Y.K., H.M., A.H., T.B., N.M., M.M.)
| | - Yosuke Kawamura
- From the Department of Gynaecology and Obstetrics, Kyoto University, Japan (K.K., E.K., Y.C., Y.K., H.M., A.H., T.B., N.M., M.M.)
| | - Haruta Mogami
- From the Department of Gynaecology and Obstetrics, Kyoto University, Japan (K.K., E.K., Y.C., Y.K., H.M., A.H., T.B., N.M., M.M.)
| | - Satoru Takeda
- Department of Obstetrics and Gynaecology, Juntendo University, Tokyo, Japan (S.T.)
| | - Akihito Horie
- From the Department of Gynaecology and Obstetrics, Kyoto University, Japan (K.K., E.K., Y.C., Y.K., H.M., A.H., T.B., N.M., M.M.)
| | - Tsukasa Baba
- From the Department of Gynaecology and Obstetrics, Kyoto University, Japan (K.K., E.K., Y.C., Y.K., H.M., A.H., T.B., N.M., M.M.)
| | - Noriomi Matsumura
- From the Department of Gynaecology and Obstetrics, Kyoto University, Japan (K.K., E.K., Y.C., Y.K., H.M., A.H., T.B., N.M., M.M.)
| | - Masaki Mandai
- From the Department of Gynaecology and Obstetrics, Kyoto University, Japan (K.K., E.K., Y.C., Y.K., H.M., A.H., T.B., N.M., M.M.)
| | - Ikuo Konishi
- Department of Obstetrics and Gynaecology, National Hospital Organization Kyoto Medical Center, Japan (K.K., I.K.)
| |
Collapse
|
39
|
Abstract
Preeclampsia is a multifactorial disorder defined by hypertension and increased urinary protein excretion during pregnancy. It is a significant cause of maternal and neonatal deaths worldwide. Despite various research efforts to clarify pathogenies of preeclampsia and predict this disease before beginning of symptoms, the pathogenesis of preeclampsia is unclear. Early prediction and diagnosis of women at risk of preeclampsia has not markedly improved. Therefore, the objective of this study was to perform a review on metabolomic articles assessing predictive and diagnostic biomarkers of preeclampsia. Four electronic databases including PubMed/Medline, Web of Science, Sciencedirect, and Scopus were searched to identify studies of preeclampsia in humans using metabolomics from inception to March 2018. Twenty-one articles in a variety of biological specimens and analytical platforms were included in the present review. Metabolite profiles may assist in the diagnosis of preeclampsia and discrimination of its subtypes. Lipids and their related metabolites were the most generally detected metabolites. Although metabolomic biomarkers of preeclampsia are not routinely used, this review suggests that metabolomics has the potential to be developed into a clinical tool for preeclampsia diagnosis and could contribute to an improved understanding of disease mechanisms. ABBREVIATIONS PE: preeclampsia; sFlt-1: soluble FMS-like tyrosine kinase-1; PlGF: placental growth factor; GC-MS: gas chromatography-mass spectrometry; LC-MS: liquid chromatography-mass spectrometry; NMR: nuclear magnetic resonance spectroscopy; HMDB: human metabolome database; RCT: randomized control trial; e-PE: early-onset PE; l-PE: late-onset PE; PLS-DA: partial least-squares-discriminant analysis; CRL: crown-rump length; UtPI: uterine artery Doppler pulsatility index; BMI: body mass index; MAP: mean arterial pressure; OS: oxidative stress; PAPPA: plasma protein A; FTIR: Fourier transform infrared; BCAA: branched chain amino acids; Arg: arginine; NO: nitric oxide.
Collapse
Affiliation(s)
- B Fatemeh Nobakht M Gh
- a Department of Basic Medical Sciences , Neyshabur University of Medical Sciences , Neyshabur , Iran
| |
Collapse
|
40
|
Troisi J, Symes S, Adair D, Colucci A, Prisco SE, Aquino CI, Vivone I, Guida M, Richards S. Placental tissue metabolome analysis by GC-MS: Oven-drying is a viable sample preparation method. Prep Biochem Biotechnol 2018; 48:474-482. [PMID: 29932806 DOI: 10.1080/10826068.2018.1466151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Analysis of the human placenta metabolome has great potential to advance the understanding of complicated pregnancies and deleterious fetal outcomes in remote populations, but samples preparation can present unique challenges. Herein, we introduce oven-drying as a simple and widely available method of sample preparation that will facilitate investigations of the placental metabolome from remote and under-studied populations. Placentae from complicated and uncomplicated pregnancies were prepared in three ways (oven-dried at 60 °C, fresh, lyophilized) for metabolome analysis via gas chromatography-mass spectrometry (GC-MS). Multiple computer models (e.g. PLS-DA, ANN) were employed to classify and determine if there was a difference in placentae metabolome and a group of metabolites with high variable importance in projection scores across the three preparations and by complicated vs. control groups. The analyses used herein were shown to be thorough and sensitive. Indeed, significant differences were detected in metabolomes of complicated vs. uncomplicated pregnancies; however, there were no statistical differences in the metabolome of placentae prepared by oven-drying vs. lyophilization vs. fresh placentae. Oven-drying is a viable sample preparation method for placentae intended for use in metabolite analysis via GC-MS. These results open many possibilities for researching metabolome patterns associated with fetal outcomes in remote and resource-poor communities worldwide.
Collapse
Affiliation(s)
- Jacopo Troisi
- a Department of Medicine and Surgery and Dentistry , "Scuola Medica Salernitana", University of Salerno , Baronissi, Italy.,b Theoreo Srl - Spin-off Company of the University of Salerno , Montecorvino Pugliano , Italy
| | - Steven Symes
- c Department of Chemistry and Physics , University of Tennessee at Chattanooga , Chattanooga , TN , USA
| | - David Adair
- d Department of Obstetrics and Gynecology , University of Tennessee College of Medicine , Chattanooga , TN , USA
| | - Angelo Colucci
- a Department of Medicine and Surgery and Dentistry , "Scuola Medica Salernitana", University of Salerno , Baronissi, Italy
| | - Sonia Elisa Prisco
- a Department of Medicine and Surgery and Dentistry , "Scuola Medica Salernitana", University of Salerno , Baronissi, Italy
| | - Carmen Imma Aquino
- a Department of Medicine and Surgery and Dentistry , "Scuola Medica Salernitana", University of Salerno , Baronissi, Italy
| | - Immacolata Vivone
- a Department of Medicine and Surgery and Dentistry , "Scuola Medica Salernitana", University of Salerno , Baronissi, Italy
| | - Maurizio Guida
- a Department of Medicine and Surgery and Dentistry , "Scuola Medica Salernitana", University of Salerno , Baronissi, Italy
| | - Sean Richards
- e Department of Biology, Geology and Environmental Sciences , University of Tennessee at Chattanooga , Chattanooga , TN , USA
| |
Collapse
|
41
|
Eastabrook G, Aksoy T, Bedell S, Penava D, de Vrijer B. Preeclampsia biomarkers: An assessment of maternal cardiometabolic health. Pregnancy Hypertens 2018; 13:204-213. [PMID: 30177053 DOI: 10.1016/j.preghy.2018.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/09/2018] [Accepted: 06/09/2018] [Indexed: 12/15/2022]
Abstract
Preeclampsia is a serious pregnancy condition defined as new-onset hypertension and proteinuria, commonly characterized as either early, 'placental', or late onset, 'maternal', using a cut-off of 34 weeks gestation. However, it may be more useful to differentiate between the vascular remodelling and placental invasion vs. inflammation and metabolic pathophysiology that underlie these forms of preeclampsia. Due to rising rates of obesity, the late-onset, maternal form is increasingly occurring earlier in pregnancy. Predictive tests for preeclampsia typically include biophysical markers such as maternal body mass index and mean arterial pressure, indicating the importance of cardiovascular and metabolic health in its pathophysiology. In contrast, the placental, inflammatory, endothelial and/or metabolic biomarkers used in these tests are generally thought to indicate an abnormal response to placentation and predict the disease. However, many of these non-placental biomarkers are known to predict impaired metabolic health in non-pregnant subjects with obesity (metabolically unhealthy obesity) and coronary artery disease or stroke in people at risk for cardiovascular events. Similarities between the performance of these markers in the prediction of cardiovascular and metabolic health outside of pregnancy suggests that they may be more indicative of maternal health than predictive for preeclampsia. This paper reviews the biophysical and biochemical markers in preeclampsia prediction and compares their performance to tests assessing metabolic health and risk of cardiovascular disease, particularly in the obese population.
Collapse
Affiliation(s)
- Genevieve Eastabrook
- Department of Obstetrics and Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Tuba Aksoy
- Department of Obstetrics and Gynecology, Mackenzie Richmond Hill Hospital, Richmond Hill, Ontario, Canada.
| | - Samantha Bedell
- Department of Obstetrics and Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Debbie Penava
- Department of Obstetrics and Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Barbra de Vrijer
- Department of Obstetrics and Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
42
|
Global Metabolomics of the Placenta Reveals Distinct Metabolic Profiles between Maternal and Fetal Placental Tissues Following Delivery in Non-Labored Women. Metabolites 2018; 8:metabo8010010. [PMID: 29360753 PMCID: PMC5876000 DOI: 10.3390/metabo8010010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 01/12/2023] Open
Abstract
We evaluated the metabolic alterations in maternal and fetal placental tissues from non-labored women undergoing cesarean section using samples collected from 5 min to 24 h following delivery. Using 1H-NMR, we identified 14 metabolites that significantly differed between maternal and fetal placental tissues (FDR-corrected p-value < 0.05), with 12 metabolites elevated in the maternal tissue, reflecting the flux of these metabolites from mother to fetus. In the maternal tissue, 4 metabolites were significantly altered at 15 min, 10 metabolites at 30 min, and 16 metabolites at 1 h postdelivery, while 11 metabolites remained stable over 24 h. In contrast, in the fetal placenta tissue, 1 metabolite was significantly altered at 15 min, 2 metabolites at 30 min, and 4 metabolites at 1 h postdelivery, while 22 metabolites remained stable over 24 h. Our study provides information on the metabolic profiles of maternal and fetal placental tissues delivered by cesarean section and reveals that there are different metabolic alterations in the maternal and fetal tissues of the placenta following delivery.
Collapse
|
43
|
Fattuoni C, Mandò C, Palmas F, Anelli GM, Novielli C, Parejo Laudicina E, Savasi VM, Barberini L, Dessì A, Pintus R, Fanos V, Noto A, Cetin I. Preliminary metabolomics analysis of placenta in maternal obesity. Placenta 2017; 61:89-95. [PMID: 29277276 DOI: 10.1016/j.placenta.2017.11.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Metabolomics identifies phenotypical groups with specific metabolic profiles, being increasingly applied to several pregnancy conditions. This is the first preliminary study analyzing placental metabolomics in normal weight (NW) and obese (OB) pregnancies. METHODS Twenty NW (18.5 ≤ BMI< 25 kg/m2) and eighteen OB (BMI≥ 30 kg/m2) pregnancies were studied. Placental biopsies were collected at elective caesarean section. Metabolites extraction method was optimized for hydrophilic and lipophilic phases, then analyzed with GC-MS. Univariate and PLS-DA multivariate analysis were applied. RESULTS Univariate analysis showed increased uracil levels while multivariate PLS-DA analysis revealed lower levels of LC-PUFA derivatives in the lipophilic phase and several metabolites with significantly different levels in the hydrophilic phase of OB vs NW. DISCUSSION Placental metabolome analysis of obese pregnancies showed differences in metabolites involved in antioxidant defenses, nucleotide production, as well as lipid synthesis and energy production, supporting a shift towards higher placental metabolism. OB placentas also showed a specific fatty acids profile suggesting a disruption of LC-PUFA biomagnification. This study can lay the foundation to further metabolomic placental characterization in maternal obesity. Metabolic signatures in obese placentas may reflect changes occurring in the intrauterine metabolic environment, which may affect the development of adult diseases.
Collapse
Affiliation(s)
- Claudia Fattuoni
- Department of Chemical and Geological Sciences, University of Cagliari, Italy
| | - Chiara Mandò
- Unit of Obstetrics and Gynecology, Hospital "L. Sacco" and Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Italy
| | - Francesco Palmas
- Department of Chemical and Geological Sciences, University of Cagliari, Italy
| | - Gaia Maria Anelli
- Unit of Obstetrics and Gynecology, Hospital "L. Sacco" and Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Italy
| | - Chiara Novielli
- Unit of Obstetrics and Gynecology, Hospital "L. Sacco" and Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Italy
| | - Estefanìa Parejo Laudicina
- Centre of Excellence for Pediatric Research EURISTIKOS and Department of Pediatrics, School of Medicine, University of Granada, Granada, Spain
| | - Valeria Maria Savasi
- Unit of Obstetrics and Gynecology, Hospital "L. Sacco" and Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Italy
| | - Luigi Barberini
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Angelica Dessì
- Maternal-Neonatal Department, Neonatal Intensive Care Unit, Puericulture Institute and Neonatal Section, AOUCA University Hospital of Cagliari, Italy
| | - Roberta Pintus
- Maternal-Neonatal Department, Neonatal Intensive Care Unit, Puericulture Institute and Neonatal Section, AOUCA University Hospital of Cagliari, Italy
| | - Vassilios Fanos
- Maternal-Neonatal Department, Neonatal Intensive Care Unit, Puericulture Institute and Neonatal Section, AOUCA University Hospital of Cagliari, Italy
| | - Antonio Noto
- Maternal-Neonatal Department, Neonatal Intensive Care Unit, Puericulture Institute and Neonatal Section, AOUCA University Hospital of Cagliari, Italy
| | - Irene Cetin
- Unit of Obstetrics and Gynecology, Hospital "L. Sacco" and Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Italy.
| |
Collapse
|
44
|
Benton SJ, Ly C, Vukovic S, Bainbridge SA. Andrée Gruslin award lecture: Metabolomics as an important modality to better understand preeclampsia. Placenta 2017; 60 Suppl 1:S32-S40. [PMID: 27889063 DOI: 10.1016/j.placenta.2016.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 02/04/2023]
Abstract
Preeclampsia (PE) is a complex disorder that affects 3-5% of all pregnancies and is a leading cause of maternal and fetal morbidity and mortality. To date, the heterogeneity of clinical presentation, disease severity and outcomes have limited significant advances in early prediction, diagnosis, and therapeutic intervention of PE. The rapidly expanding field of metabolomics, which has the capacity to quantitatively detect low molecular weight compounds (metabolites) in tissue and biological fluids, shows tremendous promise in gaining a better understanding of PE. This review will discuss this emerging field and its contribution to recent advances in the understanding of PE pathophysiology, and identification of early predictive metabolic biomarkers for this complex disorder.
Collapse
Affiliation(s)
- S J Benton
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - C Ly
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - S Vukovic
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - S A Bainbridge
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada; Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
45
|
Yu J, Jia J, Guo X, Chen R, Feng L. Modulating circulating sFlt1 in an animal model of preeclampsia using PAMAM nanoparticles for siRNA delivery. Placenta 2017; 58:1-8. [DOI: 10.1016/j.placenta.2017.07.360] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/21/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023]
|
46
|
Yurttutan N, Bakacak M, Kızıldağ B. Comparison of the T2-star Values of Placentas Obtained from Pre-eclamptic Patients with Those of a Control Group: an Ex-vivo Magnetic Resonance Imaging Study. Balkan Med J 2017; 34:412-416. [PMID: 28552841 PMCID: PMC5635627 DOI: 10.4274/balkanmedj.2016.1472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: Endotel dysfunction, vasoconstriction, and oxidative stress are described in the pathophysiology of pre-eclampsia, but its aetiology has not been revealed clearly. Aims: To examine whether there is a difference between the placentas of pre-eclamptic pregnant women and those of a control group in terms of their T2 star values. Study Design: Case-control study. Methods: Twenty patients diagnosed with pre-eclampsia and 22 healthy controls were included in this study. The placentas obtained after births performed via Caesarean section were taken into the magnetic resonance imaging area in plastic bags within the first postnatal hour, and imaging was performed via modified DIXON-Quant sequence. Average values were obtained by performing T2 star measurements from four localisations on the placentas. Results: T2 star values measured in the placentas of the control group were found to be significantly lower than those in the pre-eclampsia group (p<0.01). While the mean T2 star value in the pre-eclamptic group was found to be 37.48 ms (standard deviation ± 11.3), this value was 28.74 (standard deviation ± 8.08) in the control group. The cut-off value for the T2 star value, maximising the accuracy of diagnosis, was 28.59 ms (area under curve: 0.741; 95% confidence interval: 0.592-0.890); sensitivity and specificity were 70% and 63.6%, respectively. Conclusion: This study, the T2 star value, which is an indicator of iron amount, was found to be significantly lower in the control group than in the pre-eclampsia group. This may be related to the reduction in blood flow to the placenta due to endothelial dysfunction and vasoconstriction, which are important in pre-eclampsia pathophysiology.
Collapse
Affiliation(s)
- Nursel Yurttutan
- Department of Radiology, Kahramanmaraş Sütçü İmam University School of Medicine, Kahramanmaraş, Turkey
| | - Murat Bakacak
- Department of Obstetrics and Gynecology, Kahramanmaraş Sütçü İmam University School of Medicine, Kahramanmaraş, Turkey
| | - Betül Kızıldağ
- Department of Radiology, Kahramanmaraş Sütçü İmam University School of Medicine, Kahramanmaraş, Turkey
| |
Collapse
|
47
|
Tejera E, Cruz-Monteagudo M, Burgos G, Sánchez ME, Sánchez-Rodríguez A, Pérez-Castillo Y, Borges F, Cordeiro MNDS, Paz-Y-Miño C, Rebelo I. Consensus strategy in genes prioritization and combined bioinformatics analysis for preeclampsia pathogenesis. BMC Med Genomics 2017; 10:50. [PMID: 28789679 PMCID: PMC5549357 DOI: 10.1186/s12920-017-0286-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Preeclampsia is a multifactorial disease with unknown pathogenesis. Even when recent studies explored this disease using several bioinformatics tools, the main objective was not directed to pathogenesis. Additionally, consensus prioritization was proved to be highly efficient in the recognition of genes-disease association. However, not information is available about the consensus ability to early recognize genes directly involved in pathogenesis. Therefore our aim in this study is to apply several theoretical approaches to explore preeclampsia; specifically those genes directly involved in the pathogenesis. METHODS We firstly evaluated the consensus between 12 prioritization strategies to early recognize pathogenic genes related to preeclampsia. A communality analysis in the protein-protein interaction network of previously selected genes was done including further enrichment analysis. The enrichment analysis includes metabolic pathways as well as gene ontology. Microarray data was also collected and used in order to confirm our results or as a strategy to weight the previously enriched pathways. RESULTS The consensus prioritized gene list was rationally filtered to 476 genes using several criteria. The communality analysis showed an enrichment of communities connected with VEGF-signaling pathway. This pathway is also enriched considering the microarray data. Our result point to VEGF, FLT1 and KDR as relevant pathogenic genes, as well as those connected with NO metabolism. CONCLUSION Our results revealed that consensus strategy improve the detection and initial enrichment of pathogenic genes, at least in preeclampsia condition. Moreover the combination of the first percent of the prioritized genes with protein-protein interaction network followed by communality analysis reduces the gene space. This approach actually identifies well known genes related with pathogenesis. However, genes like HSP90, PAK2, CD247 and others included in the first 1% of the prioritized list need to be further explored in preeclampsia pathogenesis through experimental approaches.
Collapse
Affiliation(s)
- Eduardo Tejera
- Facultad de Medicina, Universidad de Las Américas, Av. de los Granados E12-41y Colimes esq, EC170125, Quito, Ecuador.
| | - Maykel Cruz-Monteagudo
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, FL 33136, Miami, USA.,Department of General Education, West Coast University-Miami Campus, Doral, FL 33178, USA.,CIQUP/Departamento de Quimica e Bioquimica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.,REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Germán Burgos
- Facultad de Medicina, Universidad de Las Américas, Av. de los Granados E12-41y Colimes esq, EC170125, Quito, Ecuador
| | - María-Eugenia Sánchez
- Facultad de Medicina, Universidad de Las Américas, Av. de los Granados E12-41y Colimes esq, EC170125, Quito, Ecuador
| | - Aminael Sánchez-Rodríguez
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, Calle París S/N, EC1101608, Loja, Ecuador
| | | | - Fernanda Borges
- CIQUP/Departamento de Quimica e Bioquimica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | | | - César Paz-Y-Miño
- Centro de Investigaciones genética y genómica, Facultad de Ciencias de la Salud, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Irene Rebelo
- Faculty of Pharmacy, University of Porto, Porto, Portugal.,UCIBIO@REQUIMTE, Caparica, Portugal
| |
Collapse
|
48
|
McGinnis R, Steinthorsdottir V, Williams NO, Thorleifsson G, Shooter S, Hjartardottir S, Bumpstead S, Stefansdottir L, Hildyard L, Sigurdsson JK, Kemp JP, Silva GB, Thomsen LCV, Jääskeläinen T, Kajantie E, Chappell S, Kalsheker N, Moffett A, Hiby S, Lee WK, Padmanabhan S, Simpson NAB, Dolby VA, Staines-Urias E, Engel SM, Haugan A, Trogstad L, Svyatova G, Zakhidova N, Najmutdinova D, Dominiczak AF, Gjessing HK, Casas JP, Dudbridge F, Walker JJ, Pipkin FB, Thorsteinsdottir U, Geirsson RT, Lawlor DA, Iversen AC, Magnus P, Laivuori H, Stefansson K, Morgan L. Variants in the fetal genome near FLT1 are associated with risk of preeclampsia. Nat Genet 2017; 49:1255-1260. [PMID: 28628106 DOI: 10.1038/ng.3895] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
Abstract
Preeclampsia, which affects approximately 5% of pregnancies, is a leading cause of maternal and perinatal death. The causes of preeclampsia remain unclear, but there is evidence for inherited susceptibility. Genome-wide association studies (GWAS) have not identified maternal sequence variants of genome-wide significance that replicate in independent data sets. We report the first GWAS of offspring from preeclamptic pregnancies and discovery of the first genome-wide significant susceptibility locus (rs4769613; P = 5.4 × 10-11) in 4,380 cases and 310,238 controls. This locus is near the FLT1 gene encoding Fms-like tyrosine kinase 1, providing biological support, as a placental isoform of this protein (sFlt-1) is implicated in the pathology of preeclampsia. The association was strongest in offspring from pregnancies in which preeclampsia developed during late gestation and offspring birth weights exceeded the tenth centile. An additional nearby variant, rs12050029, associated with preeclampsia independently of rs4769613. The newly discovered locus may enhance understanding of the pathophysiology of preeclampsia and its subtypes.
Collapse
Affiliation(s)
| | | | | | | | | | - Sigrun Hjartardottir
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | | | | | - John P Kemp
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Gabriela B Silva
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Liv Cecilie V Thomsen
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Tiina Jääskeläinen
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eero Kajantie
- National Institute for Health and Welfare, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- PEDEGO Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Sally Chappell
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Noor Kalsheker
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Susan Hiby
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Wai Kwong Lee
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Nigel A B Simpson
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Vivien A Dolby
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Eleonora Staines-Urias
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Nuffield Department of Obstetrics &Gynaecology, University of Oxford, Oxford, UK
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anita Haugan
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Gulnara Svyatova
- Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Kazakhstan
| | - Nodira Zakhidova
- Institute of Immunology, Uzbek Academy of Sciences, Tashkent, Uzbekistan
| | - Dilbar Najmutdinova
- Republic Specialized Scientific Practical Medical Centre of Obstetrics and Gynecology, Tashkent, Uzbekistan
| | - Anna F Dominiczak
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Håkon K Gjessing
- Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Juan P Casas
- Farr Institute of Health Informatics, University College London, London, UK
| | - Frank Dudbridge
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - James J Walker
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | | | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Reynir T Geirsson
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland
| | - Debbie A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Ann-Charlotte Iversen
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per Magnus
- Norwegian Institute of Public Health, Oslo, Norway
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari Stefansson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Linda Morgan
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
49
|
Maternal Choline Supplementation Alters Fetal Growth Patterns in a Mouse Model of Placental Insufficiency. Nutrients 2017; 9:nu9070765. [PMID: 28718809 PMCID: PMC5537879 DOI: 10.3390/nu9070765] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 01/07/2023] Open
Abstract
Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3+/− (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3+/− female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3+/− mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline.
Collapse
|
50
|
Kelly RS, Giorgio RT, Chawes BL, Palacios NI, Gray KJ, Mirzakhani H, Wu A, Blighe K, Weiss ST, Lasky-Su J. Applications of Metabolomics in the Study and Management of Preeclampsia; A Review of the Literature. Metabolomics 2017; 13:86. [PMID: 30473646 PMCID: PMC6247796 DOI: 10.1007/s11306-017-1225-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
Introduction Preeclampsia represents a major public health burden worldwide, but predictive and diagnostic biomarkers are lacking. Metabolomics is emerging as a valuable approach to generating novel biomarkers whilst increasing the mechanistic understanding of this complex condition. Objectives To summarize the published literature on the use of metabolomics as a tool to study preeclampsia. Methods PubMed and Web of Science were searched for articles that performed metabolomic profiling of human biosamples using either Mass-spectrometry or Nuclear Magnetic Resonance based approaches and which included preeclampsia as a primary endpoint. Results Twenty-eight studies investigating the metabolome of preeclampsia in a variety of biospecimens were identified. Individual metabolite and metabolite profiles were reported to have discriminatory ability to distinguish preeclamptic from normal pregnancies, both prior to and post diagnosis. Lipids and carnitines were among the most commonly reported metabolites. Further work and validation studies are required to demonstrate the utility of such metabolites as preeclampsia biomarkers. Conclusion Metabolomic-based biomarkers of preeclampsia have yet to be integrated into routine clinical practice. However, metabolomic profiling is becoming increasingly popular in the study of preeclampsia and is likely to be a valuable tool to better understand the pathophysiology of this disorder and to better classify its subtypes, particularly when integrated with other omic data.
Collapse
Affiliation(s)
- Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital Harvard Medical School, Boston MA 02115, USA
| | - Rachel T Giorgio
- Channing Division of Network Medicine, Brigham and Women's Hospital Harvard Medical School, Boston MA 02115, USA
| | - Bo L Chawes
- Channing Division of Network Medicine, Brigham and Women's Hospital Harvard Medical School, Boston MA 02115, USA
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Natalia I Palacios
- Department of Public Health University of Massachusetts, Lowell, Lowell MA
- Department of Nutrition, Harvard School of Public Health, Boston MA
| | - Kathryn J Gray
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hoooman Mirzakhani
- Channing Division of Network Medicine, Brigham and Women's Hospital Harvard Medical School, Boston MA 02115, USA
| | - Ann Wu
- Boston Children's Hospital
| | - Kevin Blighe
- Channing Division of Network Medicine, Brigham and Women's Hospital Harvard Medical School, Boston MA 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital Harvard Medical School, Boston MA 02115, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital Harvard Medical School, Boston MA 02115, USA
| |
Collapse
|