1
|
Kanapiya A, Amanbayeva U, Tulegenova Z, Abash A, Zhangazin S, Dyussembayev K, Mukiyanova G. Recent advances and challenges in plant viral diagnostics. FRONTIERS IN PLANT SCIENCE 2024; 15:1451790. [PMID: 39193213 PMCID: PMC11347306 DOI: 10.3389/fpls.2024.1451790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Accurate and timely diagnosis of plant viral infections plays a key role in effective disease control and maintaining agricultural productivity. Recent advances in the diagnosis of plant viruses have significantly expanded our ability to detect and monitor viral pathogens in agricultural crops. This review discusses the latest advances in diagnostic technologies, including both traditional methods and the latest innovations. Conventional methods such as enzyme-linked immunosorbent assay and DNA amplification-based assays remain widely used due to their reliability and accuracy. However, diagnostics such as next-generation sequencing and CRISPR-based detection offer faster, more sensitive and specific virus detection. The review highlights the main advantages and limitations of detection systems used in plant viral diagnostics including conventional methods, biosensor technologies and advanced sequence-based techniques. In addition, it also discusses the effectiveness of commercially available diagnostic tools and challenges facing modern diagnostic techniques as well as future directions for improving informed disease management strategies. Understanding the main features of available diagnostic methodologies would enable stakeholders to choose optimal management strategies against viral threats and ensure global food security.
Collapse
Affiliation(s)
- Aizada Kanapiya
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Ulbike Amanbayeva
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Zhanar Tulegenova
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Altyngul Abash
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Sayan Zhangazin
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Kazbek Dyussembayev
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Gulzhamal Mukiyanova
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
- Scientific Center "Agrotechnopark", Shakarim University, Semey, Kazakhstan
| |
Collapse
|
2
|
Wang Y, Shi Y, Li H, Chang J. Understanding Citrus Viroid Interactions: Experience and Prospects. Viruses 2024; 16:577. [PMID: 38675919 PMCID: PMC11053686 DOI: 10.3390/v16040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Citrus is the natural host of at least eight viroid species, providing a natural platform for studying interactions among viroids. The latter manifests as antagonistic or synergistic phenomena. The antagonistic effect among citrus viroids intuitively leads to reduced symptoms caused by citrus viroids, while the synergistic effect leads to an increase in symptom severity. The interaction phenomenon is complex and interesting, and a deep understanding of the underlying mechanisms induced during this viroid interaction is of great significance for the prevention and control of viroid diseases. This paper summarizes the research progress of citrus viroids in recent years, focusing on the interaction phenomenon and analyzing their interaction mechanisms. It points out the core role of the host RNA silencing mechanism and viroid-derived siRNA (vd-siRNA), and provides suggestions for future research directions.
Collapse
Affiliation(s)
- Yafei Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (Y.S.); (H.L.); (J.C.)
| | | | | | | |
Collapse
|
3
|
Mohaimin AZ, Krishnamoorthy S, Shivanand P. A critical review on bioaerosols-dispersal of crop pathogenic microorganisms and their impact on crop yield. Braz J Microbiol 2024; 55:587-628. [PMID: 38001398 PMCID: PMC10920616 DOI: 10.1007/s42770-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and progress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen invasion and infestation, crop diseases and yield.
Collapse
Affiliation(s)
- Abdul Zul'Adly Mohaimin
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sarayu Krishnamoorthy
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
4
|
Abualrob A, Alabdallah O, Kubaa RA, Naser SM, Alkowni R. Molecular detection of Citrus exocortis viroid (CEVd), Citrus viroid-III (CVd-III), and Citrus viroid-IV (CVd-IV) in Palestine. Sci Rep 2024; 14:423. [PMID: 38172610 PMCID: PMC10764322 DOI: 10.1038/s41598-023-50271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Citrus hosts various phytopathogens that have impacted productivity, including viroids. Missing data on the status of viroids in citrus in Palestine were not reported. This study was aimed to detect any of Citrus exocortis viroid (CEVd), Citrus viroid-III (CVd-III), and Citrus viroid-IV (CVd-IV) in the Palestinian National Agricultural Research Center (NARC) germplasm collection Field inspections found symptoms such as leaf epinasty; vein discoloration, and bark cracking on various citrus varieties. RT-PCR revealed a significant prevalence of CVd-IV; CEVd and CVd-III (47%, 31%, and 22%; respectively). CVd-III variants with 91.3% nucleic acid sequence homology have been reported. The sequence of each viroid were deposited in GenBank as (OP925746 for CEVd, OP902248 and OP902249 for CVd-III-PS-1 and -PS-2 isolates, and OP902247 for CVd-IV). This was the first to report three of citrus viroids in Palestine, appealing to apply of phytosanitary measures to disseminate healthy propagating materials free from viroids.
Collapse
Affiliation(s)
- Aswar Abualrob
- Biology and Biotechnology Department, An-Najah National University, Nablus, Palestine
| | | | - Raied Abou Kubaa
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Sabri M Naser
- Biology and Biotechnology Department, An-Najah National University, Nablus, Palestine
| | - Raed Alkowni
- Biology and Biotechnology Department, An-Najah National University, Nablus, Palestine.
| |
Collapse
|
5
|
Guček T, Jakše J, Radišek S. Optimization and Validation of Singleplex and Multiplex RT-qPCR for Detection of Citrus bark cracking viroid (CBCVd), Hop latent viroid (HLVd), and Hop stunt viroid (HSVd) in Hops ( Humulus lupulus). PLANT DISEASE 2023; 107:3592-3601. [PMID: 37261880 DOI: 10.1094/pdis-11-22-2606-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Direct crop losses due to plant diseases and the measures used to control them have significant agricultural and economic impacts. The shift from diverse small-scale to large-scale genetically uniform monoculture production, along with agricultural intensification and climate change, has led to several known epidemics in man-made agroecosystems that have been rendered more vulnerable to pathogens. One such example is hop growing, which is threatened by highly aggressive hop viroids. Since 2007, almost one-third (about 500 ha) of Slovenian hop gardens have been affected by severe hop stunt disease caused by Citrus bark cracking viroid (CBCVd), which continues to spread despite strict prevention measures. We have developed and validated a multiplex RT-qPCR (mRT-qPCR) for the sensitive detection of CBCVd, Hop latent viroid (HLVd), and Hop stunt viroid (HSVd). Singleplex RT-qPCR assays were designed individually and subsequently combined in a one-step mRT-qPCR assay. Hop-specific mRNA170 and mRNA1192 internal controls were also developed to detect possible PCR inhibition. Analytical specificity was tested on 35 samples from different hosts, geographic regions, and combinations of viroids. Method validation showed that mRT-qPCR had lower sensitivity than singleplex RT-qPCR, while specificity, selectivity, repeatability, and reproducibility remained unchanged. The newly developed assays were found to be robust, reliable, and suitable for large-scale screening of hop viroids.
Collapse
Affiliation(s)
- Tanja Guček
- Slovenian Institute of Hop Research and Brewing, Žalec 3310, Slovenia
| | - Jernej Jakše
- Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Sebastjan Radišek
- Slovenian Institute of Hop Research and Brewing, Žalec 3310, Slovenia
| |
Collapse
|
6
|
Bernardy C, Malley J. Impacts of Surface Characteristics and Dew Point on the Blue-Light (BL 405) Inactivation of Viruses. Microorganisms 2023; 11:2638. [PMID: 38004651 PMCID: PMC10673487 DOI: 10.3390/microorganisms11112638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The increased prevalence of multidrug-resistant organisms (MDROs), healthcare associated infections (HAIs), and the recent COVID-19 pandemic has caused the photoinactivation industry to explore alternative wavelengths. Blue light (BL405) has gained significant interest as it is much less harmful to the skin and eyes than traditional germicidal wavelengths; therefore, in theory, it can be used continuously with human exposure. At present, the viricidal effects of BL405 are largely unknown as the literature predominately addresses bacterial disinfection performed with this wavelength. This work provides novel findings to the industry, reporting on the virucidal effects of BL405 on surfaces. This research utilizes three surfaces: ceramic, PTFE, and stainless steel. The efficacy of BL405 inactivation varied by surface type, which was due to surface characteristics, such as the contact angle, porosity, zeta potential, and reflectivity. Additionally, the effect of the dew point on BL405 inactivation efficacy was determined. This research is the first to study the effects of the dew point on the virucidal effectiveness of BL405 surface inactivation. The effects of the dew point were significant for all surfaces and the control experiments. The high-dew-point conditions (18 °C) yielded higher levels of BL405 inactivation and viral degradation for the experiments and controls, respectively.
Collapse
Affiliation(s)
| | - James Malley
- Department of Civil and Environmental Engineering, College of Engineering & Physical Sciences, University of New Hampshire, Durham, NH 03824, USA;
| |
Collapse
|
7
|
Andika IB, Tian M, Bian R, Cao X, Luo M, Kondo H, Sun L. Cross-Kingdom Interactions Between Plant and Fungal Viruses. Annu Rev Virol 2023; 10:119-138. [PMID: 37406341 DOI: 10.1146/annurev-virology-111821-122539] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The large genetic and structural divergences between plants and fungi may hinder the transmission of viruses between these two kingdoms to some extent. However, recent accumulating evidence from virus phylogenetic analyses and the discovery of naturally occurring virus cross-infection suggest the occurrence of past and current transmissions of viruses between plants and plant-associated fungi. Moreover, artificial virus inoculation experiments showed that diverse plant viruses can multiply in fungi and vice versa. Thus, virus cross-infection between plants and fungi may play an important role in the spread, emergence, and evolution of both plant and fungal viruses and facilitate the interaction between them. In this review, we summarize current knowledge related to cross-kingdom virus infection in plants and fungi and further discuss the relevance of this new virological topic in the context of understanding virus spread and transmission in nature as well as developing control strategies for crop plant diseases.
Collapse
Affiliation(s)
- Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China;
| | - Mengyuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China;
| | - Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China;
| | - Xinran Cao
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China;
| | - Ming Luo
- College of Agronomy, Xinjiang Agricultural University, Urumqi, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China;
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| |
Collapse
|
8
|
Bernardy C, Malley J. Virus Behavior after UV 254 Treatment of Materials with Different Surface Properties. Microorganisms 2023; 11:2157. [PMID: 37764001 PMCID: PMC10535119 DOI: 10.3390/microorganisms11092157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic highlighted the limitations in scientific and engineering understanding of applying germicidal UV to surfaces. This study combines surface characterization, viral retention, and the related UV dose response to evaluate the effectiveness of UV254 as a viral inactivation technology on five surfaces: aluminum, ceramic, Formica laminate, PTFE and stainless steel. Images of each surface were determined using SEM (Scanning Electron Microscopy), which produced a detailed characterization of the surfaces at a nanometer scale. From the SEM images, the surface porosity of each material was calculated. Through further analysis, it was determined that surface porosity, surface roughness, contact angle, and zeta potential correlate to viral retention on the material. The imaging revealed that the aluminum surface, after repeated treatment, is highly oxidized, increasing surface area and surface porosity. These interactions are important as they prevent the recovery of MS-2 without exposure to UV254. The dose response curve for PTFE was steeper than ceramic, Formica laminate and stainless steel, as inactivation to the detection limit was achieved at 25 mJ/cm2. These findings are consistent with well-established literature indicating UV reflectivity of PTFE is maximized. Statistical testing reinforced that the efficacy of UV254 for surface inactivation varies by surface type.
Collapse
Affiliation(s)
| | - James Malley
- Department of Civil and Environmental Engineering, College of Engineering & Physical Sciences, University of New Hampshire, Durham, NH 03824, USA;
| |
Collapse
|
9
|
Serra P, Navarro B, Forment J, Gisel A, Gago-Zachert S, Di Serio F, Flores R. Expression of symptoms elicited by a hammerhead viroid through RNA silencing is related to population bottlenecks in the infected host. THE NEW PHYTOLOGIST 2023. [PMID: 37148189 DOI: 10.1111/nph.18934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
Chlorosis is frequently incited by viroids, small nonprotein-coding, circular RNAs replicating in nuclei (family Pospiviroidae) or chloroplasts (family Avsunviroidae). Here, we investigated how chrysanthemum chlorotic mottle viroid (CChMVd, Avsunviroidae) colonizes, evolves and initiates disease. Progeny variants of natural and mutated CChMVd sequence variants inoculated in chrysanthemum plants were characterized, and plant responses were assessed by molecular assays. We showed that: chlorotic mottle induced by CChMVd reflects the spatial distribution and evolutionary behaviour in the infected host of pathogenic (containing a UUUC tetranucleotide) and nonpathogenic (lacking such a pathogenic determinant) variants; and RNA silencing is involved in the initiation of the chlorosis in symptomatic leaf sectors through a viroid-derived small RNA containing the pathogenic determinant that directs AGO1-mediated cleavage of the mRNA encoding the chloroplastic transketolase. This study provides the first evidence that colonization of leaf tissues by CChMVd is characterized by segregating variant populations differing in pathogenicity and with the ability to colonize leaf sectors (bottlenecks) and exclude other variants (superinfection exclusion). Importantly, no specific pathogenic viroid variants were found in the chlorotic spots caused by chrysanthemum stunt viroid (Pospiviroidae), thus establishing a clear distinction on how members of the two viroid families trigger chlorosis in the same host.
Collapse
Affiliation(s)
- Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain
| | - Beatriz Navarro
- Institute for Sustainable Plant Protection, National Research Council, Bari, 70122, Italy
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain
| | - Andreas Gisel
- Institute for Biomedical Technologies, National Research Council, Bari, 70122, Italy
- International Institute of Tropical Agriculture, 200001, Ibadan, Nigeria
| | - Selma Gago-Zachert
- Section Microbial Biotechnology, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Francesco Di Serio
- Institute for Sustainable Plant Protection, National Research Council, Bari, 70122, Italy
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain
| |
Collapse
|
10
|
Di Serio F, Owens RA, Navarro B, Serra P, Martínez de Alba ÁE, Delgado S, Carbonell A, Gago-Zachert S. Role of RNA silencing in plant-viroid interactions and in viroid pathogenesis. Virus Res 2023; 323:198964. [PMID: 36223861 PMCID: PMC10194176 DOI: 10.1016/j.virusres.2022.198964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Viroids are small, single-stranded, non-protein coding and circular RNAs able to infect host plants in the absence of any helper virus. They may elicit symptoms in their hosts, but the underlying molecular pathways are only partially known. Here we address the role of post-transcriptional RNA silencing in plant-viroid-interplay, with major emphasis on the involvement of this sequence-specific RNA degradation mechanism in both plant antiviroid defence and viroid pathogenesis. This review is a tribute to the memory of Dr. Ricardo Flores, who largely contributed to elucidate this and other molecular mechanisms involved in plant-viroid interactions.
Collapse
Affiliation(s)
- Francesco Di Serio
- Institute for Sustainable Plant Protection, National Research Council, Bari 70122, Italy.
| | - Robert A Owens
- Molecular Plant Pathology Laboratory, US Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Beatriz Navarro
- Institute for Sustainable Plant Protection, National Research Council, Bari 70122, Italy
| | - Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia 46022, Spain
| | - Ángel Emilio Martínez de Alba
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor 37185, Salamanca, Spain
| | - Sonia Delgado
- Instituto Agroforestal Mediterráneo (IAM-UPV), Camino de Vera, s/n 46022, Valencia, Spain
| | - Alberto Carbonell
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia 46022, Spain
| | - Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale 06120, Germany
| |
Collapse
|
11
|
Tian M, Wei S, Bian R, Luo J, Khan HA, Tai H, Kondo H, Hadidi A, Andika IB, Sun L. Natural Cross-Kingdom Spread of Apple Scar Skin Viroid from Apple Trees to Fungi. Cells 2022; 11:cells11223686. [PMID: 36429116 PMCID: PMC9688150 DOI: 10.3390/cells11223686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Viroids are the smallest known infectious agents that are thought to only infect plants. Here, we reveal that several species of plant pathogenic fungi that were isolated from apple trees infected with apple scar skin viroid (ASSVd) carried ASSVd naturally. This finding indicates the spread of viroids to fungi under natural conditions and further suggests the possible existence of mycoviroids in nature. A total of 117 fungal isolates were isolated from ASSVd-infected apple trees, with the majority (85.5%) being an ascomycete Alternaria alternata and the remaining isolates being other plant-pathogenic or -endophytic fungi. Out of the examined samples, viroids were detected in 81 isolates (69.2%) including A. alternata as well as other fungal species. The phenotypic comparison of ASSVd-free specimens developed by single-spore isolation and ASSVd-infected fungal isogenic lines showed that ASSVd affected the growth and pathogenicity of certain fungal species. ASSVd confers hypovirulence on ascomycete Epicoccum nigrum. The mycobiome analysis of apple tree-associated fungi showed that ASSVd infection did not generally affect the diversity and structure of fungal communities but specifically increased the abundance of Alternaria species. Taken together, these data reveal the occurrence of the natural spread of viroids to plants; additionally, as an integral component of the ecosystem, viroids may affect the abundance of certain fungal species in plants. Moreover, this study provides further evidence that viroid infection could induce symptoms in certain filamentous fungi.
Collapse
Affiliation(s)
- Mengyuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Shuang Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jingxian Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Haris Ahmed Khan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Huanhuan Tai
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Ahmed Hadidi
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
- Correspondence:
| |
Collapse
|
12
|
Sečnik A, Štajner N, Radišek S, Kunej U, Križman M, Jakše J. Cytosine Methylation in Genomic DNA and Characterization of DNA Methylases and Demethylases and Their Expression Profiles in Viroid-Infected Hop Plants ( Humulus lupulus Var. 'Celeia'). Cells 2022; 11:cells11162592. [PMID: 36010668 PMCID: PMC9406385 DOI: 10.3390/cells11162592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Abiotic and biotic stresses can lead to changes in host DNA methylation, which in plants is also mediated by an RNA-directed DNA methylation mechanism. Infections with viroids have been shown to affect DNA methylation dynamics in different plant hosts. The aim of our research was to determine the content of 5-methylcytosine (5-mC) in genomic DNA at the whole genome level of hop plants (Humulus lupulus Var. 'Celeia') infected with different viroids and their combinations and to analyse the expression of the selected genes to improve our understanding of DNA methylation dynamics in plant-viroid systems. The adapted HPLC-UV method used proved to be suitable for this purpose, and thus we were able to estimate for the first time that the cytosine methylation level in viroid-free hop plants was 26.7%. Interestingly, the observed 5-mC level was the lowest in hop plants infected simultaneously with CBCVd, HLVd and HSVd (23.7%), whereas the highest level was observed in plants infected with HLVd (31.4%). In addition, we identified three DNA methylases and one DNA demethylase gene in the hop's draft genome. The RT-qPCR revealed upregulation of all newly identified genes in hop plants infected with all three viroids, while no altered expression was observed in any of the other hop plants tested, except for CBCVd-infected hop plants, in which one DNA methylase was also upregulated.
Collapse
Affiliation(s)
- Andrej Sečnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sebastjan Radišek
- Plant Protection Department, Slovenian Institute of Hop Research and Brewing, 3310 Žalec, Slovenia
| | - Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mitja Križman
- Laboratory for Food Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-3203280
| |
Collapse
|
13
|
Dong Z, Zhan B, Li S. Selection and Validation of Reference Genes for Gene Expression Studies Using Quantitative Real-Time PCR in Prunus Necrotic Ringspot Virus-Infected Cucumis sativus. Viruses 2022; 14:v14061269. [PMID: 35746740 PMCID: PMC9227502 DOI: 10.3390/v14061269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
Several members of the genus Ilarvirus infect fruit trees and are distributed worldwide. Prunus necrotic ringspot virus (PNRSV) is one of the most prevalent viruses, causing significant losses. Cucumissativus can be infected by several ilarviruses, leading to obvious symptoms, including PNRSV, which suggests that cucumbers could be good hosts for the study of the pathogenesis of ilarviruses. Real-time quantitative PCR is an optimal choice for studying gene expression because of its simplicity and its fast and high sensitivity, while its accuracy is highly dependent on the stability of the reference genes. In this study, we assessed the stability of eleven reference genes with geNorm, NormFinder, ΔCt method, BestKeeper, and the ranking software, RefFinder. The results indicated that the combined use of EF1α and F-BOX was the most accurate normalization method. In addition, the host genes AGO1, AGO4, and RDR6 were selected to test the reliability of the reference genes. This study provides useful information for gene expression analysis during PNRSV infection and will facilitate gene expression studies associated with ilarvirus infection.
Collapse
Affiliation(s)
- Zhenfei Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Binhui Zhan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence: (B.Z.); (S.L.)
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence: (B.Z.); (S.L.)
| |
Collapse
|
14
|
Yanagisawa H, Matsushita Y. Effect of potato spindle tuber viroid variants and infection stage on seed transmission through pollen. Lett Appl Microbiol 2022; 75:836-843. [DOI: 10.1111/lam.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/22/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Hironobu Yanagisawa
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Tsukuba Ibaraki 305‐8666 Japan
- Narita Branch, Yokohama Plant Protection Station, Aza‐Tennamino, Komaino, Narita Chiba 282‐0021 Japan
| | - Yosuke Matsushita
- Institute of Plant Protection National Agriculture and Food Research Organization (NARO), Tsukuba Ibaraki 305‐8519 Japan
| |
Collapse
|
15
|
Dong Z, Zhao X, Liu J, Zhan B, Li S. Detection and Simultaneous Differentiation of Three Co-infected Viruses in Zanthoxylum armatum. PLANTS 2022; 11:plants11091242. [PMID: 35567243 PMCID: PMC9100190 DOI: 10.3390/plants11091242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Green Sichuan pepper (Zanthoxylum armatum) is an important economic fruit crop, which is widely planted in the southwest region of China. Recently, a serious disease, namely flower yellowing disease (FYD), broke out, and the virus of green Sichuan pepper nepovirus (GSPNeV) was identified to be highly correlated with the viral symptoms. Meanwhile, green Sichuan pepper idaeovirus (GSPIV) and green Sichuan pepper enamovirus (GSPEV) were also common viruses infecting green pepper. In our research, specific primers were designed according to the reported sequences of the three viruses, and a multiplex reverse transcription-polymerase chain reaction (RT-PCR) method for the simultaneous detection of GSPNeV, GSPIV, and GSPEV was established. The annealing temperature, extension time, and cycle number affecting the multiplex RT-PCR reaction were adjusted and optimized. Sensitivity analysis showed that the system could detect the three viruses simultaneously from the complementary deoxyribonucleic acid (cDNA) samples diluted by 10−3. The results of the ten samples detected by the multiplex RT-PCR system were consistent with the results of a single PCR, indicating that the method can be successfully used for rapid detection of field samples.
Collapse
Affiliation(s)
- Zhenfei Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100107, China; (X.Z.); (J.L.)
| | - Xiaoli Zhao
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100107, China; (X.Z.); (J.L.)
| | - Junjie Liu
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100107, China; (X.Z.); (J.L.)
| | - Binhui Zhan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence: (B.Z.); (S.L.)
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence: (B.Z.); (S.L.)
| |
Collapse
|
16
|
Carbonell A. RNAi tools for controlling viroid diseases. Virus Res 2022; 313:198729. [DOI: 10.1016/j.virusres.2022.198729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/01/2022]
|
17
|
Hadidi A, Sun L, Randles JW. Modes of Viroid Transmission. Cells 2022; 11:cells11040719. [PMID: 35203368 PMCID: PMC8870041 DOI: 10.3390/cells11040719] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/23/2022] Open
Abstract
Studies on the ways in which viroids are transmitted are important for understanding their epidemiology and for developing effective control measures for viroid diseases. Viroids may be spread via vegetative propagules, mechanical damage, seed, pollen, or biological vectors. Vegetative propagation is the most prevalent mode of spread at the global, national and local level while further dissemination can readily occur by mechanical transmission through crop handling with viroid-contaminated hands or pruning and harvesting tools. The current knowledge of seed and pollen transmission of viroids in different crops is described. Biological vectors shown to transmit viroids include certain insects, parasitic plants, and goats. Under laboratory conditions, viroids were also shown to replicate in and be transmitted by phytopathogenic ascomycete fungi; therefore, fungi possibly serve as biological vectors of viroids in nature. The term “mycoviroids or fungal viroids” has been introduced in order to denote these viroids. Experimentally, known sequence variants of viroids can be transmitted as recombinant infectious cDNA clones or transcripts. In this review, we endeavor to provide a comprehensive overview of the modes of viroid transmission under both natural and experimental situations. A special focus is the key findings which can be applied to the control of viroid diseases.
Collapse
Affiliation(s)
- Ahmed Hadidi
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
- Correspondence:
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - John W. Randles
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
18
|
Hadjieva N, Apostolova E, Baev V, Yahubyan G, Gozmanova M. Transcriptome Analysis Reveals Dynamic Cultivar-Dependent Patterns of Gene Expression in Potato Spindle Tuber Viroid-Infected Pepper. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122687. [PMID: 34961158 PMCID: PMC8706270 DOI: 10.3390/plants10122687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Potato spindle tuber viroid (PSTVd) infects various plants. PSTVd pathogenesis is associated with interference with the cellular metabolism and defense signaling pathways via direct interaction with host factors or via the transcriptional or post-transcriptional modulation of gene expression. To better understand host defense mechanisms to PSTVd infection, we analyzed the gene expression in two pepper cultivars, Capsicum annuum Kurtovska kapia (KK) and Djulunska shipka (DS), which exhibit mild symptoms of PSTVd infection. Deep sequencing-based transcriptome analysis revealed differential gene expression upon infection, with some genes displaying contrasting expression patterns in KK and DS plants. More genes were downregulated in DS plants upon infection than in KK plants, which could underlie the more severe symptoms seen in DS plants. Gene ontology enrichment analysis revealed that most of the downregulated differentially expressed genes in both cultivars were enriched in the gene ontology term photosynthesis. The genes upregulated in DS plants fell in the biological process of gene ontology term defense response. We validated the expression of six overlapping differentially expressed genes that are involved in photosynthesis, plant hormone signaling, and defense pathways by quantitative polymerase chain reaction. The observed differences in the responses of the two cultivars to PSTVd infection expand the understanding of the fine-tuning of plant gene expression that is needed to overcome the infection.
Collapse
|
19
|
Beaver-Kanuya E, Szostek SA, Harper SJ. Specific detection of Malus- and Pyrus-infecting viroids by real-time reverse-transcription quantitative PCR assays. J Virol Methods 2021; 300:114395. [PMID: 34861319 DOI: 10.1016/j.jviromet.2021.114395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 06/30/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Viroids present a number of issues for their detection and diagnosis because of the absence of symptom expression in many hosts and their low titers in infected plants. However, quarantine programs rely on symptom observations and routine diagnostic testing to reduce the risk of spreading viroid-infected materials to situations where they might affect crop health and production. Sensitive, accurate, and specific assays for viroid detection from both asymptomatic and symptomatic hosts are necessary for managing viroids in post-entry quarantine and certification schemes. The aim of this study was to develop and optimize superior assays based on the reverse-transcription quantitative polymerase chain reaction (RT-qPCR) for the specific detection of apple hammerhead viroid (AHVd), apple scar skin viroid (ASSVd) and pear blister canker viroid (PBCVd). The real-time RT-qPCR assays thus developed detected a greater range of viroid isolates and with greater sensitivity than the current endpoint RT-PCR assays, down to 101 copies per reaction without any amplification of the non-target viroid or virus sequences tested.
Collapse
Affiliation(s)
- E Beaver-Kanuya
- Department of Plant Pathology, Washington State University, Prosser, WA, United States.
| | - S A Szostek
- Department of Plant Pathology, Washington State University, Prosser, WA, United States
| | - S J Harper
- Department of Plant Pathology, Washington State University, Prosser, WA, United States
| |
Collapse
|
20
|
Trivedi NK, Gautam V, Anand A, Aljahdali HM, Villar SG, Anand D, Goyal N, Kadry S. Early Detection and Classification of Tomato Leaf Disease Using High-Performance Deep Neural Network. SENSORS 2021; 21:s21237987. [PMID: 34883991 PMCID: PMC8659659 DOI: 10.3390/s21237987] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022]
Abstract
Tomato is one of the most essential and consumable crops in the world. Tomatoes differ in quantity depending on how they are fertilized. Leaf disease is the primary factor impacting the amount and quality of crop yield. As a result, it is critical to diagnose and classify these disorders appropriately. Different kinds of diseases influence the production of tomatoes. Earlier identification of these diseases would reduce the disease’s effect on tomato plants and enhance good crop yield. Different innovative ways of identifying and classifying certain diseases have been used extensively. The motive of work is to support farmers in identifying early-stage diseases accurately and informing them about these diseases. The Convolutional Neural Network (CNN) is used to effectively define and classify tomato diseases. Google Colab is used to conduct the complete experiment with a dataset containing 3000 images of tomato leaves affected by nine different diseases and a healthy leaf. The complete process is described: Firstly, the input images are preprocessed, and the targeted area of images are segmented from the original images. Secondly, the images are further processed with varying hyper-parameters of the CNN model. Finally, CNN extracts other characteristics from pictures like colors, texture, and edges, etc. The findings demonstrate that the proposed model predictions are 98.49% accurate.
Collapse
Affiliation(s)
- Naresh K. Trivedi
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, India; (N.K.T.); (A.A.)
| | - Vinay Gautam
- School of Computing, DIT University, Dehradun 248009, India;
| | - Abhineet Anand
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, India; (N.K.T.); (A.A.)
| | - Hani Moaiteq Aljahdali
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 37848, Saudi Arabia;
| | - Santos Gracia Villar
- Higher Polytechnic School/Industrial Organization Engineering, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain;
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Divya Anand
- Department of Computer Science and Engineering, Lovely Professional University, Phagwara 144411, India;
| | - Nitin Goyal
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, India; (N.K.T.); (A.A.)
- Correspondence: (N.G.)
| | - Seifedine Kadry
- Faculty of Applied Computing and Technology, Noroff University College, 4608 Kristiansand, Norway;
| |
Collapse
|
21
|
Tseng YW, Wu CF, Lee CH, Chang CJ, Chen YK, Jan FJ. Universal Primers for Rapid Detection of Six Pospiviroids in Solanaceae Plants Using One-Step Reverse-Transcription PCR and Reverse-Transcription Loop-Mediated Isothermal Amplification. PLANT DISEASE 2021; 105:2867-2872. [PMID: 33851864 DOI: 10.1094/pdis-12-20-2730-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A number of viruses and viroids infect solanaceous plants causing severe yield losses. Several seed-borne viroids are listed as quarantine pathogens in many countries. Among them, columnea latent viroid, pepper chat fruit viroid, potato spindle tuber viroid, tomato apical stunt viroid, tomato chlorotic dwarf viroid, and tomato planta macho viroid are of major concerns. The objective of this study was to design and test universal primers that could be used to detect six viroids in solanaceous plants using one-step reverse transcription PCR (RT-PCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP). Results revealed that a pair of degenerate primers could be used in a one-step RT-PCR to amplify six pospiviroids from Solanaceae seeds and plants. Moreover, five primers were designed and used in RT-LAMP to amplify six pospiviroids. The minimal concentration of viroid RNA required for a successful detection varied, ranging from 1 fg to 10 ng, depending on the species of viroid and detection method. In general, RT-LAMP was more sensitive than RT-PCR, but both assays were rapid and highly sensitive tools to detect six pospiviroids. Detection methods in use for these viroids require at least two different sets of primers. The assays developed in this research could facilitate the ability to screen a large number of solanaceous plants and seeds intended for import and export.
Collapse
Affiliation(s)
- Yi-Wen Tseng
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chien-Fu Wu
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chia-Hwa Lee
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
- PhD Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Chung-Jan Chang
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Plant Pathology, University of Georgia, Griffin, GA 30223, U.S.A
| | - Yuh-Kun Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Fuh-Jyh Jan
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
- PhD Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
22
|
Ali Z, Mahfouz MM. CRISPR/Cas systems versus plant viruses: engineering plant immunity and beyond. PLANT PHYSIOLOGY 2021; 186:1770-1785. [PMID: 35237805 PMCID: PMC8331158 DOI: 10.1093/plphys/kiab220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/16/2021] [Indexed: 05/02/2023]
Abstract
Molecular engineering of plant immunity to confer resistance against plant viruses holds great promise for mitigating crop losses and improving plant productivity and yields, thereby enhancing food security. Several approaches have been employed to boost immunity in plants by interfering with the transmission or lifecycles of viruses. In this review, we discuss the successful application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) (CRISPR/Cas) systems to engineer plant immunity, increase plant resistance to viruses, and develop viral diagnostic tools. Furthermore, we examine the use of plant viruses as delivery systems to engineer virus resistance in plants and provide insight into the limitations of current CRISPR/Cas approaches and the potential of newly discovered CRISPR/Cas systems to engineer better immunity and develop better diagnostics tools for plant viruses. Finally, we outline potential solutions to key challenges in the field to enable the practical use of these systems for crop protection and viral diagnostics.
Collapse
Affiliation(s)
- Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Author for communication:
| |
Collapse
|
23
|
Campos MD, Félix MDR, Patanita M, Materatski P, Varanda C. High throughput sequencing unravels tomato-pathogen interactions towards a sustainable plant breeding. HORTICULTURE RESEARCH 2021; 8:171. [PMID: 34333540 PMCID: PMC8325677 DOI: 10.1038/s41438-021-00607-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 05/24/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most economically important vegetables throughout the world. It is one of the best studied cultivated dicotyledonous plants, often used as a model system for plant research into classical genetics, cytogenetics, molecular genetics, and molecular biology. Tomato plants are affected by different pathogens such as viruses, viroids, fungi, oomycetes, bacteria, and nematodes, that reduce yield and affect product quality. The study of tomato as a plant-pathogen system helps to accelerate the discovery and understanding of the molecular mechanisms underlying disease resistance and offers the opportunity of improving the yield and quality of their edible products. The use of functional genomics has contributed to this purpose through both traditional and recently developed techniques, that allow the identification of plant key functional genes in susceptible and resistant responses, and the understanding of the molecular basis of compatible interactions during pathogen attack. Next-generation sequencing technologies (NGS), which produce massive quantities of sequencing data, have greatly accelerated research in biological sciences and offer great opportunities to better understand the molecular networks of plant-pathogen interactions. In this review, we summarize important research that used high-throughput RNA-seq technology to obtain transcriptome changes in tomato plants in response to a wide range of pathogens such as viruses, fungi, bacteria, oomycetes, and nematodes. These findings will facilitate genetic engineering efforts to incorporate new sources of resistance in tomato for protection against pathogens and are of major importance for sustainable plant-disease management, namely the ones relying on the plant's innate immune mechanisms in view of plant breeding.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal.
| | - Maria do Rosário Félix
- MED - Mediterranean Institute for Agriculture, Environment and Development & Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Mariana Patanita
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Patrick Materatski
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Carla Varanda
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| |
Collapse
|
24
|
Adkar-Purushothama CR, Iyer PS, Sano T, Perreault JP. sRNA Profiler: A User-Focused Interface for Small RNA Mapping and Profiling. Cells 2021; 10:cells10071771. [PMID: 34359940 PMCID: PMC8303536 DOI: 10.3390/cells10071771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Viroids are circular, highly structured, single-stranded, non-coding RNA pathogens known to infect and cause disease in several plant species. They are known to trigger the host plant’s RNA silencing machinery. The detection of viroid-derived small RNAs (vd-sRNA) in viroid-infected host plants opened a new avenue of study in host–viroid pathogenicity. Since then, several viroid research groups have studied the vd-sRNA retrieved from different host–viroid combinations. Such studies require the segregation of 21- to 24-nucleotide long small RNAs (sRNA) from a deep-sequencing databank, followed by separating the vd-sRNA from any sRNA within this group that showed sequence similarity with either the genomic or the antigenomic strands of the viroid. Such mapped vd-sRNAs are then profiled on both the viroid’s genomic and antigenomic strands for visualization. Although several commercial interfaces are currently available for this purpose, they are all programmed for linear RNA molecules. Hence, viroid researchers must develop a computer program that accommodates the sRNAs derived from the circular viroid genome. This is a laborious process, and consequently, it often creates a bottleneck for biologists. In order to overcome this constraint, and to help the research community in general, in this study, a python-based pattern matching interface was developed so as to be able to both profile and map sRNAs on a circular genome. A “matching tolerance” feature has been included in the program, thus permitting the mapping of the sRNAs derived from the quasi-species. Additionally, the “topology” feature allows the researcher to profile sRNA derived from both linear and circular RNA molecules. The efficiency of the program was tested using previously reported deep-sequencing data obtained from two independent studies. Clearly, this novel software should be a key tool with which to both evaluate the production of sRNA and to profile them on their target RNA species, irrespective of the topology of the target RNA molecule.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada
- Correspondence: (C.R.A.-P.); (J.-P.P.)
| | - Pavithran Sridharan Iyer
- Département de Physique, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan;
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada
- Correspondence: (C.R.A.-P.); (J.-P.P.)
| |
Collapse
|
25
|
Rivarez MPS, Vučurović A, Mehle N, Ravnikar M, Kutnjak D. Global Advances in Tomato Virome Research: Current Status and the Impact of High-Throughput Sequencing. Front Microbiol 2021; 12:671925. [PMID: 34093492 PMCID: PMC8175903 DOI: 10.3389/fmicb.2021.671925] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Viruses cause a big fraction of economically important diseases in major crops, including tomato. In the past decade (2011–2020), many emerging or re-emerging tomato-infecting viruses were reported worldwide. In this period, 45 novel viral species were identified in tomato, 14 of which were discovered using high-throughput sequencing (HTS). In this review, we first discuss the role of HTS in these discoveries and its general impact on tomato virome research. We observed that the rate of tomato virus discovery is accelerating in the past few years due to the use of HTS. However, the extent of the post-discovery characterization of viruses is lagging behind and is greater for economically devastating viruses, such as the recently emerged tomato brown rugose fruit virus. Moreover, many known viruses still cause significant economic damages to tomato production. The review of databases and literature revealed at least 312 virus, satellite virus, or viroid species (in 22 families and 39 genera) associated with tomato, which is likely the highest number recorded for any plant. Among those, here, we summarize the current knowledge on the biology, global distribution, and epidemiology of the most important species. Increasing knowledge on tomato virome and employment of HTS to also study viromes of surrounding wild plants and environmental samples are bringing new insights into the understanding of epidemiology and ecology of tomato-infecting viruses and can, in the future, facilitate virus disease forecasting and prevention of virus disease outbreaks in tomato.
Collapse
Affiliation(s)
- Mark Paul Selda Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,School for Viticulture and Enology, University of Nova Gorica, Nova Gorica, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
26
|
Naoi T, Hataya T. Tolerance Even to Lethal Strain of Potato Spindle Tuber Viroid Found in Wild Tomato Species Can Be Introduced by Crossing. PLANTS 2021; 10:plants10030575. [PMID: 33803660 PMCID: PMC8003082 DOI: 10.3390/plants10030575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
To date, natural resistance or tolerance, which can be introduced into crops by crossing, to potato spindle tuber viroid (PSTVd) has not been reported. Additionally, responses to PSTVd infection in many wild tomato species, including some species that can be crossed with PSTVd-susceptible cultivated tomatoes (Solanum lycopersicum var. lycoperaicum), have not been ascertained. The aim of this study was to evaluate responses to PSTVd infection including resistance and tolerance. Accordingly, we inoculated several cultivated and wild tomato species with intermediate and lethal strains of PSTVd. None of the host plants exhibited sufficient resistance to PSTVd to render systemic infection impossible; however, these plants displayed other responses, including tolerance. Further analysis of PSTVd accumulation revealed low accumulation of PSTVd in two wild species, exhibiting high tolerance, even to the lethal strain. Additionally, F1 hybrids generated by crossing a PSTVd-sensitive wild tomato (Solanum lycopersicum var. cerasiforme) with these wild relatives also exhibited tolerance to the lethal PSTVd strain, which is accompanied by low PSTVd accumulation during early infection. These results indicate that the tolerance toward PSTVd in wild species is a dominant trait and can be utilized for tomato breeding by crossing.
Collapse
Affiliation(s)
- Takashi Naoi
- Pathogen-Plant Interactions, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan;
| | - Tatsuji Hataya
- Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
- Correspondence:
| |
Collapse
|
27
|
Venkataraman S, Badar U, Shoeb E, Hashim G, AbouHaidar M, Hefferon K. An Inside Look into Biological Miniatures: Molecular Mechanisms of Viroids. Int J Mol Sci 2021; 22:2795. [PMID: 33801996 PMCID: PMC8001946 DOI: 10.3390/ijms22062795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Viroids are tiny single-stranded circular RNA pathogens that infect plants. Viroids do not encode any proteins, yet cause an assortment of symptoms. The following review describes viroid classification, molecular biology and spread. The review also discusses viroid pathogenesis, host interactions and detection. The review concludes with a description of future prospects in viroid research.
Collapse
Affiliation(s)
| | | | | | | | | | - Kathleen Hefferon
- Cell and System Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (S.V.); (U.B.); (E.S.); (G.H.); (M.A.)
| |
Collapse
|
28
|
Flores R, Navarro B, Delgado S, Serra P, Di Serio F. Viroid pathogenesis: a critical appraisal of the role of RNA silencing in triggering the initial molecular lesion. FEMS Microbiol Rev 2021; 44:386-398. [PMID: 32379313 DOI: 10.1093/femsre/fuaa011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
The initial molecular lesions through which viroids, satellite RNAs and viruses trigger signal cascades resulting in plant diseases are hotly debated. Since viroids are circular non-protein-coding RNAs of ∼250-430 nucleotides, they appear very convenient to address this issue. Viroids are targeted by their host RNA silencing defense, generating viroid-derived small RNAs (vd-sRNAs) that are presumed to direct Argonaute (AGO) proteins to inactivate messenger RNAs, thus initiating disease. Here, we review the existing evidence. Viroid-induced symptoms reveal a distinction. Those attributed to vd-sRNAs from potato spindle tuber viroid and members of the family Pospiviroidae (replicating in the nucleus) are late, non-specific and systemic. In contrast, those attributed to vd-sRNAs from peach latent mosaic viroid (PLMVd) and other members of the family Avsunviroidae (replicating in plastids) are early, specific and local. Remarkably, leaf sectors expressing different PLMVd-induced chloroses accumulate viroid variants with specific pathogenic determinants. Some vd-sRNAs containing such determinant guide AGO1-mediated cleavage of mRNAs that code for proteins regulating chloroplast biogenesis/development. Therefore, the initial lesions and the expected phenotypes are connected by short signal cascades, hence supporting a cause-effect relationship. Intriguingly, one virus satellite RNA initiates disease through a similar mechanism, whereas in the Pospiviroidae and in plant viruses the situation remains uncertain.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos s/n 46010, Valencia, Spain
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Via Amendola 122/D, 70126 Bari, Italy
| | - Sonia Delgado
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos s/n 46010, Valencia, Spain
| | - Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos s/n 46010, Valencia, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
29
|
Kirschning A. The coenzyme/protein pair and the molecular evolution of life. Nat Prod Rep 2020; 38:993-1010. [PMID: 33206101 DOI: 10.1039/d0np00037j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2020What was first? Coenzymes or proteins? These questions are archetypal examples of causal circularity in living systems. Classically, this "chicken-and-egg" problem was discussed for the macromolecules RNA, DNA and proteins. This report focuses on coenzymes and cofactors and discusses the coenzyme/protein pair as another example of causal circularity in life. Reflections on the origin of life and hypotheses on possible prebiotic worlds led to the current notion that RNA was the first macromolecule, long before functional proteins and hence DNA. So these causal circularities of living systems were solved by a time travel into the past. To tackle the "chicken-and-egg" problem of the protein-coenzyme pair, this report addresses this problem by looking for clues (a) in the first hypothetical biotic life forms such as protoviroids and the last unified common ancestor (LUCA) and (b) in considerations and evidence of the possible prebiotic production of amino acids and coenzymes before life arose. According to these considerations, coenzymes and cofactors can be regarded as very old molecular players in the origin and evolution of life, and at least some of them developed independently of α-amino acids, which here are evolutionarily synonymous with proteins. Discussions on "chicken-and-egg" problems open further doors to the understanding of evolution.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Zentrum für Biomolekulare Wirkstoffchemie (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
30
|
Xu L, Zong X, Wang J, Wei H, Chen X, Liu Q. Transcriptomic analysis reveals insights into the response to Hop stunt viroid (HSVd) in sweet cherry ( Prunus avium L.) fruits. PeerJ 2020; 8:e10005. [PMID: 33005494 PMCID: PMC7513744 DOI: 10.7717/peerj.10005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Hop stunt viroid (HSVd) is a member of the genus Hostuviroid of the family Pospiviroidae and has been found in a wide range of herbaceous and woody hosts. It causes serious dapple fruit symptoms on infected sweet cherry, notably inducing cherry tree decay. In order to better understand the molecular mechanisms of HSVd infection in sweet cherry fruit, transcriptome analysis of HSVd-infected and healthy sweet cherry fruits was carried out. A total of 1,572 differentially expressed genes (DEGs) were identified, involving 961 upregulated DEGs and 611 downregulated DEGs. Functional analysis indicated that the DEGs were mainly involved in plant hormone signal transduction, plant-pathogen interactions, secondary metabolism, and the MAPK signaling pathway. In addition, C2H2 zinc finger, MYB, bHLH, AP2/ERF, C2C2-dof, NAC and WRKY transcription factors can respond to HSVd infection. In order to confirm the high-throughput sequencing results, 16 DEGs were verified by RT-qPCR analysis. The results provided insight into the pathways and genes of sweet cherry fruit in response to HSVd infection.
Collapse
Affiliation(s)
- Li Xu
- Key Laboratory for Fruit Biotechnology Breeding of Shandong Province, Shandong Institute of Pomology, Taian, Shandong, People's Republic of China
| | - Xiaojuan Zong
- Key Laboratory for Fruit Biotechnology Breeding of Shandong Province, Shandong Institute of Pomology, Taian, Shandong, People's Republic of China
| | - Jiawei Wang
- Key Laboratory for Fruit Biotechnology Breeding of Shandong Province, Shandong Institute of Pomology, Taian, Shandong, People's Republic of China
| | - Hairong Wei
- Key Laboratory for Fruit Biotechnology Breeding of Shandong Province, Shandong Institute of Pomology, Taian, Shandong, People's Republic of China
| | - Xin Chen
- Key Laboratory for Fruit Biotechnology Breeding of Shandong Province, Shandong Institute of Pomology, Taian, Shandong, People's Republic of China
| | - Qingzhong Liu
- Key Laboratory for Fruit Biotechnology Breeding of Shandong Province, Shandong Institute of Pomology, Taian, Shandong, People's Republic of China
| |
Collapse
|
31
|
Shrestha N, Bujarski JJ. Long Noncoding RNAs in Plant Viroids and Viruses: A Review. Pathogens 2020; 9:E765. [PMID: 32961969 PMCID: PMC7559573 DOI: 10.3390/pathogens9090765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious long-noncoding (lnc) RNAs related to plants can be of both viral and non-viral origin. Viroids are infectious plant lncRNAs that are not related to viruses and carry the circular, single-stranded, non-coding RNAs that replicate with host enzymatic activities via a rolling circle mechanism. Viroids interact with host processes in complex ways, emerging as one of the most productive tools for studying the functions of lncRNAs. Defective (D) RNAs, another category of lnc RNAs, are found in a variety of plant RNA viruses, most of which are noncoding. These are derived from and are replicated by the helper virus. D RNA-virus interactions evolve into mutually beneficial combinations, enhancing virus fitness via competitive advantages of moderated symptoms. Yet the satellite RNAs are single-stranded and include either large linear protein-coding ss RNAs, small linear ss RNAs, or small circular ss RNAs (virusoids). The satellite RNAs lack sequence homology to the helper virus, but unlike viroids need a helper virus to replicate and encapsidate. They can attenuate symptoms via RNA silencing and enhancement of host defense, but some can be lethal as RNA silencing suppressor antagonists. Moreover, selected viruses produce lncRNAs by incomplete degradation of genomic RNAs. They do not replicate but may impact viral infection, gene regulation, and cellular functions. Finally, the host plant lncRNAs can also contribute during plant-virus interactions, inducing plant defense and the regulation of gene expression, often in conjunction with micro and/or circRNAs.
Collapse
Affiliation(s)
- Nipin Shrestha
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| | - Józef J. Bujarski
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
32
|
Ezhov AA. Can artificial neural replicators be useful for studying RNA replicators? Arch Virol 2020; 165:2513-2529. [PMID: 32813048 DOI: 10.1007/s00705-020-04779-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022]
Abstract
Here, I discuss the usefulness of the application of special artificial neural systems - neural replicators - to study viroids - small pathogens that are short replicating RNA sequences. Using special representations of nucleotide sequences in the form of two sequences with binary components - these two sequences are incomplete representations of the same nucleotide sequence - I show that these neural systems of different sizes are replicated in a special way on them. This allows us to extract some useful information about viroids and their structure, motifs, and relationships. This study is only the first attempt to use neural replicators to analyze genetic data.
Collapse
Affiliation(s)
- Alexandr A Ezhov
- State Research Center of Russian Federation Troitsk Institute for Innovation and Fusion Research, ul Pushkovykh 12, 108840, Troitsk, Moscow, Russia.
| |
Collapse
|
33
|
Olmedo-Velarde A, Navarro B, Hu JS, Melzer MJ, Di Serio F. Novel Fig-Associated Viroid-Like RNAs Containing Hammerhead Ribozymes in Both Polarity Strands Identified by High-Throughput Sequencing. Front Microbiol 2020; 11:1903. [PMID: 33013728 PMCID: PMC7461866 DOI: 10.3389/fmicb.2020.01903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022] Open
Abstract
Based on high-throughput sequencing (HTS) data, the existence of viroid-like RNAs (Vd-LRNAs) associated with fig trees grown in the Hawaiian Islands has been predicted. One of these RNAs has been characterized as a circular RNA ranging in size from 357 to 360 nucleotides. Structural and biochemical features of this RNA, tentatively named fig hammerhead viroid-like RNA (FHVd-LR), markedly resemble those previously reported for several viroids and viroid-like satellite RNAs (Vd-LsatRNAs), which are non-protein-coding RNAs infecting their hosts autonomously and in combination with a helper virus, respectively. The full-length sequence of FHVd-LR variants was determined by RT-PCR, cloning, and sequencing. Despite a low global sequence identity with known viroids and Vd-LsatRNAs, FHVd-LR contains a hammerhead ribozyme (HRz) in each polarity strand. Northern blot hybridization assays identified the circular and linear forms of both polarity strands of FHVd-LR and showed that one strand, assigned the (+) polarity, accumulates at higher levels than the (-) polarity strand in vivo. The (+) polarity RNA assumes a rod-like secondary structure of minimal free energy with the conserved domains of the HRzs located in opposition to each other, a feature typical of several viroids and Vd-LRNAs. The HRzs of both FHVd-LR polarity strands were shown to be active in vitro during transcription, self-cleaving the RNAs at the predicted sites. These data, together with the sequence variability observed in the cloned and sequenced full-length variants, indicate that FHVd-LR is a novel viroid or Vd-LsatRNA. According to HTS data, the coexistence of FHVd-LR of different sizes in the same host cannot be excluded. The relationships of FHVd-LR with previously reported viroids and Vd-LsatRNAs, and the need to perform bioassays to conclusively clarify the biological nature of this circular RNA, are discussed.
Collapse
Affiliation(s)
- Alejandro Olmedo-Velarde
- Plant and Environmental Protection Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - John S. Hu
- Plant and Environmental Protection Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Michael J. Melzer
- Plant and Environmental Protection Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
34
|
Naoi T, Kitabayashi S, Kasai A, Sugawara K, Adkar-Purushothama CR, Senda M, Hataya T, Sano T. Suppression of RNA-dependent RNA polymerase 6 in tomatoes allows potato spindle tuber viroid to invade basal part but not apical part including pluripotent stem cells of shoot apical meristem. PLoS One 2020; 15:e0236481. [PMID: 32716919 PMCID: PMC7384629 DOI: 10.1371/journal.pone.0236481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/06/2020] [Indexed: 01/29/2023] Open
Abstract
RNA-dependent RNA polymerase 6 (RDR6) is one of the key factors in plant defense responses and suppresses virus or viroid invasion into shoot apical meristem (SAM) in Nicotiana benthamiana. To evaluate the role of Solanum lycopersicum (Sl) RDR6 upon viroid infection, SlRDR6-suppressed (SlRDR6i) ‘Moneymaker’ tomatoes were generated by RNA interference and inoculated with intermediate or lethal strain of potato spindle tuber viroid (PSTVd). Suppression of SlRDR6 did not change disease symptoms of both PSTVd strains in ‘Moneymaker’ tomatoes. Analysis of PSTVd distribution in shoot apices by in situ hybridization revealed that both PSTVd strains similarly invade the basal part but not apical part including pluripotent stem cells of SAM in SlRDR6i plants at a low rate unlike a previous report in N. benthamiana. In addition, unexpectedly, amount of PSTVd accumulation was apparently lower in SlRDR6i plants than in control tomatoes transformed with empty cassette in early infection especially in the lethal strain. Meanwhile, SlRDR6 suppression did not affect the seed transmission rates of PSTVd. These results indicate that RDR6 generally suppresses PSTVd invasion into SAM in plants, while suppression of RDR6 does not necessarily elevate amount of PSTVd accumulation. Additionally, our results suggest that host factors such as RDR1 other than RDR6 may also be involved in the protection of SAM including pluripotent stem cells from PSTVd invasion and effective RNA silencing causing the decrease of PSTVd accumulation during early infection in tomato plants.
Collapse
Affiliation(s)
- Takashi Naoi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Syoya Kitabayashi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Kohei Sugawara
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Charith Raj Adkar-Purushothama
- Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mineo Senda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Tatsuji Hataya
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- * E-mail: (TH); (TS)
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
- * E-mail: (TH); (TS)
| |
Collapse
|
35
|
Więsyk A, Lirski M, Fogtman A, Zagórski-Ostoja W, Góra-Sochacka A. Differences in gene expression profiles at the early stage of Solanum lycopersicum infection with mild and severe variants of potato spindle tuber viroid. Virus Res 2020; 286:198090. [PMID: 32634444 DOI: 10.1016/j.virusres.2020.198090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Viroids with small, non-coding circular RNA genome can induce diseases in many plant species. The extend of infection symptoms depends on environmental conditions, viroid strain, and host plant species and cultivar. Pathogen recognition leads to massive transcriptional reprogramming to favor defense responses over normal cellular functions. To better understand the interaction between plant host and potato spindle tuber viroid (PSTVd) variants that differ in their virulence, comparative transcriptomic analysis was performed by an RNA-seq approach. The changes of gene expression were analyzed at the time point when subtle symptoms became visible in plants infected with the severe PSTVd-S23 variant, while those infected with the mild PSTVd-M variant looked like non-infected healthy plants. Over 3000 differentially expressed genes (DEGs) were recognized in both infections, but the majority of them were specific for infection with the severe variant. In both infections recognized DEGs were mainly related to biotic stress, hormone metabolism and signaling, transcription regulation, protein degradation, and transport. The DEGs related to cell cycle and microtubule were uniquely down-regulated only in the PSTVd-S23-infected plants. Similarly, expression of transcription factors from C2C2-GATA and growth-regulating factor (GRF) families was only altered upon infection with the severe variant. Both PSTVd variants triggered plant immune response; however expression of genes encoding crucial factors of this process was markedly more changed in the plants infected with the severe variant than in those with the mild one.
Collapse
Affiliation(s)
- Aneta Więsyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Maciej Lirski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | | | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
36
|
Góra-Sochacka A, Więsyk A, Fogtman A, Lirski M, Zagórski-Ostoja W. Root Transcriptomic Analysis Reveals Global Changes Induced by Systemic Infection of Solanum lycopersicum with Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses 2019; 11:v11110992. [PMID: 31671783 PMCID: PMC6893655 DOI: 10.3390/v11110992] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) causes systemic infection in plant hosts. There are many studies on viroid-host plant interactions, but they have predominantly focused on the aboveground part of the plant. Here, we investigated transcriptomic profile changes in tomato roots systemically infected with mild or severe PSTVd variants using a combined microarray/RNA-seq approach. Analysis indicated differential expression of genes related to various Gene Ontology categories depending on the stage of infection and PSTVd variant. A majority of cell-wall-related genes were down-regulated at early infection stages, but at the late stage, the number of up-regulated genes increased significantly. Along with observed alterations of many lignin-related genes, performed lignin quantification indicated their disrupted level in PSTVd-infected roots. Altered expression of genes related to biosynthesis and signaling of auxin and cytokinin, which are crucial for lateral root development, was also identified. Comparison of both PSTVd infections showed that transcriptional changes induced by the severe variant were stronger than those caused by the mild variant, especially at the late infection stage. Taken together, we showed that similarly to aboveground plant parts, PSTVd infection in the underground tissues activates the plant immune response.
Collapse
Affiliation(s)
- Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Aneta Więsyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Maciej Lirski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | | |
Collapse
|
37
|
Adkar-Purushothama CR, Perreault JP. Current overview on viroid-host interactions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1570. [PMID: 31642206 DOI: 10.1002/wrna.1570] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023]
Abstract
Viroids are one of the most enigmatic highly structured, circular, single-stranded RNA phytopathogens. Although they are not known to code for any peptide, viroids induce visible symptoms in susceptible host plants that resemble those associated with many plant viruses. It is known that viroids induce disease symptoms by direct interaction with host factors; however, the precise mechanism by which this occurs remains poorly understood. Studies on the host's responses to viroid infection, host susceptibility and nonhost resistance have been underway for several years, but much remains to be done in order to fully understand the complex nature of viroid-host interactions. Recent progress using molecular biology techniques combined with computational algorithms, in particular evidence of the role of viroid-derived small RNAs in the RNA silencing pathways of a disease network, has widened the knowledge of viroid pathogenicity. The complexity of viroid-host interactions has been revealed in the past decades to include, but not be limited to, the involvement of host factors, viroid structural complexity, and viroid-induced ribosomal stress, which is further boosted by the discovery of long noncoding RNAs (lncRNAs). In this review, the current understanding of the viroid-host interaction has been summarized with the goal of simplifying the complexity of viroid biology for future research. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- MYM Nutraceuticals Inc, Vancouver, British Columbia, Canada.,RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Québec, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Québec, Canada
| |
Collapse
|
38
|
Štajner N, Radišek S, Mishra AK, Nath VS, Matoušek J, Jakše J. Evaluation of Disease Severity and Global Transcriptome Response Induced by Citrus bark cracking viroid, Hop latent viroid, and Their Co-Infection in Hop ( Humulus lupulus L.). Int J Mol Sci 2019; 20:E3154. [PMID: 31261625 PMCID: PMC6651264 DOI: 10.3390/ijms20133154] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/10/2023] Open
Abstract
Viroids are small non-capsidated, single-stranded, covalently-closed circular noncoding RNA replicons of 239-401 nucleotides that exploit host factors for their replication, and some cause disease in several economically important crop plants, while others appear to be benign. The proposed mechanisms of viroid pathogenesis include direct interaction of the genomic viroid RNA with host factors and post-transcriptional or transcriptional gene silencing via viroid-derived small RNAs (vd-sRNAs) generated by the host defensive machinery. Humulus lupulus (hop) plants are hosts to several viroids among which Hop latent viroid (HLVd) and Citrus bark cracking viroid (CBCVd) are attractive model systems for the study of viroid-host interactions due to the symptomless infection of the former and severe symptoms induced by the latter in this indicator host. To better understand their interactions with hop plant, a comparative transcriptomic analysis based on RNA sequencing (RNA-seq) was performed to reveal the transcriptional alterations induced as a result of single HLVd and CBCVd infection in hop. Additionally, the effect of HLVd on the aggressiveness of CBCVd that underlies severe stunting in hop in a mixed infection was studied by transcriptomic analysis. Our analysis revealed that CBCVd infection resulted in dynamic changes in the activity of genes as compared to single HLVd infection and their mixed infection. The differentially expressed genes that are involved in defense, phytohormone signaling, photosynthesis and chloroplasts, RNA regulation, processing and binding; protein metabolism and modification; and other mechanisms were more modulated in the CBCVd infection of hop. Nevertheless, Gene Ontology (GO) classification and pathway enrichment analysis showed that the expression of genes involved in the proteolysis mechanism is more active in a mixed infection as compared to a single one, suggesting co-infecting viroids may result in interference with host factors more prominently. Collectively, our results provide a deep transcriptome of hop and insight into complex single HLVd, CBCVd, and their coinfection in hop-plant interactions.
Collapse
Affiliation(s)
- Nataša Štajner
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Sebastjan Radišek
- Slovenian Institute of Hop Research and Brewing, Plant Protection Department, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Vishnu Sukumari Nath
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jernej Jakše
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
39
|
Takino H, Kitajima S, Hirano S, Oka M, Matsuura T, Ikeda Y, Kojima M, Takebayashi Y, Sakakibara H, Mino M. Global transcriptome analyses reveal that infection with chrysanthemum stunt viroid (CSVd) affects gene expression profile of chrysanthemum plants, but the genes involved in plant hormone metabolism and signaling may not be silencing target of CSVd-siRNAs. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2019.100181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Delgado S, Navarro B, Serra P, Gentit P, Cambra MÁ, Chiumenti M, De Stradis A, Di Serio F, Flores R. How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host. RNA Biol 2019; 16:906-917. [PMID: 30990352 DOI: 10.1080/15476286.2019.1600396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding how viruses and subviral agents initiate disease is central to plant pathology. Whether RNA silencing mediates the primary lesion triggered by viroids (small non-protein-coding RNAs), or just intermediate-late steps of a signaling cascade, remains unsolved. While most variants of the plastid-replicating peach latent mosaic viroid (PLMVd) are asymptomatic, some incite peach mosaics or albinism (peach calico, PC). We have previously shown that two 21-nt small RNAs (PLMVd-sRNAs) containing a 12-13-nt PC-associated insertion guide cleavage, via RNA silencing, of the mRNA encoding a heat-shock protein involved in chloroplast biogenesis. To gain evidence supporting that such event is the initial lesion, and more specifically, that different chloroses have different primary causes, here we focused on a PLMVd-induced peach yellow mosaic (PYM) expressed in leaf sectors interspersed with others green. First, sequencing PLMVd-cDNAs from both sectors and bioassays mapped the PYM determinant at one nucleotide, a notion further sustained by the phenotype incited by other natural and artificial PLMVd variants. And second, sRNA deep-sequencing and RNA ligase-mediated RACE identified one PLMVd-sRNA with the PYM-associated change that guides cleavage, as predicted by RNA silencing, of the mRNA encoding a thylakoid translocase subunit required for chloroplast development. RT-qPCR showed lower accumulation of this mRNA in PYM-expressing tissues. Remarkably, PLMVd-sRNAs triggering PYM and PC have 5'-terminal Us, involving Argonaute 1 in what likely are the initial alterations eliciting distinct chloroses.
Collapse
Affiliation(s)
- Sonia Delgado
- a Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV) , Valencia , Spain
| | - Beatriz Navarro
- b Istituto per la Protezione Sostenibile delle Piante (CNR) , Bari , Italy
| | - Pedro Serra
- a Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV) , Valencia , Spain
| | - Pascal Gentit
- c Plant Health Laboratory (ANSES-PHL) , Angers , France
| | | | - Michela Chiumenti
- b Istituto per la Protezione Sostenibile delle Piante (CNR) , Bari , Italy
| | - Angelo De Stradis
- b Istituto per la Protezione Sostenibile delle Piante (CNR) , Bari , Italy
| | - Francesco Di Serio
- b Istituto per la Protezione Sostenibile delle Piante (CNR) , Bari , Italy
| | - Ricardo Flores
- a Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV) , Valencia , Spain
| |
Collapse
|
41
|
Moreno M, Vázquez L, López-Carrasco A, Martín-Gago J, Flores R, Briones C. Direct visualization of the native structure of viroid RNAs at single-molecule resolution by atomic force microscopy. RNA Biol 2019; 16:295-308. [PMID: 30734641 PMCID: PMC6380281 DOI: 10.1080/15476286.2019.1572436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/11/2018] [Accepted: 01/17/2019] [Indexed: 11/01/2022] Open
Abstract
Viroids are small infectious, non-protein-coding circular RNAs that replicate independently and, in some cases, incite diseases in plants. They are classified into two families: Pospiviroidae, composed of species that have a central conserved region (CCR) and replicate in the cell nucleus, and Avsunviroidae, containing species that lack a CCR and whose multimeric replicative intermediates of either polarity generated in plastids self-cleave through hammerhead ribozymes. The compact, rod-like or branched, secondary structures of viroid RNAs have been predicted by RNA folding algorithms and further examined using different in vitro and in vivo experimental techniques. However, direct data about their native tertiary structure remain scarce. Here we have applied atomic force microscopy (AFM) to image at single-molecule resolution different variant RNAs of three representative viroids: potato spindle tuber viroid (PSTVd, family Pospiviroidae), peach latent mosaic viroid and eggplant latent viroid (PLMVd and ELVd, family Avsunviroidae). Our results provide a direct visualization of their native, three-dimensional conformations at 0 and 4 mM Mg2+ and highlight the role that some elements of tertiary structure play in their stabilization. The AFM images show that addition of 4 mM Mg2+ to the folding buffer results in a size contraction in PSTVd and ELVd, as well as in PLMVd when the kissing-loop interaction that stabilizes its 3D structure is preserved.
Collapse
Affiliation(s)
- M. Moreno
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - L. Vázquez
- Departamento de Superficies y Recubrimientos, Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid, Spain
| | - A. López-Carrasco
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - J.A. Martín-Gago
- Departamento de Superficies y Recubrimientos, Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid, Spain
| | - R. Flores
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - C. Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| |
Collapse
|
42
|
Broecker F, Moelling K. Evolution of Immune Systems From Viruses and Transposable Elements. Front Microbiol 2019; 10:51. [PMID: 30761103 PMCID: PMC6361761 DOI: 10.3389/fmicb.2019.00051] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Virus-derived sequences and transposable elements constitute a substantial portion of many cellular genomes. Recent insights reveal the intimate evolutionary relationship between these sequences and various cellular immune pathways. At the most basic level, superinfection exclusion may be considered a prototypical virus-mediated immune system that has been described in both prokaryotes and eukaryotes. More complex immune mechanisms fully or partially derived from mobile genetic elements include CRISPR-Cas of prokaryotes and the RAG1/2 system of vertebrates, which provide immunological memory of foreign genetic elements and generate antibody and T cell receptor diversity, respectively. In this review, we summarize the current knowledge on the contribution of mobile genetic elements to the evolution of cellular immune pathways. A picture is emerging in which the various cellular immune systems originate from and are spread by viruses and transposable elements. Immune systems likely evolved from simple superinfection exclusion to highly complex defense strategies.
Collapse
Affiliation(s)
- Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
43
|
Milanović J, Oklestkova J, Majdandžić A, Novák O, Mihaljević S. Organ-specific differences in endogenous phytohormone and antioxidative responses in potato upon PSTVd infection. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:107-114. [PMID: 30537597 DOI: 10.1016/j.jplph.2018.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Although structurally simple, viroids can trigger numerous changes in host plants and cause loss of yield in agronomically important crops. This study investigated changes in the endogenous status of phytohormones and antioxidant enzyme activity in Solanum tuberosum cv. Désirée in response to Potato spindle tuber viroid (PSTVd) infection. Phytohormone analysis showed that the content of endogenous jasmonic acid (JA) and its precursor cis-OPDA significantly increased in leaves, while the content of castasterone (CS) increased in both leaves and tubers of systemically infected plants compared to mock-inoculated control plants at 8 weeks post-inoculation. The indole-3-acetic acid content moderately increased only in tubers, while no differences in salicylic acid and abscisic acid content were observed between infected and control plants. Changes in endogenous phytohormone content were associated with upregulated expression of genes involved in the biosynthesis of JA and brassinosteroids, and the metabolism of auxins. Additionally, PSTVd infection provoked overproduction of hydrogen peroxide, which coincided with increased activity of guaiacol peroxidase in leaves and ascorbate peroxidase in potato tubers. The activity of catalase decreased in leaves, while superoxide dismutase activity remained steady regardless of the treatment and organ type. Total ascorbate and glutathione did not change significantly, although a shift towards oxidized forms was observed. Results suggest the existence of organ-specific differences in phytohormone and antioxidative responses in potato upon PSTVd infection. Possible effects of the observed changes on symptom development are discussed.
Collapse
Affiliation(s)
- Jasna Milanović
- Institute for Plant Protection, Croatian Centre for Agriculture, Food and Rural Affairs, Gorice 68b, 10000, Zagreb, Croatia.
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | | | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | | |
Collapse
|
44
|
Alvarez-Díaz JC, Ortiz-Echeverry BA, Velásquez N. Duplex RT-PCR assay for simultaneous detection of TSWV and CSVd in chrysanthemum. J Virol Methods 2018; 266:41-48. [PMID: 30578896 DOI: 10.1016/j.jviromet.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Abstract
A novel duplex RT-PCR assay for simultaneous detection of TSWV and CSVd in chrysanthemums was developed. Previous reported primers for amplification of TSWV and CSVd were used and a novel pair of primers for CSVd was designed to improve duplex amplification compatibility. Sensitivity and efficiency of the previous reported and novel primers for CSVd were assessed. Then, the sensitivity of the combined primers to amplify both TSWV and CSVd cDNA were also evaluated. Both TSWV and CSVd were detected in preparations diluted up to 10-4 and 10-5 respectively, from total RNA extracts. This duplex RT-PCR method showed an estimated diagnostic sensitivity (DSe) of 97% and diagnostic specificity (DSp) of 99%. For combination of the primers TSWV L1/ L2 and CSVd UCO-1 F/ UCO-1R, the protocol could detect pathogen RNA from naturally infected plants until 0.1 ng and 1 ng respectively. This novel protocol for detection of TSWV/CSVd represents a useful diagnostic tool without the need of expensive probes and less extensive laboratory work. This method could be helpful to assist the selection and further propagation of healthy chrysanthemums on the field as well as to understand the dynamics and the interaction of this virus and viroid within farms.
Collapse
Affiliation(s)
- Juan C Alvarez-Díaz
- Departamento de Investigación y desarrollo, Universidad Católica de Oriente, Sector 3, cra. 46 No. 40B 50, Rionegro, Colombia.
| | - Bianor A Ortiz-Echeverry
- Departamento de Investigación y desarrollo, Universidad Católica de Oriente, Sector 3, cra. 46 No. 40B 50, Rionegro, Colombia
| | - Nubia Velásquez
- Departamento de Investigación y desarrollo, Universidad Católica de Oriente, Sector 3, cra. 46 No. 40B 50, Rionegro, Colombia
| |
Collapse
|
45
|
Chrysanthemum Stunt Viroid Resistance in Chrysanthemum. Viruses 2018; 10:v10120719. [PMID: 30562919 PMCID: PMC6315827 DOI: 10.3390/v10120719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
Chrysanthemum stunt viroid (CSVd) is one of the most severe threats in Chrysanthemum morifolium production. Over the last decade, several studies have reported the natural occurrence of CSVd resistance in chrysanthemum germplasms. Such CSVd-resistant germplasms are desirable for the stable production of chrysanthemum plants. Current surveys include finding new resistant chrysanthemum cultivars, breeding, and revealing resistant mechanisms. We review the progress, from discovery to current status, of CSVd-resistance studies, while introducing information on the improvement of associated inoculation and diagnostic techniques.
Collapse
|
46
|
Vertical and Horizontal Transmission of Pospiviroids. Viruses 2018; 10:v10120706. [PMID: 30545048 PMCID: PMC6315636 DOI: 10.3390/v10120706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Viroids are highly structured, single-stranded, non-protein-coding circular RNA pathogens. Some viroids are vertically transmitted through both viroid-infected ovule and pollen. For example, potato spindle tuber viroid, a species that belongs to Pospiviroidae family, is delivered to the embryo through the ovule or pollen during the development of reproductive tissues before embryogenesis. In addition, some of Pospiviroidae are also horizontally transmitted by pollen. Tomato planta macho viroid in pollen infects to the ovary from pollen tube during pollen tube elongation and eventually causes systemic infection, resulting in the establishment of horizontal transmission. Furthermore, fertilization is not required to accomplish the horizontal transmission. In this review, we will overview the recent research progress in vertical and horizontal transmission of viroids, mainly by focusing on histopathological studies, and also discuss the impact of seed transmission on viroid dissemination and seed health.
Collapse
|
47
|
Yanagisawa H, Sano T, Hase S, Matsushita Y. Influence of the terminal left domain on horizontal and vertical transmissions of tomato planta macho viroid and potato spindle tuber viroid through pollen. Virology 2018; 526:22-31. [PMID: 30317103 DOI: 10.1016/j.virol.2018.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 11/18/2022]
Abstract
Viroids can be transmitted vertically and/or horizontally by pollen. Tomato planta macho viroid (TPMVd) has a high rate of horizontal transmission by pollen, whereas potato spindle tuber viroid (PSTVd) does not. To specify the domain(s) involved in horizontal transmission, four viroid chimeras were created by exchanging the terminal left (TL) and/or pathogenicity (P) domains between PSTVd and TPMVd. PSTVd-based chimeras containing TPMVd-TL and P, or TPMVd-TL alone, displayed a high rate of horizontal transmission. TPMVd-based chimeras containing PSTVd-TL and P lost infectivity, and those containing PSTVd-TL alone displayed a low rate of horizontal transmission. In addition, the vertical transmission rate was also higher in the mutants containing TPMVd-TL than in the others. These findings indicate that the sequences or structures in the TL and P (although the role is limited) domains are important not only for horizontal but also for vertical transmission by pollen.
Collapse
Affiliation(s)
- Hironobu Yanagisawa
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8666, Japan; The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan.
| | - Teruo Sano
- Plant Pathology Laboratory, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8560, Japan.
| | - Shu Hase
- Plant Pathology Laboratory, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-0037, Japan.
| | - Yosuke Matsushita
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8519, Japan.
| |
Collapse
|
48
|
Aviña-Padilla K, Rivera-Bustamante R, Kovalskaya NY, Hammond RW. Pospiviroid Infection of Tomato Regulates the Expression of Genes Involved in Flower and Fruit Development. Viruses 2018; 10:v10100516. [PMID: 30241423 PMCID: PMC6213050 DOI: 10.3390/v10100516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Abstract
Viroids are unencapsidated, single-stranded, covalently-closed circular, highly structured, noncoding RNAs of 239–401 nucleotides that cause disease in several economically important crop plants. In tomato (Solanum lycopersicum cv. Rutgers), symptoms of pospiviroid infection include stunting, reduced vigor, flower abortion, and reduced size and number of fruits, resulting in significant crop losses. Dramatic alterations in plant development triggered by viroid infection are the result of differential gene expression; in our study, we focused on the effect of tomato planta macho viroid (TPMVd) and Mexican papita viroid (MPVd) infection on gene networks associated with the regulation of flower and fruit development. The expression of several of the genes were previously reported to be affected by viroid infection, but two genes not previously studied were included. Changes in gene expression of SlBIGPETAL1 (bHLH transcription factor) and SlOVA6 (proline-like tRNA synthetase) are involved in petal morphology and fertility, respectively. Expression of SlOVA6 was down-regulated in flowers of TPMVd- and MPVd-infected plants, while expression of SlBIGPETAL1 was up-regulated in flowers. Up-regulation of SlBIGPETAL1 and down-regulation of SlOVA6 were positively correlated with symptoms such as reduced petal size and flower abortion. Expression analysis of additional tomato genes and a prediction of a global network association of genes involved in flower and fruit development and impacted by viroid infection may further elucidate the pathways underlying viroid pathogenicity.
Collapse
Affiliation(s)
- Katia Aviña-Padilla
- Campus Juriquilla, Universidad Nacional Autónoma de Mexico, Querátaro Qro 76300, Mexico.
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato 36821, Mexico.
| | - Rafael Rivera-Bustamante
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato 36821, Mexico.
| | - Natalia Y Kovalskaya
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA.
| | - Rosemarie W Hammond
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
49
|
Tangkanchanapas P, Höfte M, De Jonghe K. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) designed for fast and sensitive on-site detection of Pepper chat fruit viroid (PCFVd). J Virol Methods 2018; 259:81-91. [PMID: 29894712 DOI: 10.1016/j.jviromet.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 01/06/2023]
Abstract
Pepper chat fruit viroid (PCFVd) is one of the most important tomato and pepper diseases causing serious losses, affecting productivity, fruit quality and even international seed trade. Reverse transcription Loop-mediated isothermal amplification (RT-LAMP) is a fast and reliable RNA amplification assay, out competing conventional reverse transcription polymerase chain reaction (RT-PCR) in robustness, analytical sensitivity and specificity, and cost-effectiveness. In this work, a PCFVd specific RT-LAMP detection assay, based on a set of six primers was developed. Under the optimized conditions, PCFVd could be detected within 15 min, with a sensitivity of detecting PCFVd that was almost the same as a probe-based qRT-PCR and 10-100 times higher than the available RT-PCR methods. No cross-amplification with other viroids and tomato viruses was observed. The validated assay was also adapted for convenient on-site detection. Besides replacing the full RNA extraction with a simple lysis procedure, several visualization options, of which the use of SYTO9 was the most convenient, were presented to accommodate any in-field application of the method.
Collapse
Affiliation(s)
- Parichate Tangkanchanapas
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Plant Sciences Unit, Crop Protection, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 96, B-9820 Merelbeke, Belgium
| | - Monica Höfte
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Kris De Jonghe
- Plant Sciences Unit, Crop Protection, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 96, B-9820 Merelbeke, Belgium.
| |
Collapse
|
50
|
Yanagisawa H, Matsushita Y. Differences in dynamics of horizontal transmission of Tomato planta macho viroid and Potato spindle tuber viroid after pollination with viroid-infected pollen. Virology 2018; 516:258-264. [PMID: 29425768 DOI: 10.1016/j.virol.2018.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 11/17/2022]
Abstract
For viroids, pollen transmission is an important transmission pathway to progeny seeds and new hosts. In the current study, we found that Tomato planta macho viroid (TPMVd)-but not Potato spindle tuber viroid (PSTVd)-was horizontally transmitted by pollen from petunia plants. Using tissue-printing hybridization to track the changes in viroid distribution after pollination, we noted that TPMVd was present in petunia stigma, styles, and eventually ovaries, whereas PSTVd was detected in the stigma and upper style but not the ovary. These findings suggest that horizontal transmission of viroids depends on the infection of the lower style and ovary during the elongation of pollen tubes after pollination. Additionally, TPMVd was transmitted horizontally, leading to systematic infection, when we used TPMVd-infected petunia pollen to pollinate the flowers of healthy tomato plants. Fertilization typically does not occur after heterologous pollination and thus likely is not required to accomplish horizontal transmission of viroids.
Collapse
Affiliation(s)
- Hironobu Yanagisawa
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8666, Japan; The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan.
| | - Yosuke Matsushita
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8519, Japan.
| |
Collapse
|