1
|
Wang X, Wang X, Mu H, Zhao B, Song X, Fan H, Wang B, Yuan F. Global analysis of key post-transcriptional regulation in early leaf development of Limonium bicolor identifies a long non-coding RNA that promotes salt gland development and salt resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5091-5110. [PMID: 38795330 DOI: 10.1093/jxb/erae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 05/23/2024] [Indexed: 05/27/2024]
Abstract
Limonium bicolor, known horticulturally as sea lavender, is a typical recretohalophyte with salt glands in its leaf epidermis that secrete excess Na+ out of the plant. Although many genes have been proposed to contribute to salt gland initiation and development, a detailed analysis of alternative splicing, alternative polyadenylation patterns, and long non-coding RNAs (lncRNAs) has been lacking. Here, we applied single-molecule long-read mRNA isoform sequencing (Iso-seq) to explore the complexity of the L. bicolor transcriptome in leaves during salt gland initiation (stage A) and salt gland differentiation (stage B) based on the reference genome. We identified alternative splicing events and the use of alternative poly(A) sites unique to stage A or stage B, leading to the hypothesis that they might contribute to the differentiation of salt glands. Based on the Iso-seq data and RNA in situ hybridization of candidate genes, we selected the lncRNA Btranscript_153392 for gene editing and virus-induced gene silencing to dissect its function. In the absence of this transcript, we observed fewer salt glands on the leaf epidermis, leading to diminished salt secretion and salt tolerance. Our data provide transcriptome resources for unraveling the mechanisms behind salt gland development and furthering crop transformation efforts towards enhanced survivability in saline soils.
Collapse
Affiliation(s)
- Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xiaoyu Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Huiying Mu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Boqing Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xianrui Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, China
| |
Collapse
|
2
|
Zhao B, Gao Y, Ma Q, Wang X, Zhu JK, Li W, Wang B, Yuan F. Global dynamics and cytokinin participation of salt gland development trajectory in recretohalophyte Limonium bicolor. PLANT PHYSIOLOGY 2024; 195:2094-2110. [PMID: 38588029 DOI: 10.1093/plphys/kiae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
Salt gland is an epidermal Na+ secretory structure that enhances salt resistance in the recretohalophyte sea lavender (Limonium bicolor). To elucidate the salt gland development trajectory and related molecular mechanisms, we performed single-cell RNA sequencing of L. bicolor protoplasts from young leaves at salt gland initiation and differentiation stages. Dimensionality reduction analyses defined 19 transcriptionally distinct cell clusters, which were assigned into 4 broad populations-promeristem, epidermis, mesophyll, and vascular tissue-verified by in situ hybridization. Cytokinin was further proposed to participate in salt gland development by the expression patterns of related genes and cytological evidence. By comparison analyses of Single-cell RNA sequencing with exogenous application of 6-benzylaminopurine, we delineated 5 salt gland development-associated subclusters and defined salt gland-specific differentiation trajectories from Subclusters 8, 4, and 6 to Subcluster 3 and 1. Additionally, we validated the participation of TRIPTYCHON and the interacting protein Lb7G34824 in salt gland development, which regulated the expression of cytokinin metabolism and signaling-related genes such as GLABROUS INFLORESCENCE STEMS 2 to maintain cytokinin homeostasis during salt gland development. Our results generated a gene expression map of young leaves at single-cell resolution for the comprehensive investigation of salt gland determinants and cytokinin participation that helps elucidate cell fate determination during epidermis formation and evolution in recretohalophytes.
Collapse
Affiliation(s)
- Boqing Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yaru Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Qiuyu Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| |
Collapse
|
3
|
Duan Y, Jiang L, Lei T, Ouyang K, Liu C, Zhao Z, Li Y, Yang L, Li J, Yi S, Gao S. Increasing Ca 2+ accumulation in salt glands under salt stress increases stronger selective secretion of Na + in Plumbago auriculata tetraploids. FRONTIERS IN PLANT SCIENCE 2024; 15:1376427. [PMID: 38685960 PMCID: PMC11056565 DOI: 10.3389/fpls.2024.1376427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Under salt stress, recretohalophyte Plumbago auriculata tetraploids enhance salt tolerance by increasing selective secretion of Na+ compared with that in diploids, although the mechanism is unclear. Using non-invasive micro-test technology, the effect of salt gland Ca2+ content on Na+ and K+ secretion were investigated in diploid and tetraploid P. auriculata under salt stress. Salt gland Ca2+ content and secretion rates of Na+ and K+ were higher in tetraploids than in diploids under salt stress. Addition of exogenous Ca2+ increased the Ca2+ content of the salt gland in diploids and is accompanied by an increase in the rate of Na+ and K+ secretion. With addition of a Ca2+ channel inhibitor, diploid salt glands retained large amounts of Ca2+, leading to higher Ca2+ content and Na+ secretion rate than those of tetraploids. Inhibiting H2O2 generation and H+-ATPase activity altered Na+ and K+ secretion rates in diploids and tetraploids under salt stress, indicating involvement in regulating Na+ and K+ secretion. Our results indicate that the increased Na+ secretion rate of salt gland in tetraploids under salt stress was associated with elevated Ca2+ content in salt gland.
Collapse
Affiliation(s)
- Yifan Duan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Liqiong Jiang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Keyu Ouyang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Cailei Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zi’an Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yirui Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lijuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiani Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Shouli Yi
- College of Fine Art and Calligraphy, Sichuan Normal University, Chengdu, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Qu X, Pan Y, Wang P, Ran L, Qin G, Li Q, Kang P. Response of Phyllosphere and Rhizosphere Microbial Communities to Salt Stress of Tamarix chinensis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1091. [PMID: 38674498 PMCID: PMC11054833 DOI: 10.3390/plants13081091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
As carriers of direct contact between plants and the atmospheric environment, the microbiomes of phyllosphere microorganisms are increasingly recognized as an important area of study. Salt secretion triggered by salt-secreting halophytes elicits changes in the community structure and functions of phyllosphere microorganisms, and often provides positive feedback to the individual plant/community environment. In this study, the contents of Na+ and K+ in the rhizosphere, plant and phyllosphere of Tamarix chinensis were increased under 200 mmol/L NaCl stress. The increase in electrical conductivity, Na+ and K+ in the phyllosphere not only decreased the diversity of bacterial and fungal communities, but also decreased the relative abundance of Actinobacteriota and Basidiomycota. Influenced by electrical conductivity and Na+, the bacteria-fungus co-occurrence network under salt stress has higher complexity. Changes in the structure of the phyllosphere microbial community further resulted in a significant increase in the relative abundance of the bacterial energy source and fungal pathotrophic groups. The relative abundance of Actinobacteriota and Acidobacteriota in rhizosphere showed a decreasing trend under salt stress, while the complexity of the rhizosphere co-occurrence network was higher than that of the control. In addition, the relative abundances of functional groups of rhizosphere bacteria in the carbon cycle and phosphorus cycle increased significantly under stress, and were significantly correlated with electrical conductivity and Na+. This study investigated the effects of salinity on the structure and physicochemical properties of phyllosphere and rhizosphere microbial communities of halophytes, and highlights the role of phyllosphere microbes as ecological indicators in plant responses to stressful environments.
Collapse
Affiliation(s)
- Xuan Qu
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
| | - Yaqing Pan
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Peiqin Wang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
| | - Lele Ran
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
| | - Guifei Qin
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
| | - Qunfang Li
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
| | - Peng Kang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
- Innovation Team for Genetic Improvement of Economic Forests, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
5
|
Zhou T, Wu PJ, Chen JF, Du XQ, Feng YN, Hua YP. Pectin demethylation-mediated cell wall Na + retention positively regulates salt stress tolerance in oilseed rape. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:54. [PMID: 38381205 DOI: 10.1007/s00122-024-04560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/22/2024]
Abstract
KEY MESSAGE Integrated phenomics, ionomics, genomics, transcriptomics, and functional analyses present novel insights into the role of pectin demethylation-mediated cell wall Na+ retention in positively regulating salt tolerance in oilseed rape. Genetic variations in salt stress tolerance identified in rapeseed genotypes highlight the complicated regulatory mechanisms. Westar is ubiquitously used as a transgenic receptor cultivar, while ZS11 is widely grown as a high-production and good-quality cultivar. In this study, Westar was found to outperform ZS11 under salt stress. Through cell component isolation, non-invasive micro-test, X-ray energy spectrum analysis, and ionomic profile characterization, pectin demethylation-mediated cell wall Na+ retention was proposed to be a major regulator responsible for differential salt tolerance between Westar and ZS11. Integrated analyses of genome-wide DNA variations, differential expression profiling, and gene co-expression networks identified BnaC9.PME47, encoding a pectin methylesterase, as a positive regulator conferring salt tolerance in rapeseed. BnaC9.PME47, located in two reported QTL regions for salt tolerance, was strongly induced by salt stress and localized on the cell wall. Natural variation of the promoter regions conferred higher expression of BnaC9.PME47 in Westar than in several salt-sensitive rapeseed genotypes. Loss of function of AtPME47 resulted in the hypersensitivity of Arabidopsis plants to salt stress. The integrated multiomics analyses revealed novel insights into pectin demethylation-mediated cell wall Na+ retention in regulating differential salt tolerance in allotetraploid rapeseed genotypes. Furthermore, these analyses have provided key information regarding the rapid dissection of quantitative trait genes responsible for nutrient stress tolerance in plant species with complex genomes.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Peng-Jia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Xiao-Qian Du
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Ying-Na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Zhou Y, Zhang H, Ren Y, Wang X, Wang B, Yuan F. The transmembrane protein LbRSG from the recretohalophyte Limonium bicolor enhances salt gland development and salt tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:498-515. [PMID: 37856574 DOI: 10.1111/tpj.16505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Salt glands are the unique epidermal structures present in recretohalophytes, plants that actively excrete excess Na+ by salt secretory structures to avoid salt damage. Here, we describe a transmembrane protein that localizes to the plasma membrane of the recretohalophyte Limonium bicolor. As virus-induced gene silencing of the corresponding gene LbRSG in L. bicolor decreased the number of salt glands, we named the gene Reduced Salt Gland. We detected LbRSG transcripts in salt glands by in situ hybridization and transient transformation. Overexpression and silencing of LbRSG in L. bicolor pointed to a positive role in salt gland development and salt secretion by interacting with Lb3G16832. Heterologous LbRSG expression in Arabidopsis enhanced salt tolerance during germination and the seedling stage by alleviating NaCl-induced ion stress and osmotic stress after replacing or deleting the (highly) negatively charged region of extramembranous loop. After screened by immunoprecipitation-mass spectrometry and verified using yeast two-hybrid, PGK1 and BGLU18 were proposed to interact with LbRSG to strengthen salt tolerance. Therefore, we identified (highly) negatively charged regions in the extramembrane loop that may play an essential role in salt tolerance, offering hints about LbRSG function and its potential to confer salt resistance.
Collapse
Affiliation(s)
- Yingli Zhou
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, P.R. China
| | - Haonan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, P.R. China
| | - Yanpeng Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, P.R. China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, P.R. China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, P.R. China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China
| |
Collapse
|
7
|
Guo Z, Wei MY, Zhong YH, Wu X, Chi BJ, Li J, Li H, Zhang LD, Wang XX, Zhu XY, Zheng HL. Leaf sodium homeostasis controlled by salt gland is associated with salt tolerance in mangrove plant Avicennia marina. TREE PHYSIOLOGY 2023; 43:817-831. [PMID: 36611000 DOI: 10.1093/treephys/tpad002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/01/2023] [Indexed: 05/13/2023]
Abstract
Avicennia marina, a mangrove plant growing in coastal wetland habitats, is frequently affected by tidal salinity. To understand its salinity tolerance, the seedlings of A. marina were treated with 0, 200, 400 and 600 mM NaCl. We found the whole-plant dry weight and photosynthetic parameters increased at 200 mM NaCl but decreased over 400 mM NaCl. The maximum quantum yield of primary photochemistry (Fv/Fm) significantly decreased at 600 mM NaCl. Transmission electron microscopy observations showed high salinity caused the reduction in starch grain size, swelling of the thylakoids and separation of the granal stacks, and even destruction of the envelope. In addition, the dense protoplasm and abundant mitochondria in the secretory and stalk cells, and abundant plasmodesmata between salt gland cells were observed in the salt glands of the adaxial epidermis. At all salinities, Na+ content was higher in leaves than in stems and roots; however, Na+ content increased in the roots while it remained at a constant level in the leaves over 400 mM NaCl treatment, due to salt secretion from the salt glands. As a result, salt crystals on the leaf adaxial surface increased with salinity. On the other hand, salt treatment increased Na+ and K+ efflux and decreased H+ efflux from the salt glands by the non-invasive micro-test technology, although Na+ efflux reached the maximum at 400 mM NaCl. Further real-time quantitative PCR analysis indicated that the expression of Na+/H+ antiporter (SOS1 and NHX1), H+-ATPase (AHA1 and VHA-c1) and K+ channel (AKT1, HAK5 and GORK) were up-regulated, and only the only Na+ inward transporter (HKT1) was down-regulated in the salt glands enriched adaxial epidermis of the leaves under 400 mM NaCl treatment. In conclusion, salinity below 200 mM NaCl was beneficial to the growth of A. marina, and below 400 mM, the salt glands could excrete Na+ effectively, thus improving its salt tolerance.
Collapse
Affiliation(s)
- Zejun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Ming-Yue Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
- School of Ecology, Resources and Environment, Dezhou University, 566 university Road West, Decheng District, Dezhou, Shandong 253000, China
| | - You-Hui Zhong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Xuan Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Bing-Jie Chi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Huan Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Lu-Dan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Xiu-Xiu Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Xue-Yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| |
Collapse
|
8
|
Zhao B, Zhou Y, Jiao X, Wang X, Wang B, Yuan F. Bracelet salt glands of the recretohalophyte Limonium bicolor: Distribution, morphology, and induction. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:950-966. [PMID: 36453195 DOI: 10.1111/jipb.13417] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Halophytes complete their life cycles in saline environments. The recretohalophyte Limonium bicolor has evolved a specialized salt secretory structure, the salt gland, which excretes Na+ to avoid salt damage. Typical L. bicolor salt glands consist of 16 cells with four fluorescent foci and four secretory pores. Here, we describe a special type of salt gland at the base of the L. bicolor leaf petiole named bracelet salt glands due to their beaded-bracelet-like shape of blue auto-fluorescence. Bracelet salt glands contain more than 16 cells and more than four secretory pores. Leaf disc secretion measurements and non-invasive micro-test techniques indicated that bracelet salt glands secrete more salt than normal salt glands, which helps maintain low Na+ levels at the leaf blade to protect the leaf. Cytokinin treatment induced bracelet salt gland differentiation, and the developed ones showed no further differentiation when traced with a living fluorescence microscopy imager, even though new salt gland development and leaf expansion were observed. Transcriptome revealed a NAC transcription factor gene that participates in bracelet salt gland development, as confirmed by its genome editing and overexpression in L. bicolor. These findings shed light on bracelet salt gland development and may facilitate the engineering of salt-tolerant crops.
Collapse
Affiliation(s)
- Boqing Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Yingli Zhou
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Xiangmei Jiao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| |
Collapse
|
9
|
Dual inoculation with rhizosphere-promoting bacterium Bacillus cereus and beneficial fungus Peniophora cinerea improves salt stress tolerance and productivity in willow. Microbiol Res 2023; 268:127280. [PMID: 36563631 DOI: 10.1016/j.micres.2022.127280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Utilization of rhizosphere microorganisms to improve plant growth and salt tolerance has recently attracted widespread attention. The growth and salt tolerance of willows inoculated with Bacillus cereus JYZ-SD2 and Peniophora cinerea XC were studied under different salt stress conditions. The results showed that the chlorophyll content of willow cuttings inoculated with the XC strain increased significantly by 51.27%. After salt stress of willow cuttings inoculated with B. cereus JYZ-SD2 and P. cinerea XC (solely or in combination), the amount of sodium in the roots from the epidermis to the pericycle decreased and the content of sodium in the pericycle was significantly lower than that of the uninoculated willow, while the proportion of potassium increased. Willow cuttings inoculated with microorganisms showed increased activity of SOD and POD. At the salt concentration of 100 mmol/L, the highest SOD activity was found in B. cereus JYZ-SD2-inoculated willows, with 59.88% increase compared to uninoculated willows; the highest POD activity was found in P. cinerea XC and B. cereus JYZ-SD2 co-inoculated willows, with 51.05% increase compared to uninoculated willows. The Na-K-ATPase and Ca-Mg-ATPase activities of inoculated P. cinerea XC willow cuttings were also 59.38% and 60% higher than that of uninoculated willows, respectively. The qPCR analysis showed that the expression of vp2 gene in the microorganism-inoculated willow leaves was always higher than that in willow alone. The expression of vp2 gene in P. cinerea XC-inoculated willow cuttings was 270.81% higher than that in uninoculated willows. Further observation of the ultrastructure of root cells under salt stress revealed that most of the vesicles in the root tip cells of willow were intact and secreted phagocytic vesicles to absorb sodium ions in the cytoplasm. This study shows that the combined beneficial fungi and rhizosphere-promoting bacteria inoculation technology as a practical biotechnological approach to enhance the growth of willows in salt-affected soils.
Collapse
|
10
|
Srivastava R, Kanda T, Yadav S, Singh N, Yadav S, Prajapati R, Kesari V, Atri N. Salinity pretreatment synergies heat shock toxicity in cyanobacterium Anabaena PCC7120. Front Microbiol 2023; 14:1061927. [PMID: 36876104 PMCID: PMC9983364 DOI: 10.3389/fmicb.2023.1061927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
This study was undertaken to bridge the knowledge gap pertaining to cyanobacteria's response to pretreatment. The result elucidates the synergistic effect of pretreatment toxicity in cyanobacterium Anabaena PCC7120 on morphological and biochemical attributes. Chemical (salt) and physical (heat) stress-pretreated cells exhibited significant and reproducible changes in terms of growth pattern, morphology, pigments, lipid peroxidation, and antioxidant activity. Salinity pretreatment showed more than a five-fold decrease in the phycocyanin content but a six-fold and five-fold increase in carotenoid, lipid peroxidation (MDA content), and antioxidant activity (SOD and CAT) at 1 h and on 3rd day of treatment, respectively, giving the impression of stress-induced free radicals that are scavenged by antioxidants when compared to heat shock pretreatment. Furthermore, quantitative analysis of transcript (qRT-PCR) for FeSOD and MnSOD displayed a 3.6- and 1.8-fold increase in salt-pretreated (S-H) samples. The upregulation of transcript corresponding to salt pretreatment suggests a toxic role of salinity in synergizing heat shock. However, heat pretreatment suggests a protective role in mitigating salt toxicity. It could be inferred that pretreatment enhances the deleterious effect. However, it further showed that salinity (chemical stress) augments the damaging effect of heat shock (physical stress) more profoundly than physical stress on chemical stress possibly by modulating redox balance via activation of antioxidant responses. Our study reveals that upon pretreatment of heat, the negative effect of salt can be mitigated in filamentous cyanobacteria, thus providing a foundation for improved cyanobacterial tolerance to salt stress.
Collapse
Affiliation(s)
- Rupanshee Srivastava
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Tripti Kanda
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Sadhana Yadav
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Nidhi Singh
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Shivam Yadav
- Department of Botany, Thakur Prasad Singh (T.P.S.) College, Patna, Bihar, India
| | - Rajesh Prajapati
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Vigya Kesari
- Department of Botany, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Neelam Atri
- Department of Botany, Mahila Mahavidyalaya (M.M.V.), Banaras Hindu University, Varanasi, India
| |
Collapse
|
11
|
Lu C, Zhang Y, Mi P, Guo X, Wen Y, Han G, Wang B. Proteomics of Salt Gland-Secreted Sap Indicates a Pivotal Role for Vesicle Transport and Energy Metabolism in Plant Salt Secretion. Int J Mol Sci 2022; 23:13885. [PMID: 36430364 PMCID: PMC9693062 DOI: 10.3390/ijms232213885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022] Open
Abstract
Soil salinization is one of the major factors restricting crop growth and agricultural production worldwide. Recretohalophytes have developed unique epidermal structures in their aboveground tissues, such as salt glands or salt bladders, to secrete excess salt out of the plant body as a protective mechanism from ion damage. Three hypotheses were proposed to explain how salt glands secrete salts: the osmotic hypothesis, a hypothesis similar to animal fluid transport, and vesicle-mediated exocytosis. However, there is no direct evidence to show whether the salt gland-secreted liquid contains landmark proteins or peptides which would elucidate the salt secretion mechanism. In this study, we collected the secreted liquid of salt glands from Limonium bicolor, followed by extraction and identification of its constituent proteins and peptides by SDS-PAGE and mass spectrometry. We detected 214 proteins and 440 polypeptides in the salt gland-secreted droplets of plants grown under control conditions. Unexpectedly, the proportion of energy metabolism-related proteins increased significantly though only 16 proteins and 35 polypeptides in the droplets of salt-treated plants were detected. In addition, vesicle transport proteins such as the Golgi marker enzyme glycosyltransferase were present in the secreted sap of salt glands from both control and salt-treated plants. These results suggest that trans-Golgi network-mediated vesicular transport and energy production contributes to salt secretion in salt glands.
Collapse
Affiliation(s)
- Chaoxia Lu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ping Mi
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xueying Guo
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yixuan Wen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
12
|
Han G, Qiao Z, Li Y, Yang Z, Zhang Z, Zhang Y, Guo J, Liu L, Wang C, Wang B. LbMYB48 positively regulates salt gland development of Limonium bicolor and salt tolerance of plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1039984. [PMID: 36388592 PMCID: PMC9644043 DOI: 10.3389/fpls.2022.1039984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Limonium bicolor is a dicotyledonous recretohalophyte with several multicellular salt glands on the leaves. The plant can directly secrete excess salt onto the leaf surface through the salt glands to maintain ion homeostasis under salt stress. Therefore, it is of great significance to study the functions of genes related to salt gland development and salt tolerance. In this study, an R1-type MYB transcription factor gene was screened from L. bicolor, named LbMYB48, and its expression was strongly induced by salt stress. Subcellular localization analysis showed that LbMYB48 was localized in the nucleus. LbMYB48 protein has transcriptional activation activity shown by transcriptional activation experiments. The density of salt glands in the leaves and the salt secretion capacity of LbMYB48-silenced lines were decremented, as demonstrated by the leaf disc method to detect sodium ion secretion. Furthermore, salt stress index experiments revealed that the ability of LbMYB48-silenced lines to resist salt stress was significantly reduced. LbMYB48 regulates salt gland development and salt tolerance in L. bicolor mainly by regulating the expression of epidermal cell development related genes such as LbCPC-like and LbDIS3 and salt stress-related genes (LbSOSs, LbRLKs, and LbGSTs) as demonstrated by RNA-seq analysis of LbMYB48-silenced lines. The heterologous over-expression of LbMYB48 in Arabidopsis thaliana improves salt tolerance of plants by stabilizing ion and osmotic balance and is likely to be involved in the abscisic acid signaling pathway. Therefore, LbMYB48, a transcriptional activator regulates the salt gland development of L. bicolor and salt tolerance of L. bicolor and A. thaliana.
Collapse
|
13
|
Wei MY, Li H, Zhang LD, Guo ZJ, Liu JY, Ding QS, Zhong YH, Li J, Ma DN, Zheng HL. Exogenous hydrogen sulfide mediates Na+ and K+ fluxes of salt gland in salt-secreting mangrove plant Avicennia marina. TREE PHYSIOLOGY 2022; 42:1812-1826. [PMID: 35412618 DOI: 10.1093/treephys/tpac042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/03/2022] [Indexed: 05/26/2023]
Abstract
Hydrogen sulfide (H2S), is a crucial biological player in plants. Here, we primarily explored the interaction between sodium hydrosulfide (NaHS, a H2S donor) and the fluxes of Na+ and K+ from the salt glands of mangrove species Avicennia marina (Forsk.) Vierh. with non-invasive micro-test technology (NMT) and quantitative real-time PCR (qRT-PCR) approaches under salinity treatments. The results showed that under 400-mM NaCl treatment, the addition of 200-μM NaHS markedly increased the quantity of salt crystals in the adaxial epidermis of A. marina leaves, accompanied by an increase in the K+/Na+ ratio. Meanwhile, the endogenous content of H2S was dramatically elevated in this process. The NMT result revealed that the Na+ efflux was increased from salt glands, whereas K+ efflux was decreased with NaHS application. On the contrary, the effects of NaHS were reversed by H2S scavenger hypotaurine (HT), and DL-propargylglycine (PAG), an inhibitor of cystathionine-γ-lyase (CES, a H2S synthase). Moreover, enzymic assay revealed that NaHS increased the activities of plasma membrane and tonoplast H+-ATPase. qRT-PCR analysis revealed that NaHS significantly increased the genes transcript levels of tonoplast Na+/H+ antiporter (NHX1), plasma membrane Na+/H+ antiporter (SOS1), plasma membrane H+-ATPase (AHA1) and tonoplast H+-ATPase subunit c (VHA-c1), while suppressed above-mentioned gene expressions by the application of HT and PAG. Overall, H2S promotes Na+ secretion from the salt glands of A. marina by up-regulating the plasma membrane and tonoplast Na+/H+ antiporter and H+-ATPase.
Collapse
Affiliation(s)
- Ming-Yue Wei
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Huan Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
- College of Food and Bio-engineering, Bengbu University, Caoshan Road, Bengbu, Anhui 233030, P.R. China
| | - Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Ji-Yun Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Qian-Su Ding
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - You-Hui Zhong
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Dong-Na Ma
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
14
|
Mandal S, Ghorai M, Anand U, Samanta D, Kant N, Mishra T, Rahman MH, Jha NK, Jha SK, Lal MK, Tiwari RK, Kumar M, Radha, Prasanth DA, Mane AB, Gopalakrishnan AV, Biswas P, Proćków J, Dey A. Cytokinin and abiotic stress tolerance -What has been accomplished and the way forward? Front Genet 2022; 13:943025. [PMID: 36017502 PMCID: PMC9395584 DOI: 10.3389/fgene.2022.943025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022] Open
Abstract
More than a half-century has passed since it was discovered that phytohormone cytokinin (CK) is essential to drive cytokinesis and proliferation in plant tissue culture. Thereafter, cytokinin has emerged as the primary regulator of the plant cell cycle and numerous developmental processes. Lately, a growing body of evidence suggests that cytokinin has a role in mitigating both abiotic and biotic stress. Cytokinin is essential to defend plants against excessive light exposure and a unique kind of abiotic stress generated by an altered photoperiod. Secondly, cytokinin also exhibits multi-stress resilience under changing environments. Furthermore, cytokinin homeostasis is also affected by several forms of stress. Therefore, the diverse roles of cytokinin in reaction to stress, as well as its interactions with other hormones, are discussed in detail. When it comes to agriculture, understanding the functioning processes of cytokinins under changing environmental conditions can assist in utilizing the phytohormone, to increase productivity. Through this review, we briefly describe the biological role of cytokinin in enhancing the performance of plants growth under abiotic challenges as well as the probable mechanisms underpinning cytokinin-induced stress tolerance. In addition, the article lays forth a strategy for using biotechnological tools to modify genes in the cytokinin pathway to engineer abiotic stress tolerance in plants. The information presented here will assist in better understanding the function of cytokinin in plants and their effective investigation in the cropping system.
Collapse
Affiliation(s)
- Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Uttpal Anand
- CytoGene Research & Development LLP, Barabanki, Uttar Pradesh, India
| | - Dipu Samanta
- Department of Botany, Dr. Kanailal Bhattacharyya College, Howrah, West Bengal, India
| | - Nishi Kant
- School of Health and Allied Science, ARKA Jain University, Jamshedpur, Jharkhand, India
| | - Tulika Mishra
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, South Korea
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- Division of Crop Physiology, Biochemistry and Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | | | - Abhijit Bhagwan Mane
- Department of Zoology, Dr. Patangrao Kadam Mahavidhyalaya (affiliated to Shivaji University Kolhapur), Ramanandnagar (Burli), Sangli, Maharashtra, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
15
|
Yuan F, Wang X, Zhao B, Xu X, Shi M, Leng B, Dong X, Lu C, Feng Z, Guo J, Han G, Zhang H, Huang J, Chen M, Wang BS. The genome of the recretohalophyte Limonium bicolor provides insights into salt gland development and salinity adaptation during terrestrial evolution. MOLECULAR PLANT 2022; 15:1024-1044. [PMID: 35514085 DOI: 10.1016/j.molp.2022.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Halophytes have evolved specialized strategies to cope with high salinity. The extreme halophyte sea lavender (Limonium bicolor) lacks trichomes but possesses salt glands on its epidermis that can excrete harmful ions, such as sodium, to avoid salt damage. Here, we report a high-quality, 2.92-Gb, chromosome-scale L. bicolor genome assembly based on a combination of Illumina short reads, single-molecule, real-time long reads, chromosome conformation capture (Hi-C) data, and Bionano genome maps, greatly enriching the genomic information on recretohalophytes with multicellular salt glands. Although the L. bicolor genome contains genes that show similarity to trichome fate genes from Arabidopsis thaliana, it lacks homologs of the decision fate genes GLABRA3, ENHANCER OF GLABRA3, GLABRA2, TRANSPARENT TESTA GLABRA2, and SIAMESE, providing a molecular explanation for the absence of trichomes in this species. We identified key genes (LbHLH and LbTTG1) controlling salt gland development among classical trichome homologous genes and confirmed their roles by showing that their mutations markedly disrupted salt gland initiation, salt secretion, and salt tolerance, thus offering genetic support for the long-standing hypothesis that salt glands and trichomes may share a common origin. In addition, a whole-genome duplication event occurred in the L. bicolor genome after its divergence from Tartary buckwheat and may have contributed to its adaptation to high salinity. The L. bicolor genome resource and genetic evidence reported in this study provide profound insights into plant salt tolerance mechanisms that may facilitate the engineering of salt-tolerant crops.
Collapse
Affiliation(s)
- Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Boqing Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xiaojing Xu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Miao Shi
- Berry Genomics Corporation, Beijing, China
| | - Bingying Leng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xinxiu Dong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Chaoxia Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Zhongtao Feng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | | | | | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China.
| | - Bao-Shan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China.
| |
Collapse
|
16
|
Mir R, Romero I, González-Orenga S, Ferrer-Gallego PP, Laguna E, Boscaiu M, Oprică L, Grigore MN, Vicente O. Constitutive and Adaptive Traits of Environmental Stress Tolerance in the Threatened Halophyte Limonium angustebracteatum Erben (Plumbaginaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091137. [PMID: 35567138 PMCID: PMC9103948 DOI: 10.3390/plants11091137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 06/01/2023]
Abstract
Limonium angustebracteatum is a halophyte endemic to the E and SE Iberian Peninsula with interest in conservation. Salt glands represent an important adaptive trait in recretohalophytes like this and other Limonium species, as they allow the excretion of excess salts, reducing the concentration of toxic ions in foliar tissues. This study included the analysis of the salt gland structure, composed of 12 cells, 4 secretory and 8 accessory. Several anatomical, physiological and biochemical responses to stress were also analysed in adult plants subjected to one month of water stress, complete lack of irrigation, and salt stress, by watering with aqueous solutions of 200, 400, 600 and 800 mM NaCl. Plant growth was inhibited by the severe water deficit and, to a lesser extent, by high NaCl concentrations. A variation in the anatomical structure of the leaves was detected under conditions of salt and water stress; plants from the salt stress treatment showed salt glands sunken between epidermal cells, bordered by very large epidermal cells, whereas in those from the water stress treatment, the epidermal cells were heterogeneous in shape and size. In both, the palisade structure of the leaves was altered. Salt excretion is usually accompanied by the accumulation of salts in the foliar tissue. This was also found in L. angustebracteatum, in which the concentration of all ions analysed was higher in the leaves than in the roots. The increase of K+ in the roots of plants subjected to water stress was also remarkable. The multivariate analysis indicated differences in water and salt stress responses, such as the accumulation of Na and Cl, or proline, but K+ homeostasis played a relevant role in the mechanism of tolerance to both stressful conditions.
Collapse
Affiliation(s)
- Ricardo Mir
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (R.M.); (I.R.); (O.V.)
| | - Ignacio Romero
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (R.M.); (I.R.); (O.V.)
| | - Sara González-Orenga
- Mediterranean Agroforestry Institute (IAM, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (S.G.-O.); (M.B.)
| | - P. Pablo Ferrer-Gallego
- Centre for Forestry Research and Experimentation (CIEF), CIEF-Wildlife Service, Generalitat Valenciana, Avda Comarques del País Valencia, 114, 46930 Quart de Poblet, Valencia, Spain; (P.P.F.-G.); (E.L.)
| | - Emilio Laguna
- Centre for Forestry Research and Experimentation (CIEF), CIEF-Wildlife Service, Generalitat Valenciana, Avda Comarques del País Valencia, 114, 46930 Quart de Poblet, Valencia, Spain; (P.P.F.-G.); (E.L.)
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (S.G.-O.); (M.B.)
| | - Lăcrămioara Oprică
- Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I nr. 11, 700506 Iași, Romania;
| | - Marius-Nicușor Grigore
- Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, Str. Universității 13, 720229 Suceava, Romania
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (R.M.); (I.R.); (O.V.)
| |
Collapse
|
17
|
Li J, Liu Y, Zhang M, Xu H, Ning K, Wang B, Chen M. Melatonin increases growth and salt tolerance of Limonium bicolor by improving photosynthetic and antioxidant capacity. BMC PLANT BIOLOGY 2022; 22:16. [PMID: 34983373 PMCID: PMC8725383 DOI: 10.1186/s12870-021-03402-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/10/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Soil salinization is becoming an increasingly serious problem worldwide, resulting in cultivated land loss and desertification, as well as having a serious impact on agriculture and the economy. The indoleamine melatonin (N-acetyl-5-methoxytryptamine) has a wide array of biological roles in plants, including acting as an auxin analog and an antioxidant. Previous studies have shown that exogenous melatonin application alleviates the salt-induced growth inhibition in non-halophyte plants; however, to our knowledge, melatonin effects have not been examined on halophytes, and it is unclear whether melatonin provides similar protection to salt-exposed halophytic plants. RESULTS We exposed the halophyte Limonium bicolor to salt stress (300 mM) and concomitantly treated the plants with 5 μM melatonin to examine the effect of melatonin on salt tolerance. Exogenous melatonin treatment promoted the growth of L. bicolor under salt stress, as reflected by increasing its fresh weight and leaf area. This increased growth was caused by an increase in net photosynthetic rate and water use efficiency. Treatment of salt-stressed L. bicolor seedlings with 5 μM melatonin also enhanced the activities of antioxidants (superoxide dismutase [SOD], peroxidase [POD], catalase [CAT], and ascorbate peroxidase [APX]), while significantly decreasing the contents of hydrogen peroxide (H2O2), superoxide anion (O2•-), and malondialdehyde (MDA). To screen for L. bicolor genes involved in the above physiological processes, high-throughput RNA sequencing was conducted. A gene ontology enrichment analysis indicated that genes related to photosynthesis, reactive oxygen species scavenging, the auxin-dependent signaling pathway and mitogen-activated protein kinase (MAPK) were highly expressed under melatonin treatment. These data indicated that melatonin improved photosynthesis, decreased reactive oxygen species (ROS) and activated MAPK-mediated antioxidant responses, triggering a downstream MAPK cascade that upregulated the expression of antioxidant-related genes. Thus, melatonin improves the salt tolerance of L. bicolor by increasing photosynthesis and improving cellular redox homeostasis under salt stress. CONCLUSIONS Our results showed that melatonin can upregulate the expression of genes related to photosynthesis, reactive oxygen species scavenging and mitogen-activated protein kinase (MAPK) of L. bicolor under salt stress, which can improve photosynthesis and antioxidant enzyme activities. Thus melatonin can promote the growth of the species and maintain the homeostasis of reactive oxygen species to alleviate salt stress.
Collapse
Affiliation(s)
- Junpeng Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China
| | - Yun Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China
| | - Mingjing Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China
| | - Hualing Xu
- DongYing Academy of Agricultural Sciences, Dongying, Shandong, 257000, People's Republic of China
| | - Kai Ning
- DongYing Academy of Agricultural Sciences, Dongying, Shandong, 257000, People's Republic of China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|
18
|
Guo J, Shan C, Zhang Y, Wang X, Tian H, Han G, Zhang Y, Wang B. Mechanisms of Salt Tolerance and Molecular Breeding of Salt-Tolerant Ornamental Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:854116. [PMID: 35574092 PMCID: PMC9093713 DOI: 10.3389/fpls.2022.854116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/30/2022] [Indexed: 05/10/2023]
Abstract
As the area of salinized soils increases, and freshwater becomes more scarcer worldwide, an urgent measure for agricultural production is to use salinized land and conserve freshwater resources. Ornamental flowering plants, such as carnations, roses, chrysanthemums, and gerberas, are found around the world and have high economic, ornamental, ecological, and edible value. It is therefore prudent to improve the salt tolerance of these important horticultural crops. Here, we summarize the salt-adaptive mechanisms, genes, and molecular breeding of ornamental flowering crops. We also review the genome editing technologies that provide us with the means to obtain novel varieties with high salinity tolerance and improved utility value, and discuss future directions of research into ornamental plants like salt exclusion mechanism. We considered that the salt exclusion mechanism in ornamental flowering plants, the acquisition of flowers with high quality and novel color under salinity condition through gene editing techniques should be focused on for the future research.
Collapse
Affiliation(s)
- Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
- *Correspondence: Jianrong Guo,
| | - Changdan Shan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Yifan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Xinlei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Huaying Tian
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Ji’nan, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
- Baoshan Wang,
| |
Collapse
|
19
|
Salt-tolerance screening in Limonium sinuatum varieties with different flower colors. Sci Rep 2021; 11:14562. [PMID: 34267291 PMCID: PMC8282669 DOI: 10.1038/s41598-021-93974-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Limonium sinuatum, a member of Plumbaginaceae commonly known as sea lavender, is widely used as dried flower. Five L. sinuatum varieties with different flower colors (White, Blue, Pink, Yellow, and Purple) are found in saline regions and are widely cultivated in gardens. In the current study, we evaluated the salt tolerance of these varieties under 250 mmol/L NaCl (salt-tolerance threshold) treatment to identify the optimal variety suitable for planting in saline lands. After the measurement of the fresh weight (FW), dry weight (DW), contents of Na+, K+, Ca2+, Cl-, malondialdehyde (MDA), proline, soluble sugars, hydrogen peroxide (H2O2), relative water content, chlorophyll contents, net photosynthetic rate, and osmotic potential of whole plants, the salt-tolerance ability from strongest to weakest is identified as Pink, Yellow, Purple, White, and Blue. Photosynthetic rate was the most reliable and positive indicator of salt tolerance. The density of salt glands showed the greatest increase in Pink under NaCl treatment, indicating that Pink adapts to high-salt levels by enhancing salt gland formation. These results provide a theoretical basis for the large-scale planting of L. sinuatum in saline soils in the future.
Collapse
|
20
|
Delatorre-Herrera J, Ruiz KB, Pinto M. The Importance of Non-Diffusional Factors in Determining Photosynthesis of Two Contrasting Quinoa Ecotypes ( Chenopodium quinoa Willd.) Subjected to Salinity Conditions. PLANTS 2021; 10:plants10050927. [PMID: 34066627 PMCID: PMC8148559 DOI: 10.3390/plants10050927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
The broad distribution of quinoa in saline and non-saline environments is reflected in variations in the photosynthesis-associated mechanisms of different ecotypes. The aim of this study was to characterize the photosynthetic response to high salinity (0.4 M NaCl) of two contrasting Chilean genotypes, Amarilla (salt-tolerant, salares ecotype) and Hueque (salt-sensitive, coastal ecotype). Our results show that saline stress induced a significant decrease in the K+/Na+ ratio in roots and an increase in glycine betaine in leaves, particularly in the sensitive genotype (Hueque). Measurement of the photosynthesis-related parameters showed that maximum CO2 assimilation (Amax) in control plants was comparable between genotypes (ca. 9–10 μmol CO2 m−2 s−1). However, salt treatment produced different responses, with Amax values decreasing by 65.1% in the sensitive ecotype and 37.7% in the tolerant one. Although both genotypes maintained mesophyll conductance when stomatal restrictions were removed, the biochemical components of Amarilla were impaired to a lesser extent under salt stress conditions: for example, the maximum rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO; Vcmax) was not as affected in Amarilla, revealing that this enzyme has a higher affinity for its substrate in this genotype and, thus, a better carboxylation efficiency. The present results show that the higher salinity tolerance of Amarilla was also due to its ability to control non-diffusional components, indicating its superior photosynthetic capacity compared to Hueque, particularly under salt stress conditions.
Collapse
Affiliation(s)
- José Delatorre-Herrera
- Doctoral Program in Agriculture for Arid-Desert Environments, Faculty of Renewable Natural Resources, Desert Agriculture Area, Universidad Arturo Prat, Iquique 1100000, Chile
- Correspondence:
| | - Karina B. Ruiz
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 2120, Chile;
| | - Manuel Pinto
- Plant Physiology Laboratory, Institute of Agronomic and Veterinary Sciences, Universidad de O´Higgins, Rancagua 2820000, Chile;
| |
Collapse
|
21
|
Protection of Halophytes and Their Uses for Cultivation of Saline-Alkali Soil in China. BIOLOGY 2021; 10:biology10050353. [PMID: 33922035 PMCID: PMC8143469 DOI: 10.3390/biology10050353] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022]
Abstract
Over 800 million hectares of arable lands are affected by salinity in the world. In China, saline-alkali soils account for 25% of farmland and are underutilized. One sustainable strategy to make better use of saline land is to plant halophytes, salt-tolerant plants that can survive and complete their life cycle in media containing more than 200 mM NaCl. Halophytes have potential economic value as grain, vegetable, fruit, medicine, animal feed, and biofuel feedstocks, and in greening and coastal protection. Therefore, the cultivation and protection of halophytes is very important. In the past few decades, a lot of work has been done on the protection and utilization of halophytes in saline soil improvement and development worldwide. This article focuses on the distribution of saline-alkali conditions and current measures to protect halophytes, as well as the application of halophytes in the sustainable development of saline-alkali land. This information is helpful for protection and utilization of halophytes in the sustainable development of saline land worldwide.
Collapse
|
22
|
Lu C, Yuan F, Guo J, Han G, Wang C, Chen M, Wang B. Current Understanding of Role of Vesicular Transport in Salt Secretion by Salt Glands in Recretohalophytes. Int J Mol Sci 2021; 22:2203. [PMID: 33672188 PMCID: PMC7926375 DOI: 10.3390/ijms22042203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Soil salinization is a serious and growing problem around the world. Some plants, recognized as the recretohalophytes, can normally grow on saline-alkali soil without adverse effects by secreting excessive salt out of the body. The elucidation of the salt secretion process is of great significance for understanding the salt tolerance mechanism adopted by the recretohalophytes. Between the 1950s and the 1970s, three hypotheses, including the osmotic potential hypothesis, the transfer system similar to liquid flow in animals, and vesicle-mediated exocytosis, were proposed to explain the salt secretion process of plant salt glands. More recently, increasing evidence has indicated that vesicular transport plays vital roles in salt secretion of recretohalophytes. Here, we summarize recent findings, especially regarding the molecular evidence on the functional roles of vesicular trafficking in the salt secretion process of plant salt glands. A model of salt secretion in salt gland is also proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (C.L.); (F.Y.); (J.G.); (G.H.); (C.W.); (M.C.)
| |
Collapse
|
23
|
İbrahimova U, Kumari P, Yadav S, Rastogi A, Antala M, Suleymanova Z, Zivcak M, Tahjib-Ul-Arif M, Hussain S, Abdelhamid M, Hajihashemi S, Yang X, Brestic M. Progress in understanding salt stress response in plants using biotechnological tools. J Biotechnol 2021; 329:180-191. [PMID: 33610656 DOI: 10.1016/j.jbiotec.2021.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/06/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Salinization is a worldwide environmental problem, which is negatively impacting crop yield and thus posing a threat to the world's food security. Considering the rising threat of salinity, it is need of time, to understand the salt tolerant mechanism in plants and find avenues for the development of salinity resistant plants. Several plants tolerate salinity in a different manner, thereby halophytes and glycophytes evolved altered mechanisms to counter the stress. Therefore, in this review article, physiological, metabolic, and molecular aspects of the plant adaptation to salt stress have been discussed. The conventional breeding techniques for developing salt tolerant plants has not been much successful, due to its multigenic trait. The inflow of data from plant sequencing projects and annotation of genes led to the identification of many putative genes having a role in salt stress. The bioinformatics tools provided preliminary information and were helpful for making salt stress-specific databases. The microRNA identification and characterization led to unraveling the finer intricacies of the network. The transgenic approach finally paved a way for overexpressing some important genes viz. DREB, MYB, COMT, SOS, PKE, NHX, etc. conferred salt stress tolerance. In this review, we tried to show the effect of salinity on plants, considering ion homeostasis, antioxidant defense response, proteins involved, possible utilization of transgenic plants, and bioinformatics for coping with this stress factor. An overview of previous studies related to salt stress is presented in order to assist researchers in providing a potential solution for this increasing environmental threat.
Collapse
Affiliation(s)
- Ulkar İbrahimova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan 333515, India; Scientist Hostel-S-02, Chauras campus, Srinagar Garhwal, Uttarakhand 246174, India
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland.
| | - Michal Antala
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland; Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Zarifa Suleymanova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry & Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Sajad Hussain
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, 47189-63616, Iran
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic.
| |
Collapse
|
24
|
Li SM, Zheng HX, Zhang XS, Sui N. Cytokinins as central regulators during plant growth and stress response. PLANT CELL REPORTS 2021; 40:271-282. [PMID: 33025178 DOI: 10.1007/s00299-020-02612-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 05/21/2023]
Abstract
Cytokinins are a class of phytohormone that participate in the regulation of the plant growth, development, and stress response. In this review, the potential regulating mechanism during plant growth and stress response are discussed. Cytokinins are a class of phytohormone that participate in the regulation of plant growth, physiological activities, and yield. Cytokinins also play a key role in response to abiotic stresses, such as drought, salt and high or low temperature. Through the signal transduction pathway, cytokinins interact with various transcription factors via a series of phosphorylation cascades to regulate cytokinin-target gene expression. In this review, we systematically summarize the biosynthesis and metabolism of cytokinins, cytokinin signaling, and associated gene regulation, and highlight the function of cytokinins during plant development and resistance to abiotic stress. We also focus on the importance of crosstalk between cytokinins and other classes of phytohormones, including auxin, ethylene, strigolactone, and gibberellin. Our aim is to provide a comprehensive overview of recent findings on the mechanisms by which cytokinins act as central regulators of plant development and stress reactions, and highlight topics for future research.
Collapse
Affiliation(s)
- Si-Min Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xian-Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
25
|
Hussain MS, Naeem MS, Tanvir MA, Nawaz MF, Abd-Elrahman A. Eco-physiological evaluation of multipurpose tree species to ameliorate saline soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:969-981. [PMID: 33455421 DOI: 10.1080/15226514.2020.1871321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salinity is a widespread soil and underground water contaminant threatening food security and economic stability. Phytoremediation is an efficient and environmental-friendly solution to mitigate salinity impacts. The present study was conducted to evaluate the phytoremediation potential of five multipurpose trees: Vachellia nilotica, Concorpus erectus, Syzygium cumini, Tamarix aphylla and Eucalyptus cammaldulensis under four salinity treatments: Control, 10, 20 and 30 dS m-1. Salinity negatively impacted all the tested species. However, E. cammaldulensis and T. aphylla exhibited the lowest reduction (28%) and (35%) in plant height respectively along with a minimal reduction in leaf gas exchange while V. nilotica, S. cumini and C. erectus showed severe dieback. Similarly, the antioxidant enzymes increased significantly in E. cammaldulensis and T. aphylla as Superoxide Dismutase (87% and 79%), Catalase (66% and 67%) and Peroxidase (89% and 81%), respectively. Furthermore, both of these species maintained optimum Na/K ratio reducing the highest levels of soil ECe and SAR, suggesting the best phytoremediation potential. The present study identifies that E. cammaldulensis and T. aphylla showed effective tolerance mechanisms and the highest salt sequestration; therefore, may be used for phyto-amelioration of salinity impacted lands. Novelty statement Although previous studies evaluated the tolerance potential of many tree species, comparative and physiochemical evaluation of multipurpose tree species has been remained unexplored. In this scenario, eco-physiological characterization of multipurpose tree species may inform tree species for phytoremediation of saline soils according to the level of salinity. Optimizing tree species selection also improves the success of wood for energy and revenue generation while restoring degraded soils.
Collapse
Affiliation(s)
- Muhammad Safdar Hussain
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shahbaz Naeem
- Department of Agronomy, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ayyoub Tanvir
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Amr Abd-Elrahman
- School of Forest Resources and Conservation Institute of Food and Agriculture, Gulf Coast Research and Education Center, University of Florida, Plant City, FL, USA
| |
Collapse
|
26
|
Leng B, Wang X, Yuan F, Zhang H, Lu C, Chen M, Wang B. Heterologous expression of the Limonium bicolor MYB transcription factor LbTRY in Arabidopsis thaliana increases salt sensitivity by modifying root hair development and osmotic homeostasis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110704. [PMID: 33288017 DOI: 10.1016/j.plantsci.2020.110704] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 05/27/2023]
Abstract
Arabidopsis thaliana TRY is a negative regulator of trichome differentiation that promotes root hair differentiation. Here, we established that LbTRY, from the recretohalophyte Limonium bicolor, is a typical MYB transcription factor that exhibits transcriptional activation activity and locates in nucleus. By in situ hybridization in L. bicolor, LbTRY may be specifically positioned in salt gland of the expanded leaves. LbTRY expression was the highest in mature leaves and lowest under NaCl treatment. For functional assessment, we heterologously expressed LbTRY in wild-type and try29760 mutant Arabidopsis plants. Epidermal differentiation was remarkably affected in the transgenic wild-type line, as was increased root hair development. Complementation of try29760 with LbTRY under both 35S and LbTRY specific promoter restored the wild-type phenotype. qRT-PCR analysis suggested that AtGL3 and AtZFP5 promote root hair cell fate in lines heterologously producing LbTRY. In addition, four genes (AtRHD6, AtRSL1, AtLRL2, and AtLRL3) involved in root hair initiation and elongation were upregulated in the transgenic lines. Furthermore, LbTRY specifically increased the salt sensitivity of the transgenic lines. The transgenic and complementation lines showed poor germination rates and reduced root lengths, whereas the mutant unexpectedly fared the best under a range of NaCl treatments. Under salt stress, the transgenic seedlings accumulated more MDA and Na+ and less proline and soluble sugar than try29760. Thus, when heterologously expressed in Arabidopsis, LbTRY participates in hair development, similar to other MYB proteins, and specifically reduces salt tolerance by increasing ion accumulation and reducing osmolytes. The expression of salt-tolerance marker genes (SOS1, SOS2, SOS3 and P5CS1) was significant reduced in the transgenic lines. More will be carried by downregulating expression of TRY homologs in crops to improve salt tolerance.
Collapse
Affiliation(s)
- Bingying Leng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, PR China; Maize Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, PR China
| | - Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, PR China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, PR China.
| | - Haonan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, PR China
| | - Chaoxia Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, PR China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, PR China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, PR China.
| |
Collapse
|
27
|
Li J, Liu LN, Meng Q, Fan H, Sui N. The roles of chloroplast membrane lipids in abiotic stress responses. PLANT SIGNALING & BEHAVIOR 2020; 15:1807152. [PMID: 32815751 PMCID: PMC7588187 DOI: 10.1080/15592324.2020.1807152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 05/11/2023]
Abstract
Plant chloroplasts have complex membrane systems. Among these, thylakoids serve as the sites for photosynthesis and photosynthesis-related adaptation. In addition to the photosynthetic membrane complexes and associated molecules, lipids in the thylakoid membranes, are predominantly composed of MGDG (monogalactosyldiacylglycerol), DGDG (digalactosyldiacylglycerol), SQDG (sulfoquinovosyldiacylglycerol) and PG (phosphatidylglycerol), play essential roles in shaping the thylakoid architecture, electron transfer, and photoregulation. In this review, we discuss the effect of abiotic stress on chloroplast structure, the changes in membrane lipid composition, and the degree of unsaturation of fatty acids. Advanced understanding of the mechanisms regulating chloroplast membrane lipids and unsaturated fatty acids in response to abiotic stresses is indispensable for improving plant resistance and may inform the strategies of crop breeding.
Collapse
Affiliation(s)
- Jinlu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Lu-Ning Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
28
|
Li J, Yuan F, Liu Y, Zhang M, Liu Y, Zhao Y, Wang B, Chen M. Exogenous melatonin enhances salt secretion from salt glands by upregulating the expression of ion transporter and vesicle transport genes in Limonium bicolor. BMC PLANT BIOLOGY 2020; 20:493. [PMID: 33109099 PMCID: PMC7590734 DOI: 10.1186/s12870-020-02703-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/14/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Salt, a common environmental stress factor, inhibits plant growth and reduces yields. Melatonin is a pleiotropic molecule that regulates plant growth and can alleviate environmental stress in plants. All previous research on this topic has focused on the use of melatonin to improve the relatively low salt tolerance of glycophytes by promoting growth and enhancing antioxidant ability. It is unclear whether exogenous melatonin can increase the salt tolerance of halophytes, particularly recretohalophytes, by enhancing salt secretion from the salt glands. RESULTS To examine the mechanisms of melatonin-mediated salt tolerance, we explored the effects of exogenous applications of melatonin on the secretion of salt from the salt glands of Limonium bicolor (a kind of recretohalophyte) seedlings and on the expression of associated genes. A pretreatment with 5 μM melatonin significantly improved the growth of L. bicolor seedlings under 300 mM NaCl. Furthermore, exogenous melatonin significantly increased the dry weight and endogenous melatonin content of L. bicolor. In addition, this treatment reduced the content of Na+ and Cl- in leaves, but increased the K+ content. Both the salt secretion rate of the salt glands and the expression level of genes encoding ion transporters (LbHTK1, LbSOS1, LbPMA, and LbNHX1) and vesicular transport proteins (LbVAMP721, LbVAP27, and LbVAMP12) were significantly increased by exogenous melatonin treatment. These results indicate that melatonin improves the salt tolerance of the recretohalophyte L. bicolor via the upregulation of salt secretion by the salt glands. CONCLUSIONS Our results showed that melatonin can upregulate the expression of genes encoding ion transporters and vesicle transport proteins to enhance salt secretion from the salt glands. Combining the results of the current study with previous research, we formulated a novel mechanism by which melatonin increases salt secretion in L. bicolor. Ions in mesophyll cells are transported to the salt glands through ion transporters located at the plasma membrane. After the ions enter the salt glands, they are transported to the collecting chamber adjacent to the secretory pore through vesicle transport and ions transporter and then are secreted from the secretory pore of salt glands, which maintain ionic homeostasis in the cells and alleviate NaCl-induced growth inhibition.
Collapse
Affiliation(s)
- Junpeng Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, P.R. China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, P.R. China
| | - Yanlu Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, P.R. China
| | - Mingjing Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, P.R. China
| | - Yun Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, P.R. China
| | - Yang Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, P.R. China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, P.R. China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, 88 Wenhua East Road, Jinan, 250014, P.R. China.
| |
Collapse
|
29
|
Abstract
Halophytes have been studied as a model for morphological traits of adaptation to saline environments. However, little information has been given on plant growth, chlorophyll fluorescence responses, and change of ion content in halophytes grown in an aniline–salinity coexistent environment. This study hypothesized that aniline could induce alterations in plant growth, chlorophyll fluorescence, and ion content in Suaeda salsa, but salinity could promote the tolerance of halophytes to aniline. A 6 (aniline) × 3 (NaCl) factorial experiment (for a total of 18 treatments) was conducted to test the above hypothesis. After 30 d of cultivation, roots and shoots were harvested separately to analyze the effects of salinity on the seedling growth under aniline stress. Biomass accumulation was inhibited by aniline treatment, and the inhibition was significantly alleviated by 200 mM NaCl. The change in chlorophyll fluorescence in leaves with aniline stress was moderated by the addition of NaCl. The removal efficiency of aniline was significantly enhanced by moderate salinity. Aniline stress decreased the accumulation of Mg2+, but various concentrations of NaCl increased the accumulation of Mg2+, especially with 200 mM NaCl in both roots and shoots. Both aniline and salinity decreased the content of Ca2+. There was a negative correlation between the K+ and NaCl concentrations and between the Cl− and aniline concentrations. Our results indicated that Suaeda salsa may be suitable for the remediation of salinity and aniline-enriched wastewater.
Collapse
|
30
|
Research Progress on the Roles of Cytokinin in Plant Response to Stress. Int J Mol Sci 2020; 21:ijms21186574. [PMID: 32911801 PMCID: PMC7555750 DOI: 10.3390/ijms21186574] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/05/2023] Open
Abstract
Cytokinins promote plant growth and development under normal plant growth conditions and also play an important role in plant resistance to stress. Understanding the working mechanisms of cytokinins under adverse conditions will help to make full use of cytokinins in agriculture to increase production and efficiency of land use. In this article, we review the progress that has been made in cytokinin research in plant response to stress and propose its future application prospects.
Collapse
|
31
|
Li H, Wang H, Wen W, Yang G. The antioxidant system in Suaeda salsa under salt stress. PLANT SIGNALING & BEHAVIOR 2020; 15:1771939. [PMID: 32463323 PMCID: PMC8570744 DOI: 10.1080/15592324.2020.1771939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
L. is a typical euhalophyte and is widely distributed throughout the world. Suaeda plants are important halophyte resources, and the physiological and biochemical characteristics of their various organsand their response to salt stress have been intensively studied. Leaf succulence, intracellular ion localization, increased osmotic regulation and enhanced antioxidant capacities are important responses for Suaeda plants to adapt to salt stress. Among these responses, scavenging of reactive oxygen species (ROS) is an important mechanism for plants to withstand oxidative stress and improve salt tolerance. The generation and scavenging pathways of ROS, as well as the expression of scavenging enzymes change under salt stress. This article reviews the antioxidant system constitute of S. salsa, and the mechanisms by which S. salsaantioxidant capacity is improved for salt tolerance. In addition, the differences between types of antioxidant mechanisms in S. salsaare reviewed, thereby revealing the adaptation mechanisms of Suaeda to different habitats. The review provides important clues for the comprehensive understanding of the salt tolerance mechanisms of halophytes.
Collapse
Affiliation(s)
- Hua Li
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui Wang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wujun Wen
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guiwen Yang
- College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
32
|
Yang W, Wang F, Liu LN, Sui N. Responses of Membranes and the Photosynthetic Apparatus to Salt Stress in Cyanobacteria. FRONTIERS IN PLANT SCIENCE 2020; 11:713. [PMID: 32582247 PMCID: PMC7292030 DOI: 10.3389/fpls.2020.00713] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/05/2020] [Indexed: 05/02/2023]
Abstract
Cyanobacteria are autotrophs whose photosynthetic process is similar to that of higher plants, although the photosynthetic apparatus is slightly different. They have been widely used for decades as model systems for studying the principles of photosynthesis, especially the effects of environmental stress on photosynthetic activities. Salt stress, which is the most common abiotic stress in nature, combines ionic and osmotic stresses. High cellular ion concentrations and osmotic stress can alter normal metabolic processes and photosynthesis. Additionally, salt stress increases the intracellular reactive oxygen species (ROS) contents. Excessive amounts of ROS will damage the photosynthetic apparatus, inhibit the synthesis of photosystem-related proteins, including the D1 protein, and destroy the thylakoid membrane structure, leading to inhibited photosynthesis. In this review, we mainly introduce the effects of salt stress on the cyanobacterial membranes and photosynthetic apparatus. We also describe specific salt tolerance mechanisms. A thorough characterization of the responses of membranes and photosynthetic apparatus to salt stress may be relevant for increasing agricultural productivity.
Collapse
Affiliation(s)
- Wenjing Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lu-Ning Liu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
33
|
Li L, Zhao Y, Han G, Guo J, Meng Z, Chen M. Progress in the Study and Use of Seawater Vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5998-6006. [PMID: 32374599 DOI: 10.1021/acs.jafc.0c00346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As global soil salinization increases, halophytes that can grow in saline soils are the primary choice for improving soil quality. Some halophytes can even be irrigated with seawater and used as vegetables. These so-called seawater vegetables include those that can be planted on saline and alkali soils and some edible halophytes and ordinary vegetables that are salt-tolerant. The cultivation of seawater vegetables on saline soil has become a matter of increasing interest. In this review, we focus on the salt-tolerance mechanisms and potential applications of some seawater vegetables. We also summarize their value to health, medicine, industry, and the economy as a whole. Further improvement and development to support the use of seawater vegetables will require in-depth research at the cellular and molecular levels.
Collapse
Affiliation(s)
- Lingyu Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Yang Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
34
|
Mohsin SM, Hasanuzzaman M, Parvin K, Fujita M. Pretreatment of wheat (Triticum aestivum L.) seedlings with 2,4-D improves tolerance to salinity-induced oxidative stress and methylglyoxal toxicity by modulating ion homeostasis, antioxidant defenses, and glyoxalase systems. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:221-231. [PMID: 32438299 DOI: 10.1016/j.plaphy.2020.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/14/2020] [Accepted: 04/24/2020] [Indexed: 05/22/2023]
Abstract
The commonly used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has an as yet undetermined protective role in mitigating salinity-induced damage in crop plants. The aim of this study was to explore the possible roles of antioxidant defense and methylglyoxal (MG) detoxification systems in enhancing salt tolerance in wheat (Triticum aestivum L. cv. Norin 61) seedlings following pretreatment with 2,4-D. Wheat seedlings were grown hydroponically, pretreated with 10 μM 2,4-D for 48 h, and then exposed to salt stress (150 and 250 mM NaCl) for the next five days. The protective effect of 2,4-D was associated with increased antioxidant enzyme activity and ascorbate and glutathione content, and with decreased malondialdehyde and hydrogen peroxide content and reduced electrolytic leakage. Application of 2,4-D increased glyoxalase enzyme activity, resulting in greater MG detoxification. Seedlings pretreated with 2,4-D showed improved growth, biomass, and leaf water content due to reductions in Na+ accumulation and increases in K+, Ca2+, and Mg2+ uptake. Overall, these results highlight the potential use of this common herbicide as a phytoprotectant against salinity stress.
Collapse
Affiliation(s)
- Sayed Mohammad Mohsin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa 761-0795, Japan; Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh.
| | - Khursheda Parvin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa 761-0795, Japan; Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa 761-0795, Japan.
| |
Collapse
|
35
|
Liu X, Chen C, Liu Y, Liu Y, Zhao Y, Chen M. The presence of moderate salt can increase tolerance of Elaeagnus angustifolia seedlings to waterlogging stress. PLANT SIGNALING & BEHAVIOR 2020; 15:1743518. [PMID: 32213104 PMCID: PMC7194383 DOI: 10.1080/15592324.2020.1743518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 05/19/2023]
Abstract
High salinity and waterlogging are two stress factors that often occur simultaneously in nature, particularly during the rainy season in the Yellow River Delta (YRD) of China. An attractive approach to improve the saline-alkali soil produced by waterlogging and high salt is to use plants for wetland ecosystem restoration. In this work, we examined the ecological adaptability of Elaeagnus angustifolia L. under combined waterlogging and salt stress, to evaluate the potential of this species for introduction to the YRD. We monitored the effects of salt plus waterlogging co-stress on the anatomy, physiology, and enzymatic systems in E. angustifolia seedlings. Salt alone and waterlogging alone inhibited the growth of the seedlings, while salt plus waterlogging co-stress reduced this growth inhibition. Furthermore, E. angustifolia seedlings resisted the salt plus waterlogging co-stress by increasing porosity, accumulating more inorganic ions and organic solutes, and increasing antioxidant enzyme activities to maintain high photosynthetic rates and membrane stability and thus avoid damage. These findings support the inclusion of E. angustifolia in the ecological restoration of the YRD.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong 250014, PR China
- College of political science and law, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, Shandong, PR China
| | - Chunxiao Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong 250014, PR China
| | - Yun Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong 250014, PR China
| | - Yanlu Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong 250014, PR China
| | - Yang Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong 250014, PR China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong 250014, PR China
| |
Collapse
|
36
|
Sun H, Sun X, Wang H, Ma X. Advances in salt tolerance molecular mechanism in tobacco plants. Hereditas 2020; 157:5. [PMID: 32093781 PMCID: PMC7041081 DOI: 10.1186/s41065-020-00118-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/18/2020] [Indexed: 02/01/2023] Open
Abstract
Tobacco, an economic crop and important model plant, has received more progress in salt tolerance with the aid of transgenic technique. Salt stress has become a key research field in abiotic stress. The study of tobacco promotes the understanding about the important adjustment for survival in high salinity environments, including cellular ion transport, osmotic regulation, antioxidation, signal transduction and expression regulation, and protection of cells from stress damage. Genes, which response to salt, have been studied using targeted transgenic technologies in tobacco plants to investigate the molecular mechanisms. The transgenic tobacco plants exhibited higher seed germination and survival rates, better root and shoot growth under salt stress treatments. Transgenic approach could be the promising option for enhancing tobacco production under saline condition. This review highlighted the salt tolerance molecular mechanisms of tobacco.
Collapse
Affiliation(s)
- Haiji Sun
- School of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Xiaowen Sun
- School of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Hui Wang
- School of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Xiaoli Ma
- Central laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 China
| |
Collapse
|
37
|
Qi F, Zhang F. Cell Cycle Regulation in the Plant Response to Stress. FRONTIERS IN PLANT SCIENCE 2020; 10:1765. [PMID: 32082337 PMCID: PMC7002440 DOI: 10.3389/fpls.2019.01765] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/17/2019] [Indexed: 05/19/2023]
Abstract
As sessile organisms, plants face a variety of environmental challenges. Their reproduction and survival depend on their ability to adapt to these stressors, which include water, heat stress, high salinity, and pathogen infection. Failure to adapt to these stressors results in programmed cell death and decreased viability, as well as reduced productivity in the case of crop plants. The growth and development of plants are maintained by meiosis and mitosis as well as endoreduplication, during which DNA replicates without cytokinesis, leading to polyploidy. As in other eukaryotes, the cell cycle in plants consists of four stages (G1, S, G2, and M) with two major check points, namely, the G1/S check point and G2/M check point, that ensure normal cell division. Progression through these checkpoints involves the activity of cyclin-dependent kinases and their regulatory subunits known as cyclins. In order for plants to survive, cell cycle control must be balanced with adaption to dynamic environmental conditions. In this review, we summarize recent advances in our understanding of cell cycle regulation in plants, with a focus on the molecular interactions of cell cycle machinery in the context of stress tolerance.
Collapse
Affiliation(s)
- Feifei Qi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | | |
Collapse
|
38
|
Litalien A, Zeeb B. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134235. [PMID: 31783465 DOI: 10.1016/j.scitotenv.2019.134235] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 05/27/2023]
Abstract
At low concentrations salts are relatively benign, but anthropogenic activities can drive concentrations to levels that impact soil quality, microbial, plant, and animal life. Soil and freshwater salinization are growing issues worldwide that are difficult to manage with conventional treatments. In this review, salt tolerant plants known as halophytes are evaluated for their potential to phytoremediate salinized soils and prevent leaching of salts into surface and ground water. While most plants are sensitive to high concentrations of salt in their growth media, halophytic plants have developed mechanisms to tolerate and thrive in these environments. Some plants exclude salts at the roots, others sequester salts in their central vacuole, while others secrete salts through specialized salt glands on their leaf surfaces. The extraction of salts from soil by both plants that sequester or secrete salts are reviewed as well as implementation strategies that could drive economic feasibility. Further, phytoremediation of salinized soils is considered in the context of a changing climate.
Collapse
Affiliation(s)
- Amélie Litalien
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Canada.
| | - Barbara Zeeb
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Canada
| |
Collapse
|
39
|
He M, Ding NZ. Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:562785. [PMID: 33013981 PMCID: PMC7500430 DOI: 10.3389/fpls.2020.562785] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/19/2020] [Indexed: 05/21/2023]
Abstract
Land plants are exposed to not only biotic stresses such as pathogen infection and herbivore wounding, but abiotic stresses such as cold, heat, drought, and salt. Elaborate strategies have been developed to avoid or abide the adverse effects, with unsaturated fatty acids (UFAs) emerging as general defenders. In higher plants, the most common UFAs are three 18-carbon species, namely, oleic (18:1), linoleic (18:2), and α-linolenic (18:3) acids. These simple compounds act as ingredients and modulators of cellular membranes in glycerolipids, reserve of carbon and energy in triacylglycerol, stocks of extracellular barrier constituents (e.g., cutin and suberin), precursors of various bioactive molecules (e.g., jasmonates and nitroalkenes), and regulators of stress signaling. Nevertheless, they are also potential inducers of oxidative stress. In this review, we will present an overview of these roles and then shed light on genetic engineering of FA synthetic genes for improving plant/crop stress tolerance.
Collapse
|
40
|
Xu Y, Jiao X, Wang X, Zhang H, Wang B, Yuan F. Importin-β From the Recretohalophyte Limonium bicolor Enhances Salt Tolerance in Arabidopsis thaliana by Reducing Root Hair Development and Abscisic Acid Sensitivity. FRONTIERS IN PLANT SCIENCE 2020; 11:582459. [PMID: 33519843 PMCID: PMC7838111 DOI: 10.3389/fpls.2020.582459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/02/2020] [Indexed: 05/17/2023]
Abstract
AIMS To elucidate the genetics underlying salt tolerance in recretohalophytes and assess its relevance to non-halophytes, we cloned the Limonium bicolor homolog of Arabidopsis thaliana (Arabidopsis) SUPER SENSITIVE TO ABA AND DROUGHT2 (AtSAD2) and named it LbSAD2, an importin-β gene associated with trichome initiation and reduced abscisic acid (ABA) sensitivity, and then we assessed the heterologously expressed LbSAD2 in Arabidopsis. METHODS We examined LbSAD2 expression and assessed the effect of heterologous LbSAD2 expression in Arabidopsis on root hair/trichome induction; the expression levels of possible related genes in trichome/root hair development; some physiological parameters involved in salt tolerance including germination rate, root length, and contents of Na+, proline, and malondialdehyde; and the response of ABA at the germination stage. RESULTS The LbSAD2 gene is highly expressed in the salt gland development stage and salt treatment, especially located in the salt gland by in situ hybridization, and the LbSAD2 protein contains some special domains compared with AtSAD2, which may suggest the involvement of LbSAD2 in salt tolerance. Compared with the SAD2/GL1 mutant CS65878, which lacks trichomes, CS65878-35S:LbSAD2 had higher trichome abundance but lower root hair abundance. Under 100 mM NaCl treatment, CS65878-35S:LbSAD2 showed enhanced germination and root lengths; improved physiological parameters, including high proline and low contents of Na+ and malondialdehyde; higher expression of the salt-tolerance genes Δ1-PYRROLINE-5-CARBOXYLATE SYNTHETASE 1 (P5CS1) and GST CLASS TAU 5 (GSTU5); reduced ABA sensitivity; and increased expression of the ABA signaling genes RESPONSIVE TO ABA 18 (RAB18) and SNF1-RELATED PROTEIN KINASE 2 (SRK2E), but not of the ABA biosynthesis gene 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3). CONCLUSION LbSAD2 enhances salt tolerance in Arabidopsis by specifically reducing root hair development, Na+ accumulation, and ABA sensitivity.
Collapse
|
41
|
Fan C. Genetic mechanisms of salt stress responses in halophytes. PLANT SIGNALING & BEHAVIOR 2019; 15:1704528. [PMID: 31868075 PMCID: PMC7012083 DOI: 10.1080/15592324.2019.1704528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 05/08/2023]
Abstract
Abiotic stress is a major threat to plant growth and development, resulting in extensive crop loss worldwide. Plants react to abiotic stresses through physiological, biochemical, molecular, and genetic adaptations that promote survival. Exploring the molecular mechanisms involved in abiotic stress responses across various plant species is essential for improving crop yields in unfavorable environments. Halophytes are characterized as plants that survive to reproduce in soils containing high salt concentrations, and thus act as an ideal model to comprehend complicated genetic and physiological mechanisms of salinity stress tolerance. Plant ecologists classify halophytes into three main groups: euhalophytes, recretohalophytes, and pseudo-halophytes. Recent genetic and molecular research has showed complicated regulatory networks by which halophytes coordinate stress adaptation and tolerance. Furthermore, investigation of natural variations in these stress responses has supplied new perspectives on the evolution of mechanisms that regulate tolerance and adaptation. This review discusses the current understanding of the genetic mechanisms that contribute to salt-stress tolerance among different classes of halophytes.
Collapse
Affiliation(s)
- Cunxian Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
42
|
Yuan F, Leng B, Zhang H, Wang X, Han G, Wang B. A WD40-Repeat Protein From the Recretohalophyte Limonium bicolor Enhances Trichome Formation and Salt Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1456. [PMID: 31781150 PMCID: PMC6861380 DOI: 10.3389/fpls.2019.01456] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/18/2019] [Indexed: 05/03/2023]
Abstract
The Arabidopsis thaliana WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1) controls epidermis development, playing opposite roles in trichome differentiation and root hair formation. We isolated and characterized LbTTG1 (encoding a WD40-repeat protein with high sequence similarity to TTG1) from the recretohalophyte Limonium bicolor, which actively excretes absorbed salt via a salt gland. The complete open reading frame of LbTTG1 was 1,095 bp, encoding a protein of 364 amino acids, and showed highest expression during the salt gland initiation stage. We heterologously expressed LbTTG1 in wild type and ttg1-13 Arabidopsis plants to verify the protein's function, and the copies of LbTTG1 were identified in transgenic strains using southern blotting. Trichomes were extremely induced on the first true leaves of plants heterologously expressing LbTTG1, whereas no trichomes were produced by ttg1-13 plants. Conversely, plants heterologously expressing LbTTG1 produced fewer root hairs than ttg1-13 plants. In plants heterologously expressing LbTTG1 compared to controls, epidermis differentiation genes (GLABRA1 and GLABRA3) were up-regulated while genes encoding negative regulators of trichome development (TRIPTYCHON and CAPRICE) were down-regulated. Under increased NaCl concentrations, both of the transgenic lines showed enhanced germination and root length, and accumulated less malondialdehyde (MDA) and Na+ and produced more proline, soluble sugar, and higher glutathione S-transferase activity, compared with the ttg1-13 mutant. These results indicate that LbTTG1 participates in epidermis development in Arabidopsis, similarly to other WD40-repeat proteins, and specifically increases salt tolerance of transgenic Arabidopsis by reducing ion accumulation and increasing osmolyte levels.
Collapse
Affiliation(s)
- Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Haonan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, China
| |
Collapse
|
43
|
Li J, Zhao C, Zhang M, Yuan F, Chen M. Exogenous melatonin improves seed germination in Limonium bicolor under salt stress. PLANT SIGNALING & BEHAVIOR 2019; 14:1659705. [PMID: 31460852 PMCID: PMC6804724 DOI: 10.1080/15592324.2019.1659705] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 05/22/2023]
Abstract
Melatonin involves in improving tolerance to abiotic and biotic stresses by regulating various biological processes. However, little is known about the underlying mechanism. Here, we investigated the effects of exogenous melatonin on seed germination in the halophyte Limonium bicolor under salt stress. Specifically, we examined the effect of salt stress on seed germination, melatonin concentration, and changes in the concentrations of nutrients, amylase activity, and hormones in L. bicolor seeds with and without pre-treatment with melatonin. Seed germination was significantly suppressed under a 200 mM NaCl treatment, but pre-treatment with melatonin significantly improved seed germination under salt stress. During seed germination, seeds pre-treated with melatonin contained high levels of melatonin and gibberellic acid (GA), low levels of abscisic acid (ABA), and high levels of amylase and alpha-amylase activity. Melatonin treatment upregulated the expression of key genes involved in GA biosynthesis (GA20ox and GA3ox), downregulated key genes involved in ABA biosynthesis (LbNCED1 and LbNCED3), and upregulated ABA 8'-hydroxylase genes (LbCYP707A1 and LbCYP707A2), which mediate the changes in GA and ABA levels in seeds during germination. A high melatonin concentration in seeds promotes the utilization of nutrients and the synthesis of new proteins to enhance seed germination.
Collapse
Affiliation(s)
- Junpeng Li
- College of Life Science, Shandong Normal University, Wenhua East Road 88, Jinan 250014, P.R. China
| | - Chen Zhao
- College of Life Science, Shandong Normal University, Wenhua East Road 88, Jinan 250014, P.R. China
| | - Mingjing Zhang
- College of Life Science, Shandong Normal University, Wenhua East Road 88, Jinan 250014, P.R. China
| | - Fang Yuan
- College of Life Science, Shandong Normal University, Wenhua East Road 88, Jinan 250014, P.R. China
| | - Min Chen
- College of Life Science, Shandong Normal University, Wenhua East Road 88, Jinan 250014, P.R. China
| |
Collapse
|
44
|
Han G, Yuan F, Guo J, Zhang Y, Sui N, Wang B. AtSIZ1 improves salt tolerance by maintaining ionic homeostasis and osmotic balance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:55-67. [PMID: 31203894 DOI: 10.1016/j.plantsci.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 05/20/2023]
Abstract
C2H2-type zinc finger proteins play important roles in plant growth, development, and abiotic stress tolerance. Here, we explored the role of the C2H2-type zinc finger protein SALT INDUCED ZINC FINGER PROTEIN1 (AtSIZ1; At3G25910) in Arabidopsis thaliana under salt stress. AtSIZ1 expression was induced by salt treatment. During the germination stage, the germination rate, germination energy, germination index, cotyledon growth rate, and root length were significantly higher in AtSIZ1 overexpression lines than in the wild type under various stress treatments, whereas these indices were significantly reduced in AtSIZ1 loss-of-function mutants. At the mature seedling stage, the overexpression lines maintained higher levels of K+, proline, and soluble sugar, lower levels of Na+ and MDA, and lower Na+/K+ ratios than the wild type. Stress-related marker genes such as SOS1, AtP5CS1, AtGSTU5, COR15A, RD29A, and RD29B were expressed at higher levels in the overexpression lines than the wild type and loss-of-function mutants under salt treatment. These results indicate that AtSIZ1 improves salt tolerance in Arabidopsis by helping plants maintain ionic homeostasis and osmotic balance.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China.
| |
Collapse
|
45
|
Sun X, Han G, Meng Z, Lin L, Sui N. Roles of malic enzymes in plant development and stress responses. PLANT SIGNALING & BEHAVIOR 2019; 14:e1644596. [PMID: 31322479 PMCID: PMC6768271 DOI: 10.1080/15592324.2019.1644596] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 05/12/2023]
Abstract
Malic enzyme (ME) comprises a family of proteins with multiple isoforms located in different compartments of eukaryotic cells. It is a key enzyme regulating malic acid metabolism and can catalyze the reversible reaction of oxidative decarboxylation of malic acid. And it is also one of the important enzymes in plant metabolism and is involved in multiple metabolic processes. ME is widely present in plants and mainly discovered in cytoplasmic stroma, mitochondria, chloroplasts. It is involved in plant growth, development, and stress response. Plants are stressed by various environmental factors such as drought, high salt, and high temperature during plant growth, and the mechanisms of plant response to various environmental stresses are synergistic. Numerous studies have shown that ME participates in the process of coping with the above environmental factors by increasing water use efficiency, improving photosynthesis of plants, providing reducing power, and so on. In this review, we discuss the important role of ME in plant development and plant stress response, and prospects for its application. It provides a theoretical basis for the future use of ME gene for molecular resistance breeding.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| | - Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| | - Lin Lin
- Water Research Institute of Shandong Province, Jinan, PR China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| |
Collapse
|
46
|
Li J, Liu M. Biological features and regulatory mechanisms of salt tolerance in plants. J Cell Biochem 2019; 120:10914-10920. [PMID: 30784118 DOI: 10.1002/jcb.28474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/11/2019] [Indexed: 01/24/2023]
Abstract
Halophytes play a vital role in saline agriculture because these plants are necessary to increase the food supply to meet the demands of the growing world population. In addition, the transfer of salt-resistance genes from halophytes using genetic technologies has the potential to increase the salt tolerance of xerophytes. Characterization of some particularly promising halophyte model organisms has revealed the important new insights into the salt tolerance mechanisms used by plants. Numerous advances using these model systems have improved our understanding of salt tolerance regulation and salt tolerance-associated changes in gene expression, and these mechanisms have important implications for saline agriculture. Recent findings provide a basis for future studies of salt tolerance in plants, as well as the development of improved strategies for saline agriculture to increase yields of food, feed, and fuel crops.
Collapse
Affiliation(s)
- Jingrui Li
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
47
|
Ma H, Liu M. The microtubule cytoskeleton acts as a sensor for stress response signaling in plants. Mol Biol Rep 2019; 46:5603-5608. [PMID: 31098806 DOI: 10.1007/s11033-019-04872-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/13/2019] [Indexed: 01/17/2023]
Abstract
Stress tolerance pathways are protective mechanisms that have evolved to protect plant growth and increase production under various environmental stress conditions. Enhancing stress tolerance in crop plants has become an area of intense study with aims of increasing crop production and enhancing economic benefits. A growing number of studies suggest that in addition to playing vital roles in mechanical architecture and cell division, microtubules are also involved the adaptation to severe environmental conditions in plants. However, the mechanisms that integrate microtubule regulation, cellular metabolism and cell signaling in plant stress responses remain unclear. Recent studies suggest that microtubules act as sensors for different abiotic stresses and maintain mechanical stability by forming bundles. Characterizing the diverse roles of plant microtubules is vital to furthering our understanding of stress tolerance in plants.
Collapse
Affiliation(s)
- Huixian Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Min Liu
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
48
|
Li J, Han G, Sun C, Sui N. Research advances of MYB transcription factors in plant stress resistance and breeding. PLANT SIGNALING & BEHAVIOR 2019; 14:1613131. [PMID: 31084451 PMCID: PMC6619938 DOI: 10.1080/15592324.2019.1613131] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/01/2019] [Accepted: 04/22/2019] [Indexed: 05/19/2023]
Abstract
Plants face various stresses during the growth and development processes. The specific transcription factors bind to the cis-acting elements upstream of the stress resistance genes, specifically regulating the expression of the gene in plants and increasing the adaptability of plants to environmental stress. The transcription factor-mediated gene expression regulatory networks play an important role in plant stress response pathways. MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factor is one of the largest members of the transcription factor family in plants. It participates and has a great influence on all aspects of plant growth and development. It plays an important role in plant secondary metabolic regulation, hormone and environmental factor responses, cell differentiation, organ morphogenesis, and cell cycle regulation. This review mainly introduces the characteristics, structure, and classification of MYB transcription factors, as well as the abiotic stress resistance to drought, salt, temperature, and other functions in breeding, and provides a reference for the research and utilization of transcription factors in the future.
Collapse
Affiliation(s)
- Jinlu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | | | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
49
|
Li J, Liu J, Zhu T, Zhao C, Li L, Chen M. The Role of Melatonin in Salt Stress Responses. Int J Mol Sci 2019; 20:E1735. [PMID: 30965607 PMCID: PMC6479358 DOI: 10.3390/ijms20071735] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Melatonin, an indoleamine widely found in animals and plants, is considered as a candidate phytohormone that affects responses to a variety of biotic and abiotic stresses. In plants, melatonin has a similar action to that of the auxin indole-3-acetic acid (IAA), and IAA and melatonin have the same biosynthetic precursor, tryptophan. Salt stress results in the rapid accumulation of melatonin in plants. Melatonin enhances plant resistance to salt stress in two ways: one is via direct pathways, such as the direct clearance of reactive oxygen species; the other is via an indirect pathway by enhancing antioxidant enzyme activity, photosynthetic efficiency, and metabolite content, and by regulating transcription factors associated with stress. In addition, melatonin can affect the performance of plants by affecting the expression of genes. Interestingly, other precursors and metabolite molecules associated with melatonin can also increase the tolerance of plants to salt stress. This paper explores the mechanisms by which melatonin alleviates salt stress by its actions on antioxidants, photosynthesis, ion regulation, and stress signaling.
Collapse
Affiliation(s)
- Junpeng Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Jing Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Tingting Zhu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Chen Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Lingyu Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
50
|
Guo J, Dong X, Han G, Wang B. Salt-Enhanced Reproductive Development of Suaeda salsa L. Coincided With Ion Transporter Gene Upregulation in Flowers and Increased Pollen K + Content. FRONTIERS IN PLANT SCIENCE 2019; 10:333. [PMID: 30984214 PMCID: PMC6449877 DOI: 10.3389/fpls.2019.00333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/04/2019] [Indexed: 05/06/2023]
Abstract
Halophytes are adapted to saline environments and demonstrate optimal reproductive growth under high salinity. To gain insight into the salt tolerance mechanism and effects of salinity in the halophyte Suaeda salsa, the number of flowers and seeds, seed size, anther development, ion content, and flower transcript profiles, as well as the relative expression levels of genes involved in ion transport, were analyzed in S. salsa plants treated with 0 or 200 mM NaCl. The seed size, flower number, seed number per leaf axil, and anther fertility were all significantly increased by 200 mM NaCl treatment. The Na+ and Cl- contents in the leaves, stems, and pollen of NaCl-treated plants were all markedly higher, and the K+ content in the leaves and stems was significantly lower, than those in untreated control plants. By contrast, the K+ content in pollen grains did not decrease, but rather increased, upon NaCl treatment. Genes related to Na+, K+ and, Cl- transport, such as SOS1, KEA, AKT1, NHX1, and CHX, showed increased expression in the flowers of NaCl-treated plants. These results suggest that ionic homeostasis in reproductive organs, especially in pollen grains under salt-treated conditions, involves increased expression of ion transport-related genes.
Collapse
Affiliation(s)
| | | | | | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|