1
|
Bedre R, Kavuri NR, Ramasamy M, Irigoyen S, Nelson A, Rajkumar MS, Mandadi K. Long intergenic non-coding RNAs modulate proximal protein-coding gene expression and tolerance to Candidatus Liberibacter spp. in potatoes. Commun Biol 2024; 7:1095. [PMID: 39242868 PMCID: PMC11379938 DOI: 10.1038/s42003-024-06763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) are emerging as regulators of protein-coding genes (PCGs) in many plant and animal developmental processes and stress responses. In this study, we characterize the genome-wide lincRNAs in potatoes responsive to a vascular bacterial disease presumably caused by Candidatus Liberibacter solanacearum (CLso). Approximately 4397 lincRNAs were detected in healthy and infected potato plants at various stages of zebra chip (ZC) disease progression. Of them, ~65% (2844) were novel lincRNAs, and less than 1% (9) were orthologs of Arabidopsis and rice based on reciprocal BLAST analysis, suggesting species-specific expansion. Among the proximal lincRNAs within 50 kbp from a PCG, ~49% were transcribed from the same strand, while ~39% and ~15% followed convergent (head-to-head) and divergent (tail-to-tail) orientations, respectively. Approximately 30% (1308) were differentially expressed following CLso infection, with substantial changes occurring 21 days after infection (DAI). Weighted Gene Co-expression Network Analysis (WGCNA) of lincRNAs and PCGs identified 46 highly correlated lincRNA-PCG pairs exhibiting co-up or co-downregulation. Furthermore, overexpression of selected lincRNAs in transgenic potato hairy roots resulted in perturbation of neighboring PCG expression and conferred tolerance to CLso infection. Our results provide novel insights into potato lincRNAs' identity, expression dynamics, and functional relevance to CLso infection.
Collapse
Affiliation(s)
- Renesh Bedre
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, Weslaco, TX, USA
| | - Naga Rajitha Kavuri
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, Weslaco, TX, USA
- Department of Plant Pathology and Microbiology, Texas A&M University System, College Station, TX, USA
| | - Manikandan Ramasamy
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, Weslaco, TX, USA
| | - Sonia Irigoyen
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, Weslaco, TX, USA
| | - Andrew Nelson
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Mohan Singh Rajkumar
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, Weslaco, TX, USA
| | - Kranthi Mandadi
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, Weslaco, TX, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University System, College Station, TX, USA.
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX, USA.
| |
Collapse
|
2
|
Lu XM, Yu XF, Li GQ, Qu MH, Wang H, Liu C, Man YP, Jiang XH, Li MZ, Wang J, Chen QQ, Lei R, Zhao CC, Zhou YQ, Jiang ZW, Li ZZ, Zheng S, Dong C, Wang BL, Sun YX, Zhang HQ, Li JW, Mo QH, Zhang Y, Lou X, Peng HX, Yi YT, Wang HX, Zhang XJ, Wang YB, Wang D, Li L, Zhang Q, Wang WX, Liu Y, Gao L, Wu JH, Wang YC. Genome assembly of autotetraploid Actinidia arguta highlights adaptive evolution and enables dissection of important economic traits. PLANT COMMUNICATIONS 2024; 5:100856. [PMID: 38431772 PMCID: PMC11211551 DOI: 10.1016/j.xplc.2024.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/07/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Actinidia arguta, the most widely distributed Actinidia species and the second cultivated species in the genus, can be distinguished from the currently cultivated Actinidia chinensis on the basis of its small and smooth fruit, rapid softening, and excellent cold tolerance. Adaptive evolution of tetraploid Actinidia species and the genetic basis of their important agronomic traits are still unclear. Here, we generated a chromosome-scale genome assembly of an autotetraploid male A. arguta accession. The genome assembly was 2.77 Gb in length with a contig N50 of 9.97 Mb and was anchored onto 116 pseudo-chromosomes. Resequencing and clustering of 101 geographically representative accessions showed that they could be divided into two geographic groups, Southern and Northern, which first diverged 12.9 million years ago. A. arguta underwent two prominent expansions and one demographic bottleneck from the mid-Pleistocene climate transition to the late Pleistocene. Population genomics studies using paleoclimate data enabled us to discern the evolution of the species' adaptation to different historical environments. Three genes (AaCEL1, AaPME1, and AaDOF1) related to flesh softening were identified by multi-omics analysis, and their ability to accelerate flesh softening was verified through transient expression assays. A set of genes that characteristically regulate sexual dimorphism located on the sex chromosome (Chr3) or autosomal chromosomes showed biased expression during stamen or carpel development. This chromosome-level assembly of the autotetraploid A. arguta genome and the genes related to important agronomic traits will facilitate future functional genomics research and improvement of A. arguta.
Collapse
Affiliation(s)
- Xue-Mei Lu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiao-Fen Yu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Guo-Qiang Li
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ming-Hao Qu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, Hubei, China
| | - Chuang Liu
- Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yu-Ping Man
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiao-Han Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mu-Zi Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qi-Qi Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Rui Lei
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Cheng-Cheng Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yun-Qiu Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Wang Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zuo-Zhou Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shang Zheng
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, Hubei, China
| | - Chang Dong
- College of Agricultural Sciences, Xichang University, Xichang, Sichuan, China
| | - Bai-Lin Wang
- Department of Horticulture, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yan-Xiang Sun
- College of Life Sciences, Langfang Normal University, Langfang, Hebei, China
| | - Hui-Qin Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jie-Wei Li
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, Guangxi, China
| | - Quan-Hui Mo
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, Guangxi, China
| | - Ying Zhang
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an, Shaanxi, China
| | - Xin Lou
- Institute of Modern Agricultural Research, Dalian University, Dalian, Liaoning, China
| | - Hai-Xu Peng
- Bioinformatics Center, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ya-Ting Yi
- Bioinformatics Center, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - He-Xin Wang
- Institute of Modern Agricultural Research, Dalian University, Dalian, Liaoning, China
| | - Xiu-Jun Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yi-Bo Wang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Dan Wang
- College of Agriculture, Eastern Liaoning University, Dandong, Liaoning, China
| | - Li Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiong Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wen-Xia Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Yongbo Liu
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| | - Jin-Hu Wu
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.
| | - Yan-Chang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Hu S, Du B, Mu G, Jiang Z, Li H, Song Y, Zhang B, Xia J, Rouached H, Zheng L. The transcription factor OsbZIP48 governs rice responses to zinc deficiency. PLANT, CELL & ENVIRONMENT 2024; 47:1526-1542. [PMID: 38251320 DOI: 10.1111/pce.14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Zinc (Zn) deficiency is the most prevalent micronutrient disorder in rice and leads to delayed development and decreased yield. Nevertheless, despite its primary importance, how rice responds to Zn deficiency remains poorly understood. This study presents genetic evidence supporting the crucial role of OsbZIP48 in regulating rice's response to Zn deficiency, consistent with earlier findings in the model plant Arabidopsis. Genetic inactivation of OsbZIP48 in rice seedlings resulted in heightened sensitivity to Zn deficiency and reduced Zn translocation from roots to shoots. Consistently, OsbZIP48 was constitutively expressed in roots, slightly induced by Zn deficiency in shoots and localized into nuclei induced by Zn deficiency. Comparative transcriptome analysis of the wild-type plants and osbzip48 mutant grown under Zn deficiency enabled the identification of OsbZIP48 target genes, including key Zn transporter genes (OsZIP4 and OsZIP8). We demonstrated that OsbZIP48 controlled the expressions of these genes by directly binding to their promoters, specifically to the Zn deficiency response element motif. This study establishes OsbZIP48 as a critical transcription factor in rice's response to Zn deficiency, offering valuable insights for developing Zn-biofortified rice varieties to combat global Zn limitation.
Collapse
Affiliation(s)
- Shubao Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- College of Life sciences, Anqing Normal University, Anqing, China
| | - Binbin Du
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guangmao Mu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zichen Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hui Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuxinrui Song
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Baolei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Hatem Rouached
- Department of Plant, Soil, and Microbial Sciences, Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Saxena H, Negi H, Sharma B. Role of F-box E3-ubiquitin ligases in plant development and stress responses. PLANT CELL REPORTS 2023:10.1007/s00299-023-03023-8. [PMID: 37195503 DOI: 10.1007/s00299-023-03023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE F-box E3-ubiquitin ligases regulate critical biological processes in plant development and stress responses. Future research could elucidate why and how plants have acquired a large number of F-box genes. The ubiquitin-proteasome system (UPS) is a predominant regulatory mechanism employed by plants to maintain the protein turnover in the cells and involves the interplay of three classes of enzymes, E1 (ubiquitin-activating), E2 (ubiquitin-conjugating), and E3 ligases. The diverse and most prominent protein family among eukaryotes, F-box proteins, are a vital component of the multi-subunit SCF (Skp1-Cullin 1-F-box) complex among E3 ligases. Several F-box proteins with multifarious functions in different plant systems have evolved rapidly over time within closely related species, but only a small part has been characterized. We need to advance our understanding of substrate-recognition regulation and the involvement of F-box proteins in biological processes and environmental adaptation. This review presents a background of E3 ligases with particular emphasis on the F-box proteins, their structural assembly, and their mechanism of action during substrate recognition. We discuss how the F-box proteins regulate and participate in the signaling mechanisms of plant development and environmental responses. We highlight an urgent need for research on the molecular basis of the F-box E3-ubiquitin ligases in plant physiology, systems biology, and biotechnology. Further, the developments and outlooks of the potential technologies targeting the E3-ubiquitin ligases for developing crop improvement strategies have been discussed.
Collapse
Affiliation(s)
- Harshita Saxena
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia Griffin Campus, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - Harshita Negi
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Bhaskar Sharma
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC, 3216, Australia.
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
5
|
Sharma E, Bhatnagar A, Bhaskar A, Majee SM, Kieffer M, Kepinski S, Khurana P, Khurana JP. Stress-induced F-Box protein-coding gene OsFBX257 modulates drought stress adaptations and ABA responses in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1207-1231. [PMID: 36404527 DOI: 10.1111/pce.14496] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
F-box (FB) proteins that form part of SKP1-CUL1-F-box (SCF) type of E3 ubiquitin ligases are important components of plant growth and development. Here we characterized OsFBX257, a rice FB protein-coding gene that is differentially expressed under drought conditions and other abiotic stresses. Population genomics analysis suggest that OsFBX257 shows high allelic diversity in aus accessions and has been under positive selection in some japonica, aromatic and indica cultivars. Interestingly, allelic variation at OsFBX257 in aus cultivar Nagina22 is associated with an alternatively spliced transcript. Conserved among land plants, OsFBX257 is a component of the SCF complex, can form homomers and interact molecularly with the 14-3-3 rice proteins GF14b and GF14c. OsFBX257 is co-expressed in a network involving protein kinases and phosphatases. We show that OsFBX257 can bind the kinases OsCDPK1 and OsSAPK2, and that its phosphorylation can be reversed by phosphatase OsPP2C08. OsFBX257 expression level modulates root architecture and drought stress tolerance in rice. OsFBX257 knockdown (OsFBX257KD ) lines show reduced total root length and depth, crown root number, panicle size and survival under stress. In contrast, its overexpression (OsFBX257OE ) increases root depth, leaf and grain length, number of panicles, and grain yield in rice. OsFBX257 is a promising breeding target for alleviating drought stress-induced damage in rice.
Collapse
Affiliation(s)
- Eshan Sharma
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Akanksha Bhatnagar
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Avantika Bhaskar
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Susmita M Majee
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Martin Kieffer
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stefan Kepinski
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Global Food and Environment Institute, University of Leeds, Leeds, UK
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
6
|
Geem KR, Kim H, Ryu H. SCF FBS1 Regulates Root Quiescent Center Cell Division via Protein Degradation of APC/C CCS52A2. Mol Cells 2022; 45:695-701. [PMID: 36116942 PMCID: PMC9589370 DOI: 10.14348/molcells.2022.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 12/05/2022] Open
Abstract
Homeostatic regulation of meristematic stem cells accomplished by maintaining a balance between stem cell self-renewal and differentiation is critical for proper plant growth and development. The quiescent center (QC) regulates root apical meristem homeostasis by maintaining stem cell fate during plant root development. Cell cycle checkpoints, such as anaphase promoting complex/cyclosome/CELL CYCLE SWITCH 52 A2 (APC/CCCS52A2), strictly control the low proliferation rate of QC cells. Although APC/CCCS52A2 plays a critical role in maintaining QC cell division, the molecular mechanism that regulates its activity remains largely unknown. Here, we identified SCFF-BOX STRESS INDUCED 1 (FBS1), a ubiquitin E3 ligase, as a key regulator of QC cell division through the direct proteolysis of CCS52A2. FBS1 activity is positively associated with QC cell division and CCS52A2 proteolysis. FBS1 overexpression or ccs52a2-1 knockout consistently resulted in abnormal root development, characterized by root growth inhibition and low mitotic activity in the meristematic zone. Loss-of-function mutation of FBS1, on the other hand, resulted in low QC cell division, extremely low WOX5 expression, and rapid root growth. The 26S proteasome-mediated degradation of CCS52A2 was facilitated by its direct interaction with F-box stress induced 1 (FBS1). The FBS1 genetically interacted with APC/CCCS52A2-ERF115-PSKR1 signaling module for QC division. Thus, our findings establish SCFFBS1-mediated CCS52A2 proteolysis as the molecular mechanism for controlling QC cell division in plants.
Collapse
Affiliation(s)
- Kyoung Rok Geem
- Department of Biology, Chungbuk National University, Cheongju 28644, Korea
| | - Hyemin Kim
- Department of Biology, Chungbuk National University, Cheongju 28644, Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju 28644, Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
7
|
Thabet SG, Alomari DZ, Börner A, Brinch-Pedersen H, Alqudah AM. Elucidating the genetic architecture controlling antioxidant status and ionic balance in barley under salt stress. PLANT MOLECULAR BIOLOGY 2022; 110:287-300. [PMID: 35918559 DOI: 10.1007/s11103-022-01302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Association genetic analysis empowered us to identify candidate genes underlying natural variation of morpho-physiological, antioxidants, and grain yield-related traits in barley. Novel intriguing genomic regions were identified and dissected. Salinity stress is one of the abiotic stresses that influence the morpho-physiological, antioxidants, and yield-related traits in crop plants. The plants of a core set of 138 diverse barley accessions were analyzed after exposure to salt stress under field conditions during the reproductive phase. A genome-wide association scan (GWAS) was then conducted using 19,276 single nucleotide polymorphisms (SNPs) to uncover the genetic basis of morpho-physiological and grain-related traits. A wide range of responses to salt stress by the accessions was explored in the current study. GWAS detected 263 significantly associated SNPs with the antioxidants, K+/Na+ content ratio, and agronomic traits. Five genomic regions harbored interesting putative candidate genes within LD ± 1.2 Mbp. Choromosome 2H harbored many candidate genes associated with the antioxidants ascorbic acid (AsA) and glutathione (GSH), such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), under salt stress. Markedly, an A:C SNP at 153,773,211 bp on chromosome 7H is located inside the gene HORVU.MOREX.r3.7HG0676830 (153,772,300-153,774,057 bp) that was annotated as L-gulonolactone oxidase, regulating the natural variation of SOD_S and APX_S. The allelic variation at this SNP reveals a negative selection of accessions carrying the C allele, predominantly found in six-rowed spring landraces originating from Far-, Near-East, and central Asia carrying photoperiod sensitive alleles having lower activity of enzymatic antioxidants. The SNP-trait associations detected in the current study constitute a benchmark for developing molecular selection tools for antioxidant compound selection in barley.
Collapse
Affiliation(s)
- Samar G Thabet
- Department of Botany, Faculty of Science, Fayoum University, 63514, Fayoum, Egypt
| | - Dalia Z Alomari
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr 3, 06466, Seeland, Germany
| | - Henrik Brinch-Pedersen
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Ahmad M Alqudah
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200, Slagelse, Denmark.
| |
Collapse
|
8
|
Li BW, Gao S, Yang ZM, Song JB. The F-box E3 ubiquitin ligase AtSDR is involved in salt and drought stress responses in Arabidopsis. Gene 2022; 809:146011. [PMID: 34655724 DOI: 10.1016/j.gene.2021.146011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/04/2022]
Abstract
F-box protein genes have been shown to play vital roles in plant development and stress respones. In Arabidopsis, there are more than 600 F-box proteins, and most of their functions are unclear. The present study shows that the F-box (SKP1-Cullin/CDC53-F-box) gene At5g15710 (Salt and Drought Responsiveness, SDR) is involved in abiotic stress responses in Arabidopsis. SDR is expressed in all tissues of Arabidopsis and is upregulated by salt and heat stresses and ABA treatment but downregulated by drought stress. Subcellular localization analysis shows that the SDR protein colocalizes with the nucleus. 35S:AntiSDR plants are hypersensitive to salt stress, but 35S:SDR plants display a salt-tolerant phenotype. Furthermore, 35S:SDR plants are hypersensitive to drought stress, while 35S:AntiSDR plants are significantly more drought tolerant. Overall, our results suggest that SDR is involved in salt and drought stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Bo Wen Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou 213003 , PR China
| | - Shuai Gao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jian Bo Song
- College of Biological Sciences and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
9
|
The E3 Ubiquitin Ligase ATL9 Affects Expression of Defense Related Genes, Cell Death and Callose Deposition in Response to Fungal Infection. Pathogens 2022; 11:pathogens11010068. [PMID: 35056016 PMCID: PMC8778023 DOI: 10.3390/pathogens11010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/20/2022] Open
Abstract
Plants use diverse strategies to defend themselves from biotic stresses in nature, which include the activation of defense gene expression and a variety of signal transduction pathways. Previous studies have shown that protein ubiquitination plays a critical role in plant defense responses, however the details of its function remain unclear. Our previous work has shown that increasing expression levels of ATL9, an E3 ubiquitin ligase in Arabidopsis thaliana, increased resistance to infection by the fungal pathogen, Golovinomyces cichoracearum. In this study, we demonstrate that the defense-related proteins PDF1.2, PCC1 and FBS1 directly interact with ATL9 and are targeted for degradation to the proteasome by ATL9. The expression levels of PDF1.2, PCC1 and FBS1 are decreased in T-DNA insertional mutants of atl9 and T-DNA insertional mutants of pdf1.2, pcc1 and fbs1 are more susceptible to fungal infection. In addition, callose is more heavily deposited at infection sites in the mutants of atl9, fbs1, pcc1 and pdf1.2. Overexpression of ATL9 and of mutants in fbs1, pcc1 and pdf1.2 showed increased levels of cell death during infection. Together these results indicate that ubiquitination, cell death and callose deposition may work together to enhance defense responses to fungal pathogens.
Collapse
|
10
|
Li Y, Xue S, He Q, Wang J, Zhu L, Zou J, Zhang J, Zuo C, Fan Z, Yue J, Zhang C, Yang K, Le J. Arabidopsis F-BOX STRESS INDUCED 4 is required to repress excessive divisions in stomatal development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:56-72. [PMID: 34817930 DOI: 10.1111/jipb.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
During the terminal stage of stomatal development, the R2R3-MYB transcription factors FOUR LIPS (FLP/MYB124) and MYB88 limit guard mother cell division by repressing the transcript levels of multiple cell-cycle genes. In Arabidopsis thaliana possessing the weak allele flp-1, an extra guard mother cell division results in two stomata having direct contact. Here, we identified an ethylmethane sulfonate-mutagenized mutant, flp-1 xs01c, which exhibited more severe defects than flp-1 alone, producing giant tumor-like cell clusters. XS01C, encoding F-BOX STRESS-INDUCED 4 (FBS4), is preferentially expressed in epidermal stomatal precursor cells. Overexpressing FBS4 rescued the defective stomatal phenotypes of flp-1 xs01c and flp-1 mutants. The deletion or substitution of a conserved residue (Proline166) within the F-box domain of FBS4 abolished or reduced, respectively, its interaction with Arabidopsis Skp1-Like1 (ASK1), the core subunit of the Skp1/Cullin/F-box E3 ubiquitin ligase complex. Furthermore, the FBS4 protein physically interacted with CYCA2;3 and induced its degradation through the ubiquitin-26S proteasome pathway. Thus, in addition to the known transcriptional pathway, the terminal symmetric division in stomatal development is ensured at the post-translational level, such as through the ubiquitination of target proteins recognized by the stomatal lineage F-box protein FBS4.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Xue
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- The Institute of Scientific and Technical Information of China, Beijing, 100038, China
| | - Qixiumei He
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junxue Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Wenbo School, Jinan, 250100, China
| | - Lingling Zhu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Zou
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoran Zuo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Fan
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junling Yue
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxia Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Sepulveda-Garcia E, Fulton EC, Parlan EV, O’Connor LE, Fleming AA, Replogle AJ, Rocha-Sosa M, Gendron JM, Thines B. Unique N-Terminal Interactions Connect F-BOX STRESS INDUCED (FBS) Proteins to a WD40 Repeat-like Protein Pathway in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2021; 10:2228. [PMID: 34686037 PMCID: PMC8537223 DOI: 10.3390/plants10102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022]
Abstract
SCF-type E3 ubiquitin ligases provide specificity to numerous selective protein degradation events in plants, including those that enable survival under environmental stress. SCF complexes use F-box (FBX) proteins as interchangeable substrate adaptors to recruit protein targets for ubiquitylation. FBX proteins almost universally have structure with two domains: A conserved N-terminal F-box domain interacts with a SKP protein and connects the FBX protein to the core SCF complex, while a C-terminal domain interacts with the protein target and facilitates recruitment. The F-BOX STRESS INDUCED (FBS) subfamily of plant FBX proteins has an atypical structure, however, with a centrally located F-box domain and additional conserved regions at both the N- and C-termini. FBS proteins have been linked to environmental stress networks, but no ubiquitylation target(s) or biological function has been established for this subfamily. We have identified two WD40 repeat-like proteins in Arabidopsis that are highly conserved in plants and interact with FBS proteins, which we have named FBS INTERACTING PROTEINs (FBIPs). FBIPs interact exclusively with the N-terminus of FBS proteins, and this interaction occurs in the nucleus. FBS1 destabilizes FBIP1, consistent with FBIPs being ubiquitylation targets SCFFBS1 complexes. This work indicates that FBS proteins may function in stress-responsive nuclear events, and it identifies two WD40 repeat-like proteins as new tools with which to probe how an atypical SCF complex, SCFFBS, functions via FBX protein N-terminal interaction events.
Collapse
Affiliation(s)
- Edgar Sepulveda-Garcia
- Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec 68301, Mexico;
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62250, Mexico;
| | - Elena C. Fulton
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA; (E.C.F.); (E.V.P.); (L.E.O.); (A.A.F.); (A.J.R.)
| | - Emily V. Parlan
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA; (E.C.F.); (E.V.P.); (L.E.O.); (A.A.F.); (A.J.R.)
| | - Lily E. O’Connor
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA; (E.C.F.); (E.V.P.); (L.E.O.); (A.A.F.); (A.J.R.)
| | - Anneke A. Fleming
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA; (E.C.F.); (E.V.P.); (L.E.O.); (A.A.F.); (A.J.R.)
| | - Amy J. Replogle
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA; (E.C.F.); (E.V.P.); (L.E.O.); (A.A.F.); (A.J.R.)
| | - Mario Rocha-Sosa
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62250, Mexico;
| | - Joshua M. Gendron
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA;
| | - Bryan Thines
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA; (E.C.F.); (E.V.P.); (L.E.O.); (A.A.F.); (A.J.R.)
| |
Collapse
|
12
|
Mo F, Zhang N, Qiu Y, Meng L, Cheng M, Liu J, Yao L, Lv R, Liu Y, Zhang Y, Chen X, Wang A. Molecular Characterization, Gene Evolution and Expression Analysis of the F-Box Gene Family in Tomato ( Solanum lycopersicum). Genes (Basel) 2021; 12:417. [PMID: 33799396 PMCID: PMC7998346 DOI: 10.3390/genes12030417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/23/2022] Open
Abstract
F-box genes play an important role in the growth and development of plants, but there are few studies on its role in a plant's response to abiotic stresses. In order to further study the functions of F-box genes in tomato (Solanum lycopersicum, Sl), a total of 139 F-box genes were identified in the whole genome of tomato using bioinformatics methods, and the basic information, transcript structure, conserved motif, cis-elements, chromosomal location, gene evolution, phylogenetic relationship, expression patterns and the expression under cold stress, drought stress, jasmonic acid (JA) treatment and salicylic acid (SA) treatment were analyzed. The results showed that SlFBX genes were distributed on 12 chromosomes of tomato and were prone to TD (tandem duplication) at the ends of chromosomes. WGD (whole genome duplication), TD, PD (proximal duplication) and TRD (transposed duplication) modes seem play an important role in the expansion and evolution of tomato SlFBX genes. The most recent divergence occurred 1.3042 million years ago, between SlFBX89 and SlFBX103. The cis-elements in SlFBX genes' promoter regions were mainly responded to phytohormone and abiotic stress. Expression analysis based on transcriptome data and qRT-PCR (Real-time quantitative PCR) analysis of SlFBX genes showed that most SlFBX genes were differentially expressed under abiotic stress. SlFBX24 was significantly up-regulated at 12 h under cold stress. This study reported the SlFBX gene family of tomato for the first time, providing a theoretical basis for the detailed study of SlFBX genes in the future, especially the function of SlFBX genes under abiotic stress.
Collapse
Affiliation(s)
- Fulei Mo
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
| | - Nian Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Youwen Qiu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
| | - Lingjun Meng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Mozhen Cheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
| | - Jiayin Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (J.L.); (L.Y.)
| | - Lanning Yao
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (J.L.); (L.Y.)
| | - Rui Lv
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Yuxin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Yao Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Aoxue Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| |
Collapse
|
13
|
Romero-Pérez A, Ameye M, Audenaert K, Van Damme EJM. Overexpression of F-Box Nictaba Promotes Defense and Anthocyanin Accumulation in Arabidopsis thaliana After Pseudomonas syringae Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:692606. [PMID: 34394146 PMCID: PMC8358183 DOI: 10.3389/fpls.2021.692606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/28/2021] [Indexed: 05/12/2023]
Abstract
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a well-known pathogen and model organism used to study plant-pathogen interactions and subsequent plant immune responses. Numerous studies have demonstrated the effect of Pst DC3000 on Arabidopsis plants and how type III effectors are required to promote bacterial virulence and pathogenesis. F-Box Nictaba (encoded by At2g02360) is a stress-inducible lectin that is upregulated in Arabidopsis thaliana leaves after Pst DC3000 infection. In this study, a flood inoculation assay was optimized to check the performance of transgenic Arabidopsis seedlings with different expression levels of F-Box Nictaba after bacterial infection. Using a combination of multispectral and fluorescent imaging combined with molecular techniques, disease symptoms, transcript levels for F-Box Nictaba, and disease-related genes were studied in Arabidopsis leaves infected with two virulent strains: Pst DC3000 and its mutant strain, deficient in flagellin ΔfliC. Analyses of plants infected with fluorescently labeled Pst DC3000 allowed us to study the differences in bacterial colonization between plant lines. Overexpression plants showed a reduced bacterial content during the later stages of the infection. Our results show that overexpression of F-Box Nictaba resulted in reduced leaf damage after bacterial infections, whereas knockdown and knockout lines were not more susceptible to Pseudomonas infection than wild-type plants. In contrast to wild-type and knockout plants, overexpressing lines for F-Box Nictaba revealed a significant increase in anthocyanin content, better efficiency of photosystem II (Fv/Fm), and higher chlorophyll content after Pst DC3000 infection. Overexpression of F-Box Nictaba coincided with increased expression of salicylic acid (SA) related defense genes, confirming earlier data that showed that F-Box Nictaba is part of the SA-dependent defense against Pst DC3000 infection. Knockout lines yielded no discernible effects on plant symptoms after Pseudomonas infection suggesting possible gene redundancy between F-Box Nictaba genes.
Collapse
Affiliation(s)
- Andrea Romero-Pérez
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Maarten Ameye
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Els J. M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
- *Correspondence: Els J. M. Van Damme
| |
Collapse
|
14
|
Ghaemi R, Pourjam E, Safaie N, Verstraeten B, Mahmoudi SB, Mehrabi R, De Meyer T, Kyndt T. Molecular insights into the compatible and incompatible interactions between sugar beet and the beet cyst nematode. BMC PLANT BIOLOGY 2020; 20:483. [PMID: 33092522 PMCID: PMC7583174 DOI: 10.1186/s12870-020-02706-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 10/18/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Sugar beet (Beta vulgaris subsp. vulgaris) is an economically important crop that provides nearly one third of the global sugar production. The beet cyst nematode (BCN), Heterodera schachtii, causes major yield losses in sugar beet and other crops worldwide. The most effective and economic approach to control this nematode is growing tolerant or resistant cultivars. To identify candidate genes involved in susceptibility and resistance, the transcriptome of sugar beet and BCN in compatible and incompatible interactions at two time points was studied using mRNA-seq. RESULTS In the susceptible cultivar, most defense-related genes were induced at 4 dai while suppressed at 10 dai but in the resistant cultivar Nemakill, induction of genes involved in the plant defense response was observed at both time points. In the compatible interaction, alterations in phytohormone-related genes were detected. The effect of exogenous application of Methyl Jasmonate and ET-generator ethephon on susceptible plants was therefore investigated and the results revealed significant reduction in plant susceptibility. Genes putatively involved in the resistance of Nemakill were identified, such as genes involved in phenylpropanoid pathway and genes encoding CYSTM domain-containing proteins, F-box proteins, chitinase, galactono-1,4-lactone dehydrogenase and CASP-like protein. Also, the transcriptome of the BCN was analyzed in infected root samples and several novel potential nematode effector genes were found. CONCLUSIONS Our data provides detailed insights into the plant and nematode transcriptional changes occurring during compatible and incompatible interactions between sugar beet and BCN. Many important genes playing potential roles in susceptibility or resistance of sugar beet against BCN, as well as some BCN effectors with a potential role as avr proteins were identified. In addition, our findings indicate the effective role of jasmonate and ethylene in enhancing sugar beet defense response against BCN. This research provides new molecular insights into the plant-nematode interactions that can be used to design novel management strategies against BCN.
Collapse
Affiliation(s)
- Razieh Ghaemi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ebrahim Pourjam
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Bruno Verstraeten
- Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Seyed Bagher Mahmoudi
- Sugar Beet Seed Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Rahim Mehrabi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, P.O. Box 8415683111, Isfahan, Iran
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Tina Kyndt
- Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
15
|
Li H, Wei C, Meng Y, Fan R, Zhao W, Wang X, Yu X, Laroche A, Kang Z, Liu D. Identification and expression analysis of some wheat F-box subfamilies during plant development and infection by Puccinia triticina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:535-548. [PMID: 32836199 DOI: 10.1016/j.plaphy.2020.06.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
As one of the largest protein families in plants, F-box proteins are involved in many important cellular processes. Until now, a limited number of investigations have been conducted on wheat F-box genes due to its variable structure and large and polyploid genome. Classification, identification, structural analysis, evolutionary relationship, and chromosomal distribution of some wheat F-box genes are described in the present study. A total number of 1013 potential F-box proteins which are encoded by 409 genes was identified in wheat, and classified into 12 subfamilies based on their C-terminal domain structures. Furthermore, proteins with identical or similar C-terminal domain were clustered together. Location of 409 F-box genes was identified on all 21 wheat chromosomes but showed an uneven distribution. Segmental duplication was the main reason for the increase in the number of wheat F-box genes. Gene expression analysis based on digital PCR showed that most of the F-box genes were highly expressed in the later development stages of wheat, including the formation of spike, grain, flag leaf, and participated in drought stress (DS), heat stress (HS), and their combination (HD). Of the nine F-box genes we investigated using quantitative PCR (qPCR) following fungal pathogen infection, five were involved in wheat resistance to the infection by leaf rust pathogen and one in the susceptible response. These results provide important information on wheat F-box proteins for further functional studies, especially the proteins that played roles in response to heat and drought stresses and leaf rust pathogen infection.
Collapse
Affiliation(s)
- Huying Li
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China; College of Forestry, Shandong Agricultural University, Taian, Shangdong, 271018, China
| | - Chunru Wei
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Yuyu Meng
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Runqiao Fan
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Weiquan Zhao
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, China
| | - Xiaodong Wang
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, China
| | - Xiumei Yu
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China; Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, China.
| | - André Laroche
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, T1J 4B1, Canada
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU, Yangling, Shaanxi, 712100, China.
| | - Daqun Liu
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, China.
| |
Collapse
|
16
|
Gordon A, McCartney C, Knox RE, Ereful N, Hiebert CW, Konkin DJ, Hsueh YC, Bhadauria V, Sgroi M, O'Sullivan DM, Hadley C, Boyd LA, Menzies JG. Genetic and transcriptional dissection of resistance to Claviceps purpurea in the durum wheat cultivar Greenshank. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1873-1886. [PMID: 32060572 PMCID: PMC7237535 DOI: 10.1007/s00122-020-03561-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/29/2020] [Indexed: 06/02/2023]
Abstract
Four QTL for ergot resistance (causal pathogen Claviceps purpurea) have been identified in the durum wheat cultivar Greenshank. Claviceps purpurea is a pathogen of grasses that infects flowers, replacing the seed with an ergot sclerotium. Ergot presents a significant problem to rye, barley and wheat, in particular hybrid seed production systems. In addition, there is evidence that the highly toxic alkaloids that accumulate within sclerotia can cross-contaminate otherwise healthy grain. Host resistance to C. purpurea is rare, few resistance loci having been identified. In this study, four ergot resistance loci are located on chromosomes 1B, 2A, 5A and 5B in the durum wheat cv. Greenshank. Ergot resistance was assessed through analysis of phenotypes associated with C. purpurea infection, namely the number of inoculated flowers that produced sclerotia, or resulted in ovary death but no sclerotia, the levels of honeydew produced, total sclerotia weight and average sclerotia weight and size per spike. Ergot testing was undertaken in Canada and the UK. A major effect QTL, QCp.aafc.DH-2A, was detected in both the Canadian and UK experiments and had a significant effect on honeydew production levels. QCp.aafc.DH-5B had the biggest influence on total sclerotia weight per spike. QCp.aafc.DH-1B was only detected in the Canadian experiments and QCp.aafc.DH-5A in the UK experiment. An RNASeq analysis, undertaken to identify wheat differentially expressed genes associated with different combinations of the four ergot resistance QTL, revealed a disproportionate number of DEGs locating to the QCp.aafc.DH-1B, QCp.aafc.DH-2A and QCp.aafc.DH-5B QTL intervals.
Collapse
Affiliation(s)
- Anna Gordon
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
| | - Curt McCartney
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Ron E Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Nelzo Ereful
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Colin W Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - David J Konkin
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Ya-Chih Hsueh
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Vijai Bhadauria
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Mara Sgroi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Donal M O'Sullivan
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, RG6 6AR, UK
| | - Caroline Hadley
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, RG6 6AR, UK
| | - Lesley A Boyd
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Jim G Menzies
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada.
| |
Collapse
|
17
|
Rastogi S, Shah S, Kumar R, Vashisth D, Akhtar MQ, Kumar A, Dwivedi UN, Shasany AK. Ocimum metabolomics in response to abiotic stresses: Cold, flood, drought and salinity. PLoS One 2019; 14:e0210903. [PMID: 30726239 PMCID: PMC6364901 DOI: 10.1371/journal.pone.0210903] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/03/2019] [Indexed: 11/19/2022] Open
Abstract
Ocimum tenuiflorum is a widely used medicinal plant since ancient times and still continues to be irreplaceable due to its properties. The plant has been explored chemically and pharmacologically, however, the molecular studies have been started lately. In an attempt to get a comprehensive overview of the abiotic stress response in O. tenuiflorum, de novo transcriptome sequencing of plant leaves under the cold, drought, flood and salinity stresses was carried out. A comparative differential gene expression (DGE) study was carried out between the common transcripts in each stress with respect to the control. KEGG pathway analysis and gene ontology (GO) enrichment studies exhibited several modifications in metabolic pathways as the result of four abiotic stresses. Besides this, a comparative metabolite profiling of stress and control samples was performed. Among the cold, drought, flood and salinity stresses, the plant was most susceptible to the cold stress. Severe treatments of all these abiotic stresses also decreased eugenol which is the main secondary metabolite present in the O. tenuiflorum plant. This investigation presents a comprehensive analysis of the abiotic stress effects in O. tenuiflorum. Current study provides an insight to the status of pathway genes’ expression that help synthesizing economically valuable phenylpropanoids and terpenoids related to the adaptation of the plant. This study identified several putative abiotic stress tolerant genes which can be utilized to either breed stress tolerant O. tenuiflorum through pyramiding or generating transgenic plants.
Collapse
Affiliation(s)
- Shubhra Rastogi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Saumya Shah
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Ritesh Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Divya Vashisth
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Md Qussen Akhtar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Ajay Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Upendra Nath Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ajit Kumar Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
18
|
HSFA2 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight. Int J Mol Sci 2019; 20:ijms20020390. [PMID: 30658467 PMCID: PMC6359015 DOI: 10.3390/ijms20020390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/29/2018] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
Heat Shock Factor A2 (HsfA2) is part of the Heat Shock Factor (HSF) network, and plays an essential role beyond heat shock in environmental stress responses and cellular homeostatic control. Arabidopsis thaliana cell cultures derived from wild type (WT) ecotype Col-0 and a knockout line deficient in the gene encoding HSFA2 (HSFA2 KO) were grown aboard the International Space Station (ISS) to ascertain whether the HSF network functions in the adaptation to the novel environment of spaceflight. Microarray gene expression data were analyzed using a two-part comparative approach. First, genes differentially expressed between the two environments (spaceflight to ground) were identified within the same genotype, which represented physiological adaptation to spaceflight. Second, gene expression profiles were compared between the two genotypes (HSFA2 KO to WT) within the same environment, which defined genes uniquely required by each genotype on the ground and in spaceflight-adapted states. Results showed that the endoplasmic reticulum (ER) stress and unfolded protein response (UPR) define the HSFA2 KO cells' physiological state irrespective of the environment, and likely resulted from a deficiency in the chaperone-mediated protein folding machinery in the mutant. Results further suggested that additional to its universal stress response role, HsfA2 also has specific roles in the physiological adaptation to spaceflight through cell wall remodeling, signal perception and transduction, and starch biosynthesis. Disabling HsfA2 altered the physiological state of the cells, and impacted the mechanisms induced to adapt to spaceflight, and identified HsfA2-dependent genes that are important to the adaption of wild type cells to spaceflight. Collectively these data indicate a non-thermal role for the HSF network in spaceflight adaptation.
Collapse
|
19
|
Rao V, Petla BP, Verma P, Salvi P, Kamble NU, Ghosh S, Kaur H, Saxena SC, Majee M. Arabidopsis SKP1-like protein13 (ASK13) positively regulates seed germination and seedling growth under abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3899-3915. [PMID: 29788274 PMCID: PMC6054272 DOI: 10.1093/jxb/ery191] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/15/2018] [Indexed: 05/03/2023]
Abstract
SKP1 (S-phase kinase-associated protein1) proteins are key members of the SCF (SKP-cullin-F-box protein) E3 ligase complexes that ubiquitinate target proteins and play diverse roles in plant biology. However, in comparison with other members of the SCF complex, knowledge of SKP1-like proteins is very limited in plants. In the present work, we report that Arabidopsis SKP1-like protein13 (ASK13) is differentially regulated in different organs during seed development and germination and is up-regulated in response to abiotic stress. Yeast two-hybrid library screening and subsequent assessment of in vivo interactions through bimolecular fluorescence complementation analysis revealed that ASK13 not only interacts with F-box proteins but also with other proteins that are not components of SCF complexes. Biochemical analysis demonstrated that ASK13 not only exists as a monomer but also as a homo-oligomer or heteromer with other ASK proteins. Functional analysis using ASK13 overexpression and knockdown lines showed that ASK13 positively influences seed germination and seedling growth, particularly under abiotic stress. Taken together, our data strongly suggest that apart from participation to form SCF complexes, ASK13 interacts with several other proteins and is implicated in different cellular processes distinct from protein degradation.
Collapse
Affiliation(s)
- Venkateswara Rao
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Bhanu Prakash Petla
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Pooja Verma
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Prafull Salvi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Nitin Uttam Kamble
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Shraboni Ghosh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Harmeet Kaur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Saurabh C Saxena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Manoj Majee
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
- Correspondence:
| |
Collapse
|
20
|
He R, Li X, Zhong M, Yan J, Ji R, Li X, Wang Q, Wu D, Sun M, Tang D, Lin J, Li H, Liu B, Liu H, Liu X, Zhao X, Lin C. A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:788-801. [PMID: 28608936 DOI: 10.1111/tpj.13607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/08/2017] [Accepted: 05/13/2017] [Indexed: 05/09/2023]
Abstract
Floral initiation is regulated by various genetic pathways in response to light, temperature, hormones and developmental status; however, the molecular mechanisms underlying the interactions between different genetic pathways are not fully understood. Here, we show that the photoresponsive gene FOF2 (F-box of flowering 2) negatively regulates flowering. FOF2 encodes a putative F-box protein that interacts specifically with ASK14, and its overexpression results in later flowering under both long-day and short-day photoperiods. Conversely, transgenic plants expressing the F-box domain deletion mutant of FOF2 (FOF2ΔF), or double loss of function mutant of FOF2 and FOL1 (FOF2-LIKE 1) present early flowering phenotypes. The late flowering phenotype of the FOF2 overexpression lines is suppressed by the flc-3 loss-of-function mutation. Furthermore, FOF2 mRNA expression is regulated by autonomous pathway gene FCA, and the repressive effect of FOF2 in flowering can be overcome by vernalization. Interestingly, FOF2 expression is regulated by light. The protein level of FOF2 accumulates in response to light, whereas it is degraded under dark conditions via the 26S proteasome pathway. Our findings suggest a possible mechanistic link between light conditions and the autonomous floral promotion pathway in Arabidopsis.
Collapse
Affiliation(s)
- Reqing He
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Xinmei Li
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Ming Zhong
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Jindong Yan
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Ronghuan Ji
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xu Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qin Wang
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Dan Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Mengsi Sun
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Dongying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Jianzhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Hongyu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaoying Zhao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
21
|
Gonzalez LE, Keller K, Chan KX, Gessel MM, Thines BC. Transcriptome analysis uncovers Arabidopsis F-BOX STRESS INDUCED 1 as a regulator of jasmonic acid and abscisic acid stress gene expression. BMC Genomics 2017; 18:533. [PMID: 28716048 PMCID: PMC5512810 DOI: 10.1186/s12864-017-3864-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/15/2017] [Indexed: 01/14/2023] Open
Abstract
Background The ubiquitin 26S proteasome system (UPS) selectively degrades cellular proteins, which results in physiological changes to eukaryotic cells. F-box proteins are substrate adaptors within the UPS and are responsible for the diversity of potential protein targets. Plant genomes are enriched in F-box genes, but the vast majority of these have unknown roles. This work investigated the Arabidopsis F-box gene F-BOX STRESS INDUCED 1 (FBS1) for its effects on gene expression in order elucidate its previously unknown biological function. Results Using publically available Affymetrix ATH1 microarray data, we show that FBS1 is significantly co-expressed in abiotic stresses with other well-characterized stress response genes, including important stress-related transcriptional regulators. This gene suite is most highly expressed in roots under cold and salt stresses. Transcriptome analysis of fbs1–1 knock-out plants grown at a chilling temperature shows that hundreds of genes require FBS1 for appropriate expression, and that these genes are enriched in those having roles in both abiotic and biotic stress responses. Based on both this genome-wide expression data set and quantitative real-time PCR (qPCR) analysis, it is apparent that FBS1 is required for elevated expression of many jasmonic acid (JA) genes that have established roles in combatting environmental stresses, and that it also controls a subset of JA biosynthesis genes. FBS1 also significantly impacts abscisic acid (ABA) regulated genes, but this interaction is more complex, as FBS1 has both positive and negative effects on ABA-inducible and ABA-repressible gene modules. One noteworthy effect of FBS1 on ABA-related stress processes, however, is the restraint it imposes on the expression of multiple class I LIPID TRANSFER PROTEIN (LTP) gene family members that have demonstrated protective effects in water deficit-related stresses. Conclusion FBS1 impacts plant stress responses by regulating hundreds of genes that respond to the plant stress hormones JA and ABA. The positive effect that FBS1 has on JA processes and the negative effect it has on at least some ABA processes indicates that it in part regulates cellular responses balanced between these two important stress hormones. More broadly then, FBS1 may aid plant cells in switching between certain biotic (JA) and abiotic (ABA) stress responses. Finally, because FBS1 regulates a subset of JA biosynthesis and response genes, we conclude that it might have a role in tuning hormone responses to particular circumstances at the transcriptional level. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3864-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren E Gonzalez
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA.,Present address: Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Kristen Keller
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA.,Present address: Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, 90095, USA
| | - Karen X Chan
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Megan M Gessel
- Chemistry Department, University of Puget Sound, Tacoma, WA, 98416, USA
| | - Bryan C Thines
- Biology Department, University of Puget Sound, Tacoma, WA, 98416, USA.
| |
Collapse
|
22
|
Yaish MW, Patankar HV, Assaha DVM, Zheng Y, Al-Yahyai R, Sunkar R. Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity. BMC Genomics 2017; 18:246. [PMID: 28330456 PMCID: PMC5423419 DOI: 10.1186/s12864-017-3633-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 03/16/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Date palm, as one of the most important fruit crops in North African and West Asian countries including Oman, is facing serious growth problems due to salinity, arising from persistent use of saline water for irrigation. Although date palm is a relatively salt-tolerant plant species, its adaptive mechanisms to salt stress are largely unknown. RESULTS In order to get an insight into molecular mechanisms of salt tolerance, RNA was profiled in leaves and roots of date palm seedlings subjected to NaCl for 10 days. Under salt stress, photosynthetic parameters were differentially affected; all gas exchange parameters were decreased but the quantum yield of PSII was unaffected while non-photochemical quenching was increased. Analyses of gene expression profiles revealed 2630 and 4687 genes were differentially expressed in leaves and roots, respectively, under salt stress. Of these, 194 genes were identified as commonly responding in both the tissue sources. Gene ontology (GO) analysis in leaves revealed enrichment of transcripts involved in metabolic pathways including photosynthesis, sucrose and starch metabolism, and oxidative phosphorylation, while in roots genes involved in membrane transport, phenylpropanoid biosynthesis, purine, thiamine, and tryptophan metabolism, and casparian strip development were enriched. Differentially expressed genes (DEGs) common to both tissues included the auxin responsive gene, GH3, a putative potassium transporter 8 and vacuolar membrane proton pump. CONCLUSIONS Leaf and root tissues respond differentially to salinity stress and this study has revealed genes and pathways that are associated with responses to elevated NaCl levels and thus may play important roles in salt tolerance providing a foundation for functional characterization of salt stress-responsive genes in the date palm.
Collapse
Affiliation(s)
- Mahmoud W Yaish
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman.
| | - Himanshu V Patankar
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Dekoum V M Assaha
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Rashid Al-Yahyai
- Department of Crop Science, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
23
|
Stefanowicz K, Lannoo N, Zhao Y, Eggermont L, Van Hove J, Al Atalah B, Van Damme EJM. Glycan-binding F-box protein from Arabidopsis thaliana protects plants from Pseudomonas syringae infection. BMC PLANT BIOLOGY 2016; 16:213. [PMID: 27716048 PMCID: PMC5050601 DOI: 10.1186/s12870-016-0905-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 09/26/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND A small group of F-box proteins consisting of a conserved F-box domain linked to a domain homologous to the glycan-binding protein has been identified within the genome of Arabidopsis thaliana. Previously, the so-called F-box-Nictaba protein, encoded by the gene At2g02360, was shown to be a functional lectin which binds N-acetyllactosamine structures. Here, we present a detailed qRT-PCR expression analysis of F-box-Nictaba in Arabidopsis plants upon different stresses and hormone treatments. RESULTS Expression of the F-box-Nictaba gene was enhanced after plant treatment with salicylic acid and after plant infection with the virulent Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000). β-glucuronidase histochemical staining of transgenic Arabidopsis plants displayed preferential activity of the At2g02360 promoter in trichomes present on young rosette leaves. qRT-PCR analyses confirmed high expression of F-box-Nictaba in leaf trichomes. A. thaliana plants overexpressing the gene showed less disease symptoms after Pst DC3000 infection with reduced bacterial colonization compared to infected wild type and F-box-Nictaba knock-out plants. CONCLUSIONS Our data show that the Arabidopsis F-box-Nictaba gene is a stress-inducible gene responsive to SA, bacterial infection and heat stress, and is involved in salicylic acid related plant defense responses. This knowledge enriched our understanding of the physiological importance of F-box-Nictaba, and can be used to create plants with better performance in changing environmental conditions.
Collapse
Affiliation(s)
- Karolina Stefanowicz
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Nausicaä Lannoo
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Yafei Zhao
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Lore Eggermont
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jonas Van Hove
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Bassam Al Atalah
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Els J. M. Van Damme
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
24
|
Xu JN, Xing SS, Zhang ZR, Chen XS, Wang XY. Genome-Wide Identification and Expression Analysis of the Tubby-Like Protein Family in the Malus domestica Genome. FRONTIERS IN PLANT SCIENCE 2016; 7:1693. [PMID: 27895653 PMCID: PMC5107566 DOI: 10.3389/fpls.2016.01693] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/27/2016] [Indexed: 05/09/2023]
Abstract
Tubby-like proteins (TLPs), which have a highly conserved β barrel tubby domain, have been found to be associated with some animal-specific characteristics. In the plant kingdom, more than 10 TLP family members were identified in Arabidopsis, rice and maize, and they were found to be involved in responses to stress. The publication of the apple genome makes it feasible to systematically study the TLP family in apple. In this investigation, nine TLP encoding genes (TLPs for short) were identified. When combined with the TLPs from other plant species, the TLPs were divided into three groups (group A, B, and C). Most plant TLP members in group A contained an additional F-box domain at the N-terminus. However, no common domain was identified other than tubby domain either in group B or in group C. An analysis of the tubby domains of MdTLPs identified three types of conserved motifs. Motif 1 and 2, the signature motifs in the confirmed TLPs, were always present in MdTLPs, while motif 3 was absent from group B. Homology modeling indicated that the tubby domain of most MdTLPs had a closed β barrel, as in animal tubby domains. Expression profiling revealed that the MdTLP genes were expressed in multiple organs and were abundant in roots, stems, and leaves but low in flowers. An analysis of cis-acting elements showed that elements related to the stress response were prevalent in the promoter sequences of MdTLPs. Expression profiling by qRT-PCR indicated that almost all MdTLPs were up-regulated at some extent under abiotic stress, exogenous ABA and H2O2 treatments in leaves and roots, though different MdTLP members exhibited differently in leaves and roots. The results and information above may provide a basis for further investigation of TLP function in plants.
Collapse
|
25
|
Zhou SM, Kong XZ, Kang HH, Sun XD, Wang W. The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants. PLoS One 2015; 10:e0122117. [PMID: 25906259 PMCID: PMC4408080 DOI: 10.1371/journal.pone.0122117] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/17/2015] [Indexed: 11/21/2022] Open
Abstract
As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT). The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD), were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants' tolerance to multiple stress conditions.
Collapse
Affiliation(s)
- Shu-Mei Zhou
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, People's Republic of China
| | - Xiang-Zhu Kong
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, People's Republic of China
| | - Han-Han Kang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, People's Republic of China
| | - Xiu-Dong Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, People's Republic of China
| |
Collapse
|
26
|
Genome-wide characterization and analysis of F-box protein-encoding genes in the Malus domestica genome. Mol Genet Genomics 2015; 290:1435-46. [PMID: 25855485 DOI: 10.1007/s00438-015-1004-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
Abstract
The F-box protein family is a large family that is characterized by conserved F-box domains of approximately 40-50 amino acids in the N-terminus. F-box proteins participate in diverse cellular processes, such as development of floral organs, signal transduction and response to stress, primarily as a component of the Skp1-cullin-F-box (SCF) complex. In this study, using a global search of the apple genome, 517 F-box protein-encoding genes (F-box genes for short) were identified and further subdivided into 12 groups according to the characterization of known functional domains, which suggests the different potential functions or processes that they were involved in. Among these domains, the galactose oxidase domain was analyzed for the first time in plants, and this domain was present with or without the Kelch domain. The F-box genes were distributed in all 17 apple chromosomes with various densities and tended to form gene clusters. Spatial expression profile analysis revealed that F-box genes have organ-specific expression and are widely expressed in all organs. Proteins that contained the galactose oxidase domain were highly expressed in leaves, flowers and seeds. From a fruit ripening expression profile, 166 F-box genes were identified. The expressions of most of these genes changed little during maturation, but five of them increased significantly. Using qRT-PCR to examine the expression of F-box genes encoding proteins with domains related to stress, the results revealed that F-box proteins were up- or down-regulated, which suggests that F-box genes were involved in abiotic stress. The results of this study helped to elucidate the functions of F-box proteins, especially in Rosaceae plants.
Collapse
|
27
|
Zhou S, Sun X, Yin S, Kong X, Zhou S, Xu Y, Luo Y, Wang W. The role of the F-box gene TaFBA1 from wheat (Triticum aestivum L.) in drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:213-223. [PMID: 25299612 DOI: 10.1016/j.plaphy.2014.09.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 09/29/2014] [Indexed: 05/20/2023]
Abstract
Drought is one of the most important factors limiting plant growth and development. We identified a gene in wheat (Triticum aestivum L.) under drought stress named TaFBA1. TaFBA1 encodes a putative 325-amino-acid F-box protein with a conserved N-terminal F-box domain and a C-terminal AMN1 domain. Real-time RT-PCR analysis revealed that TaFBA1 transcript accumulation was upregulated by high-salinity, water stress, and abscisic acid (ABA) treatment. To evaluate the functions of TaFBA1 in the regulation of drought stress responses, we produced transgenic tobacco lines overexpressing TaFBA1. Under water stress conditions, the transgenic tobacco plants had a higher germination rate, higher relative water content, net photosynthesis rate (Pn), less chlorophyll loss, and less growth inhibition than WT. These results demonstrate the high tolerance of the transgenic plants to drought stress compared to the WT. The enhanced oxidative stress tolerance of these plants, which may be involved in their drought tolerance, was indicated by their lower levels of reactive oxygen species (ROS) accumulation, MDA content, and cell membrane damage under drought stress compared to WT. The antioxidant enzyme activities were higher in the transgenic plants than in WT, which may be related to the upregulated expression of some antioxidant genes via overexpression of TaFBA1.
Collapse
Affiliation(s)
- Shumei Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiudong Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Suhong Yin
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangzhu Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shan Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Ying Xu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yin Luo
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
28
|
Guo C, Ge X, Ma H. The rice OsDIL gene plays a role in drought tolerance at vegetative and reproductive stages. PLANT MOLECULAR BIOLOGY 2013; 82:239-53. [PMID: 23686450 DOI: 10.1007/s11103-013-0057-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/06/2013] [Indexed: 05/18/2023]
Abstract
Drought is one of the critical factors limiting reproductive yields of rice and other crops globally. However, little is known about the molecular mechanism underlying reproductive development under drought stress in rice. To explore the potential gene function for improving rice reproductive development under drought, a drought induced gene, Oryza sativa Drought-Induced LTP (OsDIL) encoding a lipid transfer protein, was identified from our microarray data and selected for further study. OsDIL was primarily expressed in the anther and mainly responsive to abiotic stresses, including drought, cold, NaCl, and stress-related plant hormone abscisic acid (ABA). Compared with wild type, the OsDIL-overexpressing transgenic rice plants were more tolerant to drought stress during vegetative development and showed less severe tapetal defects and fewer defective anther sacs when treated with drought at the reproductive stage. The expression levels of the drought-responsive genes RD22, SODA1, bZIP46 and POD, as well as the ABA synthetic gene ZEP1 were up-regulated in the OsDIL-overexpression lines but the ABA degradation gene ABAOX3 was down-regulated. Moreover, overexpression of OsDIL lessened the down-regulation by drought of anther developmental genes (OsC4, CYP704B2 and OsCP1), providing a mechanism supporting pollen fertility under drought. Overexpression of OsDIL significantly enhanced drought resistance in transgenic rice during reproductive development, while showing no phenotypic changes or yield penalty under normal conditions. Therefore, OsDIL is an excellent candidate gene for genetic improvement of crop yield in adaption to unfavorable environments.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adaptation, Physiological/physiology
- Amino Acid Sequence
- Antigens, Plant/classification
- Antigens, Plant/genetics
- Antigens, Plant/physiology
- Carrier Proteins/classification
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Droughts
- Flowers/genetics
- Flowers/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Oligonucleotide Array Sequence Analysis
- Oryza/genetics
- Oryza/physiology
- Phylogeny
- Plant Proteins/classification
- Plant Proteins/genetics
- Plant Proteins/physiology
- Plants, Genetically Modified
- RNA, Small Interfering/genetics
- Reproduction/genetics
- Reproduction/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Changkui Guo
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | | | | |
Collapse
|
29
|
El sistema ubicuitina/proteasoma en la interacción planta-patógeno. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2013. [DOI: 10.1016/s1405-888x(13)72083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Sepúlveda-García E, Rocha-Sosa M. The Arabidopsis F-box protein AtFBS1 interacts with 14-3-3 proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 195:36-47. [PMID: 22920997 DOI: 10.1016/j.plantsci.2012.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 06/14/2012] [Accepted: 06/16/2012] [Indexed: 05/24/2023]
Abstract
AtFBS1 is an F-box protein whose transcript accumulates in response to biotic and abiotic stresses. Previous evidence suggests that a postranscriptional event regulates AtFBS1 expression [1]. We now found that AtFBS1 interacts with 14-3-3 proteins through its amino-terminus and the F-box motif. Deletion of any of these regions abolishes the interaction between AtFBS1 and 14-3-3 proteins. On the other hand, the treatment with the proteasome inhibitor MG132 or the deletion of the F-box from AtFBS1 increases β-glucuronidase (GUS) activity in plants containing a translational fusion of AtFBS1 with the GUS reporter gene, indicating that AtFBS1 is degraded by the 26S proteasome. MG132 treatment of seedlings containing a gene fusion between AtFBS1 and the TAP (Tandem Affinity Purification) cassette causes an increase in the half-life of the protein. In an attempt to understand the role of 14-3-3 interactions, we treated Arabidopsis seedlings with 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5'-monophosphate (AICAR), an inhibitor of 14-3-3 client interactions. We observed an increase in AtFBS1-TAP stability as a consequence of AICAR treatment. Based on these data we propose that 14-3-3 proteins promote the dimerization of SCF(AtFBS1). This also may enhance the AtFBS1 autoubiquitination activity and its degradation by the 26S proteasome. AICAR also affects Cullin1 (CUL1) modification by RUB1, which would provide an additional element to the effect of this compound on AtFBS1 stability.
Collapse
Affiliation(s)
- Edgar Sepúlveda-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo Postal 510-3, Cuernavaca, Mor, 62250, Mexico.
| | | |
Collapse
|
31
|
Song S, Dai X, Zhang WH. A rice F-box gene, OsFbx352, is involved in glucose-delayed seed germination in rice. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5559-68. [PMID: 22859682 PMCID: PMC3444269 DOI: 10.1093/jxb/ers206] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
F-box proteins play diverse roles in regulating numerous physiological processes in plants. This study isolated a gene (OsFbx352) from rice encoding an F-box domain protein and characterized its role in seed germination. Expression of OsFbx352 was upregulated by abscisic acid (ABA). The transcripts of OsFbx352 were increased upon imbibition of rice seeds and the increase was markedly suppressed by glucose. Germination of seeds with overexpression of OsFbx352 was less suppressed by glucose than that of wild-type seeds, while glucose had greater inhibition for germination of seeds with knockdown of OsFbx352 by RNA interference (RNAi) than that of wild-type seeds. The differential response of germination of the transgenic and wild-type seeds to glucose may be accounted for by differences in ABA content among overexpressing, RNAi, and wild-type seeds such that overexpression of OsFbx352 and knockdown of OsFbx352 led to lower and higher ABA contents, respectively, than that of wild-type seeds in the presence of glucose. Overexpression of OsFbx352 led to a reduction in expression of genes responsible for ABA synthesis (OsNced2, OsNced3) and an increase in expression of genes encoding ABA catabolism (OsAba-ox2, OsAba-ox3) in the presence of glucose. These findings indicate that OsFbx352 plays a regulatory role in the regulation of glucose-induced suppression of seed germination by targeting ABA metabolism.
Collapse
Affiliation(s)
- Shiyong Song
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences,Beijing 100093PR China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049PR China
| | - Xiaoyan Dai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences,Beijing 100093PR China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences,Beijing 100093PR China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|