1
|
Li X, Bu F, Zhang M, Li Z, Zhang Y, Chen H, Xue W, Guo R, Qi J, Kim C, Kawabata S, Wang Y, Zhang Q, Li Y, Zhang Y. Enhancing nature's palette through the epigenetic breeding of flower color in chrysanthemum. THE NEW PHYTOLOGIST 2024. [PMID: 39721988 DOI: 10.1111/nph.20347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
Flower color is an important character of ornamental plants and one of the main target traits for variety innovation. We previously identified a CmMYB6 epigenetic allele that affects the flower color in chrysanthemum, and changes in flower color are caused by the DNA methylation level of this gene. However, it is still unknown which DNA methyltransferases are involved in modifying the DNA methylation levels of this gene. Here, we used dead Cas9 (dCas9) together with DNA methyltransferases that methylate cytosine residues in the CHH context to target the CmMYB6 promoter through transient and stable transformation methods. We found that CmDRM2a increased the DNA methylation level of the CmMYB6 promoter, the expression of CmMYB6 decreased and a lighter flower color resulted. By contrast, both CmDRM2b and CmCMT2 enhanced DNA methylation levels of the CmMYB6 promoter, the expression of CmMYB6 increased and a deeper flower color resulted. Furthermore, the regulatory mechanism of DNA methyltransferase in the formation of chrysanthemum flower color was investigated, pointing to a new strategy for silencing or activating CmMYB6 epiallele to regulate anthocyanin synthesis. This lays a solid foundation for regulating flower color in chrysanthemum through epigenetic breeding.
Collapse
Affiliation(s)
- Xueqi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Fanqi Bu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Man Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhuozheng Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yu Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Haowen Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Wanjie Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Ronghua Guo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jingze Qi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Cholmin Kim
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Saneyuki Kawabata
- Institute for Sustainable Agroecosystem Services, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo, 1880002, Japan
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Qingzhu Zhang
- School of Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yang Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
2
|
Wu H, Pan Y, Ni E, Qin D, Fang K, Wang Q, Yang C, Luo M, Liu J. CsRAB, a R2R3-MYB transcription factor from purple tea ( Camellia sinensis), positively regulates anthocyanin biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1514631. [PMID: 39711582 PMCID: PMC11658990 DOI: 10.3389/fpls.2024.1514631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024]
Abstract
In tea (Camellia sinensis), anthocyanins are important secondary metabolites that are linked to leaf color. Anthocyanin biosynthesis is a complex biological process, in which multiple genes including structural and regulatory genes are involved. Here, we describe the cloning and characterizing of a new R2R3-MYB transcription factor gene, CsRAB, isolated from purple tea variety 'Hongfei'. Consistent with its predicted role as a transcription factor, the CsRAB protein localized to nuclei when expressed in onion (Allium cepa) epidermal cell. A dual-luciferase reporter assay demonstrated that CsRAB acts as a transcriptional activator in vivo. CsRAB overexpression in Arabidopsis seedlings led to higher expression levels of anthocyanin biosynthesis-related genes, and consequently, purple stems and higher anthocyanin contents were exhibited in overexpressing lines compared to wild type. The results indicated that CsRAB plays critical roles in positively regulating anthocyanins biosynthesis in tea plants.
Collapse
Affiliation(s)
- Hualing Wu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong, China
| | - Yayan Pan
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong, China
- School of Life Science, South China Normal University, Guangzhou, Guangdong, China
| | - Erdong Ni
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong, China
| | - Dandan Qin
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong, China
| | - Kaixing Fang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong, China
| | - Qing Wang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong, China
| | - Chengwei Yang
- School of Life Science, South China Normal University, Guangzhou, Guangdong, China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & Agriculture and Biotechnology Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jun Liu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
He C, Liang Y, Chen R, Shen Y, Li R, Sun T, Du X, Ni X, Shang J, He Y, Bao M, Luo H, Wang J, Liao P, Kang C, Yuan YW, Ning G. Boosting transcriptional activities by employing repeated activation domains in transcription factors. THE PLANT CELL 2024:koae315. [PMID: 39657052 DOI: 10.1093/plcell/koae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Enhancing the transcriptional activation activity of transcription factors (TFs) has multiple applications in organism improvement, metabolic engineering, and other aspects of plant science, but the approaches remain unclear. Here, we used gene activation assays and genetic transformation to investigate the transcriptional activities of two MYB TFs, PRODUCTION OF ANTHOCYANIN PIGMENT 1 (AtPAP1) from Arabidopsis (Arabidopsis thaliana) and EsMYBA1 from Epimedium (Epimedium sagittatum), and their synthetic variants in a range of plant species from several families. Using anthocyanin biosynthesis as a convenient readout, we discovered that homologous naturally occurring TFs showed differences in the transcriptional activation ability and that similar TFs induced large changes in the genetic program when heterologously expressed in different species. In some cases, shuffling the DNA binding domains and transcriptional activation domains (ADs) between homologous TFs led to synthetic TFs that had stronger activation potency than the original TFs. More importantly, synthetic TFs derived from MYB, NAC, bHLH, and Ethylene-insensitive3-like (EIL) family members containing tandemly repeated ADs had greatly enhanced activity compared to their natural counterparts. These findings enhance our understanding of TF activity and demonstrate that employing tandemly repeated ADs from natural TFs is a simple and widely applicable strategy to enhance the activation potency of synthetic TFs.
Collapse
Affiliation(s)
- Chaochao He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Liang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Runzhou Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxiao Shen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Runhui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing Du
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaomei Ni
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Junzhong Shang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanhong He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Pan Liao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Xing M, Xin P, Wang Y, Han C, Lei C, Huang W, Zhang Y, Zhang X, Cheng K, Zhang X. A negative feedback regulatory module comprising R3-MYB repressor MYBL2 and R2R3-MYB activator PAP1 fine-tunes high light-induced anthocyanin biosynthesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7381-7400. [PMID: 39303008 DOI: 10.1093/jxb/erae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Anthocyanins, a group of flavonoids, play diverse roles in plant growth and environmental adaptation. The biosynthesis and accumulation of anthocyanin are regulated by environmental cues, such as high light. However, the precise mechanism underlying anthocyanin biosynthesis under high light conditions remains largely unclear. Here, we report that the R3-MYB repressor MYB-LIKE 2 (MYBL2) negatively regulates high light-induced anthocyanin biosynthesis in Arabidopsis by repressing two R2R3-MYB activators, PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) and PAP2, which are core components of the MYB-bHLH-WD40 (MBW) complex. We found that MYBL2 interacts with PAP1/2 and reduces their transcriptional activation activities, thus disrupting the expression of key genes involved in anthocyanin biosynthesis, such as DIHYDROFLAVONOL 4-REDUCTASE (DFR) and TRANSPARENT TESTA 19 (TT19). Additionally, MYBL2 attenuates the transcriptional activation of PAP1 and its own expression, but not that of PAP2. Conversely, PAP1 collaborates with TRANSPARENT TESTA 8 (TT8), a bHLH member of the MBW complex, to activate MYBL2 transcription when excessive anthocyanins are accumulated. Taken together, our findings reveal a negative feedback regulatory module composed of MYBL2 and PAP1 that fine-tunes high light-induced anthocyanin biosynthesis through modulating MBW complex assembly.
Collapse
Affiliation(s)
- Minghui Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Puman Xin
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Yuetian Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Chunyan Han
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Cangbao Lei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Weiyi Huang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Youpeng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Xiangyu Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Kai Cheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Xiao Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
5
|
Shah FA, Chen Z, Kamal KA, Zhao Y, Zhu Z, Chen J, Ren J. ArMYB89 and ArCOP1 interaction modulates anthocyanin biosynthesis in Acer rubrum leaves under low-temperature conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2584-2601. [PMID: 39625870 DOI: 10.1111/tpj.17130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/31/2024] [Accepted: 09/25/2024] [Indexed: 12/20/2024]
Abstract
Acer rubrum, a famous ornamental tree, produces bright red-coloured leaves because of the temperature decline from summer to autumn. This process's molecular mechanism is elusive, so we have investigated how anthocyanin biosynthesis is induced in A. rubrum leaves under low temperatures. The results of low-temperature treatment under light and dark conditions showed that the low-temperature promoted anthocyanin accumulation in A. rubrum is light-dependent. The transcriptome analysis showed that ArMYB89 was significantly highly expressed in leaves of A. rubrum growing under low temperatures with light conditions. The findings from the Dap-seq analysis, yeast one hybridisation, electrophoretic mobility shift assay and luciferase reporter assay indicated that the ArMYB89 transcription factor binds directly to the promoter of ArUGT52 and stimulates its transcription. The co-expression of ArUGT52 with ArMYB89 significantly induced anthocyanin levels under low temperatures with light conditions. Enzyme activity analysis showed that ArUGT52 could convert Cyanidins and Pelargonidins into Cyanidin-3-O-glucoside and Pelargonidin 3-glucoside, which are considered the main anthocyanins in red colour leaves of A. rubrum. The results of yeast two hybridisation, pulldown assay and bimolecular fluorescence complementation experiment showed an interaction between COP1 and ArMYB89, while in vivo and in vitro protein ubiquitination assay demonstrated that ArCOP1 ubiquitinates ArMYB89. Notably, co-expression of ArCOP1 with ArMYB89 significantly reduced anthocyanin levels, while the virus-induced gene silencing of ArCOP1 significantly induced anthocyanin levels under low temperatures with light conditions. In conclusion, this work revealed the molecular mechanism regulating anthocyanin accumulation in the A. rubrum leaves under low temperatures.
Collapse
Affiliation(s)
- Faheem Afzal Shah
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 2300031, China
| | - Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 2300031, China
| | - Khan Arif Kamal
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 2300031, China
| | - Yue Zhao
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 2300031, China
| | - Zhiyong Zhu
- Ningbo City College of Vocational Technology, Ningbo, 315502, China
| | - Jinhuan Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 2300031, China
| |
Collapse
|
6
|
Noor A, Little CR. RNA-seq analysis reveals genes associated with Macrophomina phaseolina-induced host senescence in soybean. BMC Genomics 2024; 25:1129. [PMID: 39578728 PMCID: PMC11583662 DOI: 10.1186/s12864-024-11023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Charcoal rot of soybean is caused by the hemibiotrophic fungus Macrophomina phaseolina, a global crop destroyer and an important pathogen in the midwestern USA. The quantitative nature of host resistance and the complexity of the soybean-M. phaseolina interaction at the molecular level have hampered resistance breeding. A previous study showed that L-ascorbic acid (LAA) pre-treatment before M. phaseolina inoculation reduced charcoal rot lesion length in excised soybean stems. This study aimed to elucidate the genetic underpinnings of M. phaseolina-induced senescence and the mitigating effects of ascorbic acid on this physiological process within the same pathosystem. RESULTS RNA was sequenced from M. phaseolina-resistant and -susceptible soybean genotypes following M. phaseolina inoculation, LAA, and hydrogen peroxide (H2O2)-an oxidative stress inducer-application followed by inoculation. More genes were down-regulated in the resistant and susceptible genotypes than up-regulated when the M. phaseolina-inoculated treatments were compared to mock-inoculated control treatments. Gene ontology (GO) term and KEGG pathways analysis detected M. phaseolina-induced up-regulation of receptor-like kinase genes. In contrast, many genes related to antioxidants, defense, and hormonal pathways were down-regulated in both genotypes. LAA pre-treatment induced genes related to photosynthesis and reactive oxygen species responses in both genotypes. H2O2 pre-treatment following inoculation up-regulated many stress-response genes, while hormone signal transduction and photosynthesis-related genes were down-regulated in both genotypes. CONCLUSIONS Results revealed transcriptional variation and genes associated with M. phaseolina-induced senescence in soybean. Ascorbic acid induced many photosynthetic genes, suggesting a complex regulation of defense and immunity in the plant against the hemibiotroph. Soybean plants also exhibited enhanced stress responsiveness when treated with H2O2 followed by inoculation with M. phaseolina. This study will broaden more research avenues related to transcriptional regulation during the M. phaseolina-soybean interaction and the potential role of receptor-like kinases, oxidative stress-responsive genes, ethylene-mediated signaling and enhanced photosynthetic gene expression when mounting host resistance to this important soybean pathogen.
Collapse
Affiliation(s)
- Afsana Noor
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Christopher R Little
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
7
|
Jiang W, Li Q, Xia Y, Yan Y, Yue S, Shen G, Pang Y. The Lotus corniculatus MYB5 functions as a master regulator in proanthocyanidin biosynthesis and bioengineering. PLANT CELL REPORTS 2024; 43:284. [PMID: 39557697 DOI: 10.1007/s00299-024-03313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/22/2024] [Indexed: 11/20/2024]
Abstract
KEY MESSAGE PAs varied greatly in leaves of different germplasm accessions in Lotus corniculatus and over-expression of LcMYB5 led to high PA accumulation in L. japonicus hairy roots. Proanthocyanidins (PAs) content in leaves is an important quality trait in forage species. The leaves of most forage crops accumulated no or little PAs, which makes it difficult to discover key genes involved in PA biosynthesis in the leaves. We found PAs content varied greatly in leaves of different germplasm accessions in Lotus corniculatus, which is one of the most agriculturally important forage crops. Through a combination of global transcriptional analysis, GO and KEGG analysis, and phylogenetic analysis, we discovered that LcMYB5 was strongly correlated with PA accumulation in leaves of L. corniculatus. The subcellular localization and transactivation activity assays demonstrated that LcMYB5 localized to the nucleus and acted as a transcriptional activator. Over-expression of the two homologs of LcMYB5 (LcMYB5a and LcMYB5b) in the L. japonicus hairy roots resulted in a particular high level of PAs. Global transcriptional analysis and qRT-PCR assays indicated that LcMYB5a and LcMYB5b up-regulated the transcript levels of many key PA pathway genes in the transgenic hairy roots, including structural genes (eg. CHS, F3H, LAR, ANR, and TT15) and regulatory genes (eg. TT8 and TTG1). Collectively, our data suggests that LcMYB5 independently regulates PA accumulation in the leaves of Lotus as a master regulator, which can be bioengineered for PAs production in the leaves of forage species.
Collapse
Affiliation(s)
- Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- The National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, Shandong, China
| | - Qian Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, College of Grassland Science, Xinjiang Agricultural University, Urumqi, 833400, China
| | - Yaying Xia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yinuo Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shiyao Yue
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, College of Grassland Science, Xinjiang Agricultural University, Urumqi, 833400, China
| | - Guoan Shen
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Beijing, 100193, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Sahraei S, Mahdinezhad N, Emamjomeh A, Kavousi K, Solouki M, Delledonne M. Transcriptomic analysis reveals role of lncRNA LOC100257036 to regulate AGAMOUS during cluster compactness of Vitis vinifera cv. sistan yaghooti. Sci Rep 2024; 14:28331. [PMID: 39550496 PMCID: PMC11569177 DOI: 10.1038/s41598-024-79890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024] Open
Abstract
Yaghooti grape, as the earliest grape variety in Iran, is considered as more resistant to heat, drought, and salinity than other cultivars. Cluster compactness is regarded as an inappropriate feature for the productivity of Yaghooti grape as a critical commercial and nutritional product. In plants, lncRNAs play a critical role in regulating biological processes related to growth and development. However, the potential role of lncRNAs was not assessed in cluster compactness. Totally, 1549 lncRNAs were identified by RNA-Seq data analysis in three steps of cluster formation, berry formation, and final cluster size after a thorough screening process. In addition, 229 lncRNAs were differentially expressed in the cluster development steps. Based on the functional analysis, lncRNAs are related to AG and MYB, bHLH, LBD, NAC, and WRKY TFs. Further, the target genes enrichment analysis revealed a relationship between lncRNAs with grape growth and development, as well as resistance to abiotic stresses such as heat and drought, plant defense against pathogens, and early grapes ripening. The study identified four lncRNAs as precursors of miRNAs, predicting that 112 other lncRNAs could potentially be targeted by 166 miRNAs. The results provide new insights into the regulatory functions of lncRNAs in Yaghooti grape to improve overall understanding of the molecular mechanisms related to grape compactness.
Collapse
Affiliation(s)
- Shahla Sahraei
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Postal Code: 9861753557, Zabol, Iran
| | - Nafiseh Mahdinezhad
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Postal Code: 9861753557, Zabol, Iran.
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Postal Code: 9861753557, Zabol, Iran.
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Bioinformatics, University of Zabol, Zabol, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Postal Code: 9861753557, Zabol, Iran
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
9
|
Lim SH, Kim DH, Lee JY. R2R3-MYB repressor, BrMYB32, regulates anthocyanin biosynthesis in Chinese cabbage. PHYSIOLOGIA PLANTARUM 2024; 176:e14591. [PMID: 39468991 DOI: 10.1111/ppl.14591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024]
Abstract
Anthocyanin-enriched Chinese cabbage has health-enhancing antioxidant properties. Although various regulators of anthocyanin biosynthesis have been identified, the role of individual repressors in this process remains underexplored. This study identifies and characterizes the R2R3-MYB BrMYB32 in Chinese cabbage (Brassica rapa), which acts as a repressor in anthocyanin biosynthesis. BrMYB32 expression is significantly upregulated under anthocyanin inductive conditions, such as sucrose and high light treatment. Transgenic tobacco plants overexpressing BrMYB32 show decreased anthocyanin levels and downregulation of anthocyanin biosynthesis genes in flowers, highlighting BrMYB32's repressive role. Located in the nucleus, BrMYB32 interacts with the TRANSPARENT TESTA 8 (BrTT8), a basic helix-loop-helix protein, but no interaction was detected with the R2R3-MYB protein PRODUCTION OF ANTHOCYANIN PIGMENT 1 (BrPAP1). Functional assays in Chinese cabbage cotyledons and tobacco leaves demonstrate that BrMYB32 represses the transcript level of anthocyanin biosynthesis genes, thereby inhibiting pigment accumulation. Promoter activation assays further reveal that BrMYB32 inhibits the transactivation of CHALCONE SYNTHASE and DIHYDROFLAVONOL REDUCTASE through the C1 and C2 motifs. Notably, BrMYB32 expression is induced by BrPAP1, either alone or in co-expression with BrTT8, and subsequently regulates the expression of these activators. It verifies that BrMYB32 not only interferes with the formation of an active MYB-bHLH-WD40 complex but also downregulates the transcript levels of anthocyanin biosynthesis genes, thereby fine-tuning anthocyanin biosynthesis. Our findings suggest a model in which anthocyanin biosynthesis in Chinese cabbage is precisely regulated by the interplay between activators and repressors.
Collapse
Affiliation(s)
- Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, Republic of Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong, Republic of Korea
| | - Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, Republic of Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong, Republic of Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
10
|
Zhou XW, Ye XX, Ye BJ, Yan SH, Hu HB, Xu QY, Yao X, Liu HX, Li B, Xie YQ, Liu ZJ. Proteomic analysis identified proteins that are differentially expressed in the flavonoid and carotenoid biosynthetic pathways of Camellia Nitidissima flowers. BMC PLANT BIOLOGY 2024; 24:1037. [PMID: 39482574 PMCID: PMC11529430 DOI: 10.1186/s12870-024-05737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Camellia nitidissima Chi is a popular ornamental plant because of its golden flowers, which contain flavonoids and carotenoids. To understand the regulatory mechanism of golden color formation, the metabolites of C. nitidissima petals at five different developmental stages were detected, a proteome map of petals was first constructed via tandem mass tag (TMT) analysis, and the accuracy of the sequencing data was validated via parallel reaction monitoring (PRM). RESULTS Nineteen color components were detected, and most of these components were carotenoids that gradually accumulated, while some metabolites were flavonoids that were gradually depleted. A total of 97,647 spectra were obtained, and 6,789 quantifiable proteins were identified. Then, 1,319 differentially expressed proteins (DEPs) were found, 55 of which belong to the flavonoid and carotenoid pathways, as revealed by pairwise comparisons of protein expression levels across the five developmental stages. Notably, most DEPs involved in the synthesis of flavonoids, such as phenylalanine ammonium lyase and 4-coumarate-CoA ligase, were downregulated during petal development, whereas DEPs involved in carotenoid synthesis, such as phytoene synthase, 1-deoxy-D-xylulose-5-phosphate synthase, and β-cyclase, tended to be upregulated. Furthermore, protein‒protein interaction (PPI) network analysis revealed that these 55 DEPs formed two distinct PPI networks closely tied to the flavonoid and carotenoid synthesis pathways. Phytoene synthase and chalcone synthase exhibited extensive interactions with numerous other proteins and displayed high connectivity within the PPI networks, suggesting their pivotal biological functions in flavonoid and carotenoid biosynthesis. CONCLUSION Proteomic data on the flavonoid and carotenoid biosynthesis pathways were obtained, and the regulatory roles of the DEPs were analyzed, which provided a theoretical basis for further understanding the golden color formation mechanism of C. nitidissima.
Collapse
Affiliation(s)
- Xing-Wen Zhou
- College of Architecture and Urban Planning, Fujian University of Technology, Fuzhou, 350118, China
| | - Xiao-Xia Ye
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Bao-Jian Ye
- College of Architecture and Urban Planning, Fujian University of Technology, Fuzhou, 350118, China
| | - Shi-Hong Yan
- College of Architecture and Urban Planning, Fujian University of Technology, Fuzhou, 350118, China
| | - Hai-Bin Hu
- College of Architecture and Urban Planning, Fujian University of Technology, Fuzhou, 350118, China
| | - Qiu-Yuan Xu
- College of Architecture and Urban Planning, Fujian University of Technology, Fuzhou, 350118, China
| | - Xiong Yao
- College of Architecture and Urban Planning, Fujian University of Technology, Fuzhou, 350118, China
| | - He-Xia Liu
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Bo Li
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China.
| | - Yi-Qing Xie
- Institute of Economic Forestry, Fujian Academy of Forestry, Fuzhou, 350012, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
11
|
Song X, Li Y, Zhang X, Hsiang T, Xu M, Guo Z, He K, Yu J. An Isoflavone Synthase Gene in Arachis hypogea Responds to Phoma arachidicola Infection Causing Web Blotch. PLANTS (BASEL, SWITZERLAND) 2024; 13:2948. [PMID: 39519870 PMCID: PMC11547825 DOI: 10.3390/plants13212948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Peanut web blotch is an important leaf disease caused by Phoma arachidicola, which seriously affects the quality and yield of peanuts. However, the molecular mechanisms of peanut resistance to peanut web blotch are not well understood. In this study, a transcriptome analysis of the interaction between peanut (Arachis hypogaea) and P. arachidicola revealed that total 2989 (779 up- and 2210 down-regulated) genes were all differentially expressed in peanut leaves infected by P. arachidicola at 7, 14, 21 days post inoculation. The pathways that were strongly differentially expressed were the flavone or isoflavone biosynthesis pathways. In addition, two 2-hydroxy isoflavanone synthase genes, IFS1 and IFS2, were strongly induced by P. arachidicola infection. Overexpression of the two genes enhanced resistance to Phytophthora parasitica in Nicotiana benthamiana. Knockout of AhIFS genes in peanut reduced disease resistance to P. arachidicola. These findings demonstrated that AhIFS genes play key roles in peanut resistance to P. arachidicola infection. Promoter analysis of the two AhIFS genes showed several defense-related cis-elements distributed in the promoter region. This study improves our understanding of the molecular mechanisms behind resistance of peanut infection by P. arachidicola, and provides important information that could be used to undertake greater detailed characterization of web blotch resistance genes in peanut.
Collapse
Affiliation(s)
- Xinying Song
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Ying Li
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Xia Zhang
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Manlin Xu
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Zhiqing Guo
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Kang He
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Jing Yu
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| |
Collapse
|
12
|
Cui D, Xiong G, Ye L, Gornall R, Wang Z, Heslop-Harrison P, Liu Q. Genome-wide analysis of flavonoid biosynthetic genes in Musaceae ( Ensete, Musella, and Musa species) reveals amplification of flavonoid 3',5'-hydroxylase. AOB PLANTS 2024; 16:plae049. [PMID: 39450414 PMCID: PMC11500454 DOI: 10.1093/aobpla/plae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/09/2024] [Indexed: 10/26/2024]
Abstract
Flavonoids in Musaceae are involved in pigmentation and stress responses, including cold resistance, and are a component of the healthy human diet. Identification and analysis of the sequence and copy number of flavonoid biosynthetic genes are valuable for understanding the nature and diversity of flavonoid evolution in Musaceae species. In this study, we identified 71-80 flavonoid biosynthetic genes in chromosome-scale genome sequence assemblies of Musaceae, including those of Ensete glaucum, Musella lasiocarpa, Musa beccarii, M. acuminata, M. balbisiana and M. schizocarpa, checking annotations with BLAST and determining the presence of conserved domains. The number of genes increased through segmental duplication and tandem duplication. Orthologues of both structural and regulatory genes in the flavonoid biosynthetic pathway are highly conserved across Musaceae. The flavonoid 3',5'-hydroxylase gene F3'5'H was amplified in Musaceae and ginger compared with grasses (rice, Brachypodium, Avena longiglumis, and sorghum). One group of genes from this gene family amplified near the centromere of chromosome 2 in the x = 11 Musaceae species. Flavonoid biosynthetic genes displayed few consistent responses in the yellow and red bracts of Musella lasiocarpa when subjected to low temperatures. The expression levels of MlDFR2/3 (dihydroflavonol reductase) increased while MlLAR (leucoanthocyanidin reductase) was reduced by half. Overall, the results establish the range of diversity in both sequence and copy number of flavonoid biosynthetic genes during evolution of Musaceae. The combination of allelic variants of genes, changes in their copy numbers, and variation in transcription factors with the modulation of expression under cold treatments and between genotypes with contrasting bract-colours suggests the variation may be exploited in plant breeding programmes, particularly for improvement of stress-resistance in the banana crop.
Collapse
Affiliation(s)
- Dongli Cui
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Shijingshan District, Beijing 100049, China
| | - Gui Xiong
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Shijingshan District, Beijing 100049, China
| | - Lyuhan Ye
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Shijingshan District, Beijing 100049, China
| | - Richard Gornall
- University of Leicester, Department of Genetics and Genome Biology, Institute for Environmental Futures, University Road, Leicester LE1 7RH, UK
| | - Ziwei Wang
- Henry Fok School of Biology and Agriculture, Shaoguan University, University Road 288, Zhenjiang District, Shaoguan 512005, China
| | - Pat Heslop-Harrison
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Leicester, Department of Genetics and Genome Biology, Institute for Environmental Futures, University Road, Leicester LE1 7RH, UK
| | - Qing Liu
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
13
|
Miao C, Song C, Ding N, Zuo X, Zhang Z, Zhang X, Mu J, Wang F. De novo transcriptome analysis identifies RpMYB1 as an activator of anthocyanin biosynthesis in Rehmannia piasezkii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108964. [PMID: 39094477 DOI: 10.1016/j.plaphy.2024.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Rehmannia piasezkii is a kind of medicinal plants, of the Orobanchaceae family, and well known for its large pink or purple corolla. However, no research on the molecular mechanism of flower color formation in R. piasezkii has been conducted so far. In this study, we investigated the transcriptome of root, stem, leaf and corollas of R. piasezkii using transcriptome sequencing technology and assembled 144,582 unigenes. A total of 58 anthocyanin biosynthetic genes were identified in the R. piasezkii transcriptome, fourteen of which were highly correlated with anthocyanin content, especially RpF3H2, RpDFR2, RpANS1, RpANS2 and RpUFGT. Totally, 35 MYB genes with FPKM values greater than 5 were identified in the R. piasezkii transcriptome, including an R2R3 MYB transcriptional factor RpMYB1, which belongs to subgroup 6 of the R2R3 MYB family. Agrobacterium-mediated transient expression of Nicotiana benthamiana revealed that overexpression of RpMYB1 could activate the expression of structural genes in anthocyanin synthesis pathway and promote the accumulation of anthocyanins in N. benthamiana leaves, indicating that RpMYB1 is a positive regulator of anthocyanin synthesis. Furthermore, combined transient overexpression of RpMYB1 with RpANS1, RpMYB1+RpANS1 with other structural genes all could further enhance the accumulation of anthocyanins in N. benthamiana leaves. Permanent overexpression of RpMYB1 in R. glutinosa promoted anthocyanin accumulation and expression levels of RgCHS, RgF3H, RgDFR and RgANS. Further evidence from dual-luciferase assay suggested that RpMYB1 could bind to the promoter of RpDFR2 and hence activating its expression. These findings provide insight into the molecular regulation in anthocyanin biosynthesis in R. piasezkii and provide valuable genetic resources for the genetic improvement of flower color.
Collapse
Affiliation(s)
- Chunyan Miao
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ci Song
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ning Ding
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xin Zuo
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhongyi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jing Mu
- National Resource Center for Chinese Meteria Medica, State Key Laboratory of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fengqing Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
14
|
Li X, Xu Q, Gulinuer A, Tian J, Zheng J, Chang G, Gao J, Tian Z, Liang Y. AcMYB96 promotes anthocyanin accumulation in onion (Allium cepa L) without forming the MBW complex. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108965. [PMID: 39067107 DOI: 10.1016/j.plaphy.2024.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Anthocyanins are major flavonoid compounds with established health benefits. Although the molecular mechanisms of MYB transcription factors (TFs) within the MYB-basic helix-loop-helix (bHLH)-WD-repeat protein (MBW) complex in anthocyanin biosynthesis have been revealed, the functions of other MYB TFs that are unable to form the MBW complex in this process remain unclear. In this study, we uncovered and extensively characterized an R2R3-MYB TF in onion (Allium cepa L.), named AcMYB96, which was identified as a potential anthocyanin activator. AcMYB96 was classified into subgroup 1 of the R2R3-MYB TF family and lacked the conserved sequences required for interactions with bHLH IIIf TFs. Consistently, yeast two-hybrid assays showed that AcMYB96 did not interact with any bHLH IIIf TFs examined, including AcB2 and AtTT8. The transcription pattern of AcMYB96 correlated with the level of anthocyanin accumulation, and its role in activating anthocyanin biosynthesis was confirmed through overexpression in the epithelial cells of onion bulbs and Arabidopsis. Yeast one-hybrid, electrophoretic mobility shift, and promoter transactivation assays further demonstrated that AcMYB96 promoted anthocyanin biosynthesis by binding to the promoters of the chalcone synthase (AcCHS1), anthocyanidin synthase (AcANS), and UDP-glucose-flavonoid 3-O-glucosyltransferase (AcUFGT) genes, thereby activating their expression independent of bHLH IIIf TFs. These results demonstrate that AcMYB96 activates anthocyanin biosynthesis without forming the MBW complex, providing a theoretical foundation to further enrich the gene resources for promoting anthocyanin accumulation and breeding red onions with high anthocyanin content.
Collapse
Affiliation(s)
- Xiaojie Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| | - Qijiang Xu
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | | | - Jiaxing Tian
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Junwei Zheng
- Zhengzhou Academy of Agricultural Science and Technology, Zhengzhou, 450015, China
| | - Guojun Chang
- Jiuquan Academy of Agricultural Sciences, Jiuquan, 735000, China
| | - Jie Gao
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhaohui Tian
- Zhengzhou Academy of Agricultural Science and Technology, Zhengzhou, 450015, China.
| | - Yi Liang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| |
Collapse
|
15
|
Jariani P, Shahnejat-Bushehri AA, Naderi R, Zargar M, Naghavi MR. Characterization of key genes in anthocyanin and flavonoid biosynthesis during floral development in Rosa canina L. Int J Biol Macromol 2024; 276:133937. [PMID: 39029843 DOI: 10.1016/j.ijbiomac.2024.133937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
This study investigates the transition of Rosa canina L. petals from pink to white, driven by genetic and biochemical factors. It characterizes the expression of ten key genes involved in anthocyanin and flavonoid biosynthesis across five developmental stages, correlating gene expression with flavonoid and anthocyanin concentrations and colorimetric changes. Initially, the petals exhibit a rich flavonoid profile, dominated by Rutin and Kaempferol derivatives. The peak anthocyanin concentration, corresponding to the deepest color saturation, occurs in the subsequent stage. Advanced chromatographic analyses identify key flavonoids persisting into the final white petal stage. Notably, the ANS gene shows a dramatic 137.82-fold increase in expression at the final stage, indicating its crucial role in petal color maturation despite the absence of visible pigmentation. The study provides a comprehensive characterization of the genetic and biochemical mechanisms underlying petal pigmentation, suggesting that reduced anthocyanin synthesis and increased flavonol concentration led to white petals. It also highlights the roles of other genes such as PAL, CCD1, FLS, CHI, CHS, UFGT, F3H, DFR, and RhMYB1, indicating that post-translational modifications and other regulatory mechanisms may influence anthocyanin stability and degradation.
Collapse
Affiliation(s)
- Parisa Jariani
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj 31587-77871, Iran.
| | - Ali-Akbar Shahnejat-Bushehri
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj 31587-77871, Iran.
| | - Roohangiz Naderi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran.
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia.
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj 31587-77871, Iran; Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia.
| |
Collapse
|
16
|
Li J, Zhang C, Xu X, Su Y, Gao Y, Yang J, Xie C, Ma J. A MYB family transcription factor TdRCA1 from wild emmer wheat regulates anthocyanin biosynthesis in coleoptile. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:208. [PMID: 39181956 DOI: 10.1007/s00122-024-04723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
As important secondary metabolites in plants, anthocyanins not only contribute to colored plants organs, but also provide protections against various biotic and abiotic stresses. In this study, a MYB transcription factor gene TdRCA1 from wild emmer wheat regulating anthocyanin biosynthesis in wheat coleoptile was identified on the short arm of chromosome 7A in common wheat genetic background. The TdRCA1 overexpression lines showed colored callus, coleoptile, auricle and stem nodes, as well as up regulation of six anthocyanin-related structural genes. The expression of TdRCA1 was activated by light in a temporal manner. While coleoptile color of 48 and 60 h dark-grown seedlings changed from green to red after 24 h light treatment, those grown in dark for 72 and 96 h failed to develop red coleoptiles after light restoration. Interestingly, the over expression of TdRCA1 resulted in increased resistance to Fusarium crown rot, a chronic and severe fungal disease in many cereal growing regions in the world. Our results offer a better understanding of the molecular basis of coleoptile color in bread wheat.
Collapse
Affiliation(s)
- Jinlong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chaozhong Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Xiangru Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuqing Su
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yutian Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiatian Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
17
|
D’Esposito D, Di Donato A, Puleo S, Nava M, Diretto G, Di Monaco R, Frusciante L, Ercolano MR. The Impact of Growing Area on the Expression of Fruit Traits Related to Sensory Perception in Two Tomato Cultivars. Int J Mol Sci 2024; 25:9015. [PMID: 39201701 PMCID: PMC11354283 DOI: 10.3390/ijms25169015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Environmental conditions greatly influence the quality of tomato fruit by affecting the expression of genes, the abundance of metabolites, and the perception of sensorial attributes. In this study, a fruit transcriptome investigation, a sensory test, and a metabolomic analysis were performed to evaluate the impact of the environment on two popular tomato cultivars grown in two Italian regions. The transcriptional profile of each cultivar, cultivated in two different areas, highlighted differential expression in genes involved in pathways related to cell wall components such as pectin, lignin, and hemicellulose and sugars as well as in amino acids, phenylpropanoids, and pigment synthesis. The cultivation area mainly affects sensory attributes related to texture and flavor and the metabolic pattern of cell wall precursors, sugars, glutamate, aspartate, and carotenoids. In the two genotypes cultivated in the same environment, some attributes and fruit-related quality processes are similarly affected, while others are differently influenced based on the specific genetic makeup of the tomato. A combination of transcriptomic, sensory, and metabolomic data obtained from the two tomato genotypes revealed that the environment has a profound effect on specific sensory traits, providing information on factors that shape the specific characteristics and genetic targets for improving tomato fruit characteristics.
Collapse
Affiliation(s)
- Daniela D’Esposito
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (D.D.); (A.D.D.); (S.P.); (R.D.M.); (L.F.)
| | - Antimo Di Donato
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (D.D.); (A.D.D.); (S.P.); (R.D.M.); (L.F.)
| | - Sharon Puleo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (D.D.); (A.D.D.); (S.P.); (R.D.M.); (L.F.)
| | - Matteo Nava
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia, 00123 Rome, Italy; (M.N.)
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia, 00123 Rome, Italy; (M.N.)
| | - Rossella Di Monaco
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (D.D.); (A.D.D.); (S.P.); (R.D.M.); (L.F.)
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (D.D.); (A.D.D.); (S.P.); (R.D.M.); (L.F.)
| | - Maria Raffaella Ercolano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (D.D.); (A.D.D.); (S.P.); (R.D.M.); (L.F.)
| |
Collapse
|
18
|
Zhang J, Han N, Zhao A, Wang Z, Wang D. ZbMYB111 Expression Positively Regulates ZbUFGT-Mediated Anthocyanin Biosynthesis in Zanthoxylum bungeanum with the Involvement of ZbbHLH2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16941-16954. [PMID: 39024128 DOI: 10.1021/acs.jafc.3c08579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Anthocyanin (ACN)-derived pigmentation in the red Zanthoxylum bungeanum peel is an essential commercial trait. Therefore, exploring the metabolic regulatory networks involved in peel ACN levels in this species is crucial for improving its quality. However, its underlying transcriptional regulatory mechanisms are still unknown. This transcriptomic and bioinformatics study not only discovered a new TF (ZbMYB111) as a potential regulator for ACN biosynthesis in Z. bungeanum peel, but also deciphered the underlying molecular mechanisms of ACN biosynthesis. Overexpression of ZbMYB111 and flavonoid 3-O-glucosyltransferase (ZbUFGT) induced ACN accumulation in both Z. bungeanum peels and callus along with Arabidopsis thaliana and tobacco flowers, whereas their silencing impaired ACN biosynthesis. Therefore, the dual-luciferase reporter, yeast-one-hybrid, and electrophoretic mobility shift assays showed that ZbMYB111 directly interacted with the ZbUFGT promoter to activate its expression. This diverted the secondary metabolism toward the ACN pathway, thereby promoting ACN accumulation.
Collapse
Affiliation(s)
- Jie Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Nuan Han
- College of Forestry, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Ziyi Wang
- College of Forestry, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Dongmei Wang
- College of Forestry, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| |
Collapse
|
19
|
Banerjee S, Mitra M, Roy S. Study of changes in folding/unfolding properties and stability of Arabidopsis thaliana MYB12 transcription factor following UV-B exposure in vitro. Heliyon 2024; 10:e34189. [PMID: 39071576 PMCID: PMC11279800 DOI: 10.1016/j.heliyon.2024.e34189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Flavonoids mostly protect plant cells from the harmful effects of UV-B radiation from the sun. In plants, the R2R3-subfamily of the MYB transcription factor, MYB12, is a key inducer of the biosynthesis of flavonoids. Our study involves the biophysical characterization of Arabidopsis thaliana MYB12 protein (AtMYB12) under UV-B exposure in vitro. Tryptophan fluorescence studies using recombinant full-length AtMYB12 (native) and the N-terminal truncated versions (first N-terminal MYB domain absent in AtMYB12Δ1, and both the first and second N-terminal MYB domains absent in AtMYB12Δ2) have revealed prominent alteration in the tryptophan microenvironment in AtMYB12Δ1 and AtMYB12Δ2 protein as a result of UV-B exposure as compared with the native AtMYB12. Bis-ANS binding assay and urea-mediated denaturation profiling showed an appreciable change in the structural conformation in AtMYB12Δ1 and AtMYB12Δ2 proteins as compared with the native AtMYB12 protein following UV-B irradiation. UV-B-treated AtMYB12Δ2 showed a higher predisposition of aggregate formation in vitro. CD spectral analyses revealed a decrease in α-helix percentage with a concomitant increase in random coiled structure formation in AtMYB12Δ1 and AtMYB12Δ2 as compared to native AtMYB12 following UV-B treatment. Overall, these findings highlight the critical function of the N-terminal MYB domains in maintaining the stability and structural conformation of the AtMYB12 protein under UV-B stress in vitro.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Centre for Advance Study, The University of Burdwan, Golapbag Campus, Burdwan, 713104, West Bengal, India
| | | | - Sujit Roy
- Department of Botany, UGC Centre for Advance Study, The University of Burdwan, Golapbag Campus, Burdwan, 713104, West Bengal, India
| |
Collapse
|
20
|
Marin-Recinos MF, Pucker B. Genetic factors explaining anthocyanin pigmentation differences. BMC PLANT BIOLOGY 2024; 24:627. [PMID: 38961369 PMCID: PMC11221117 DOI: 10.1186/s12870-024-05316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Anthocyanins are important contributors to coloration across a wide phylogenetic range of plants. Biological functions of anthocyanins span from reproduction to protection against biotic and abiotic stressors. Owing to a clearly visible phenotype of mutants, the anthocyanin biosynthesis and its sophisticated regulation have been studied in numerous plant species. Genes encoding the anthocyanin biosynthesis enzymes are regulated by a transcription factor complex comprising MYB, bHLH and WD40 proteins. RESULTS A systematic comparison of anthocyanin-pigmented vs. non-pigmented varieties was performed within numerous plant species covering the taxonomic diversity of flowering plants. The literature was screened for cases in which genetic factors causing anthocyanin loss were reported. Additionally, transcriptomic data sets from four previous studies were reanalyzed to determine the genes possibly responsible for color variation based on their expression pattern. The contribution of different structural and regulatory genes to the intraspecific pigmentation differences was quantified. Differences concerning transcription factors are by far the most frequent explanation for pigmentation differences observed between two varieties of the same species. Among the transcription factors in the analyzed cases, MYB genes are significantly more prone to account for pigmentation differences compared to bHLH or WD40 genes. Among the structural genes, DFR genes are most often associated with anthocyanin loss. CONCLUSIONS These findings support previous assumptions about the susceptibility of transcriptional regulation to evolutionary changes and its importance for the evolution of novel coloration phenotypes. Our findings underline the particular significance of MYBs and their apparent prevalent role in the specificity of the MBW complex.
Collapse
Affiliation(s)
- Maria F Marin-Recinos
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and BRICS, TU Braunschweig, Braunschweig, Germany
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and BRICS, TU Braunschweig, Braunschweig, Germany.
| |
Collapse
|
21
|
Pérez-Llorca M, Müller M. Unlocking Nature's Rhythms: Insights into Secondary Metabolite Modulation by the Circadian Clock. Int J Mol Sci 2024; 25:7308. [PMID: 39000414 PMCID: PMC11241833 DOI: 10.3390/ijms25137308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Plants, like many other living organisms, have an internal timekeeper, the circadian clock, which allows them to anticipate photoperiod rhythms and environmental stimuli to optimally adjust plant growth, development, and fitness. These fine-tuned processes depend on the interaction between environmental signals and the internal interactive metabolic network regulated by the circadian clock. Although primary metabolites have received significant attention, the impact of the circadian clock on secondary metabolites remains less explored. Transcriptome analyses revealed that many genes involved in secondary metabolite biosynthesis exhibit diurnal expression patterns, potentially enhancing stress tolerance. Understanding the interaction mechanisms between the circadian clock and secondary metabolites, including plant defense mechanisms against stress, may facilitate the development of stress-resilient crops and enhance targeted management practices that integrate circadian agricultural strategies, particularly in the face of climate change. In this review, we will delve into the molecular mechanisms underlying circadian rhythms of phenolic compounds, terpenoids, and N-containing compounds.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Maren Müller
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
22
|
Fattorini R, Khojayori FN, Mellers G, Moyroud E, Herrero E, Kellenberger RT, Walker R, Wang Q, Hill L, Glover BJ. Complex petal spot formation in the Beetle Daisy (Gorteria diffusa) relies on spot-specific accumulation of malonylated anthocyanin regulated by paralogous GdMYBSG6 transcription factors. THE NEW PHYTOLOGIST 2024; 243:240-257. [PMID: 38725421 DOI: 10.1111/nph.19804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
Gorteria diffusa has elaborate petal spots that attract pollinators through sexual deception, but how G. diffusa controls spot development is largely unknown. Here, we investigate how pigmentation is regulated during spot formation. We determined the anthocyanin composition of G. diffusa petals and combined gene expression analysis with protein interaction assays to characterise R2R3-MYBs that likely regulate pigment production in G. diffusa petal spots. We found that cyanidin 3-glucoside pigments G. diffusa ray floret petals. Unlike other petal regions, spots contain a high proportion of malonylated anthocyanin. We identified three subgroup 6 R2R3-MYB transcription factors (GdMYBSG6-1,2,3) that likely activate the production of spot pigmentation. These genes are upregulated in developing spots and induce ectopic anthocyanin production upon heterologous expression in tobacco. Interaction assays suggest that these transcription factors regulate genes encoding three anthocyanin synthesis enzymes. We demonstrate that the elaboration of complex spots in G. diffusa begins with the accumulation of malonylated pigments at the base of ray floret petals, positively regulated by three paralogous R2R3-MYB transcription factors. Our results indicate that the functional diversification of these GdMYBSG6s involved changes in the spatial control of their transcription, and modification of the duration of GdMYBSG6 gene expression contributes towards floral variation within the species.
Collapse
Affiliation(s)
- Róisín Fattorini
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Farahnoz N Khojayori
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Gregory Mellers
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Edwige Moyroud
- Sainsbury Laboratory Cambridge University, Bateman St., Cambridge, CB2 1LR, UK
- Department of Genetics, University of Cambridge, Downing St., Cambridge, CB2 3EH, UK
| | - Eva Herrero
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Roman T Kellenberger
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Rachel Walker
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Qi Wang
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Lionel Hill
- Biomolecular Analysis Facility, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| |
Collapse
|
23
|
Arrones A, Antar O, Pereira-Dias L, Solana A, Ferrante P, Aprea G, Plazas M, Prohens J, Díez MJ, Giuliano G, Gramazio P, Vilanova S. A novel tomato interspecific ( Solanum lycopersicum var. cerasiforme and Solanum pimpinellifolium) MAGIC population facilitates trait association and candidate gene discovery in untapped exotic germplasm. HORTICULTURE RESEARCH 2024; 11:uhae154. [PMID: 39005998 PMCID: PMC11246243 DOI: 10.1093/hr/uhae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
We developed a novel eight-way tomato multiparental advanced generation intercross (MAGIC) population to improve the accessibility of tomato relatives genetic resources to geneticists and breeders. The interspecific tomato MAGIC population (ToMAGIC) was obtained by intercrossing four accessions each of Solanum lycopersicum var. cerasiforme and Solanum pimpinellifolium, which are the weedy relative and the ancestor of cultivated tomato, respectively. The eight exotic ToMAGIC founders were selected based on a representation of the genetic diversity and geographical distribution of the two taxa. The resulting MAGIC population comprises 354 lines, which were genotyped using a new 12k tomato single primer enrichment technology panel and yielded 6488 high-quality single-nucleotide polymorphism (SNPs). The genotyping data revealed a high degree of homozygosity, an absence of genetic structure, and a balanced representation of the founder genomes. To evaluate the potential of the ToMAGIC population, a proof of concept was conducted by phenotyping it for fruit size, plant pigmentation, leaf morphology, and earliness. Genome-wide association studies identified strong associations for the studied traits, pinpointing both previously identified and novel candidate genes near or within the linkage disequilibrium blocks. Domesticated alleles for fruit size were recessive and were found, at low frequencies, in wild/ancestral populations. Our findings demonstrate that the newly developed ToMAGIC population is a valuable resource for genetic research in tomato, offering significant potential for identifying new genes that govern key traits in tomato. ToMAGIC lines displaying a pyramiding of traits of interest could have direct applicability for integration into breeding pipelines providing untapped variation for tomato breeding.
Collapse
Affiliation(s)
- Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Oussama Antar
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Andrea Solana
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Paola Ferrante
- Agenzia Nazionale Per Le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Giuseppe Aprea
- Agenzia Nazionale Per Le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - María José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Giovanni Giuliano
- Agenzia Nazionale Per Le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| |
Collapse
|
24
|
Singh S, Pal L, Rajput R, Chhatwal H, Singh N, Chattopadhyay D, Pandey A. CaLAP1 and CaLAP2 orchestrate anthocyanin biosynthesis in the seed coat of Cicer arietinum. PLANTA 2024; 260:38. [PMID: 38951258 DOI: 10.1007/s00425-024-04470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Our findings shed light on the regulation of anthocyanin and proanthocyanidin biosynthesis in chickpea seed coats. Expression of R2R3-MYB transcription factors CaLAP1 and CaLAP2 enhanced the anthocyanins and proanthocyanidins content in chickpea. The seed coat color is a major economic trait in leguminous crop chickpea (Cicer arietinum). Anthocyanins and proanthocyanidins (PAs) are two classes of flavonoids that mainly contribute to the flower, seed coat and color of Desi chickpea cultivars. Throughout the land plant lineage, the accumulation of anthocyanins and PAs is regulated by MYB and bHLH transcription factors (TFs), which form an MBW (MYB, bHLH, and WD40) complex. Here, we report two R2R3-MYB TFs in chickpea belonging to the anthocyanin-specific subgroup-6, CaLAP1 (Legume Anthocyanin Production 1), and CaLAP2 (Legume Anthocyanin Production 2), which are mainly expressed in the flowers and developmental stages of the seeds. CaLAP1 and CaLAP2 interact with TT8-like CabHLH1 and WD40, forming the MBW complex, and bind to the promoter sequences of anthocyanin- and PA biosynthetic genes CaCHS6, CaDFR2, CaANS, and CaANR, leading to anthocyanins and PA accumulation in the seed coat of chickpea. Moreover, these CaLAPs partially complement the anthocyanin-deficient phenotype in the Arabidopsis thaliana sextuple mutant seedlings. Overexpression of CaLAPs in chickpea resulted in significantly higher expression of anthocyanin and PA biosynthetic genes leading to a darker seed coat color with higher accumulation of anthocyanin and PA. Our findings show that CaLAPs positively modulate anthocyanin and PA content in seed coats, which might influence plant development and resistance to various biotic and abiotic stresses.
Collapse
Affiliation(s)
- Samar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Lalita Pal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ruchika Rajput
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Himani Chhatwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
25
|
Zhang D, Sun L, Xi D, Li X, Gao L, Miao L, Luo Y, Tian M, Zhu H. Methyl jasmonate-induced bHLH42 mediates tissue-specific accumulation of anthocyanins via regulating flavonoid metabolism-related pathways in Caitai. PHYSIOLOGIA PLANTARUM 2024; 176:e14434. [PMID: 38981863 DOI: 10.1111/ppl.14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
Anthocyanin is a type of plant secondary metabolite beneficial to human health. The anthocyanin content of vegetable and fruit crops signifies their nutritional quality. However, the molecular mechanism of anthocyanin accumulation, especially tissue-specific accumulation, in Caitai, as well as in other Brassica rapa varieties, remains elusive. In the present study, taking advantage of three kinds of Caitai cultivars with diverse colour traits between leaves and stems, we conducted a comparative transcriptome analysis and identified the molecular pathway of anthocyanin biosynthesis in Caitai leaves and stems, respectively. Our further investigations demonstrate that bHLH42, which is robustly induced by MeJA, closely correlates with tissue-specific accumulation of anthocyanins in Caitai; bHLH42 upregulates the expression of flavonoid/anthocyanin biosynthetic pathway genes to activate anthocyanin biosynthesis pathway, importantly, overexpression of bHLH42 significantly improves the anthocyanin content of Caitai. Our analysis convincingly suggests that bHLH42 induced by jasmonic acid signalling plays a crucial role in tissue-specific accumulation of anthocyanins in Caitai.
Collapse
Affiliation(s)
- Dingyu Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Shanghai, China
| | - Lixue Sun
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Shanghai, China
| | - Dandan Xi
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaofeng Li
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Lu Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liming Miao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yong Luo
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Shanghai, China
| | - Miaomiao Tian
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongfang Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
26
|
Liu Y, Wang C, Chen H, Dai G, Cuimu Q, Shen W, Gao L, Zhu B, Gao C, Chen L, Chen D, Zhang X, Tan C. Comparative transcriptome analysis reveals transcriptional regulation of anthocyanin biosynthesis in purple radish (Raphanus sativus L.). BMC Genomics 2024; 25:624. [PMID: 38902601 PMCID: PMC11188213 DOI: 10.1186/s12864-024-10519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
Radish exhibits significant variation in color, particularly in sprouts, leaves, petals, fleshy roots, and other tissues, displaying a range of hues such as green, white, red, purple, and black. Although extensive research has been conducted on the color variation of radish, the underlying mechanism behind the variation in radish flower color remains unclear. To date, there is a lack of comprehensive research investigating the variation mechanism of radish sprouts, leaves, fleshy roots, and flower organs. This study aims to address this gap by utilizing transcriptome sequencing to acquire transcriptome data for white and purple radish flowers. Additionally, the published transcriptome data of sprouts, leaves, and fleshy roots were incorporated to conduct a systematic analysis of the regulatory mechanisms underlying anthocyanin biosynthesis in these four radish tissues. The comparative transcriptome analysis revealed differential expression of the anthocyanin biosynthetic pathway genes DFR, UGT78D2, TT12 and CPC in the four radish tissues. Additionally, the WGCNA results identified RsDFR.9c and RsUGT78D2.2c as hub genes responsible for regulating anthocyanin biosynthesis. By integrating the findings from the comparative transcriptome analysis, WGCNA, and anthocyanin biosynthetic pathway-related gene expression patterns, it is hypothesized that genes RsDFR.9c and RsUGT78D2.2c may serve as pivotal regulators of anthocyanins in the four radish tissues. Furthermore, the tissue-specific expression of the four copies of RsPAP1 is deemed crucial in governing anthocyanin synthesis and accumulation. Our results provide new insights into the molecular mechanism of anthocyanin biosynthesis and accumulation in different tissues of radish.
Collapse
Affiliation(s)
- Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Chenchen Wang
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Haidong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Guoqiang Dai
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Qiushi Cuimu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Wenjie Shen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Liwei Gao
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Bo Zhu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Changbin Gao
- Wuhan Vegetable Research Institute, Wuhan Academy of Agriculture Science and Technology, Wuhan, China
| | - Lunlin Chen
- Nanchang Branch of National Center of Oilcrops Improvement, Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Xueli Zhang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agriculture Science and Technology, Wuhan, China.
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China.
| |
Collapse
|
27
|
Martinez-Sanchez M, Hunter DA, Saei A, Andre CM, Varkonyi-Gasic E, Clark G, Barry E, Allan AC. SmuMYB113 is the determinant of fruit color in pepino ( Solanum muricatum). FRONTIERS IN PLANT SCIENCE 2024; 15:1408202. [PMID: 38966143 PMCID: PMC11222579 DOI: 10.3389/fpls.2024.1408202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Pepino (Solanum muricatum) is an herbaceous crop phylogenetically related to tomato and potato. Pepino fruit vary in color, size and shape, and are eaten fresh. In this study, we use pepino as a fruit model to understand the transcriptional regulatory mechanisms controlling fruit quality. To identify the key genes involved in anthocyanin biosynthesis in pepino, two genotypes were studied that contrasted in foliar and fruit pigmentation. Anthocyanin profiles were analyzed, as well as the expression of genes that encode enzymes for anthocyanin biosynthesis and transcriptional regulators using both RNA-seq and quantitative PCR. The differential expression of the transcription factor genes R2R3 MYB SmuMYB113 and R3MYB SmuATV suggested their association with purple skin and foliage phenotype. Functional analysis of these genes in both tobacco and pepino showed that SmuMYB113 activates anthocyanins, while SmuATV suppresses anthocyanin accumulation. However, despite elevated expression in all tissues, SmuMYB113 does not significantly elevate flesh pigmentation, suggesting a strong repressive background in fruit flesh tissue. These results will aid understanding of the differential regulation controlling fruit quality aspects between skin and flesh in other fruiting species.
Collapse
Affiliation(s)
- Marcela Martinez-Sanchez
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Donald A. Hunter
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Palmerston North, New Zealand
| | - Ali Saei
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Christelle M. Andre
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Glen Clark
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Emma Barry
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Yi S, Cai Q, Yang Y, Shen H, Sun Z, Li L. Identification and Functional Characterization of the SaMYB113 Gene in Solanum aculeatissimum. PLANTS (BASEL, SWITZERLAND) 2024; 13:1570. [PMID: 38891379 PMCID: PMC11174649 DOI: 10.3390/plants13111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
The MYB transcription factors (TFs) have substantial functions in anthocyanin synthesis as well as being widely associated with plant responses to various adversities. In the present investigation, we found an unreported MYB TF from Solanum aculeatissimum (a wild relative of eggplant) and named it SaMYB113 in reference to its homologous gene. Bioinformatics analysis demonstrated that the open reading frame of SaMYB113 was 825 bp in length, encoding 275 amino acids, with a typical R2R3-MYB gene structure, and predicted subcellular localization in the nucleus. Analysis of the tissue-specific expression pattern through qRT-PCR showed that the SaMYB113 was expressed at a high level in young stems as well as leaves of S. aculeatissimum. Transgenic Arabidopsis and tobacco plants overexpressing SaMYB113 pertinent to the control of the 35S promoter exhibited a distinct purple color trait, suggesting a significant change in their anthocyanin content. Furthermore, we obtained three tobacco transgenic lines with significant differences in anthocyanin accumulation and analyzed the differences in anthocyanin content by LC-MS/MS. The findings demonstrated that overexpression of SaMYB113 caused tobacco to have considerably raised levels of several anthocyanin components, with the most significant increases in delphinidin-like anthocyanins and cyanidin-like anthocyanins. The qRT-PCR findings revealed significant differences in the expression levels of structural genes for anthocyanin synthesis among various transgenic lines. In summary, this study demonstrated that the SaMYB113 gene has a substantial impact on anthocyanin synthesis, and overexpression of the SaMYB113 gene leads to significant modifications to the expression levels of a variety of anthocyanin-synthesizing genes, which leads to complex changes in anthocyanin content and affects plant phenotypes. This present research offers the molecular foundation for the research of the mechanism of anthocyanin formation within plants, as well as providing some reference for the improvement of traits in solanum crops.
Collapse
Affiliation(s)
- Songheng Yi
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (S.Y.); (Q.C.); (H.S.)
| | - Qihang Cai
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (S.Y.); (Q.C.); (H.S.)
| | - Yanbo Yang
- College of Geography and Ecotourism, Southwest Forestry University, Kunming 650224, China;
| | - Hongquan Shen
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (S.Y.); (Q.C.); (H.S.)
| | - Zhenghai Sun
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (S.Y.); (Q.C.); (H.S.)
| | - Liping Li
- College of Wetland, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
29
|
Yang P, Bai Y, Zhao D, Cui J, Yang W, Gao Y, Zhang J, Wang Z, Wang M, Xue W, Chang J. Identification and functional marker development of SbPLSH1 conferring purple leaf sheath in sorghum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:137. [PMID: 38769163 DOI: 10.1007/s00122-024-04623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/14/2024] [Indexed: 05/22/2024]
Abstract
KEY MESSAGE We identified a SbPLSH1gene conferring purple leaf sheath in sorghum (sorghumbicolor(L.) Moench)and developed a functional markerfor it. The purple leaf sheath of sorghum, a trait mostly related to anthocyanin deposition, is a visually distinguishable morphological marker widely used to evaluate the purity of crop hybrids. We aimed to dissect the genetic mechanism for leaf sheath color to mine the genes regulating this trait. In this study, two F2 populations were constructed by crossing a purple leaf sheath inbred line (Gaoliangzhe) with two green leaf sheath inbred lines (BTx623 and Silimei). Based on the results of bulked-segregant analysis sequencing, bulk-segregant RNA sequencing, and map-based cloning, SbPLSH1 (Sobic.006G175700), which encodes a bHLH transcription factor on chromosome 6, was identified as the candidate gene for purple leaf sheath in sorghum. Genetic analysis demonstrated that overexpression of SbPLSH1 in Arabidopsis resulted in anthocyanin deposition and purple petiole, while two single-nucleotide polymorphism (SNP) variants on the exon 6 resulted in loss of function. Further haplotype analysis revealed that there were two missense mutations and one cis-acting element mutation in SbPLSH1, which are closely associated with leaf sheath color in sorghum. Based on the variations, a functional marker (LSC4-2) for marker-assisted selection was developed, which has a broad-spectrum capability of distinguishing leaf sheath color in natural variants. In summary, this study lays a foundation for analyzing the genetic mechanism for sorghum leaf sheath color.
Collapse
Affiliation(s)
- Puyuan Yang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Yuzhe Bai
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Dongting Zhao
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Jianghui Cui
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Weiping Yang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Yukun Gao
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Jiandong Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Zhibo Wang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Meng Wang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China
| | - Wei Xue
- Baoding Vocational and Technical College, Baoding, 071000, China
| | - Jinhua Chang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, China.
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
30
|
Wang Q, Wang Y, Wu X, Shi W, Chen N, Pang Y, Zhang L. Sequence and epigenetic variations of R2R3-MYB transcription factors determine the diversity of taproot skin and flesh colors in different cultivated types of radish (Raphanus sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:133. [PMID: 38753199 DOI: 10.1007/s00122-024-04631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/20/2024] [Indexed: 06/09/2024]
Abstract
KEY MESSAGE This study found that three paralogous R2R3-MYB transcription factors exhibit functional divergence among different subspecies and cultivated types in radish. Cultivated radish taproots exhibit a wide range of color variations due to unique anthocyanin accumulation patterns in various tissues. This study investigated the universal principles of taproot color regulation that developed during domestication of different subspecies and cultivated types. The key candidate genes RsMYB1 and RsMYB2, which control anthocyanin accumulation in radish taproots, were identified using bulked segregant analysis in two genetic populations. We introduced the RsMYB1-RsF3'H-RsMYB1Met genetic model to elucidate the complex and unstable genetic regulation of taproot flesh color in Xinlimei radish. Furthermore, we analyzed the expression patterns of three R2R3-MYB transcription factors in lines with different taproot colors and investigated the relationship between RsMYB haplotypes and anthocyanin accumulation in a natural population of 56 germplasms. The results revealed that three paralogous RsMYBs underwent functional divergence during radish domestication, with RsMYB1 regulating the red flesh of Xinlimei radish, and RsMYB2 and RsMYB3 regulating the red skin of East Asian big long radish (R. sativus var. hortensis) and European small radish (R. sativus var. sativus), respectively. Moreover, RsMYB1-H1, RsMYB2-H10, and RsMYB3-H6 were identified as the primary haplotypes exerting regulatory functions on anthocyanin synthesis. These findings provide an understanding of the genetic mechanisms regulating anthocyanin synthesis in radish and offer a potential strategy for early prediction of color variations in breeding programs.
Collapse
Affiliation(s)
- Qingbiao Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yanping Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Xiangyu Wu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Wenyu Shi
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Ningjie Chen
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yuanting Pang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Li Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| |
Collapse
|
31
|
Xiao K, Tan F, Zhang A, Zhou Y, Zhu W, Bao C, Zha D, Wu X. Fine Mapping of Candidate Gene Controlling Anthocyanin Biosynthesis for Purple Peel in Solanum melongena L. Int J Mol Sci 2024; 25:5241. [PMID: 38791283 PMCID: PMC11121509 DOI: 10.3390/ijms25105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Fruit color is an intuitive quality of horticultural crops that can be used as an evaluation criterion for fruit ripening and is an important factor affecting consumers' purchase choices. In this study, a genetic population from the cross of green peel 'Qidong' and purple peel '8 guo' revealed that the purple to green color of eggplant peel is dominant and controlled by a pair of alleles. Bulked segregant analysis (BSA), SNP haplotyping, and fine genetic mapping delimited candidate genes to a 350 kb region of eggplant chromosome 10 flanked by markers KA2381 and CA8828. One ANS gene (EGP22363) was predicted to be a candidate gene based on gene annotation and sequence alignment of the 350-kb region. Sequence analysis revealed that a single base mutation of 'T' to 'C' on the exon green peel, which caused hydrophobicity to become hydrophilic serine, led to a change in the three-level spatial structure. Additionally, EGP22363 was more highly expressed in purple peels than in green peels. Collectively, EGP22363 is a strong candidate gene for anthocyanin biosynthesis in purple eggplant peels. These results provide important information for molecular marker-assisted selection in eggplants, and a basis for analyzing the regulatory pathways responsible for anthocyanin biosynthesis in eggplants.
Collapse
Affiliation(s)
- Kai Xiao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Feng Tan
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Aidong Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Yaru Zhou
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Chonglai Bao
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Dingshi Zha
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Xuexia Wu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| |
Collapse
|
32
|
Shao M, Feng Y, Yang S, Feng T, Zeng F, Lu S, Ma Z, Chen B, Mao J. Molecular evolution of Phytocyanin gene and analysis of expression at different coloring periods in apple (Malus domestica). BMC PLANT BIOLOGY 2024; 24:374. [PMID: 38714922 PMCID: PMC11077699 DOI: 10.1186/s12870-024-05069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND PC (phytocyanin) is a class of copper-containing electron transfer proteins closely related to plant photosynthesis, abiotic stress responses growth and development in plants, and regulation of the expression of some flavonoids and phenylpropanoids, etc., however, compared with other plants, the PC gene family has not been systematically characterized in apple. RESULTS A total of 59 MdPC gene members unevenly distributed across 12 chromosomes were identified at the genome-wide level. The proteins of the MdPC family were classified into four subfamilies based on differences in copper binding sites and glycosylation sites: Apple Early nodulin-like proteins (MdENODLs), Apple Uclacyanin-like proteins (MdUCLs), Apple Stellacyanin-like proteins (MdSCLs), and Apple Plantacyanin-like proteins (MdPLCLs). Some MdPC members with similar gene structures and conserved motifs belong to the same group or subfamily. The internal collinearity analysis revealed 14 collinearity gene pairs among members of the apple MdPC gene. Interspecific collinearity analysis showed that apple had 31 and 35 homologous gene pairs with strawberry and grape, respectively. Selection pressure analysis indicated that the MdPC gene was under purifying selection. Prediction of protein interactions showed that MdPC family members interacted strongly with the Nad3 protein. GO annotation results indicated that the MdPC gene also regulated the biosynthesis of phenylpropanoids. Chip data analysis showed that (MdSCL3, MdSCL7 and MdENODL27) were highly expressed in mature fruits and peels. Many cis-regulatory elements related to light response, phytohormones, abiotic stresses and flavonoid biosynthetic genes regulation were identified 2000 bp upstream of the promoter of the MdPC gene, and qRT-PCR results showed that gene members in Group IV (MdSCL1/3, MdENODL27) were up-regulated at all five stages of apple coloring, but the highest expression was observed at the DAF13 (day after fruit bag removal) stage. The gene members in Group II (MdUCL9, MdPLCL3) showed down-regulated or lower expression in the first four stages of apple coloring but up-regulated and highest expression in the DAF 21 stage. CONCLUSION Herein, one objective of these findings is to provide valuable information for understanding the structure, molecular evolution, and expression pattern of the MdPC gene, another major objective in this study was designed to lay the groundwork for further research on the molecular mechanism of PC gene regulation of apple fruit coloration.
Collapse
Affiliation(s)
- Miao Shao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Yongqing Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Shangwen Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Tong Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Fanwei Zeng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
33
|
Kim G, Cho H, Kim S. Identification of a candidate gene for the I locus determining the dominant white bulb color in onion (Allium cepa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:118. [PMID: 38709404 DOI: 10.1007/s00122-024-04626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
KEY MESSAGE Through a map-based cloning approach, a gene coding for an R2R3-MYB transcription factor was identified as a causal gene for the I locus controlling the dominant white bulb color in onion. White bulb colors in onion (Allium cepa L.) are determined by either the C or I loci. The causal gene for the C locus was previously isolated, but the gene responsible for the I locus has not been identified yet. To identify candidate genes for the I locus, an approximately 7-Mb genomic DNA region harboring the I locus was obtained from onion and bunching onion (A. fistulosum) whole genome sequences using two tightly linked molecular markers. Within this interval, the AcMYB1 gene, known as a positive regulator of anthocyanin production, was identified. No polymorphic sequences were found between white and red AcMYB1 alleles in the 4,860-bp full-length genomic DNA sequences. However, a 4,838-bp LTR-retrotransposon was identified in the white allele, in the 79-bp upstream coding region from the stop codon. The insertion of this LTR-retrotransposon created a premature stop codon, resulting in the replacement of 26 amino acids with seven different residues. A molecular marker was developed based on the insertion of this LTR-retrotransposon to genotype the I locus. A perfect linkage between bulb color phenotypes and marker genotypes was observed among 5,303 individuals of segregating populations. The transcription of AcMYB1 appeared to be normal in both red and white onions, but the transcription of CHS-A, which encodes chalcone synthase and is involved in the first step of the anthocyanin biosynthesis pathway, was inactivated in the white onions. Taken together, an aberrant AcMYB1 protein produced from the mutant allele might be responsible for the dominant white bulb color in onions.
Collapse
Affiliation(s)
- Geonjoong Kim
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Heejung Cho
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Sunggil Kim
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
34
|
Gou Y, Jing Y, Song J, Nagdy MM, Peng C, Zeng L, Chen M, Lan X, Htun ZLL, Liao Z, Li Y. A novel bHLH gene responsive to low nitrogen positively regulates the biosynthesis of medicinal tropane alkaloids in Atropa belladonna. Int J Biol Macromol 2024; 266:131012. [PMID: 38522709 DOI: 10.1016/j.ijbiomac.2024.131012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Medicinal tropane alkaloids (TAs), including hyoscyamine, anisodamine and scopolamine, are essential anticholinergic drugs specifically produced in several solanaceous plants. Atropa belladonna is one of the most important medicinal plants that produces TAs. Therefore, it is necessary to cultivate new A. belladonna germplasm with the high content of TAs. Here, we found that the levels of TAs were elevated under low nitrogen (LN) condition, and identified a LN-responsive bHLH transcription factor (TF) of A. belladonna (named LNIR) regulating the biosynthesis of TAs. The expression level of LNIR was highest in secondary roots where TAs are synthesized specifically, and was significantly induced by LN. Further research revealed that LNIR directly activated the transcription of hyoscyamine 6β-hydroxylase gene (H6H) by binding to its promoter, which converts hyoscyamine into anisodamine and subsequently epoxidizes anisodamine to form scopolamine. Overexpression of LNIR upregulated the expression levels of TA biosynthesis genes and consequently led to the increased production of TAs. In summary, we functionally identified a LN-responsive bHLH gene that facilitated the development of A. belladonna with high-yield TAs under the decreased usage of nitrogen fertilizer.
Collapse
Affiliation(s)
- Yuqin Gou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City State Key Laboratory of Silkworm Genome Biology, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yanming Jing
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City State Key Laboratory of Silkworm Genome Biology, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiaxin Song
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City State Key Laboratory of Silkworm Genome Biology, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Mohammad Mahmoud Nagdy
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; Department of Medicinal and Aromatic Plants Research, National Research Centre, 12311 Dokki, Cairo, Egypt
| | - Chao Peng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City State Key Laboratory of Silkworm Genome Biology, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lingjiang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City State Key Laboratory of Silkworm Genome Biology, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Xizang Characteristic Agricultural and Animal Husbandry Resources, Tibet Agriculture and Animal Husbandry College, Nyingchi of Xizang 860000, China
| | - Zun Lai Lai Htun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City State Key Laboratory of Silkworm Genome Biology, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China; Department of Botany, University of Magway, Magway 04012, Myanmar
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City State Key Laboratory of Silkworm Genome Biology, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Yan Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City State Key Laboratory of Silkworm Genome Biology, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
35
|
Zhou Q, Xu X, Li M, Yang X, Wang M, Li Y, Hou X, Liu T. Laser capture microdissection transcriptome (LCM RNA-seq) reveals BcDFR is a key gene in anthocyanin synthesis of non-heading Chinese cabbage. BMC Genomics 2024; 25:425. [PMID: 38684983 PMCID: PMC11059580 DOI: 10.1186/s12864-024-10341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Purple non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis] has become popular because of its richness in anthocyanin. However, anthocyanin only accumulates in the upper epidermis of leaves. Further studies are needed to investigate the molecular mechanisms underlying the specific accumulation of it. RESULTS In this study, we used the laser capture frozen section method (LCM) to divide purple (ZBC) and green (LBC) non-heading Chinese cabbage leaves into upper and lower epidermis parts (Pup represents the purple upper epidermis, Plow represents the purple lower epidermis, Gup represents the green upper epidermis, Glow represents the green lower epidermis). Through transcriptome sequencing, we found that the DIHYDROFLAVONOL 4-REDUCTASE-encoding gene BcDFR, is strongly expressed in Pup but hardly in others (Plow, Gup, Glow). Further, a deletion and insertion in the promoter of BcDFR in LBC were found, which may interfere with BcDFR expression. Subsequent analysis of gene structure and conserved structural domains showed that BcDFR is highly conserved in Brassica species. The predicted protein-protein interaction network of BcDFR suggests that it interacts with almost all functional proteins in the anthocyanin biosynthesis pathway. Finally, the results of the tobacco transient expression also demonstrated that BcDFR promotes the synthesis and accumulation of anthocyanin. CONCLUSIONS BcDFR is specifically highly expressed on the upper epidermis of purple non-heading Chinese cabbage leaves and regulates anthocyanin biosynthesis and accumulation. Our study provides new insights into the functional analysis and transcriptional regulatory network of anthocyanin-related genes in purple non-heading Chinese cabbage.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinfeng Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengjie Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoxue Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meiyun Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China.
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
36
|
Tang K, Karamat U, Li G, Guo J, Jiang S, Fu M, Yang X. Integrated metabolome and transcriptome analyses reveal the role of BoGSTF12 in anthocyanin accumulation in Chinese kale (Brassica oleracea var. alboglabra). BMC PLANT BIOLOGY 2024; 24:335. [PMID: 38664614 PMCID: PMC11044404 DOI: 10.1186/s12870-024-05016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The vivid red, purple, and blue hues that are observed in a variety of plant fruits, flowers, and leaves are produced by anthocyanins, which are naturally occurring pigments produced by a series of biochemical processes occurring inside the plant cells. The purple-stalked Chinese kale, a popular vegetable that contains anthocyanins, has many health benefits but needs to be investigated further to identify the genes involved in the anthocyanin biosynthesis and translocation in this vegetable. RESULTS In this study, the purple- and green-stalked Chinese kale were examined using integrative transcriptome and metabolome analyses. The content of anthocyanins such as cyanidin-3-O-(6″-O-feruloyl) sophoroside-5-O-glucoside, cyanidin-3,5-O-diglucoside (cyanin), and cyanidin-3-O-(6″-O-p-hydroxybenzoyl) sophoroside-5-O-glucoside were considerably higher in purple-stalked Chinese kale than in its green-stalked relative. RNA-seq analysis indicated that 23 important anthocyanin biosynthesis genes, including 3 PAL, 2 C4H, 3 4CL, 3 CHS, 1 CHI, 1 F3H, 2 FLS, 2 F3'H, 1 DFR, 3 ANS, and 2 UFGT, along with the transcription factor BoMYB114, were significantly differentially expressed between the purple- and green-stalked varieties. Results of analyzing the expression levels of 11 genes involved in anthocyanin production using qRT-PCR further supported our findings. Association analysis between genes and metabolites revealed a strong correlation between BoGSTF12 and anthocyanin. We overexpressed BoGSTF12 in Arabidopsis thaliana tt19, an anthocyanin transport mutant, and this rescued the anthocyanin-loss phenotype in the stem and rosette leaves, indicating BoGSTF12 encodes an anthocyanin transporter that affects the accumulation of anthocyanins. CONCLUSION This work represents a key step forward in our understanding of the molecular processes underlying anthocyanin production in Chinese kale. Our comprehensive metabolomic and transcriptome analyses provide important insights into the regulatory system that controls anthocyanin production and transport, while providing a foundation for further research to elucidate the physiological importance of the metabolites found in this nutritionally significant vegetable.
Collapse
Affiliation(s)
- Kang Tang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Umer Karamat
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Shizheng Jiang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Mei Fu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China.
| | - Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
37
|
Dermail A, Mitchell M, Foster T, Fakude M, Chen YR, Suriharn K, Frei UK, Lübberstedt T. Haploid identification in maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1378421. [PMID: 38708398 PMCID: PMC11067884 DOI: 10.3389/fpls.2024.1378421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
Doubled haploid (DH) line production through in vivo maternal haploid induction is widely adopted in maize breeding programs. The established protocol for DH production includes four steps namely in vivo maternal haploid induction, haploid identification, genome doubling of haploid, and self-fertilization of doubled haploids. Since modern haploid inducers still produce relatively small portion of haploids among undesirable hybrid kernels, haploid identification is typically laborious, costly, and time-consuming, making this step the second foremost in the DH technique. This manuscript reviews numerous methods for haploid identification from different approaches including the innate differences in haploids and diploids, biomarkers integrated in haploid inducers, and automated seed sorting. The phenotypic differentiation, genetic basis, advantages, and limitations of each biomarker system are highlighted. Several approaches of automated seed sorting from different research groups are also discussed regarding the platform or instrument used, sorting time, accuracy, advantages, limitations, and challenges before they go through commercialization. The past haploid selection was focusing on finding the distinguishable marker systems with the key to effectiveness. The current haploid selection is adopting multiple reliable biomarker systems with the key to efficiency while seeking the possibility for automation. Fully automated high-throughput haploid sorting would be promising in near future with the key to robustness with retaining the feasible level of accuracy. The system that can meet between three major constraints (time, workforce, and budget) and the sorting scale would be the best option.
Collapse
Affiliation(s)
- Abil Dermail
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Mariah Mitchell
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Tyler Foster
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Mercy Fakude
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Yu-Ru Chen
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Khundej Suriharn
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Plant Breeding Research Center for Sustainable Agriculture, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | | | | |
Collapse
|
38
|
Zheng L, Zhang J, He H, Meng Z, Wang Y, Guo S, Liang C. Anthocyanin gene enrichment in the distal region of cotton chromosome A07: mechanisms of reproductive organ coloration. FRONTIERS IN PLANT SCIENCE 2024; 15:1381071. [PMID: 38699538 PMCID: PMC11063239 DOI: 10.3389/fpls.2024.1381071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Introduction The biosynthesis of secondary metabolites like anthocyanins is often governed by metabolic gene clusters (MGCs) in the plant ancestral genome. However, the existence of gene clusters specifically regulating anthocyanin accumulation in certain organs is not well understood. Methods and results In this study, we identify MGCs linked to the coloration of cotton reproductive organs, such as petals, spots, and fibers. Through genetic analysis and map-based cloning, we pinpointed key genes on chromosome A07, such as PCC/GhTT19, which is involved in anthocyanin transport, and GbBM and GhTT2-3A, which are associated with the regulation of anthocyanin and proanthocyanidin biosynthesis. Our results demonstrate the coordinated control of anthocyanin and proanthocyanidin pathways, highlighting the evolutionary significance of MGCs in plant adaptation. The conservation of these clusters in cotton chromosome A07 across species underscores their importance in reproductive development and color variation. Our study sheds light on the complex biosynthesis and transport mechanisms for plant pigments, emphasizing the role of transcription factors and transport proteins in pigment accumulation. Discussion This research offers insights into the genetic basis of color variation in cotton reproductive organs and the potential of MGCs to enhance our comprehension of plant secondary metabolism.
Collapse
Affiliation(s)
- Liuchang Zheng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jilong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyan He
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Zhao S, Fu S, Cao Z, Liu H, Huang S, Li C, Zhang Z, Yang H, Wang S, Luo J, Long T. OsUGT88C3 Encodes a UDP-Glycosyltransferase Responsible for Biosynthesis of Malvidin 3- O-Galactoside in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:697. [PMID: 38475543 DOI: 10.3390/plants13050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The diversity of anthocyanins is largely due to the action of glycosyltransferases, which add sugar moieties to anthocyanidins. Although a number of glycosyltransferases have been identified to glycosylate anthocyanidin in plants, the enzyme that catalyzes malvidin galactosylation remains unclear. In this study, we identified three rice varieties with different leaf color patterns, different anthocyanin accumulation patterns, and different expression patterns of anthocyanin biosynthesis genes (ABGs) to explore uridine diphosphate (UDP)-glycosyltransferases (UGTs) responsible for biosynthesis of galactosylated malvidin. Based on correlation analysis of transcriptome data, nine candidate UGT genes coexpressed with 12 ABGs were identified (r values range from 0.27 to 1.00). Further analysis showed that the expression levels of one candidate gene, OsUGT88C3, were highly correlated with the contents of malvidin 3-O-galactoside, and recombinant OsUGT88C3 catalyzed production of malvidin 3-O-galactoside using UDP-galactose and malvidin as substrates. OsUGT88C3 was closely related to UGTs with flavone and flavonol glycosylation activities in phylogeny. Its plant secondary product glycosyltransferase (PSPG) motif ended with glutamine. Haplotype analysis suggested that the malvidin galactosylation function of OsUGT88C3 was conserved among most of the rice germplasms. OsUGT88C3 was highly expressed in the leaf, pistil, and embryo, and its protein was located in the endoplasmic reticulum and nucleus. Our findings indicate that OsUGT88C3 is responsible for the biosynthesis of malvidin 3-O-galactoside in rice and provide insight into the biosynthesis of anthocyanin in plants.
Collapse
Affiliation(s)
- Sihan Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Shuying Fu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Zhenfeng Cao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Hao Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Sishu Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Chun Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Zhonghui Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Hongbo Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Shouchuang Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Tuan Long
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| |
Collapse
|
40
|
Song W, Li C, Kou M, Li C, Gao G, Cai T, Tang W, Zhang Z, Nguyen T, Wang D, Wang X, Ma M, Gao R, Yan H, Shen Y, You C, Zhang Y, Li Q. Different regions and environments have critical roles on yield, main quality and industrialization of an industrial purple-fleshed sweetpotato ( Ipomoea batatas L. (Lam.)) "Xuzishu8". Heliyon 2024; 10:e25328. [PMID: 38390079 PMCID: PMC10881541 DOI: 10.1016/j.heliyon.2024.e25328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/10/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Purple-fleshed sweetpotato (PFSP) (Ipomoea batatas (L.) Lam), whose flesh is purple to dark purple, is a special variety type of sweetpotato, which has the characteristics of food crop, industrial crop and medicinal crop. The storage root (SR) of PFSP is rich in anthocyanins, starch, protein, soluble sugar, mineral elements, polyphenol, dietary fiber and so on, which has balanced and comprehensive nutritional value. And in recent years, its unique nutritional elements are increasingly known for their health functions. At present, there is no article on the characteristics and quality analysis of industrial xz8 variety. To explore the influence of different environments on the processing quality of xz8, we selected nine regions (Xuzhou, Jiawang, Pizhou, Xinyi, Peixian, Sihong, Yanchen, Xiangyang and Tianshui) to measure its yield and quality changes. The data demonstrated that xz8 has a very consistent high yield performance. In Tianshui, the anthocyanins, protein and minerals contents were significantly higher and yield also above average. Moreover, the variety with the lowest starch content exhibited the best taste. On the basis of the above results, it suggested that quite practicable to promote xz8 cultivation and suitable for processing in these areas. Thus, our present findings improve our understanding of xz8 variety and provide the basis for the industrial production of PFSP with strong prospects for success.
Collapse
Affiliation(s)
- Weihan Song
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Chengyang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Meng Kou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Chen Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Guangzhen Gao
- College of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Tingdong Cai
- College of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Zhenyi Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
- College of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Thanhliem Nguyen
- Department of Biology and Agricultural Engineering, Quynhon University, Quynhon, Binhdinh, 590000, Vietnam
| | - Dandan Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Xin Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Meng Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
- College of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Runfei Gao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Hui Yan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Yifan Shen
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Chang You
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Yungang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, 221131, China
| |
Collapse
|
41
|
Jiang L, Lyu S, Yu H, Zhang J, Sun B, Liu Q, Mao X, Chen P, Pan D, Chen W, Fan Z, Li C. Transcription factor encoding gene OsC1 regulates leaf sheath color through anthocyanidin metabolism in Oryza rufipogon and Oryza sativa. BMC PLANT BIOLOGY 2024; 24:147. [PMID: 38418937 PMCID: PMC10900563 DOI: 10.1186/s12870-024-04823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Carbohydrates, proteins, lipids, minerals and vitamins are nutrient substances commonly seen in rice grains, but anthocyanidin, with benefit for plant growth and animal health, exists mainly in the common wild rice but hardly in the cultivated rice. To screen the rice germplasm with high intensity of anthocyanidins and identify the variations, we used metabolomics technique and detected significant different accumulation of anthocyanidins in common wild rice (Oryza rufipogon, with purple leaf sheath) and cultivated rice (Oryza sativa, with green leaf sheath). In this study, we identified and characterized a well-known MYB transcription factor, OsC1, through phenotypic (leaf sheath color) and metabolic (metabolite profiling) genome-wide association studies (pGWAS and mGWAS) in 160 common wild rice (O. rufipogon) and 151 cultivated (O. sativa) rice varieties. Transgenic experiments demonstrated that biosynthesis and accumulation of cyanidin-3-Galc, cyanidin 3-O-rutinoside and cyanidin O-syringic acid, as well as purple pigmentation in leaf sheath were regulated by OsC1. A total of 25 sequence variations of OsC1 constructed 16 functional haplotypes (higher accumulation of the three anthocyanidin types within purple leaf sheath) and 9 non-functional haplotypes (less accumulation of anthocyanidins within green leaf sheath). Three haplotypes of OsC1 were newly identified in our germplasm, which have potential values in functional genomics and molecular breeding of rice. Gene-to-metabolite analysis by mGWAS and pGWAS provides a useful and efficient tool for functional gene identification and omics-based crop genetic improvement.
Collapse
Affiliation(s)
- Liqun Jiang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Shuwei Lyu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Jing Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Bingrui Sun
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Xingxue Mao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Pingli Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Dajian Pan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Wenfeng Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Zhilan Fan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China.
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China.
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China.
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China.
| |
Collapse
|
42
|
Ding Y, Li H, Liu X, Cheng X, Chen W, Wu M, Chen L, He J, Chao H, Jia H, Fu C, Li M. Multi-Omics Analysis Revealed the AGR-FC.C3 Locus of Brassica napus as a Novel Candidate for Controlling Petal Color. PLANTS (BASEL, SWITZERLAND) 2024; 13:507. [PMID: 38498487 PMCID: PMC10892695 DOI: 10.3390/plants13040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/20/2024]
Abstract
Variations in the petal color of Brassica napus are crucial for ornamental value, but the controlled loci for breeding remain to be unraveled. Here, we report a candidate locus, AGR-FC.C3, having conducted a bulked segregant analysis on a segregating population with different petal colors. Our results showed that the locus covers 9.46 Mb of the genome, harboring 951 genes. BnaC03.MYB4, BnaC03.MYB85, BnaC03.MYB73, BnaC03.MYB98, and BnaC03.MYB102 belonging to MYB TFs families that might regulate the petal color were observed. Next, a bulk RNA sequencing of white and orange-yellow petals on three development stages was performed to further identify the possible governed genes. The results revealed a total of 51 genes by overlapping the transcriptome data and the bulked segregant analysis data, and it was found that the expression of BnaC03.CCD4 was significantly up-regulated in the white petals at three development stages. Then, several novel candidate genes such as BnaC03.ENDO3, BnaC03.T22F8.180, BnaC03.F15C21.8, BnaC03.Q8GSI6, BnaC03.LSD1, BnaC03.MAP1Da, BnaC03.MAP1Db, and BnaC03G0739700ZS putative to controlling the petal color were identified through deeper analysis. Furthermo re, we have developed two molecular markers for the reported functional gene BnaC03.CCD4 to discriminate the white and orange-yellow petal colors. Our results provided a novel locus for breeding rapeseed with multi-color petals.
Collapse
Affiliation(s)
- Yiran Ding
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Xinmin Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Xin Cheng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Wang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Mingli Wu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Liurong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Haibo Jia
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Chunhua Fu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| |
Collapse
|
43
|
Chen L, Li Y, Zhu J, Li Z, Wang W, Qi Z, Li D, Yao P, Bi Z, Sun C, Liu Y, Liu Z. Comprehensive Characterization of the C3HC4 RING Finger Gene Family in Potato ( Solanum tuberosum L.): Insights into Their Involvement in Anthocyanin Biosynthesis. Int J Mol Sci 2024; 25:2082. [PMID: 38396758 PMCID: PMC10889778 DOI: 10.3390/ijms25042082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The C3HC4 RING finger gene (RING-HC) family is a zinc finger protein crucial to plant growth. However, there have been no studies on the RING-HC gene family in potato. In this study, 77 putative StRING-HCs were identified in the potato genome and grouped into three clusters based on phylogenetic relationships, the chromosome distribution, gene structure, conserved motif, gene duplication events, and synteny relationships, and cis-acting elements were systematically analyzed. By analyzing RNA-seq data of potato cultivars, the candidate StRING-HC genes that might participate in tissue development, abiotic stress, especially drought stress, and anthocyanin biosynthesis were further determined. Finally, a StRING-HC gene (Soltu.DM.09G017280 annotated as StRNF4-like), which was highly expressed in pigmented potato tubers was focused on. StRNF4-like localized in the nucleus, and Y2H assays showed that it could interact with the anthocyanin-regulating transcription factors (TFs) StbHLH1 of potato tubers, which is localized in the nucleus and membrane. Transient assays showed that StRNF4-like repressed anthocyanin accumulation in the leaves of Nicotiana tabacum and Nicotiana benthamiana by directly suppressing the activity of the dihydroflavonol reductase (DFR) promoter activated by StAN1 and StbHLH1. The results suggest that StRNF4-like might repress anthocyanin accumulation in potato tubers by interacting with StbHLH1. Our comprehensive analysis of the potato StRING-HCs family contributes valuable knowledge to the understanding of their functions in potato development, abiotic stress, hormone signaling, and anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Limin Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jinyong Zhu
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Zhitao Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Weilu Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Zheying Qi
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Dechen Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Panfeng Yao
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Zhenzhen Bi
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
| | - Chao Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Zhen Liu
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| |
Collapse
|
44
|
An JP, Xu RR, Wang XN, Zhang XW, You CX, Han Y. MdbHLH162 connects the gibberellin and jasmonic acid signals to regulate anthocyanin biosynthesis in apple. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:265-284. [PMID: 38284786 DOI: 10.1111/jipb.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Anthocyanins are secondary metabolites induced by environmental stimuli and developmental signals. The positive regulators of anthocyanin biosynthesis have been reported, whereas the anthocyanin repressors have been neglected. Although the signal transduction pathways of gibberellin (GA) and jasmonic acid (JA) and their regulation of anthocyanin biosynthesis have been investigated, the cross-talk between GA and JA and the antagonistic mechanism of regulating anthocyanin biosynthesis remain to be investigated. In this study, we identified the anthocyanin repressor MdbHLH162 in apple and revealed its molecular mechanism of regulating anthocyanin biosynthesis by integrating the GA and JA signals. MdbHLH162 exerted passive repression by interacting with MdbHLH3 and MdbHLH33, which are two recognized positive regulators of anthocyanin biosynthesis. MdbHLH162 negatively regulated anthocyanin biosynthesis by disrupting the formation of the anthocyanin-activated MdMYB1-MdbHLH3/33 complexes and weakening transcriptional activation of the anthocyanin biosynthetic genes MdDFR and MdUF3GT by MdbHLH3 and MdbHLH33. The GA repressor MdRGL2a antagonized MdbHLH162-mediated inhibition of anthocyanins by sequestering MdbHLH162 from the MdbHLH162-MdbHLH3/33 complex. The JA repressors MdJAZ1 and MdJAZ2 interfered with the antagonistic regulation of MdbHLH162 by MdRGL2a by titrating the formation of the MdRGL2a-MdbHLH162 complex. Our findings reveal that MdbHLH162 integrates the GA and JA signals to negatively regulate anthocyanin biosynthesis. This study provides new information for discovering more anthocyanin biosynthesis repressors and explores the cross-talk between hormone signals.
Collapse
Affiliation(s)
- Jian-Ping An
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| | - Rui-Rui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, China
| | - Xiao-Na Wang
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Xiao-Wei Zhang
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
45
|
Chachar Z, Lai R, Ahmed N, Lingling M, Chachar S, Paker NP, Qi Y. Cloned genes and genetic regulation of anthocyanin biosynthesis in maize, a comparative review. FRONTIERS IN PLANT SCIENCE 2024; 15:1310634. [PMID: 38328707 PMCID: PMC10847539 DOI: 10.3389/fpls.2024.1310634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Anthocyanins are plant-based pigments that are primarily present in berries, grapes, purple yam, purple corn and black rice. The research on fruit corn with a high anthocyanin content is not sufficiently extensive. Considering its crucial role in nutrition and health it is vital to conduct further studies on how anthocyanin accumulates in fruit corn and to explore its potential for edible and medicinal purposes. Anthocyanin biosynthesis plays an important role in maize stems (corn). Several beneficial compounds, particularly cyanidin-3-O-glucoside, perlagonidin-3-O-glucoside, peonidin 3-O-glucoside, and their malonylated derivatives have been identified. C1, C2, Pl1, Pl2, Sh2, ZmCOP1 and ZmHY5 harbored functional alleles that played a role in the biosynthesis of anthocyanins in maize. The Sh2 gene in maize regulates sugar-to-starch conversion, thereby influencing kernel quality and nutritional content. ZmCOP1 and ZmHY5 are key regulatory genes in maize that control light responses and photomorphogenesis. This review concludes the molecular identification of all the genes encoding structural enzymes of the anthocyanin pathway in maize by describing the cloning and characterization of these genes. Our study presents important new understandings of the molecular processes behind the manufacture of anthocyanins in maize, which will contribute to the development of genetically modified variants of the crop with increased color and possible health advantages.
Collapse
Affiliation(s)
- Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - RuiQiang Lai
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ma Lingling
- College of Agriculture, Jilin Agricultural University, Changchun, Jilin, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | | | - YongWen Qi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
46
|
Jiang S, Guo J, Khan I, Jahan MS, Tang K, Li G, Yang X, Fu M. Comparative Metabolome and Transcriptome Analyses Reveal the Regulatory Mechanism of Purple Leafstalk Production in Taro ( Colocasia esculenta L. Schott). Genes (Basel) 2024; 15:138. [PMID: 38275619 PMCID: PMC10815928 DOI: 10.3390/genes15010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Taro is a plant in the Araceae family, and its leafstalk possesses significant botanical and culinary value owing to its noteworthy medicinal and nutritional attributes. Leafstalk colour is an essential attribute that significantly influences its desirability and appeal to both breeders and consumers. However, limited information is available about the underlying mechanism responsible for the taro plant's colouration. Thus, the purpose of the current study was to elucidate the information on purple leafstalks in taro through comprehensive metabolome and transcriptome analysis. In total, 187 flavonoids, including 10 anthocyanins, were identified. Among the various compounds analysed, it was observed that the concentrations of five anthocyanins (keracyanin chloride (cyanidin 3-O-rutinoside chloride), cyanidin 3-O-glucoside, tulipanin (delphinidin 3-rutinoside chloride), idaein chloride (cyanidin 3-O-galactoside), and cyanidin chloride) were found to be higher in purple taro leafstalk compared to green taro leafstalk. Furthermore, a total of 3330 differentially expressed genes (DEGs) were identified by transcriptome analysis. Subsequently, the correlation network analysis was performed to investigate the relationship between the expression levels of these differentially expressed genes and the content of anthocyanin. There were 18 DEGs encoding nine enzymes detected as the fundamental structural genes contributing to anthocyanin biosynthesis, along with seven transcription factors (3 MYB and 4 bHLH) that may be promising candidate modulators of the anthocyanin biosynthesis process in purple taro leafstalk. The findings of the current investigation not only provide a comprehensive transcriptional code, but also give information on anthocyanin metabolites as well as beneficial insights into the colour mechanism of purple taro leafstalk.
Collapse
Affiliation(s)
- Shizheng Jiang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
| | - Imran Khan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
| | - Mohammad Shah Jahan
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Kang Tang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
| | - Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Mei Fu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (S.J.); (J.G.); (I.K.); (K.T.); (G.L.)
| |
Collapse
|
47
|
Jiang W, Jiang Q, Shui Z, An P, Shi S, Liu T, Zhang H, Huang S, Jing B, Xiao E, Quan L, Liu J, Wang Z. HaMYBA-HabHLH1 regulatory complex and HaMYBF fine-tune red flower coloration in the corolla of sunflower (Helianthus annuus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111901. [PMID: 37865209 DOI: 10.1016/j.plantsci.2023.111901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Sunflowers are well-known ornamental plants, while sunflowers with red corolla are rare and the mechanisms underlying red coloration remain unclear. Here, a comprehensive analysis of metabolomics and transcriptomics on flavonoid pathway was performed to investigate the molecular mechanisms underlying the differential color formation between red sunflower Pc103 and two yellow sunflowers (Yr17 and Y35). Targeted metabolomic analysis revealed higher anthocyanin levels but lower flavonol content in Pc103 compared to the yellow cultivars. RNA-sequencing and phylogenetic analysis identified multiple genes involved in the flavonoid pathway, including series of structural genes and three MYB and bHLH genes. Specifically, HaMYBA and HabHLH1 were up-regulated in Pc103, whereas HaMYBF exhibited reduced expression. HaMYBA was found to interact with HabHLH1 in vivo and in vitro, while HaMYBF does not. Transient expression analysis further revealed that HabHLH1 and HaMYBA cooperatively regulate increased expression of dihydroflavonol 4-reductase (DFR), leading to anthocyanin accumulation. On the other hand, ectopic expression of HaMYBF independently modulates flavonol synthase (FLS) expression, but hindered anthocyanin production. Collectively, our findings suggest that the up-regulation of HaMYBA and HabHLH1, as well as the down-regulation of HaMYBF, contribute to the red coloration in Pc103. It offers a theoretical basis for improving sunflower color through genetic engineering.
Collapse
Affiliation(s)
- Wenhui Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China; Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen 518120, China
| | - Qinqin Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhijie Shui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Peipei An
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shandang Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hanbing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shuyi Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Bing Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Enshi Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Li Quan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jixia Liu
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
48
|
Ou Z, Luo J, Qu Y. Exploring the molecular mechanism of coloration differences in two Meconopsis wilsonii subspecies: australis and orientalis. Dev Biol 2024; 505:1-10. [PMID: 37838025 DOI: 10.1016/j.ydbio.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Flower color diversity is a key taxonomic trait in Meconopsis species, enhancing their appeal as ornamental flowers. However, knowledge of the molecular mechanisms of flower color formation in Meconopsis species is still limited. M. wilsonii subsp. australis (Australis) and M. wilsonii subsp. orientalis (Orientalis) have a developmental stage presenting red-purple flowers, while Orientalis also presents blue coloration at the full-bloom period, making them an important model for exploring the mechanism of blue flower formation in M. wilsonii. In this study, we collected petals from Australis and Orientalis at different developmental stages to compare the coloration differences between the two species and detect the molecular mechanisms of blue color in Orientalis. We identified that cyanidin was the main anthocyanin in the flowers of both species, and the blue color in Orientalis primarily arises from anthocyanins (Cyanidin-3-O-sambubioside). RNA sequencing analysis was performed to detect the gene expression in the anthocyanin biosynthesis pathway, and the results suggested that gene regulation for anthocyanin biosynthesis may not be the direct reason for blue color formation in Orientalis. In addition, the growth solid of Orientalis was rich in Fe and Mg ions, and a large amount of Fe and Mg ions accumulated in the petals of Orientalis. Combined with the gene functional enrichment results, we found that the purple and red-purple colors of these two species were presented by different glycosylation levels of cyanidin, while the violet color of Orientalis might be the results of metalloanthocyanins by Fe and Mg ions, which also relieved the toxicity caused by the high content of Fe and Mg ions in its cells. The environmental adaptation-related genes were highly expressed of in both species, such as adaptation to desiccation, water deprivation, freezing, etc. Our results revealed the coloration differences between Australis and Orientalis and described the molecular mechanisms of blue coloration in Orientalis. The data in our analysis could enrich the genetic resources for M. wilsonii for further studies.
Collapse
Affiliation(s)
- Zhi Ou
- Southwest Engineering and Technology Research Center of Landscape Architecture (National Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Jun Luo
- Southwest Engineering and Technology Research Center of Landscape Architecture (National Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Yan Qu
- Southwest Engineering and Technology Research Center of Landscape Architecture (National Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| |
Collapse
|
49
|
Parrish SB, Paudel D, Deng Z. Transcriptome analysis of Lantana camara flower petals reveals candidate anthocyanin biosynthesis genes mediating red flower color development. G3 (BETHESDA, MD.) 2023; 14:jkad259. [PMID: 37974306 PMCID: PMC10755171 DOI: 10.1093/g3journal/jkad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/05/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Flower color plays a crucial role in the appeal and selection of ornamental plants, directly influencing breeding strategies and the broader horticulture industry. Lantana camara, a widely favored flowering shrub, presents a rich palette of flower colors. Yet, the intricate molecular mechanisms governing this color variation in the species have remained largely unidentified. With the aim of filling this gap, this study embarked on a comprehensive de novo transcriptome assembly and differential gene expression analysis across 3 distinct lantana accessions, each showcasing a unique flower color. By harnessing the capabilities of both PacBio and Illumina sequencing platforms, a robust transcriptome assembly, encompassing 123,492 gene clusters and boasting 94.2% BUSCO completeness, was developed. The differential expression analysis unveiled 72,862 unique gene clusters that exhibited varied expression across different flower stages. A pronounced upregulation of 8 candidate core anthocyanin biosynthesis genes in the red-flowered accession was uncovered. This was further complemented by an upregulation of candidate MYB75 (PAP1) and bHLH42 (TT8) transcription factors. A candidate carotenoid cleavage dioxygenase (CCD4a) gene cluster also manifested a marked upregulation in white flowers. The study unveils the molecular groundwork of lantana's flower color variation, offering insights for future research and potential applications in breeding ornamental plants with desired color traits.
Collapse
Affiliation(s)
- Stephen Brooks Parrish
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Dev Paudel
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Zhanao Deng
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| |
Collapse
|
50
|
Bao Y, He M, Zhang C, Jiang S, Zhao L, Ye Z, Sun Q, Xia Z, Zou M. Advancing understanding of Ficus carica: a comprehensive genomic analysis reveals evolutionary patterns and metabolic pathway insights. FRONTIERS IN PLANT SCIENCE 2023; 14:1298417. [PMID: 38155853 PMCID: PMC10754049 DOI: 10.3389/fpls.2023.1298417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
Ficus carica L. (dioecious), the most significant commercial species in the genus Ficus, which has been cultivated for more than 11,000 years and was one of the first species to be domesticated. Herein, we reported the most comprehensive F. carica genome currently. The contig N50 of the Orphan fig was 9.78 Mb, and genome size was 366.34 Mb with 13 chromosomes. Based on the high-quality genome, we discovered that F. carica diverged from Ficus microcarpa ~34 MYA, and a WGD event took place about 2─3 MYA. Throughout the evolutionary history of F. carica, chromosomes 2, 8, and 10 had experienced chromosome recombination, while chromosome 3 saw a fusion and fission. It is worth proposing that the chromosome 9 experienced both inversion and translocation, which facilitated the emergence of the F. carica as a new species. And the selections of F. carica for the genes of recombination chromosomal fragment are compatible with their goal of domestication. In addition, we found that the F. carica has the FhAG2 gene, but there are structural deletions and positional jumps. This gene is thought to replace the one needed for female common type F. carica to be pollinated. Subsequently, we conducted genomic, transcriptomic, and metabolomic analysis to demonstrate significant differences in the expression of CHS among different varieties of F. carica. The CHS playing an important role in the anthocyanin metabolism pathway of F. carica. Moreover, the CHS gene of F. carica has a different evolutionary trend compared to other Ficus species. These high-quality genome assembly, transcriptomic, and metabolomic resources further enrich F. carica genomics and provide insights for studying the chromosomes evolution, sexual system, and color characteristics of Ficus.
Collapse
Affiliation(s)
- Yuting Bao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Miaohua He
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Chenji Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Agriculture, China Agricultural University, Beijing, China
| | - Sirong Jiang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Long Zhao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Zhengwen Ye
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qian Sun
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Life Science and Technology, Guangxi University, Guangxi, China
| | - Zhiqiang Xia
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Meiling Zou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|