1
|
Ullah R, Farias J, Feyissa BA, Tsui MTK, Chow A, Williams C, Karanfil T, Ligaba-Osena A. Combined effects of polyamide microplastic and sulfamethoxazole in modulating the growth and transcriptome profile of hydroponically grown rice (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175909. [PMID: 39233070 DOI: 10.1016/j.scitotenv.2024.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
The use of reclaimed water from wastewater treatment plants for irrigation has a risk of introducing micropollutants such as microplastics (MPs) and antimicrobials (AMs) into the agroecosystem. This study was conducted to investigate the effects of single and combined treatment of 0.1 % polyamide (PA ∼15 μm), and varying sulfamethoxazole (SMX) levels 0, 10, 50, and 150 mg/L on rice seedlings (Oryza sativa L.) for 12 days. The study aimed to assess the impact of these contaminants on the morphological, physiological, and biochemical parameters of the rice plants. The findings revealed that rice seedlings were not sensitive to PA alone. However, SMX alone or in combination with PA, significantly inhibited shoot and root growth, total biomass, and affected photosynthetic pigments. Higher concentrations of SMX increased antioxidant enzyme activity, indicating oxidative stress. The roots had a higher SMX content than the shoots, and the concentration of minerals such as iron, copper, and magnesium were reduced in roots treated with SMX. RNA-seq analysis showed changes in the expression of genes related to stress, metabolism, and transport in response to the micropollutants. Overall, this study provides valuable insights on the combined impacts of MPs and AMs on food crops, the environment, and human health in future risk assessments and management strategies in using reclaimed water.
Collapse
Affiliation(s)
- Raza Ullah
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA
| | - Julia Farias
- USDA-ARS, US Arid Land Agricultural Research Center, 21881 N. Cardon Ln, Maricopa, AZ 85138, USA
| | | | - Martin Tsz-Ki Tsui
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA; School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, New Territories, China; Earth and Environmental Sciences Program, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, China
| | - Alex Chow
- Earth and Environmental Sciences Program, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, China
| | - Clinton Williams
- USDA-ARS, US Arid Land Agricultural Research Center, 21881 N. Cardon Ln, Maricopa, AZ 85138, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA.
| |
Collapse
|
2
|
Ma L, Xu Y, Tao X, Fahim AM, Zhang X, Han C, Yang G, Wang W, Pu Y, Liu L, Fan T, Wu J, Sun W. Integrated miRNA and mRNA Transcriptome Analysis Reveals Regulatory Mechanisms in the Response of Winter Brassica rapa to Drought Stress. Int J Mol Sci 2024; 25:10098. [PMID: 39337583 PMCID: PMC11432419 DOI: 10.3390/ijms251810098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Drought is a major abiotic stress factor that reduces agricultural productivity. Understanding the molecular regulatory network of drought response in winter rape is of great significance for molecular Brassica rapa. In order to comprehensively analyze the network expression of DEGs and DEMIs in winter rape under drought stress, in this study we used Longyou 7 as the experimental material to identify DEGs and DEMIs related to drought stress by transcriptome and miRNA sequencing. A total of 14-15 key differential mRNA genes related to drought stress and biological stress were screened out under different treatments in the three groups. and 32 differential miRNAs were identified through targeted regulatory relationships, and the mRNA expression of 20 target genes was negatively regulated by the targeting regulatory relationship. It is mainly enriched in starch and sucrose metabolism, carbon metabolism and other pathways. Among them, gra-MIR8731-p3_2ss13GA18GA regulated the expression of multiple mRNAs in the three treatments. miRNA is mainly involved in the drought resistance of Chinese cabbage winter rape by regulating the expression of target genes, such as starch and sucrose metabolism, amino acid biosynthesis, and carbon metabolism. These miRNAs and their target genes play an indispensable role in winter rapeseed drought stress tolerance regulation.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanxia Xu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolei Tao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Abbas Muhammad Fahim
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xianliang Zhang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunyang Han
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Gang Yang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Lijun Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingting Fan
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Sharma A, Dheer P, Rautela I, Thapliyal P, Thapliyal P, Bajpai AB, Sharma MD. A review on strategies for crop improvement against drought stress through molecular insights. 3 Biotech 2024; 14:173. [PMID: 38846012 PMCID: PMC11150236 DOI: 10.1007/s13205-024-04020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
The demand for food goods is rising along with the world population growth, which is directly related to the yield of agricultural crops around the world. However, a number of environmental factors, including floods, salinity, moisture, and drought, have a detrimental effect on agricultural production around the world. Among all of these stresses, drought stress (DS) poses a constant threat to agricultural crops and is a significant impediment to global agricultural productivity. Its potency and severity are expected to increase in the future years. A variety of techniques have been used to generate drought-resistant plants in order to get around this restriction. Different crop plants exhibit specific traits that contribute to drought resistance (DR), such as early flowering, drought escape (DE), and leaf traits. We are highlighting numerous methods that can be used to overcome the effects of DS in this review. Agronomic methods, transgenic methods, the use of sufficient fertilizers, and molecular methods such as clustered regularly interspaced short palindromic repeats (CRISPRs)-associated nuclease 9 (Cas9), virus-induced gene silencing (VIGS), quantitative trait loci (QTL) mapping, microRNA (miRNA) technology, and OMICS-based approaches make up the majority of these techniques. CRISPR technology has rapidly become an increasingly popular choice among researchers exploring natural tolerance to abiotic stresses although, only a few plants have been produced so far using this technique. In order to address the difficulties imposed by DS, new plants utilizing the CRISPR technology must be developed.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248001 India
| | - Pallavi Dheer
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001 India
| | - Indra Rautela
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248001 India
| | - Preeti Thapliyal
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248001 India
| | - Priya Thapliyal
- Department of Biochemistry, H.N.B. Garhwal (A Central) University, Srinagar, Uttarakhand 246174 India
| | - Atal Bihari Bajpai
- Department of Botany, D.B.S. (PG) College, Dehradun, Uttarakhand 248001 India
| | - Manish Dev Sharma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001 India
| |
Collapse
|
4
|
Çelik S. Gene expression analysis of potato drought-responsive genes under drought stress in potato ( Solanum tuberosum L.) cultivars. PeerJ 2024; 12:e17116. [PMID: 38525286 PMCID: PMC10960530 DOI: 10.7717/peerj.17116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
The potato (Solanum tuberosum L.), an important field crop consumed extensively worldwide, is adversely affected by abiotic stress factors especially drought. Therefore, it is vital to understand the genetic mechanism under drought stress to decrease loose of yield and quality . This trial aimed to screen drought-responsive gene expressions of potato and determine the drought-tolerant potato cultivar. The trial pattern is a completely randomized block design (CRBD) with four replications under greenhouse conditions. Four cultivars (Brooke, Orwell, Vr808, Shc909) were irrigated with four different water regimes (control and three stress conditions), and the gene expression levels of 10 potato genes were investigated. The stress treatments as follows: Control = 100% field capacity; slight drought = 75% field capacity; moderate drought = 50% field capacity, and severe drought 25% field capacity. To understand the gene expression under drought stress in potato genotypes, RT-qPCR analysis was performed and results showed that the genes most associated with drought tolerance were the StRD22 gene, MYB domain transcription factor, StERD7, Sucrose Synthase (SuSy), ABC Transporter, and StDHN1. The StHSP100 gene had the lowest genetic expression in all cultivars. Among the cultivars, the Orwell exhibited the highest expression of the StRD22 gene under drought stress. Overall, the cultivar with the highest gene expression was the Vr808, closely followed by the Brooke cultivar. As a result, it was determined that potato cultivars Orwell, Vr808, and Brooke could be used as parents in breeding programs to develop drought tolerant potato cultivars.
Collapse
Affiliation(s)
- Sadettin Çelik
- Genç Vocational School, Forestry Department, Bingol University, Bingol, Turkey
| |
Collapse
|
5
|
Yang X, Hu Q, Zhao Y, Chen Y, Li C, He J, Wang ZY. Identification of GmPT proteins and investigation of their expressions in response to abiotic stress in soybean. PLANTA 2024; 259:76. [PMID: 38418674 DOI: 10.1007/s00425-024-04348-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
MAIN CONCLUSION Investigation the expression patterns of GmPT genes in response to various abiotic stresses and overexpression of GmPT11 in soybean hairy roots and Arabidopsis exhibited hypersensitivity to salt stress. Soybean is considered to be one of the significant oil crops globally, as it offers a diverse range of essential nutrients that contribute to human health. Salt stress seriously affects the yield of soybean through negative impacts on the growth, nodulation, reproduction, and other agronomy traits. The phosphate transporters 1(PHT1) subfamily, which is a part of the PHTs family in plants, is primarily found in the cell membrane and responsible for the uptake and transport of phosphorus. However, the role of GmPT (GmPT1-GmPT14) genes in response to salt stress has not been comprehensively studied. Here, we conducted a systematic analysis to ascertain the distribution and genomic duplications of GmPT genes, as well as their expression patterns in response to various abiotic stresses. Promoter analysis of GmPT genes revealed that six stress-related cis-elements were enriched in these genes. The overexpression of GmPT11 in soybean hairy roots and Arabidopsis exhibited hypersensitivity to salt stress, while no significant change was observed under low phosphate treatment, suggesting a crucial role in the response to salt stress. These findings provide novel insights into enhancing plant tolerance to salt stress.
Collapse
Affiliation(s)
- Xiaolan Yang
- College of Agriculture, Guizhou University, Guizhou, 550025, China
| | - Qing Hu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yunfeng Zhao
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yanhang Chen
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 524300, China
| | - Cong Li
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China.
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 524300, China.
| | - Jin He
- College of Agriculture, Guizhou University, Guizhou, 550025, China.
| | - Zhen-Yu Wang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 524300, China
| |
Collapse
|
6
|
Gundaraniya SA, Ambalam PS, Budhwar R, Padhiyar SM, Tomar RS. Transcriptome analysis provides insights into the stress response in cultivated peanut (Arachis hypogaea L.) subjected to drought-stress. Mol Biol Rep 2023; 50:6691-6701. [PMID: 37378750 DOI: 10.1007/s11033-023-08563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Peanut (Arachis hypogaea L.) is one of the valuable oilseed crops grown in drought-prone areas worldwide. Drought severely limits peanut production and productivity significantly. METHOD AND RESULTS In order to decipher the drought tolerance mechanism in peanut under drought stress, RNA sequencing was performed in TAG - 24 (drought tolerant genotype) and JL-24 (drought susceptible genotype). Approximately 51 million raw reads were generated from four different libraries of two genotypes subjected to drought stress exerted by 20% PEG 6000 stress and control conditions, of which ~ 41 million (80.87%) filtered reads were mapped to the Arachis hypogaea L. reference genome. The transcriptome analysis detected 1,629 differentially expressed genes (DEGs), 186 genes encoding transcription factors (TFs) and 30,199 SSR among the identified DEGs. Among the differentially expressed TF encoding genes, the highest number of genes were WRKY followed by bZIP, C2H2, and MYB during drought stress. The comparative analysis between the two genotypes revealed that TAG-24 exhibits activation of certain key genes and transcriptional factors that are involved in essential biological processes. Specifically, TAG-24 showed activation of genes involved in the plant hormone signaling pathway such as PYL9, Auxin response receptor gene, and ABA. Additionally, genes related to water deprivation such as LEA protein and those involved in combating oxidative damage such as Glutathione reductase were also found to be activated in TAG-24. CONCLUSION This genome-wide transcription map, therefore, provides a valuable tool for future transcript profiling under drought stress and enriches the genetic resources available for this important oilseed crop.
Collapse
Affiliation(s)
- Srutiben A Gundaraniya
- Department of Biosciences, Saurashtra University Rajkot, Christ Campus, 360005, Vidya Niketan, Gujarat, India
| | - Padma S Ambalam
- Christ Campus, Saurashtra University, 360005, Vidya Niketan, Rajkot, Gujarat, India
| | - Roli Budhwar
- Bionivid Technology Private Limited, Bengaluru, Karnataka, India
| | - Shital M Padhiyar
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, 362001, Junagadh, Gujarat, India
| | - Rukam S Tomar
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, 362001, Junagadh, Gujarat, India.
| |
Collapse
|
7
|
Fleitas AL, Castro A, Blumwald E, Vidal S. Functional specialization of chloroplast vesiculation ( CV) duplicated genes from soybean shows partial overlapping roles during stress-induced or natural senescence. FRONTIERS IN PLANT SCIENCE 2023; 14:1184020. [PMID: 37346131 PMCID: PMC10280078 DOI: 10.3389/fpls.2023.1184020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
Soybean is a globally important legume crop which is highly sensitive to drought. The identification of genes of particular relevance for drought responses provides an important basis to improve tolerance to environmental stress. Chloroplast Vesiculation (CV) genes have been characterized in Arabidopsis and rice as proteins participating in a specific chloroplast-degradation vesicular pathway (CVV) during natural or stress-induced leaf senescence. Soybean genome contains two paralogous genes encoding highly similar CV proteins, CV1 and CV2. In this study, we found that expression of CV1 was differentially upregulated by drought stress in soybean contrasting genotypes exhibiting slow-wilting (tolerant) or fast-wilting (sensitive) phenotypes. CV1 reached higher induction levels in fast-wilting plants, suggesting a negative correlation between CV1 gene expression and drought tolerance. In contrast, autophagy (ATG8) and ATI-PS (ATI1) genes were induced to higher levels in slow-wilting plants, supporting a pro-survival role for these genes in soybean drought tolerance responses. The biological function of soybean CVs in chloroplast degradation was confirmed by analyzing the effect of conditional overexpression of CV2-FLAG fusions on the accumulation of specific chloroplast proteins. Functional specificity of CV1 and CV2 genes was assessed by analyzing their specific promoter activities in transgenic Arabidopsis expressing GUS reporter gene driven by CV1 or CV2 promoters. CV1 promoter responded primarily to abiotic stimuli (hyperosmolarity, salinity and oxidative stress), while the promoter of CV2 was predominantly active during natural senescence. Both promoters were highly responsive to auxin but only CV1 responded to other stress-related hormones, such as ABA, salicylic acid and methyl jasmonate. Moreover, the dark-induced expression of CV2, but not of CV1, was strongly inhibited by cytokinin, indicating similarities in the regulation of CV2 to the reported expression of Arabidopsis and rice CV genes. Finally, we report the expression of both CV1 and CV2 genes in roots of soybean and transgenic Arabidopsis, suggesting a role for the encoded proteins in root plastids. Together, the results indicate differential roles for CV1 and CV2 in development and in responses to environmental stress, and point to CV1 as a potential target for gene editing to improve crop performance under stress without compromising natural development.
Collapse
Affiliation(s)
- Andrea Luciana Fleitas
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alexandra Castro
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
8
|
Yang X, Kwon H, Kim MY, Lee SH. RNA-seq profiling in leaf tissues of two soybean ( Glycine max [L.] Merr.) cultivars that show contrasting responses to drought stress during early developmental stages. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:42. [PMID: 37309390 PMCID: PMC10248644 DOI: 10.1007/s11032-023-01385-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/13/2023] [Indexed: 06/14/2023]
Abstract
Drought stress is the major environment constraint on soybean yield, and a variety of pathways underlie drought tolerance mechanisms. Transcriptomic profiling of two soybean cultivars, drought-tolerant SS2-2 and drought-sensitive Taekwang, was performed under normal and drought conditions to identify genes involved in drought tolerance. This revealed large differences in water loss during drought treatment. Genes involved in signaling, lipid metabolism, phosphorylation, and gene regulation were overrepresented among genes that were differentially expressed between cultivars and between treatments in each cultivar. The analysis revealed transcription factors from six families, including WRKYs and NACs, showed significant SS2-2-specific upregulation. Genes involved in stress defense pathways, including MAPK signaling, Ca2+ signaling, ROS scavenging, and NBS-LRR, were also identified. Expression of non-specific phospholipases, phospholipase D, and PHOSPHATIDYL INOSITOL MONOPHOSPHATE 5 KINASE (PIP5K), which act in the lipid-signaling pathway, was greatly increased in SS2-2. The roles of PIP5K in drought stress tolerance were confirmed in Arabidopsis thaliana. Arabidopsis pip5k mutants had significantly lower survival rates under drought stress than wild-type plants. This study identified additional elements in the mechanisms used by plants to protect themselves from drought stress and provides valuable information for the development of drought-tolerant soybean cultivars. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01385-1.
Collapse
Affiliation(s)
- Xuefei Yang
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010030 China
| | - Hakyung Kwon
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Moon Young Kim
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 Republic of Korea
| | - Suk-Ha Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 Republic of Korea
- Crop Genomics Lab., Seoul National University, Rm. 4105 Bldg. 200 CALS, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| |
Collapse
|
9
|
Dong W, Li D, Zhang L, Yin B, Zhang Y. Transcriptome Analysis of Short-Day Photoperiod Inducement in Adzuki Bean ( Vigna angularis L.) Based on RNA-Seq. FRONTIERS IN PLANT SCIENCE 2022; 13:893245. [PMID: 35845693 PMCID: PMC9280645 DOI: 10.3389/fpls.2022.893245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The flowering characteristics of adzuki bean are influenced by several environmental factors. Light is an important ecological factor that induces flowering in adzuki bean, but to date, there have been few reports on the transcriptomic features of photoperiodic regulation of adzuki bean flowering. This study is based on RNA sequencing (RNA-seq) techniques to elucidate the expression of light-related regulatory genes under short-day photoperiod inducement of adzuki bean flowering, providing an important theoretical basis for its accelerated breeding. Short-day photoperiod inducement of 10 h was conducted for 5 day, 10 day, and 15 day periods on "Tang shan hong xiao dou" varieties, which are more sensitive to short-day photoperiod conditions than the other varieties. Plants grown under natural light (14.5 h) for 5 days, 10 days, and 15 days were used as controls to compare the progress of flower bud differentiation and flowering characteristics. The topmost unfolded functional leaves were selected for transcriptome sequencing and bioinformatics analysis. The short-day photoperiod inducement promoted flower bud differentiation and advanced flowering time in adzuki bean. Transcriptomic analysis revealed 5,608 differentially expressed genes (DEGs) for the combination of CK-5d vs. SD-5d, CK-10d vs. SD-10d, and CK-15d vs. SD-15d. The three groups of the DEGs were analyzed using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genomes and Genomes (KEGG) databases; the DEGs were associated with flowering, photosystem, and the circadian rhythm and were mainly concentrated in the hormone signaling and metabolism, circadian rhythm, and antenna protein pathways; So, 13 light-related genes across the three pathways were screened for differential and expression characteristics. Through the functional annotations of orthologs, these genes were related to flowering, which were supposed to be good candidate genes in adzuki bean. The findings provide a deep understanding of the molecular mechanisms of adzuki bean flowering in response to short-day photoperiod inducement, which laid a foundation for the functional verification of genes in the next step, and provide an important reference for the molecular breeding of adzuki bean.
Collapse
Affiliation(s)
- Weixin Dong
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
- Hebei Open University, Shijiazhuang, China
| | - Dongxiao Li
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Lei Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Baozhong Yin
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yuechen Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Xuan H, Huang Y, Zhou L, Deng S, Wang C, Xu J, Wang H, Zhao J, Guo N, Xing H. Key Soybean Seedlings Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome Analyses of Two Cultivars. Int J Mol Sci 2022; 23:2893. [PMID: 35270036 PMCID: PMC8911164 DOI: 10.3390/ijms23052893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 02/08/2023] Open
Abstract
Seedling drought stress is one of the most important constraints affecting soybean yield and quality. To unravel the molecular mechanisms under soybean drought tolerance, we conducted comprehensive comparative transcriptome analyses of drought-tolerant genotype Jindou 21 (JD) and drought-sensitive genotype Tianlong No.1 (N1) seedlings that had been exposed to drought treatment. A total of 6038 and 4112 differentially expressed genes (DEGs) were identified in drought-tolerant JD and drought-sensitive N1, respectively. Subsequent KEGG pathway analyses showed that numerous DEGs in JD are predominately involved in signal transduction pathways, including plant hormone signaling pathway, calcium signaling pathway, and MAPK signaling pathway. Interestingly, JA and BR plant hormone signal transduction pathways were found specifically participating in drought-tolerant JD. Meanwhile, the differentially expressed CPKs, CIPKs, MAPKs, and MAP3Ks of calcium and MAPK signaling pathway were only identified in JD. The number of DEGs involved in transcription factors (TFs) is larger in JD than that of in N1. Moreover, some differently expressed transcriptional factor genes were only identified in drought-tolerant JD, including FAR1, RAV, LSD1, EIL, and HB-PHD. In addition, this study suggested that JD could respond to drought stress by regulating the cell wall remodeling and stress-related protein genes such as EXPs, CALSs, CBPs, BBXs, and RD22s. JD is more drought tolerant than N1 owing to more DEGs being involved in multiple signal transduction pathways (JA, BR, calcium, MAPK signaling pathway), stress-related TFs, and proteins. The above valuable genes and pathways will deepen the understanding of the molecular mechanisms under drought stress in soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Na Guo
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (H.X.); (Y.H.); (L.Z.); (S.D.); (C.W.); (J.X.); (H.W.); (J.Z.)
| | - Han Xing
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (H.X.); (Y.H.); (L.Z.); (S.D.); (C.W.); (J.X.); (H.W.); (J.Z.)
| |
Collapse
|
11
|
Li G, Wang Q, Lu L, Wang S, Chen X, Khan MHU, Zhang Y, Yang S. Identification of the soybean small auxin upregulated RNA (SAUR) gene family and specific haplotype for drought tolerance. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Costa JH, Roque ALM, Aziz S, Dos Santos CP, Germano TA, Batista MC, Thiers KLL, da Cruz Saraiva KD, Arnholdt-Schmitt B. Genome-wide identification of ascorbate-glutathione cycle gene families in soybean (Glycine max) reveals gene duplication events and specificity of gene members linked to development and stress conditions. Int J Biol Macromol 2021; 187:528-543. [PMID: 34302870 DOI: 10.1016/j.ijbiomac.2021.07.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022]
Abstract
Ascorbate-glutathione (AsA-GSH) cycle plays an important role in tuning beneficial ROS accumulation for intracellular signals and imparts plant tolerance to oxidative stress by detoxifying excess of ROS. Here, we present genome-wide identification of AsA-GSH cycle genes (APX, MDHAR, DHAR, and GR) in several leguminous species and expression analyses in G. max during stress, germination and tissue development. Our data revealed 24 genes in Glycine genus against the maximum of 15 in other leguminous species, which was due to 9 pars of duplicated genes mostly originated from sub/neofunctionalization. Cytosolic APX and MDHAR genes were highly expressed in different tissues and physiological conditions. Germination induced genes encoding AsA-GSH proteins from different cell compartments, whereas vegetative phase (leaves) stimulated predominantly genes related to chloroplast/mitochondria proteins. Moreover, cytosolic APX-1, 2, MDHAR-1a, 1b and GR genes were the primary genes linked to senescence and biotic stresses, while stAPX-a, b and GR (from organelles) were the most abiotic stress related genes. Biotic and abiotic stress tolerant genotypes generally showed increased MDHAR, DHAR and/or GR mRNA levels compared to susceptible genotypes. Overall, these data clarified evolutionary events in leguminous plants and point to the functional specificity of duplicated genes of the AsA-GSH cycle in G. max.
Collapse
Affiliation(s)
- José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal.
| | - André Luiz Maia Roque
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Shahid Aziz
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Clesivan Pereira Dos Santos
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Thais Andrade Germano
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Mathias Coelho Batista
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Kátia Daniella da Cruz Saraiva
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil; Federal Institute of Education, Science and Technology, Paraíba, Brazil
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| |
Collapse
|
13
|
Singh D, Chaudhary P, Taunk J, Singh CK, Singh D, Tomar RSS, Aski M, Konjengbam NS, Raje RS, Singh S, Sengar RS, Yadav RK, Pal M. Fab Advances in Fabaceae for Abiotic Stress Resilience: From 'Omics' to Artificial Intelligence. Int J Mol Sci 2021; 22:10535. [PMID: 34638885 PMCID: PMC8509049 DOI: 10.3390/ijms221910535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Legumes are a better source of proteins and are richer in diverse micronutrients over the nutritional profile of widely consumed cereals. However, when exposed to a diverse range of abiotic stresses, their overall productivity and quality are hugely impacted. Our limited understanding of genetic determinants and novel variants associated with the abiotic stress response in food legume crops restricts its amelioration. Therefore, it is imperative to understand different molecular approaches in food legume crops that can be utilized in crop improvement programs to minimize the economic loss. 'Omics'-based molecular breeding provides better opportunities over conventional breeding for diversifying the natural germplasm together with improving yield and quality parameters. Due to molecular advancements, the technique is now equipped with novel 'omics' approaches such as ionomics, epigenomics, fluxomics, RNomics, glycomics, glycoproteomics, phosphoproteomics, lipidomics, regulomics, and secretomics. Pan-omics-which utilizes the molecular bases of the stress response to identify genes (genomics), mRNAs (transcriptomics), proteins (proteomics), and biomolecules (metabolomics) associated with stress regulation-has been widely used for abiotic stress amelioration in food legume crops. Integration of pan-omics with novel omics approaches will fast-track legume breeding programs. Moreover, artificial intelligence (AI)-based algorithms can be utilized for simulating crop yield under changing environments, which can help in predicting the genetic gain beforehand. Application of machine learning (ML) in quantitative trait loci (QTL) mining will further help in determining the genetic determinants of abiotic stress tolerance in pulses.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut 250001, India
| | - Ram Sewak Singh Tomar
- College of Horticulture and Forestry, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, India
| | - Muraleedhar Aski
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Noren Singh Konjengbam
- College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University, Imphal 793103, India
| | - Ranjeet Sharan Raje
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sanjay Singh
- ICAR- National Institute of Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Rakesh Singh Sengar
- College of Biotechnology, Sardar Vallabh Bhai Patel Agricultural University, Meerut 250001, India
| | - Rajendra Kumar Yadav
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur 208002, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
14
|
Aydin A, Kurt F, Hürkan K. Key aromatic amino acid players in soybean (Glycine max) genome under drought and salt stresses. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Li M, Cao L, Mwimba M, Zhou Y, Li L, Zhou M, Schnable PS, O'Rourke JA, Dong X, Wang W. Comprehensive mapping of abiotic stress inputs into the soybean circadian clock. Proc Natl Acad Sci U S A 2019; 116:23840-23849. [PMID: 31676549 PMCID: PMC6876155 DOI: 10.1073/pnas.1708508116] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant circadian clock evolved to increase fitness by synchronizing physiological processes with environmental oscillations. Crop fitness was artificially selected through domestication and breeding, and the circadian clock was identified by both natural and artificial selections as a key to improved fitness. Despite progress in Arabidopsis, our understanding of the crop circadian clock is still limited, impeding its rational improvement for enhanced fitness. To unveil the interactions between the crop circadian clock and various environmental cues, we comprehensively mapped abiotic stress inputs to the soybean circadian clock using a 2-module discovery pipeline. Using the "molecular timetable" method, we computationally surveyed publicly available abiotic stress-related soybean transcriptomes to identify stresses that have strong impacts on the global rhythm. These findings were then experimentally confirmed using a multiplexed RNA sequencing technology. Specific clock components modulated by each stress were further identified. This comprehensive mapping uncovered inputs to the plant circadian clock such as alkaline stress. Moreover, short-term iron deficiency targeted different clock components in soybean and Arabidopsis and thus had opposite effects on the clocks of these 2 species. Comparing soybean varieties with different iron uptake efficiencies suggests that phase modulation might be a mechanism to alleviate iron deficiency symptoms in soybean. These unique responses in soybean demonstrate the need to directly study crop circadian clocks. Our discovery pipeline may serve as a broadly applicable tool to facilitate these explorations.
Collapse
Affiliation(s)
- Meina Li
- School of Life Sciences, Guangzhou University, 510006 Guangzhou, China
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - Lijun Cao
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - Musoki Mwimba
- Howard Hughes Medical Institute and Gordon and Betty Moore Foundation, Duke University, Durham, NC 27708
- Department of Biology, Duke University, Durham, NC 27708
| | - Yan Zhou
- Department of Agronomy, Iowa State University, Ames, IA 50011
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762
| | - Mian Zhou
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
- College of Life Sciences, Capital Normal University, 100048 Beijing, China
| | | | - Jamie A O'Rourke
- Department of Agronomy, Iowa State University, Ames, IA 50011
- Corn Insects and Crop Genetics Research Unit, Agricultural Research Service, US Department of Agriculture, Ames, IA 50011
| | - Xinnian Dong
- Howard Hughes Medical Institute and Gordon and Betty Moore Foundation, Duke University, Durham, NC 27708;
- Department of Biology, Duke University, Durham, NC 27708
| | - Wei Wang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011;
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871 Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| |
Collapse
|
16
|
Rathi D, Gayali S, Pareek A, Chakraborty S, Chakraborty N. Transcriptome profiling illustrates expression signatures of dehydration tolerance in developing grasspea seedlings. PLANTA 2019; 250:839-855. [PMID: 30627890 DOI: 10.1007/s00425-018-03082-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
This study highlights dehydration-mediated temporal changes in physicochemical, transcriptome and metabolome profiles indicating altered gene expression and metabolic shifts, underlying endurance and adaptation to stress tolerance in the marginalized crop, grasspea. Grasspea, often regarded as an orphan legume, is recognized to be fairly tolerant to water-deficit stress. In the present study, 3-week-old grasspea seedlings were subjected to dehydration by withholding water over a period of 144 h. While there were no detectable phenotypic changes in the seedlings till 48 h, the symptoms appeared during 72 h and aggravated upon prolonged dehydration. The physiological responses to water-deficit stress during 72-96 h displayed a decrease in pigments, disruption in membrane integrity and osmotic imbalance. We evaluated the temporal effects of dehydration at the transcriptome and metabolome levels. In total, 5201 genes of various functional classes including transcription factors, cytoplasmic enzymes and structural cell wall proteins, among others, were found to be dehydration-responsive. Further, metabolome profiling revealed 59 dehydration-responsive metabolites including sugar alcohols and amino acids. Despite the lack of genome information of grasspea, the time course of physicochemical and molecular responses suggest a synchronized dehydration response. The cross-species comparison of the transcriptomes and metabolomes with other legumes provides evidence for marked molecular diversity. We propose a hypothetical model that highlights novel biomarkers and explain their relevance in dehydration-response, which would facilitate targeted breeding and aid in commencing crop improvement efforts.
Collapse
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Saurabh Gayali
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Akanksha Pareek
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
17
|
Lee J, Heath LS, Grene R, Li S. Comparing time series transcriptome data between plants using a network module finding algorithm. PLANT METHODS 2019; 15:61. [PMID: 31164912 PMCID: PMC6544932 DOI: 10.1186/s13007-019-0440-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/17/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Comparative transcriptome analysis is the comparison of expression patterns between homologous genes in different species. Since most molecular mechanistic studies in plants have been performed in model species, including Arabidopsis and rice, comparative transcriptome analysis is particularly important for functional annotation of genes in diverse plant species. Many biological processes, such as embryo development, are highly conserved between different plant species. The challenge is to establish one-to-one mapping of the developmental stages between two species. RESULTS In this manuscript, we solve this problem by converting the gene expression patterns into co-expression networks and then apply network module finding algorithms to the cross-species co-expression network. We describe how such analyses are carried out using bash scripts for preliminary data processing followed by using the R programming language for module finding with a simulated annealing method. We also provide instructions on how to visualize the resulting co-expression networks across species. CONCLUSIONS We provide a comprehensive pipeline from installing software and downloading raw transcriptome data to predicting homologous genes and finding orthologous co-expression networks. From the example provided, we demonstrate the application of our method to reveal functional conservation and divergence of genes in two plant species.
Collapse
Affiliation(s)
- Jiyoung Lee
- Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Lenwood S. Heath
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Ruth Grene
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Song Li
- Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| |
Collapse
|
18
|
Nadeem M, Li J, Yahya M, Sher A, Ma C, Wang X, Qiu L. Research Progress and Perspective on Drought Stress in Legumes: A Review. Int J Mol Sci 2019; 20:E2541. [PMID: 31126133 PMCID: PMC6567229 DOI: 10.3390/ijms20102541] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/11/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Climate change, food shortage, water scarcity, and population growth are some of the threatening challenges being faced in today's world. Drought stress (DS) poses a constant challenge for agricultural crops and has been considered a severe constraint for global agricultural productivity; its intensity and severity are predicted to increase in the near future. Legumes demonstrate high sensitivity to DS, especially at vegetative and reproductive stages. They are mostly grown in the dry areas and are moderately drought tolerant, but severe DS leads to remarkable production losses. The most prominent effects of DS are reduced germination, stunted growth, serious damage to the photosynthetic apparatus, decrease in net photosynthesis, and a reduction in nutrient uptake. To curb the catastrophic effect of DS in legumes, it is imperative to understand its effects, mechanisms, and the agronomic and genetic basis of drought for sustainable management. This review highlights the impact of DS on legumes, mechanisms, and proposes appropriate management approaches to alleviate the severity of water stress. In our discussion, we outline the influence of water stress on physiological aspects (such as germination, photosynthesis, water and nutrient uptake), growth parameters and yield. Additionally, mechanisms, various management strategies, for instance, agronomic practices (planting time and geometry, nutrient management), plant growth-promoting Rhizobacteria and arbuscular mycorrhizal fungal inoculation, quantitative trait loci (QTLs), functional genomics and advanced strategies (CRISPR-Cas9) are also critically discussed. We propose that the integration of several approaches such as agronomic and biotechnological strategies as well as advanced genome editing tools is needed to develop drought-tolerant legume cultivars.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Muhammad Yahya
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Alam Sher
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Lijuan Qiu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
19
|
Xu C, Xia C, Xia Z, Zhou X, Huang J, Huang Z, Liu Y, Jiang Y, Casteel S, Zhang C. Physiological and transcriptomic responses of reproductive stage soybean to drought stress. PLANT CELL REPORTS 2018; 37:1611-1624. [PMID: 30099610 DOI: 10.1007/s00299-018-2332-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/06/2018] [Indexed: 05/24/2023]
Abstract
KEY MESSAGE The dynamic alterations of the physiological and molecular processes in reproductive stage soybean indicated the dramatic impact caused by drought. Drought is a major abiotic stress that limits soybean (Glycine max) production. Most prior studies were focused on either model species or crops that are at their vegetative stages. It is known that the reproductive stage of soybean is more susceptible to drought. Therefore, an understanding on the responsive mechanisms during this stage will not only be important for basic plant physiology, but the knowledge can also be used for crop improvement via either genetic engineering or molecular breeding. In this study, physiological measurements and RNA-Seq analysis were used to dissect the metabolic alterations and molecular responses in the leaves of soybean grown at drought condition. Photosynthesis rate, stomata conductance, transpiration, and water potential were reduced. The activities of SOD and CAT were increased, while the activity of POD stayed unchanged. A total of 2771 annotated genes with at least twofold changes were found to be differentially expressed in the drought-stressed plants in which 1798 genes were upregulated and 973 were downregulated. Via KEGG analysis, these genes were assigned to multiple molecular pathways, including ABA biogenesis, compatible compound accumulation, secondary metabolite synthesis, fatty acid desaturation, plant transcription factors, etc. The large number of differentially expressed genes and the diverse pathways indicated that soybean employs complicated mechanisms to cope with drought. Some of the identified genes and pathways can be used as targets for genetic engineering or molecular breeding to improve drought resistance in soybean.
Collapse
Affiliation(s)
- Congshan Xu
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Chao Xia
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhiqiang Xia
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Xiangjun Zhou
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Jing Huang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Yan Liu
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- The Institute of Sericulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Shaun Casteel
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Cankui Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
20
|
Multiple Regression Analysis Reveals MicroRNA Regulatory Networks in Oryza sativa under Drought Stress. Int J Genomics 2018; 2018:9395261. [PMID: 30402456 PMCID: PMC6196795 DOI: 10.1155/2018/9395261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 01/17/2023] Open
Abstract
Drought is a major abiotic stress that reduces rice development and yield. miRNAs (microRNAs) are known to mediate posttranscriptional regulation under drought stress. Although the importance of individual miRNAs has been established, the crosstalks between miRNAs and mRNAs remain unearthed. Here we performed microarray analysis of miRNAs and matched mRNA expression profiles of drought-treated rice cultivar Nipponbare. Drought-responsive miRNA-mRNA regulations were identified by a combination of a partial least square (PLS) regression approach and sequence-based target prediction. A drought-induced network with 13 miRNAs and 58 target mRNAs was constructed, and four miRNA coregulatory modules were revealed. Functional analysis suggested that drought-response miRNA targets are enriched in hormone signaling, lipid and carbohydrate metabolism, and antioxidant defense. 13 candidate miRNAs and target genes were validated by RT-qPCR, hierarchical clustering, and ROC analysis. Two target genes (DWARF-3 and P0651G05.2) of miRNA coregulatory modules were further verified by RLM-5' RACE. Together, our integrative study of miRNA-mRNA interaction provided attractive candidates that will help elucidate the drought-response mechanisms in Oryza sativa.
Collapse
|
21
|
Wang B, Lv XQ, He L, Zhao Q, Xu MS, Zhang L, Jia Y, Zhang F, Liu FL, Liu QL. Whole-Transcriptome Sequence Analysis of Verbena bonariensis in Response to Drought Stress. Int J Mol Sci 2018; 19:E1751. [PMID: 29899256 PMCID: PMC6032440 DOI: 10.3390/ijms19061751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022] Open
Abstract
Drought is an important abiotic factor that threatens the growth and development of plants. Verbena bonariensis is a widely used landscape plant with a very high ornamental value. We found that Verbena has drought tolerance in production practice, so in order to delve into its mechanism of drought resistance and screen out its drought-resistance genes, we used the RNA-Seq platform to perform a de novo transcriptome assembly to analyze Verbena transcription response to drought stress. By high-throughput sequencing with Illumina Hiseq Xten, a total of 44.59 Gb clean data was obtained from T01 (control group) and T02 (drought experiment group). After assembly, 111,313 unigenes were obtained, and 53,757 of them were annotated by compared databases. In this study, 4829 differentially expressed genes were obtained, of which 4165 were annotated. We performed GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses, and explored a lot of differently expressed genes related to plant energy production, hormone synthesis, cell signal transduction, and metabolism to understand the stress response of Verbena in drought stress. In addition, we also found that a series of TFs related to drought-resistance of Verbena and provide excellent genetic resources for improving the drought tolerance of crops.
Collapse
Affiliation(s)
- Bei Wang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Xue-Qi Lv
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Ling He
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Qian Zhao
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Mao-Sheng Xu
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Lei Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Yin Jia
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Fan Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Feng-Luan Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, The Chinese Academy of Science, Shanghai Chenshan Botanical Garden, 3888 Huagong Road, Songjiang District, Shanghai 201602, China.
| | - Qing-Lin Liu
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| |
Collapse
|
22
|
Gallino JP, Ruibal C, Casaretto E, Fleitas AL, Bonnecarrère V, Borsani O, Vidal S. A Dehydration-Induced Eukaryotic Translation Initiation Factor iso4G Identified in a Slow Wilting Soybean Cultivar Enhances Abiotic Stress Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:262. [PMID: 29552022 PMCID: PMC5840855 DOI: 10.3389/fpls.2018.00262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/14/2018] [Indexed: 05/31/2023]
Abstract
Water is usually the main limiting factor for soybean productivity worldwide and yet advances in genetic improvement for drought resistance in this crop are still limited. In the present study, we investigated the physiological and molecular responses to drought in two soybean contrasting genotypes, a slow wilting N7001 and a drought sensitive TJS2049 cultivars. Measurements of stomatal conductance, carbon isotope ratios and accumulated dry matter showed that N7001 responds to drought by employing mechanisms resulting in a more efficient water use than TJS2049. To provide an insight into the molecular mechanisms that these cultivars employ to deal with water stress, their early and late transcriptional responses to drought were analyzed by suppression subtractive hybridization. A number of differentially regulated genes from N7001 were identified and their expression pattern was compared between in this genotype and TJS2049. Overall, the data set indicated that N7001 responds to drought earlier than TJ2049 by up-regulating a larger number of genes, most of them encoding proteins with regulatory and signaling functions. The data supports the idea that at least some of the phenotypic differences between slow wilting and drought sensitive plants may rely on the regulation of the level and timing of expression of specific genes. One of the genes that exhibited a marked N7001-specific drought induction profile encoded a eukaryotic translation initiation factor iso4G (GmeIFiso4G-1a). GmeIFiso4G-1a is one of four members of this protein family in soybean, all of them sharing high sequence identity with each other. In silico analysis of GmeIFiso4G-1 promoter sequences suggested a possible functional specialization between distinct family members, which can attain differences at the transcriptional level. Conditional overexpression of GmeIFiso4G-1a in Arabidopsis conferred the transgenic plants increased tolerance to osmotic, salt, drought and low temperature stress, providing a strong experimental evidence for a direct association between a protein of this class and general abiotic stress tolerance mechanisms. Moreover, the results of this work reinforce the importance of the control of protein synthesis as a central mechanism of stress adaptation and opens up for new strategies for improving crop performance under stress.
Collapse
Affiliation(s)
- Juan P. Gallino
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Ruibal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Esteban Casaretto
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Andrea L. Fleitas
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Victoria Bonnecarrère
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Montevideo, Uruguay
| | - Omar Borsani
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
23
|
Pieczynski M, Wyrzykowska A, Milanowska K, Boguszewska‐Mankowska D, Zagdanska B, Karlowski W, Jarmolowski A, Szweykowska‐Kulinska Z. Genomewide identification of genes involved in the potato response to drought indicates functional evolutionary conservation with Arabidopsis plants. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:603-614. [PMID: 28718511 PMCID: PMC5787840 DOI: 10.1111/pbi.12800] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 05/23/2023]
Abstract
Potato is one of the four most important food crop plants worldwide and is strongly affected by drought. The following two pairs of potato cultivars, which are related in ancestry but show different drought tolerances, were chosen for comparative gene expression studies: Gwiazda/Oberon and Tajfun/Owacja. Comparative RNA-seq analyses of gene expression differences in the transcriptomes obtained from drought-tolerant versus drought-sensitive plants during water shortage conditions were performed. The 23 top-ranking genes were selected, 22 of which are described here as novel potato drought-responsive genes. Moreover, all but one of the potato genes selected have homologues in the Arabidopsis genome. Of the seven tested A. thaliana mutants with altered expression of the selected homologous genes, compared to the wild-type Arabidopsis plants, six showed an improved tolerance to drought. These genes encode carbohydrate transporter, mitogen-activated protein kinase kinase kinase 15 (MAPKKK15), serine carboxypeptidase-like 19 protein (SCPL19), armadillo/beta-catenin-like repeat-containing protein, high-affinity nitrate transporter 2.7 and nonspecific lipid transfer protein type 2 (nsLPT). The evolutionary conservation of the functions of the selected genes in the plant response to drought confirms the importance of these identified potato genes in the ability of plants to cope with water shortage conditions. Knowledge regarding these gene functions can be used to generate potato cultivars that are resistant to unfavourable conditions. The approach used in this work and the obtained results allowed for the identification of new players in the plant response to drought.
Collapse
Affiliation(s)
- Marcin Pieczynski
- Department of Gene ExpressionFaculty of BiologyInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | - Anna Wyrzykowska
- Department of Gene ExpressionFaculty of BiologyInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | - Kaja Milanowska
- Department of Gene ExpressionFaculty of BiologyInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | - Dominika Boguszewska‐Mankowska
- Potato Agronomy Department, Plant Breeding and Acclimatization InstituteNational Research InstituteDivision JadwisinPoland
| | - Barbara Zagdanska
- Department of BiochemistryFaculty of Agriculture and BiologyWarsaw University of Life SciencesWarsawPoland
| | - Wojciech Karlowski
- Department of Computational BiologyFaculty of BiologyInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | - Artur Jarmolowski
- Department of Gene ExpressionFaculty of BiologyInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | - Zofia Szweykowska‐Kulinska
- Department of Gene ExpressionFaculty of BiologyInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| |
Collapse
|
24
|
Physiological and transcriptome analysis of He-Ne laser pretreated wheat seedlings in response to drought stress. Sci Rep 2017; 7:6108. [PMID: 28733678 PMCID: PMC5522386 DOI: 10.1038/s41598-017-06518-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
Drought stress is a serious problem worldwide that reduces crop productivity. The laser has been shown to play a positive physiological role in enhancing plant seedlings tolerance to various abiotic stresses. However, little information is available about the molecular mechanism of He-Ne laser irradiation induced physiological changes for wheat adapting to drought conditions. Here, we performed a large-scale transcriptome sequencing to determine the molecular roles of He-Ne laser pretreated wheat seedlings under drought stress. There were 98.822 transcripts identified, and, among them, 820 transcripts were found to be differentially expressed in He-Ne laser pretreated wheat seedlings under drought stress compared with drought stress alone. Furthermore, most representative transcripts related to photosynthesis, nutrient uptake and transport, homeostasis control of reactive oxygen species and transcriptional regulation were expressed predominantly in He-Ne laser pretreated wheat seedlings. Thus, the up-regulated physiological processes of photosynthesis, antioxidation and osmotic accumulation because of the modified expressions of the related genes could contribute to the enhanced drought tolerance induced by He-Ne laser pretreatment. These findings will expand our understanding of the complex molecular events associated with drought tolerance conferred by laser irradiation in wheat and provide abundant genetic resources for future studies on plant adaptability to environmental stresses.
Collapse
|
25
|
Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice ( Oryza rufipogon). Biosci Rep 2017; 37:BSR20160509. [PMID: 28424372 PMCID: PMC6434088 DOI: 10.1042/bsr20160509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/05/2017] [Accepted: 04/19/2017] [Indexed: 11/17/2022] Open
Abstract
Drought is a serious constraint to rice production throughout the world, and although Dongxiang wild rice (Oryza rufipogon, DXWR) possesses a high degree of drought resistance, the underlying mechanisms of this trait remains unclear. In the present study, cDNA libraries were constructed from the leaf and root tissues of drought-stressed and untreated DXWR seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in drought-stress response. The results indicated that 11231 transcripts were differentially expressed in the leaves (4040 up-regulated and 7191 down-regulated) and 7025 transcripts were differentially expressed in the roots (3097 up-regulated and 3928 down-regulated). Among these differentially expressed genes (DEGs), the detection of many transcriptional factors and functional genes demonstrated that multiple regulatory pathways were involved in drought resistance. Meanwhile, the DEGs were also annotated with gene ontology (GO) terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping, respectively. A set of the most interesting candidate genes was then identified by combining the DEGs with previously identified drought-resistant quantitative trait loci (QTL). The present work provides abundant genomic information for functional dissection of the drought resistance of DXWR, and findings will further help the current understanding of the biological regulatory mechanisms of drought resistance in plants and facilitate the breeding of new drought-resistant rice cultivars.
Collapse
|
26
|
Zhang DY, Kumar M, Xu L, Wan Q, Huang YH, Xu ZL, He XL, Ma JB, Pandey GK, Shao HB. Genome-wide identification of Major Intrinsic Proteins in Glycine soja and characterization of GmTIP2;1 function under salt and water stress. Sci Rep 2017; 7:4106. [PMID: 28646139 PMCID: PMC5482899 DOI: 10.1038/s41598-017-04253-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
In different plant species, aquaporins (AQPs) facilitate water movement by regulating root hydraulic conductivity under diverse stress conditions such as salt and water stresses. To improve survival and yield of crop plants, a detailed understanding of stress responses is imperative and required. We used Glycine soja genome as a tool to study AQPs, considering it shows abundant genetic diversity and higher salt environment tolerance features and identified 62 Gs AQP genes. Additionally, this study identifies major aquaporins responsive to salt and drought stresses in soybean and elucidates their mode of action through yeast two-hybrid assay and BiFC. Under stress condition, the expression analysis of AQPs in roots and leaves of two contrasting ecotypes of soybean revealed diverse expression patterns suggesting complex regulation at transcriptional level. Based on expression analysis, we identify GmTIP2;1 as a potential candidate involved in salinity and drought responses. The overexpression of GmTIP2;1 in Saccharomyces cerevisiae as well as in-planta enhanced salt and drought tolerance. We identified that GmTIP2;1 forms homodimers as well as interacts with GmTIP1;7 and GmTIP1;8. This study augments our knowledge of stress responsive pathways and also establishes GmTIP2;1 as a new stress responsive gene in imparting salt stress tolerance in soybean.
Collapse
Affiliation(s)
- Da-Yong Zhang
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Manoj Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ling Xu
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Qun Wan
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Yi-Hong Huang
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Zhao-Long Xu
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Xiao-Lan He
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Jin-Biao Ma
- Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences Urumqi, Urumqi, China
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India.
| | - Hong-Bo Shao
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China.
- JLCBE, Yancheng Teachers University, Xiwang Avenue 1, Yancheng, 224002, China.
| |
Collapse
|
27
|
Chen Q, Li M, Zhang Z, Tie W, Chen X, Jin L, Zhai N, Zheng Q, Zhang J, Wang R, Xu G, Zhang H, Liu P, Zhou H. Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco. BMC Genomics 2017; 18:62. [PMID: 28068898 PMCID: PMC5223433 DOI: 10.1186/s12864-016-3372-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 12/02/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Drought stress is one of the most severe problem limited agricultural productivity worldwide. It has been reported that plants response to drought-stress by sophisticated mechanisms at both transcriptional and post-transcriptional levels. However, the precise molecular mechanisms governing the responses of tobacco leaves to drought stress and water status are not well understood. To identify genes and miRNAs involved in drought-stress responses in tobacco, we performed both mRNA and small RNA sequencing on tobacco leaf samples from the following three treatments: untreated-control (CL), drought stress (DL), and re-watering (WL). RESULTS In total, we identified 798 differentially expressed genes (DEGs) between the DL and CL (DL vs. CL) treatments and identified 571 DEGs between the WL and DL (WL vs. DL) treatments. Further analysis revealed 443 overlapping DEGs between the DL vs. CL and WL vs. DL comparisons, and, strikingly, all of these genes exhibited opposing expression trends between these two comparisons, strongly suggesting that these overlapping DEGs are somehow involved in the responses of tobacco leaves to drought stress. Functional annotation analysis showed significant up-regulation of genes annotated to be involved in responses to stimulus and stress, (e.g., late embryogenesis abundant proteins and heat-shock proteins) antioxidant defense (e.g., peroxidases and glutathione S-transferases), down regulation of genes related to the cell cycle pathway, and photosynthesis processes. We also found 69 and 56 transcription factors (TFs) among the DEGs in, respectively, the DL vs. CL and the WL vs. DL comparisons. In addition, small RNA sequencing revealed 63 known microRNAs (miRNA) from 32 families and 368 novel miRNA candidates in tobacco. We also found that five known miRNA families (miR398, miR390, miR162, miR166, and miR168) showed differential regulation under drought conditions. Analysis to identify negative correlations between the differentially expressed miRNAs (DEMs) and DEGs revealed 92 mRNA-miRNA interactions between CL and DL plants, and 32 mRNA-miRNA interactions between DL and WL plants. CONCLUSIONS This study provides a global view of the transcriptional and the post-transcriptional responses of tobacco under drought stress and re-watering conditions. Our results establish an empirical foundation that should prove valuable for further investigations into the molecular mechanisms through which tobacco, and plants more generally, respond to drought stress at multiple molecular genetic levels.
Collapse
Affiliation(s)
- Qiansi Chen
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Meng Li
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410000, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410000, China
| | - Zhongchun Zhang
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xia Chen
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Lifeng Jin
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Niu Zhai
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Qingxia Zheng
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Jianfeng Zhang
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Ran Wang
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Guoyun Xu
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Hui Zhang
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| |
Collapse
|
28
|
Saraiva KDDC, Oliveira AER, Dos Santos CP, Lima KTL, de Sousa JM, Fernandes de Melo D, Costa JH. Phylogenetic analysis and differential expression of EF1α genes in soybean during development, stress and phytohormone treatments. Mol Genet Genomics 2016; 291:1505-22. [PMID: 26984342 DOI: 10.1007/s00438-016-1198-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/05/2016] [Indexed: 11/26/2022]
Abstract
The EF1α is a multifunctional protein with additional unrelated activities to its primary function in translation. This protein is encoded by a multigene family and few studies are still available in plants. Expression of six EF1α genes in Glycine max was performed using RT-qPCR and RNA-seq data to advance in the function of each gene during plant development, stress conditions and phytohormone treatments. A phylogenetic classification in Phaseoleae tribe was used to identify the G. max EF1α genes (EF1α 1a1, 1a2, 1b, 2a, 2b and 3). Three EF1α types (1-3) were found in Phaseoleae revealing duplications in G. max types 1 and 2. EF1α genes were expressed in all studied tissues, however, specific amount of each transcript was detected. In plant development, all EF1α transcripts were generally more expressed in younger tissues, however, in unifoliolate leaves and cotyledons a higher expression occurred in older tissues. Five EF1α genes (except 2a) were up-regulated under stress in a response tissue/stress/cultivar-dependent. EF1α 3 was the most stress-induced gene linked to cultivar stress tolerance mainly in aerial tissues. Auxin, salicylate and ethylene induced differentially the EF1α expression. Overall, this study provides a consistent EF1α classification in Phaseoleae tribe to better understand their functional evolution. The RT-qPCR and RNA-seq EF1α expression profiles were consistent, both exhibiting expression diversification of each gene (spatio-temporal, stress and phytohormone stimuli). Our results point out the EF1α genes, especially EF1α 3, as candidate for developing a useful tool for future G. max breeding.
Collapse
Affiliation(s)
- Kátia Daniella da Cruz Saraiva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx., 6033, Fortaleza, Fortaleza, CE, 60451-970, Brazil
| | - Antonio Edson Rocha Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx., 6033, Fortaleza, Fortaleza, CE, 60451-970, Brazil
| | - Clesivan Pereira Dos Santos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx., 6033, Fortaleza, Fortaleza, CE, 60451-970, Brazil
| | - Karine Thiers Leitão Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx., 6033, Fortaleza, Fortaleza, CE, 60451-970, Brazil
| | - Janaina Martins de Sousa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx., 6033, Fortaleza, Fortaleza, CE, 60451-970, Brazil
| | - Dirce Fernandes de Melo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx., 6033, Fortaleza, Fortaleza, CE, 60451-970, Brazil
| | - José Hélio Costa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx., 6033, Fortaleza, Fortaleza, CE, 60451-970, Brazil.
| |
Collapse
|
29
|
Song L, Prince S, Valliyodan B, Joshi T, Maldonado dos Santos JV, Wang J, Lin L, Wan J, Wang Y, Xu D, Nguyen HT. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions. BMC Genomics 2016; 17:57. [PMID: 26769043 PMCID: PMC4714440 DOI: 10.1186/s12864-016-2378-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soybean is a major crop that provides an important source of protein and oil to humans and animals, but its production can be dramatically decreased by the occurrence of drought stress. Soybeans can survive drought stress if there is a robust and deep root system at the early vegetative growth stage. However, little is known about the genome-wide molecular mechanisms contributing to soybean root system architecture. This study was performed to gain knowledge on transcriptome changes and related molecular mechanisms contributing to soybean root development under water limited conditions. RESULTS The soybean Williams 82 genotype was subjected to very mild stress (VMS), mild stress (MS) and severe stress (SS) conditions, as well as recovery from the severe stress after re-watering (SR). In total, 6,609 genes in the roots showed differential expression patterns in response to different water-deficit stress levels. Genes involved in hormone (Auxin/Ethylene), carbohydrate, and cell wall-related metabolism (XTH/lipid/flavonoids/lignin) pathways were differentially regulated in the soybean root system. Several transcription factors (TFs) regulating root growth and responses under varying water-deficit conditions were identified and the expression patterns of six TFs were found to be common across the stress levels. Further analysis on the whole plant level led to the finding of tissue-specific or water-deficit levels specific regulation of transcription factors. Analysis of the over-represented motif of different gene groups revealed several new cis-elements associated with different levels of water deficit. The expression patterns of 18 genes were confirmed byquantitative reverse transcription polymerase chain reaction method and demonstrated the accuracy and effectiveness of RNA-Seq. CONCLUSIONS The primary root specific transcriptome in soybean can enable a better understanding of the root response to water deficit conditions. The genes detected in root tissues that were associated with key hormones, carbohydrates, and cell wall-related metabolism could play a vital role in achieving drought tolerance and could be promising candidates for future functional characterization. TFs involved in the soybean root and at the whole plant level could be used for future network analysis between TFs and cis-elements. All of these findings will be helpful in elucidating the molecular mechanisms associated with water stress responses in soybean roots.
Collapse
Affiliation(s)
- Li Song
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Silvas Prince
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Babu Valliyodan
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Trupti Joshi
- Department of Computer Science, and Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
- MU Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| | - Joao V Maldonado dos Santos
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Jiaojiao Wang
- Department of Computer Science, and Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Li Lin
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Jinrong Wan
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Yongqin Wang
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Dong Xu
- Department of Computer Science, and Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
- MU Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| | - Henry T Nguyen
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
30
|
Ma X, Xia H, Liu Y, Wei H, Zheng X, Song C, Chen L, Liu H, Luo L. Transcriptomic and Metabolomic Studies Disclose Key Metabolism Pathways Contributing to Well-maintained Photosynthesis under the Drought and the Consequent Drought-Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:1886. [PMID: 28066455 PMCID: PMC5174129 DOI: 10.3389/fpls.2016.01886] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/29/2016] [Indexed: 05/20/2023]
Abstract
In contrast to wild species, drought-tolerance in crops requires a fully functional metabolism during drought (particularly photosynthetic processes). However, the link between drought-tolerance, photosynthetic regulation during drought, and the associated transcript and metabolic foundation, remains largely unknown. For this study, we used two rice cultivars with contrasting drought-tolerance (the drought-intolerant cultivar IRAT109 and the drought-tolerant cultivar IAC1246) to explore transcript and metabolic responses to long-term drought. The drought-tolerant cultivar represented higher osmotic adjustment and antioxidant capacity, as well as higher relative photosynthesis rate under a progressive drought stress occurred in a modified field with shallow soil-layers. A total of 4059 and 2677 differentially expressed genes (DEGs) were identified in IRAT109 and IAC1246 between the drought and well-watered conditions, respectively. A total of 69 and 47 differential metabolites (DMs) were identified between the two treatments in IRAT109 and IAC1246, respectively. Compared to IRAT109, the DEGs of IAC1246 displayed enhanced regulatory amplitude during drought. We found significant correlations between DEGs and the osmolality and total antioxidant capacity (AOC) of both cultivars. During the early stages of drought, we detected up-regulation of DEGs in IAC1246 related to photosynthesis, in accordance with its higher relative photosynthesis rate. The contents of six differential metabolites were correlated with the osmotic potential and AOC. Moreover, they were differently regulated between the two cultivars. Particularly, up-regulations of 4-hydroxycinnamic acid and ferulic acid were consistent with the performance of photosynthesis-related DEGs at the early stages of drought in IAC1246. Therefore, 4-hydroxycinnamic acid and ferulic acid were considered as key metabolites for rice drought-tolerance. DEGs involved in pathways of these metabolites are expected to be good candidate genes to improve drought-tolerance. In conclusion, well-maintained photosynthesis under drought should contribute to improved drought-tolerance in rice. Metabolites play vital roles in protecting photosynthesis under dehydration via osmotic adjustments and/or antioxidant mechanisms. A metabolite-based method was thus an effective way to explore drought candidate genes. Metabolic accompanied by transcript responses to drought stress should be further studied to find more useful metabolites, pathways, and genes.
Collapse
Affiliation(s)
- Xiaosong Ma
- Shanghai Agrobiological Gene CenterShanghai, China
- College of Plant Sciences and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Hui Xia
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Yunhua Liu
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Haibin Wei
- Shanghai Agrobiological Gene CenterShanghai, China
| | | | - Congzhi Song
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Liang Chen
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Hongyan Liu
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene CenterShanghai, China
- College of Plant Sciences and Technology, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Lijun Luo
| |
Collapse
|
31
|
Song L, Nguyen N, Deshmukh RK, Patil GB, Prince SJ, Valliyodan B, Mutava R, Pike SM, Gassmann W, Nguyen HT. Soybean TIP Gene Family Analysis and Characterization of GmTIP1;5 and GmTIP2;5 Water Transport Activity. FRONTIERS IN PLANT SCIENCE 2016; 7:1564. [PMID: 27818669 PMCID: PMC5073556 DOI: 10.3389/fpls.2016.01564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/04/2016] [Indexed: 05/04/2023]
Abstract
Soybean, one of the most important crops worldwide, is severely affected by abiotic stress. Drought and flooding are the major abiotic stresses impacting soybean yield. In this regard, understanding water uptake by plants, its utilization and transport has great importance. In plants, water transport is mainly governed by channel forming aquaporin proteins (AQPs). Tonoplast intrinsic proteins (TIPs) belong to the plant-specific AQP subfamily and are known to have a role in abiotic stress tolerance. In this study, 23 soybean TIP genes were identified based on the latest soybean genome annotation. TIPs were characterized based on conserved structural features and phylogenetic distribution. Expression analysis of soybean TIP genes in various tissues and under abiotic stress conditions demonstrated tissue/stress-response specific differential expression. The natural variations for TIP genes were analyzed using whole genome re-sequencing data available for a set of 106 diverse soybean genotypes including wild types, landraces and elite lines. Results revealed 81 single-nucleotide polymorphisms (SNPs) and several large insertions/deletions in the coding region of TIPs. Among these, non-synonymous SNPs are most likely to have a greater impact on protein function and are candidates for molecular studies as well as for the development of functional markers to assist breeding. The solute transport function of two TIPs was further validated by expression in Xenopus laevis oocytes. GmTIP1;5 was shown to facilitate the rapid movement of water across the oocyte membrane, while GmTIP2;5 facilitated the movement of water and boric acid. The present study provides an initial insight into the possible roles of soybean TIP genes under abiotic stress conditions. Our results will facilitate elucidation of their precise functions during abiotic stress responses and plant development, and will provide potential breeding targets for modifying water movement in soybean.
Collapse
Affiliation(s)
- Li Song
- Division of Plant Science, National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | - Na Nguyen
- Division of Plant Science, National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | | | - Gunvant B. Patil
- Division of Plant Science, National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | - Silvas J. Prince
- Division of Plant Science, National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | - Babu Valliyodan
- Division of Plant Science, National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | - Raymond Mutava
- Division of Plant Science, National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | - Sharon M. Pike
- Division of Plant Sciences and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Walter Gassmann
- Division of Plant Sciences and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Henry T. Nguyen
- Division of Plant Science, National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
- *Correspondence: Henry T. Nguyen,
| |
Collapse
|