1
|
Liao Y, Liu X, Xu N, Chen G, Qiao X, Gu Q, Wang Y, Sun J. Fine mapping and identification of ERF transcription factor ERF017 as a candidate gene for cold tolerance in pumpkin. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:230. [PMID: 39320412 DOI: 10.1007/s00122-024-04720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024]
Abstract
KEY MESSAGE Two major QTLs for cold tolerance in pumpkin were localised, and CmoERF017 was identified as a key candidate gene within these QTLs via RNA-seq. Functional analysis revealed that CmoERF017 was a positive regulator of pumpkin in response to low-temperature stress. Low temperature is a key environmental factor that affects the protected cultivation of cucumber (Cucumis sativus L.) in winter, and the cold tolerance of cucumber/pumpkin-grafted seedlings depends on the rootstock. Pumpkin (Cucurbita spp.) has a well-developed root system, high resistance and wide adaptation, commonly used as rootstock for cucumber to improve the cold tolerance of grafted seedlings. This study used two high-generation inbred lines of Cucurbita moschata with significant differences in cold tolerance. We identified key candidate genes within the major cold tolerance QTL of rootstocks using QTL-seq and RNA-seq and investigated the function and molecular mechanisms of these genes in response to low-temperature stress. Results showed that QTL-seq located two cold tolerance QTLs, qCII-1 and qCII-2, while RNA-seq located 28 differentially expressed genes within these QTLs. CmoERF017 was finally identified as a key candidate gene. Functional validation results indicated that CmoERF017 is a positive regulator of pumpkin in response to low-temperature stress and affected root ABA synthesis and signalling by directly regulating the expression of SDR7 and ABI5. This study identified a key gene for low-temperature stress tolerance in rootstock pumpkin and clarified its role in the molecular mechanism of hormone-mediated plant cold tolerance. The study findings enrich the theoretical understanding of low-temperature stress tolerance in pumpkin and are valuable for the selection and breeding of cold-tolerant varieties of pumpkin used for rootstocks.
Collapse
Affiliation(s)
- Yarong Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoying Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangling Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinhui Qiao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yu Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Qi J, Luo Y, Lu S, Liu H, Huang H, Qiu Y, Zhou X, Ma C. Multi-omics integration analysis reveals the molecular mechanisms of drought adaptation in homologous tetraploid alfalfa(Medicago sativa 'Xinjiang-Daye'). PHYSIOLOGIA PLANTARUM 2024; 176:e14476. [PMID: 39262125 DOI: 10.1111/ppl.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024]
Abstract
Drought stress is a predominant abiotic factor leading to decreased alfalfa yield. Genomic ploidy differences contribute to varying adaptation mechanisms of different alfalfa cultivars to drought conditions. This study employed a multi-omics approach to characterize the molecular basis of drought tolerance in a tetraploid variant of alfalfa (Medicago sativa, Xinjiang-Daye). Under drought treatment, a total of 4446 genes, 859 proteins, and 524 metabolites showed significant differences in abundance. Integrative analysis of the multi-omics data revealed that regulatory modules involved in flavonoid biosynthesis, plant hormone signalling transduction, linoleic acid metabolism, and amino acid biosynthesis play crucial roles in alfalfa adaptation to drought stress. The severity of drought led to the substantial accumulation of flavonoids, plant hormones, free fatty acids, amino acids, and their derivatives in the leaves. Genes such as PAL, 4CL, CHI, CHS, PP2C, ARF_3, and AHP_4 play pivotal regulatory roles in flavonoid biosynthesis and hormone signalling pathways. Differential expression of the LOX gene emerged as a key factor in the elevated levels of free fatty acids. Upregulation of P5CS_1 and GOT1/2 contributed significantly to the accumulation of Pro and Phe contents. ERF19 emerged as a principal positive regulator governing the synthesis of the aforementioned compounds. Furthermore, observations suggest that Xinjiang-Daye alfalfa may exhibit widespread post-transcriptional regulatory mechanisms in adapting to drought stress. The study findings unveil the critical mechanisms by which Xinjiang-Daye alfalfa adapts to drought stress, offering novel insights for the improvement of alfalfa germplasm resources.
Collapse
Affiliation(s)
- Jianwei Qi
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yongzhong Luo
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Songsong Lu
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Hui Liu
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Haixia Huang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yingde Qiu
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xiaotong Zhou
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Chao Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Bandyopadhyay T, Maurya J, Bentley AR, Griffiths H, Swarbreck SM, Prasad M. Identification of the mechanistic basis of nitrogen responsiveness in two contrasting Setaria italica accessions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5008-5020. [PMID: 38736217 DOI: 10.1093/jxb/erae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Nitrogen (N) is a macronutrient limiting crop productivity with varied requirements across species and genotypes. Understanding the mechanistic basis of N responsiveness by comparing contrasting genotypes could inform the development and selection of varieties with lower N demands, or inform agronomic practices to sustain yields with lower N inputs. Given the established role of millets in ensuring climate-resilient food and nutrition security, we investigated the physiological and genetic basis of nitrogen responsiveness in foxtail millet (Setaria italica L.). We had previously identified genotypic variants linked to N responsiveness, and here we dissect the mechanistic basis of the trait by examining the physiological and molecular behaviour of N responsive (NRp-SI58) and non-responsive (NNRp-SI114) accessions at high and low N. Under high N, NRp-SI58 allocates significantly more biomass to nodes, internodes and roots, more N to developing grains, and is more effective at remobilizing flag leaf N compared with NNRp-SI114. Post-anthesis flag leaf gene expression suggests that differences in N induce much higher transcript abundance in NNRp-SI114 than NRp-SI58, a large proportion of which is potentially regulated by APETALA2 (AP2) transcription factors. Overall, the study provides novel insights into the regulation and manipulation of N responsiveness in S. italica.
Collapse
Affiliation(s)
| | - Jyoti Maurya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alison R Bentley
- NIAB, 93 Lawrence Weaver Rd, Cambridge CB3 0LE, UK
- Research School of Biology, Australian National University, Canberra, 2600, Australia
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Stéphanie M Swarbreck
- NIAB, 93 Lawrence Weaver Rd, Cambridge CB3 0LE, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
4
|
Zhang HX, Zhang Y, Zhang BW. Pepper SBP-box transcription factor, CaSBP13, plays a negatively role in drought response. FRONTIERS IN PLANT SCIENCE 2024; 15:1412685. [PMID: 39070917 PMCID: PMC11272568 DOI: 10.3389/fpls.2024.1412685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
The SBP-box gene significantly influences plant growth, development, and stress responses, yet its function in pepper plants during drought stress remains unexplored. Using virus-induced gene silencing and overexpression strategies, we examined the role of CaSBP13 during drought stress in plants. The results revealed that the expression of CaSBP13 can be induced by drought stress. Silencing of CaSBP13 in pepper notably boosted drought resistance, as evident by decreased active oxygen levels. Furthermore, the water loss rate, relative electrical conductivity, malondialdehyde content, and stomatal density were reduced in CaSBP13-silenced plants compared to controls. In contrast, CaSBP13 overexpression in Nicotiana benthamiana decreased drought tolerance with elevated reactive oxygen levels and stomatal density. Additionally, ABA signaling pathway genes (CaPP2C, CaAREB) exhibited reduced expression levels in CaSBP13-silenced plants post drought stress, as compared to control plants. On the contrary, CaPYL9 and CaSNRK2.4 showed heightened expression in CaSBP13-sienced plants under the same conditions. However, a converse trend for NbAREB, NbSNRK2.4, and NbPYL9 was observed post-four day drought in CaSBP13-overexpression plants. These findings suggest that CaSBP13 negatively regulates drought tolerance in pepper, potentially via ROS and ABA signaling pathways.
Collapse
Affiliation(s)
- Huai-Xia Zhang
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | | | | |
Collapse
|
5
|
Sharma A, Dheer P, Rautela I, Thapliyal P, Thapliyal P, Bajpai AB, Sharma MD. A review on strategies for crop improvement against drought stress through molecular insights. 3 Biotech 2024; 14:173. [PMID: 38846012 PMCID: PMC11150236 DOI: 10.1007/s13205-024-04020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
The demand for food goods is rising along with the world population growth, which is directly related to the yield of agricultural crops around the world. However, a number of environmental factors, including floods, salinity, moisture, and drought, have a detrimental effect on agricultural production around the world. Among all of these stresses, drought stress (DS) poses a constant threat to agricultural crops and is a significant impediment to global agricultural productivity. Its potency and severity are expected to increase in the future years. A variety of techniques have been used to generate drought-resistant plants in order to get around this restriction. Different crop plants exhibit specific traits that contribute to drought resistance (DR), such as early flowering, drought escape (DE), and leaf traits. We are highlighting numerous methods that can be used to overcome the effects of DS in this review. Agronomic methods, transgenic methods, the use of sufficient fertilizers, and molecular methods such as clustered regularly interspaced short palindromic repeats (CRISPRs)-associated nuclease 9 (Cas9), virus-induced gene silencing (VIGS), quantitative trait loci (QTL) mapping, microRNA (miRNA) technology, and OMICS-based approaches make up the majority of these techniques. CRISPR technology has rapidly become an increasingly popular choice among researchers exploring natural tolerance to abiotic stresses although, only a few plants have been produced so far using this technique. In order to address the difficulties imposed by DS, new plants utilizing the CRISPR technology must be developed.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248001 India
| | - Pallavi Dheer
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001 India
| | - Indra Rautela
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248001 India
| | - Preeti Thapliyal
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248001 India
| | - Priya Thapliyal
- Department of Biochemistry, H.N.B. Garhwal (A Central) University, Srinagar, Uttarakhand 246174 India
| | - Atal Bihari Bajpai
- Department of Botany, D.B.S. (PG) College, Dehradun, Uttarakhand 248001 India
| | - Manish Dev Sharma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001 India
| |
Collapse
|
6
|
Wang Y, Jiang C, Zhang X, Yan H, Yin Z, Sun X, Gao F, Zhao Y, Liu W, Han S, Zhang J, Zhang Y, Zhang Z, Zhang H, Li J, Xie X, Zhao Q, Wang X, Ye G, Li J, Ming R, Li Z. Upland rice genomic signatures of adaptation to drought resistance and navigation to molecular design breeding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:662-677. [PMID: 37909415 PMCID: PMC10893945 DOI: 10.1111/pbi.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Upland rice is a distinctive drought-aerobic ecotype of cultivated rice highly resistant to drought stress. However, the genetic and genomic basis for the drought-aerobic adaptation of upland rice remains largely unclear due to the lack of genomic resources. In this study, we identified 25 typical upland rice accessions and assembled a high-quality genome of one of the typical upland rice varieties, IRAT109, comprising 384 Mb with a contig N50 of 19.6 Mb. Phylogenetic analysis revealed upland and lowland rice have distinct ecotype differentiation within the japonica subgroup. Comparative genomic analyses revealed that adaptive differentiation of lowland and upland rice is likely attributable to the natural variation of many genes in promoter regions, formation of specific genes in upland rice, and expansion of gene families. We revealed differentiated gene expression patterns in the leaves and roots of the two ecotypes and found that lignin synthesis mediated by the phenylpropane pathway plays an important role in the adaptive differentiation of upland and lowland rice. We identified 28 selective sweeps that occurred during domestication and validated that the qRT9 gene in selective regions can positively regulate drought resistance in rice. Eighty key genes closely associated with drought resistance were appraised for their appreciable potential in drought resistance breeding. Our study enhances the understanding of the adaptation of upland rice and provides a genome navigation map of drought resistance breeding, which will facilitate the breeding of drought-resistant rice and the "blue revolution" in agriculture.
Collapse
Affiliation(s)
- Yulong Wang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Conghui Jiang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Institute of Wetland Agriculture and EcologyShandong Academy of Agricultural SciencesJinanShandongChina
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of EducationFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Agricultural Genomics Institute in ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Huimin Yan
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice BiologyHenan Agricultural UniversityZhengzhouHenanChina
| | - Zhigang Yin
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xingming Sun
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Fenghua Gao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yan Zhao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Wei Liu
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Shichen Han
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jingjing Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yage Zhang
- Sanya Institute of Hainan Academy of Agricultural SciencesSanyaHainanChina
| | - Zhanying Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Hongliang Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jinjie Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xianzhi Xie
- Institute of Wetland Agriculture and EcologyShandong Academy of Agricultural SciencesJinanShandongChina
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice BiologyHenan Agricultural UniversityZhengzhouHenanChina
| | - Xiaoning Wang
- Sanya Institute of Hainan Academy of Agricultural SciencesSanyaHainanChina
| | - Guoyou Ye
- Agricultural Genomics Institute in ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
- Institution International Rice Research InstituteLos BañosLagunaPhilippines
| | - Junzhou Li
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice BiologyHenan Agricultural UniversityZhengzhouHenanChina
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of EducationFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of Hainan Academy of Agricultural SciencesSanyaHainanChina
| |
Collapse
|
7
|
Dang Z, Li J, Liu Y, Song M, Lockhart PJ, Tian Y, Niu M, Wang Q. RADseq-based population genomic analysis and environmental adaptation of rare and endangered recretohalophyte Reaumuria trigyna. THE PLANT GENOME 2024; 17:e20303. [PMID: 36740755 DOI: 10.1002/tpg2.20303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Genetic diversity reflects the survival potential, history, and population dynamics of an organism. It underlies the adaptive potential of populations and their response to environmental change. Reaumuria trigyna is an endemic species in the Eastern Alxa and West Ordos desert regions in China. The species has been considered a good candidate to explore the unique survival strategies of plants that inhabit this area. In this study, we performed population genomic analyses based on restriction-site associated DNA sequencing to understand the genetic diversity, population genetic structure, and differentiation of the species. Analyses of 92,719 high-quality single-nucleotide polymorphisms (SNPs) indicated that overall genetic diversity of R. trigyna was low (HO = 0.249 and HE = 0.208). No significant genetic differentiation was observed among the investigated populations. However, a subtle population genetic structure was detected. We suggest that this might be explained by adaptive diversification reinforced by the geographical isolation of populations. Overall, 3513 outlier SNPs were located in 243 gene-coding sequences in the R. trigyna transcriptome. Potential sites under diversifying selection occurred in genes (e.g., AP2/EREBP, E3 ubiquitin-protein ligase, FLS, and 4CL) related to phytohormone regulation and synthesis of secondary metabolites which have roles in adaptation of species. Our genetic analyses provide scientific criteria for evaluating the evolutionary capacity of R. trigyna and the discovery of unique adaptions. Our findings extend knowledge of refugia, environmental adaption, and evolution of germplasm resources that survive in the Ordos area.
Collapse
Affiliation(s)
- Zhenhua Dang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jiabin Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yanan Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Miaomiao Song
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Peter J Lockhart
- School of Natural Sciences, College of Sciences, Massey University, Palmerston North, New Zealand
| | - Yunyun Tian
- Ministry of Education Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Miaomiao Niu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Qinglang Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
8
|
Xu L, Liu P, Li X, Mi Q, Zheng Q, Xing J, Yang W, Zhou H, Cao P, Gao Q, Xu G. NtERF283 positively regulates water deficit tolerance in tobacco (Nicotianatabacum L.) by enhancing antioxidant capacity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108413. [PMID: 38330776 DOI: 10.1016/j.plaphy.2024.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Ethylene responsive factor (ERF) is a plant-specific transcription factor that plays a pivotal regulatory role in various stress responses. Although the genome of tobacco harbors 375 ER F genes, the functional roles of the majority of these genes remain unknown. Expression pattern analysis revealed that NtERF283 was induced by water deficit and salt stresses and mainly expressed in the roots and leaves. Subcellular localization and transcriptional activity assays confirmed that NtERF283 was localized in the nucleus and exhibited transcriptional activity. In comparison to the wild-type (WT), the NtERF283-overexpressing transgenic plants (OE) exhibited enhanced water deficit tolerance, whereas the knockout mutant erf283 displayed contrasting phenotypes. Transcriptional analysis demonstrated that several oxidative stress response genes were significantly altered in OE plants under water deficit conditions. 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining showed that erf283 accumulated a higher level of reactive oxygen species (ROS) compared to the WT under water deficit conditions. Conversely, OE plants displayed the least amount of ROS accumulation. Furthermore, the activities of POD and SOD were higher in OE plants and lower in erf283, suggesting that NtERF283 enhanced the capacity to effectively eliminate ROS, consequently enhancing water deficit tolerance in tobacco. These findings strongly indicate the significance of NtERF283 in promoting tobacco water deficit tolerance through the activation of the antioxidant system.
Collapse
Affiliation(s)
- Li Xu
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Xuemei Li
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Qili Mi
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Qingxia Zheng
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Jiaxin Xing
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Wenwu Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Peijian Cao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Qian Gao
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China.
| | - Guoyun Xu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China.
| |
Collapse
|
9
|
Jin X, Chen J, Khan A, Chen Z, Gao R, Lu Y, Zheng X. Triacylglycerol lipase, OsSG34, plays an important role in grain shape and appearance quality in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:840-855. [PMID: 37938788 DOI: 10.1111/tpj.16532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Optimal grain-appearance quality is largely determined by grain size. To date, dozens of grain size-related genes have been identified. However, the regulatory mechanism of slender grain formation is not fully clear. We identified the OsSG34 gene by map-based cloning. A 9-bp deletion on 5'-untranslated region of OsSG34, which resulted in the expression difference between the wild-type and sg34 mutant, led to the slender grains and good transparency in sg34 mutant. OsSG34 as an α/β fold triacylglycerol lipase affected the triglyceride content directly, and the components of cell wall indirectly, especially the lignin between the inner and outer lemmas in rice grains, which could affect the change in grain size by altering cell proliferation and expansion, while the change in starch content and starch granule arrangement in endosperm could affect the grain-appearance quality. Moreover, the OsERF71 was identified to directly bind to cis-element on the mutant site, thereby regulating the OsSG34 expression. Knockout of three OsSG34 homologous genes resulted in slender grains as well. The study demonstrated OsSG34, involved in lipid metabolism, affected grain size and quality. Our findings suggest that the OsSG34 gene could be used in rice breeding for high yield and good grain-appearance quality via marker-assisted selection and gene-editing approaches.
Collapse
Affiliation(s)
- Xiaoli Jin
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, the Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jian Chen
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, the Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Asadullah Khan
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, the Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Ziyan Chen
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, the Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Rui Gao
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, the Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yingying Lu
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, the Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xi Zheng
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. Molecular Mechanisms and Regulatory Pathways Underlying Drought Stress Response in Rice. Int J Mol Sci 2024; 25:1185. [PMID: 38256261 PMCID: PMC10817035 DOI: 10.3390/ijms25021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is a staple food for 350 million people globally. Its yield thus affects global food security. Drought is a serious environmental factor affecting rice growth. Alleviating the inhibition of drought stress is thus an urgent challenge that should be solved to enhance rice growth and yield. This review details the effects of drought on rice morphology, physiology, biochemistry, and the genes associated with drought stress response, their biological functions, and molecular regulatory pathways. The review further highlights the main future research directions to collectively provide theoretical support and reference for improving drought stress adaptation mechanisms and breeding new drought-resistant rice varieties.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
11
|
Ma Z, Hu L, Jiang W. Understanding AP2/ERF Transcription Factor Responses and Tolerance to Various Abiotic Stresses in Plants: A Comprehensive Review. Int J Mol Sci 2024; 25:893. [PMID: 38255967 PMCID: PMC10815832 DOI: 10.3390/ijms25020893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Abiotic stress is an adverse environmental factor that severely affects plant growth and development, and plants have developed complex regulatory mechanisms to adapt to these unfavourable conditions through long-term evolution. In recent years, many transcription factor families of genes have been identified to regulate the ability of plants to respond to abiotic stresses. Among them, the AP2/ERF (APETALA2/ethylene responsive factor) family is a large class of plant-specific proteins that regulate plant response to abiotic stresses and can also play a role in regulating plant growth and development. This paper reviews the structural features and classification of AP2/ERF transcription factors that are involved in transcriptional regulation, reciprocal proteins, downstream genes, and hormone-dependent signalling and hormone-independent signalling pathways in response to abiotic stress. The AP2/ERF transcription factors can synergise with hormone signalling to form cross-regulatory networks in response to and tolerance of abiotic stresses. Many of the AP2/ERF transcription factors activate the expression of abiotic stress-responsive genes that are dependent or independent of abscisic acid and ethylene in response to abscisic acid and ethylene. In addition, the AP2/ERF transcription factors are involved in gibberellin, auxin, brassinosteroid, and cytokinin-mediated abiotic stress responses. The study of AP2/ERF transcription factors and interacting proteins, as well as the identification of their downstream target genes, can provide us with a more comprehensive understanding of the mechanism of plant action in response to abiotic stress, which can improve plants' ability to tolerate abiotic stress and provide a more theoretical basis for increasing plant yield under abiotic stress.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Lanjuan Hu
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| | - Wenzhu Jiang
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| |
Collapse
|
12
|
Zhu X, Wang B, Liu W, Wei X, Wang X, Du X, Liu H. Genome-wide analysis of AP2/ERF gene and functional analysis of CqERF24 gene in drought stress in quinoa. Int J Biol Macromol 2023; 253:127582. [PMID: 37866580 DOI: 10.1016/j.ijbiomac.2023.127582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Quinoa is a crop with high nutritional value and strong stress resistance. AP2/ERF transcription factors play a key role in plant growth and development. In this study, 148 AP2/ERF genes were identified in quinoa, which were divided into 5 subfamilies, including ERF, AP2, DREB, RAV and Soloist. The results showed that the number of introns ranged from 0 to 11, and the Motif 1-Motif 4 was highly conserved in most CqAP2/ERF proteins. The 148 CqAP2/ERF genes were distributed on 19 chromosomes. There were 93 pairs of duplicating genes in this family, and gene duplication played a critical role in the expansion of this family. Protein-protein interaction indicated that the proteins in CqAP2/ERF subfamily exhibited complex interactions, and GO enrichment analysis indicated that 148 CqAP2/ERF proteins were involved in transcription factor activity. In addition, CqAP2/ERF gene contains a large number of elements related to hormones in promoter region (IAA, GA, SA, ABA and MeJA) and stresses (salt, drought, low temperature and anaerobic induction). Transcriptome analysis under drought stress indicated that most of the CqAP2/ERF genes were responsive to drought stress, and subcellular localization indicated that CqERF24 was location in the nucleus, qRT-PCR results also showed that most of the genes such as CqERF15, CqERF24, CqDREB03, CqDREB14, CqDREB37 and CqDREB43 also responded to drought stress in roots and leaves. Overexpression of CqERF24 in Arabidopsis thaliana enhanced drought resistance by increasing antioxidant enzyme activity and activation-related stress genes, and the gene is sensitive to ABA, while silencing CqERF24 in quinoa decreased drought tolerance. In addition, overexpression of CqERF24 in quinoa calli enhanced resistance to mannitol. These results lay a solid foundation for further study on the role of AP2/ERF family genes in quinoa under drought stress.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenyu Liu
- Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xian Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuefeng Du
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Haixun Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
13
|
Schillaci M, Zampieri E, Brunetti C, Gori A, Sillo F. Root transcriptomic provides insights on molecular mechanisms involved in the tolerance to water deficit in Pisum sativum inoculated with Pseudomonas sp. PLANTA 2023; 259:33. [PMID: 38160210 DOI: 10.1007/s00425-023-04310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
MAIN CONCLUSION Root transcriptomics and biochemical analyses in water-stressed Pisum sativum plants inoculated with Pseudomonas spp. suggested preservation of ABA-related pathway and ROS detoxification, resulting in an improved tolerance to stress. Drought already affects agriculture in large areas of the globe and, due to climate change, these areas are predicted to become increasingly unsuitable for agriculture. For several years, plant growth-promoting bacteria (PGPB) have been used to improve legume yields, but many aspects of this interaction are still unclear. To elucidate the mechanisms through which root-associated PGPB can promote plant growth in dry environments, we investigated the response of pea plants inoculated with a potentially beneficial Pseudomonas strain (PK6) and subjected to two different water regimes. Combined biometric, biochemical, and root RNA-seq analyses revealed that PK6 improved pea growth specifically under water deficit, as inoculated plants showed an increased biomass, larger leaves, and longer roots. Abscisic acid (ABA) and proline quantification, together with the transcriptome analysis, suggested that PK6-inoculated plant response to water deficit was more diversified compared to non-inoculated plants, involving alternative metabolic pathways for the detoxification of reactive oxygen species (ROS) and the preservation of the ABA stress signaling pathway. We suggest that the metabolic response of PK6-inoculated plants was more effective in their adaptation to water deprivation, leading to their improved biometric traits. Besides confirming the positive role that PGPB can have in the growth of a legume crop under adverse conditions, this study offers novel information on the mechanisms regulating plant-bacteria interaction under varying water availability. These mechanisms and the involved genes could be exploited in the future for the development of legume varieties, which can profitably grow in dry climates.
Collapse
Affiliation(s)
- Martino Schillaci
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, Turin, Italy
| | - Elisa Zampieri
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, Turin, Italy
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, Italy
| | - Antonella Gori
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Fabiano Sillo
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, Turin, Italy.
| |
Collapse
|
14
|
Robertson SM, Wilkins O. Spatially resolved gene regulatory networks in Asian rice (Oryza sativa cv. Nipponbare) leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:269-281. [PMID: 37390084 DOI: 10.1111/tpj.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Transcriptome profiles in plants are heterogenous at every level of morphological organization. Even within organs, cells of the same type can have different patterns of gene expression depending on where they are positioned within tissues. This heterogeneity is associated with non-uniform distribution of biological processes within organs. The regulatory mechanisms that establish and sustain the spatial heterogeneity are unknown. Here, we identify regulatory modules that support functional specialization of different parts of Oryza sativa cv. Nipponbare leaves by leveraging transcriptome data, transcription factor binding motifs and global gene regulatory network prediction algorithms. We generated a global gene regulatory network in which we identified six regulatory modules that were active in different parts of the leaf. The regulatory modules were enriched for genes involved in spatially relevant biological processes, such as cell wall deposition, environmental sensing and photosynthesis. Strikingly, more than 86.9% of genes in the network were regulated by members of only five transcription factor families. We also generated targeted regulatory networks for the large MYB and bZIP/bHLH families to identify interactions that were masked in the global prediction. This analysis will provide a baseline for future single cell and array-based spatial transcriptome studies and for studying responses to environmental stress and demonstrates the extent to which seven coarse spatial transcriptome analysis can provide insight into the regulatory mechanisms supporting functional specialization within leaves.
Collapse
Affiliation(s)
- Sean M Robertson
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, R3T 2N2, Canada
| | - Olivia Wilkins
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, R3T 2N2, Canada
| |
Collapse
|
15
|
Hu Z, Wang X, Wei L, Wansee S, Rabbani Nasab H, Chen L, Kang Z, Wang J. TaAP2-10, an AP2/ERF transcription factor, contributes to wheat resistance against stripe rust. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154078. [PMID: 37657304 DOI: 10.1016/j.jplph.2023.154078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
The AP2/ERF TF (transcription factor) family is involved in regulating plant responses to various biotic and abiotic stresses. Nevertheless, understanding of the function of AP2/ERF TFs in wheat (Triticum aestivum L.) resistance against the obligate biotrophic stripe rust fungus (Puccinia striiformis f. sp tritici, Pst) remains limited. From a wheat-Pst incompatible interaction cDNA library, the transcript of TaAP2-10 was identified to be significantly induced during Pst infection. TaAP2-10, encodes an AP2 TF with two typical AP2-binding domains. There are three homologues of TaAP2-10 in the wheat genome, located on chromosome 6A, 6B and 6D. TaAP2-10 is localized in the nucleus of wheat protoplasts. A transactivation assay in yeast revealed that TaAP2-10 had transcriptional activation activity that was dependent on its C-terminal region. Quantitative real-time PCR (qRT-PCR) analyses verified that the expression of TaAP2-10 was specifically upregulated by avirulent Pst infection but not by virulent Pst, suggesting its role in wheat resistance to Pst. Furthermore, TaAP2-10 is also induced by abiotic stresses and hormone treatments, particularly under PEG4000 and abscisic acid (ABA) treatments, indicating its potential role in facilitating wheat adaptation to environmental stresses. Silencing TaAP2-10 by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) significantly reduced wheat resistance against Pst, resulting in a decreased reactive oxygen species (ROS) burst, and promoted Pst growth and development. These findings suggest that TaAP2-10, as a nuclear-localized transcription factor, positively regulates wheat resistance to Pst.
Collapse
Affiliation(s)
- Zeyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lai Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Somying Wansee
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hojjatollah Rabbani Nasab
- Plant Protection Research Department, Agricultural and Natural Resource Research and Education Centre of Golestan province, AREEO, Gorgan, Iran
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhengsheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
16
|
Zhang J, Wang D, Chen P, Zhang C, Yao S, Hao Q, Agassin RH, Ji K. The Transcriptomic Analysis of the Response of Pinus massoniana to Drought Stress and a Functional Study on the ERF1 Transcription Factor. Int J Mol Sci 2023; 24:11103. [PMID: 37446285 DOI: 10.3390/ijms241311103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pinus massoniana is a major fast-growing timber tree species planted in arid areas of south China, which has a certain drought-resistant ability. However, severe drought and long-term water shortage limit its normal growth and development. Therefore, in this study, physiological indices, and the transcriptome sequencing and cloning of AP2/ERF transcription factor of P. massonsiana were determined to clarify its molecular mechanism of drought stress. The results showed that stomatal conductance (Gs) content was significantly decreased, and superoxide dismutase (SOD) activity, and malondialdehyde (MDA) and abscisic acid (ABA) content were significantly increased under drought stress. Transcriptomic analysis revealed that compared to the control, 9, 3550, and 4142 unigenes with differential expression were identified by comparing plants subjected to light, moderate or severe drought. AP2/ERF with high expression was screened out for cloning. To investigate the biological functions of ERF1, it was over-expressed in wild-type Populus davdianaand × P. bolleana via the leaf disc method. Under drought stress, compared to wild-type plants, ERF1 over-expressing poplar lines (OE) maintained a higher photosynthetic rate and growth, while the transpiration rate and stomatal conductance significantly decreased and water use efficiency was improved, indicating that drought tolerance was enhanced. This study provides an insight into the molecular mechanism of drought stress adaptation in P. massoniana.
Collapse
Affiliation(s)
- Jinfeng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Dengbao Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Peizhen Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Chi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Sheng Yao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qingqing Hao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Romaric Hippolyte Agassin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Kongshu Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
17
|
Jiao MY, Zhang J, Cheng WW, Song X, Long YH, Xing ZB. Identification of the AP2/ERF transcription factor family of Eleutherococcus senticosus and its expression correlation with drought stress. 3 Biotech 2023; 13:259. [PMID: 37405267 PMCID: PMC10314890 DOI: 10.1007/s13205-023-03678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
In this study, through analysis of the genome of Eleutherococcus senticosus (ES). 228 AP2/ERF genes were identified and classified into 5 groups AP2 (47 genes), ERF (108 genes), RAV (6 genes), DREB (64 genes), and soloist (3 genes). According to the AP2/ERF classification of Arabidopsis thaliana, the ES AP2/ERF proteins were subdivided into 15 groups. The gene structure and motifs of each group of AP2/ERF in ES were highly similar, which confirmed the conservation of AP2/ERF genes. The ES AP2/ERF genes were unevenly distributed on chromosomes, and a total of four pairs of tandem repeats, and 84 co-linear gene pairs were found, so the AP2/ERF genes expanded in a fragment replication manner, and dominated by pure selection during evolution. By analyzing the transcriptome data of ES under different drought stress conditions, 87 AP2/ERF genes with differential expression were obtained, of which 10 genes with highly significant differences were further analyzed and screened for qRT-PCR validation. To the best of our knowledge, this is the first report on the AP2/ERF gene of Eleutherococcus senticosus, and the bioinformatics analysis and experimental validation provided valuable information about them, which is of great significance for further research on the molecular mechanisms of ES in response to drought stress.
Collapse
Affiliation(s)
- Meng-Ying Jiao
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| | - Jie Zhang
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| | - Wen-wen Cheng
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| | - Xin Song
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| | - Yue-Hong Long
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| | - Zhao-Bin Xing
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| |
Collapse
|
18
|
Li J, Guo W, Zhao J, Meng H, Yang Y, Zheng G, Yuan W. Transcriptional Regulation of the Acer truncatum B. Response to Drought and the Contribution of AtruNAC36 to Drought Tolerance. Antioxidants (Basel) 2023; 12:1339. [PMID: 37507879 PMCID: PMC10376542 DOI: 10.3390/antiox12071339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Drought stress is one of the major environmental factors severely restricting plant development and productivity. Acer truncatum B, which is an economically important tree species, is highly tolerant to drought conditions, but the underlying molecular regulatory mechanisms remain relatively unknown. In this study, A. truncatum seedlings underwent a drought treatment (water withheld for 0, 3, 7, and 12 days), after which they were re-watered for 5 days. Physiological indices were measured and a transcriptome sequencing analysis was performed to reveal drought response-related regulatory mechanisms. In comparison to the control, the drought treatment caused a significant increase in antioxidant enzyme activities, with levels rising up to seven times, and relative electrical conductivity from 14.5% to 78.4%, but the relative water content decreased from 88.3% to 23.4%; these indices recovered somewhat after the 5-day re-watering period. The RNA sequencing analysis identified 9126 differentially expressed genes (DEGs), which were primarily involved with abscisic acid responses, and mitogen-activated protein kinase signaling. These DEGs included 483 (5.29%) transcription factor genes from 53 families, including ERF, MYB, and NAC. A co-expression network analysis was conducted and three important modules were analyzed to identify hub genes, one of which (AtruNAC36) was examined to clarify its function. The AtruNAC36 protein was localized to the nucleus and had a C-terminal transactivation domain. Moreover, it bounded specifically to the NACRS element. The overexpression of AtruNAC36 in Arabidopsis thaliana resulted in increased drought tolerance by enhancing antioxidant enzyme activities. These findings provide important insights into the transcriptional regulation mediating the A. truncatum response to drought. Furthermore, AtruNAC36 may be relevant for breeding forest trees resistant to drought stress.
Collapse
Affiliation(s)
- Jianbo Li
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China
- National State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Tai'an 271000, China
| | - Jinna Zhao
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China
| | - Huijing Meng
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China
| | - Yanfei Yang
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China
| | - Guangshun Zheng
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China
| | - Weijie Yuan
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China
| |
Collapse
|
19
|
Ji C, Liang Z, Cao H, Chen Z, Kong X, Xin Z, He M, Wang J, Wei Z, Xing J, Li C, Zhang Y, Zhang H, Sun F, Li J, Li K. Transcriptome-based analysis of the effects of compound microbial agents on gene expression in wheat roots and leaves under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1109077. [PMID: 37235031 PMCID: PMC10206238 DOI: 10.3389/fpls.2023.1109077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Introduction Salt stress inhibits the beneficial effects of most plant growth-promoting rhizobacteria. The synergistic relationship between beneficial rhizosphere microorganisms and plants helps achieve more stable growth-promoting effects. This study aimed 1) to elucidate changes in gene expression profiles in the roots and leaves of wheat after inoculation with compound microbial agents and 2) to determine the mechanisms by which plant growth-promoting rhizobacteria mediate plant responses to microorganisms. Methods Following inoculation with compound bacteria, transcriptome characteristics of gene expression profiles of wheat, roots, and leaves at the flowering stage were investigated using Illumina high-throughput sequencing technology. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the genes that were significantly differentially expressed. Results The expression of 231 genes in the roots of bacterial preparations (BIO) -inoculated wheat changed significantly (including 35 upregulated and 196 downregulated genes) compared with that of non-inoculated wheat. The expression of 16,321 genes in leaves changed significantly, including 9651 upregulated genes and 6670 downregulated genes. The differentially expressed genes were involved in the metabolism of carbohydrates, amino acids, and secondary compounds as well as signal transduction pathways. The ethylene receptor 1 gene in wheat leaves was significantly downregulated, and genes related to ethylene-responsive transcription factor were significantly upregulated. GO enrichment analysis showed that metabolic and cellular processes were the main functions affected in the roots and leaves. The main molecular functions altered were binding and catalytic activities, among which the cellular oxidant detoxification enrichment rate was highly expressed in the roots. The expression of peroxisome size regulation was the highest in the leaves. KEGG enrichment analysis showed that linoleic acid metabolism expression was highest in the roots, and the expression of photosynthesis-antenna proteins was the highest in leaves. After inoculation with a complex biosynthesis agent, the phenylalanine ammonia lyase (PAL) gene of the phenylpropanoid biosynthesis pathway was upregulated in wheat leaf cells while 4CL, CCR, and CYP73A were downregulated. Additionally, CYP98A and REF1 genes involved in the flavonoid biosynthesis pathway were upregulated, while F5H, HCT, CCR, E2.1.1.104, and TOGT1-related genes were downregulated. Discussion Differentially expressed genes may play key roles in improving salt tolerance in wheat. Compound microbial inoculants promoted the growth of wheat under salt stress and improved disease resistance by regulating the expression of metabolism-related genes in wheat roots and leaves and activating immune pathway-related genes.
Collapse
Affiliation(s)
- Chao Ji
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
- Taishan Forest Ecosystem Research Station, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, Shandong, China
| | - Zengwen Liang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
- Shandong Yongsheng Agricultural Development Co., Ltd., Yongsheng (Shouguang) Vegetable Technology Research Institute Co., Ltd, Weifang, China
| | - Hui Cao
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Zhizhang Chen
- College of Foreign Languages, Weifang University, Weifang, Shandong, China
| | - Xuehua Kong
- Weifang Hanting Vestibule School, Weifang Education Bureau, Weifang, Shandong, China
| | - Zhiwen Xin
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Mingchao He
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Jie Wang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Zichao Wei
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Jiahao Xing
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Chunyu Li
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Yingxiang Zhang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Hua Zhang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Fujin Sun
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Runxin Fruit and Vegetable Cultivation Cooperative of Weifang Economic Development Zone, Weifang Agricultural Bureau, Weifang, Shandong, China
| | - Jianlin Li
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Weifang Nuode Biotechnology Co., LTD, Weifang Agricultural Bureau, Weifang, Shandong, China
| | - Kun Li
- Taishan Forest Ecosystem Research Station, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, Shandong, China
- College of Forestry, Shandong Agriculture University, Taian, Shandong, China
| |
Collapse
|
20
|
Liu L, Zhang Y, Tang C, Shen Q, Fu J, Wang Q. Maize Transcription Factor ZmHsf28 Positively Regulates Plant Drought Tolerance. Int J Mol Sci 2023; 24:ijms24098079. [PMID: 37175787 PMCID: PMC10179534 DOI: 10.3390/ijms24098079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Identification of central genes governing plant drought tolerance is fundamental to molecular breeding and crop improvement. Here, maize transcription factor ZmHsf28 is identified as a positive regulator of plant drought responses. ZmHsf28 exhibited inducible gene expression in response to drought and other abiotic stresses. Overexpression of ZmHsf28 diminished drought effects in Arabidopsis and maize. Gene silencing of ZmHsf28 via the technology of virus-induced gene silencing (VIGS) impaired maize drought tolerance. Overexpression of ZmHsf28 increased jasmonate (JA) and abscisic acid (ABA) production in transgenic maize and Arabidopsis by more than two times compared to wild-type plants under drought conditions, while it decreased reactive oxygen species (ROS) accumulation and elevated stomatal sensitivity significantly. Transcriptomic analysis revealed extensive gene regulation by ZmHsf28 with upregulation of JA and ABA biosynthesis genes, ROS scavenging genes, and other drought related genes. ABA treatment promoted ZmHsf28 regulation of downstream target genes. Specifically, electrophoretic mobility shift assays (EMSA) and yeast one-hybrid (Y1H) assay indicated that ZmHsf28 directly bound to the target gene promoters to regulate their gene expression. Taken together, our work provided new and solid evidence that ZmHsf28 improves drought tolerance both in the monocot maize and the dicot Arabidopsis through the implication of JA and ABA signaling and other signaling pathways, shedding light on molecular breeding for drought tolerance in maize and other crops.
Collapse
Affiliation(s)
- Lijun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Chen Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinqin Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
21
|
Ferioun M, bouhraoua S, Srhiouar N, Tirry N, Belahcen D, Siang TC, Louahlia S, El Ghachtouli N. Optimized drought tolerance in barley (Hordeum vulgare L.) using plant growth-promoting rhizobacteria (PGPR). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
22
|
Ma X, Zhang Q, Ou Y, Wang L, Gao Y, Lucas GR, Resco de Dios V, Yao Y. Transcriptome and Low-Affinity Sodium Transport Analysis Reveals Salt Tolerance Variations between Two Poplar Trees. Int J Mol Sci 2023; 24:ijms24065732. [PMID: 36982804 PMCID: PMC10058024 DOI: 10.3390/ijms24065732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 03/19/2023] Open
Abstract
Salinity stress severely hampers plant growth and productivity. How to improve plants’ salt tolerance is an urgent issue. However, the molecular basis of plant resistance to salinity still remains unclear. In this study, we used two poplar species with different salt sensitivities to conduct RNA-sequencing and physiological and pharmacological analyses; the aim is to study the transcriptional profiles and ionic transport characteristics in the roots of the two Populus subjected to salt stress under hydroponic culture conditions. Our results show that numerous genes related to energy metabolism were highly expressed in Populus alba relative to Populus russkii, which activates vigorous metabolic processes and energy reserves for initiating a set of defense responses when suffering from salinity stress. Moreover, we found the capacity of Na+ transportation by the P. alba high-affinity K+ transporter1;2 (HKT1;2) was superior to that of P. russkii under salt stress, which enables P. alba to efficiently recycle xylem-loaded Na+ and to maintain shoot K+/Na+ homeostasis. Furthermore, the genes involved in the synthesis of ethylene and abscisic acid were up-regulated in P. alba but downregulated in P. russkii under salt stress. In P. alba, the gibberellin inactivation and auxin signaling genes with steady high transcriptions, several antioxidant enzymes activities (such as peroxidase [POD], ascorbate peroxidase [APX], and glutathione reductase [GR]), and glycine-betaine content were significantly increased under salt stress. These factors altogether confer P. alba a higher resistance to salinity, achieving a more efficient coordination between growth modulation and defense response. Our research provides significant evidence to improve the salt tolerance of crops or woody plants.
Collapse
Affiliation(s)
- Xuan Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qiang Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yongbin Ou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lijun Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Gutiérrez Rodríguez Lucas
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, 25003 Leida, Spain
- Correspondence: (V.R.d.D.); (Y.Y.)
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Correspondence: (V.R.d.D.); (Y.Y.)
| |
Collapse
|
23
|
Physiological and biochemical changes in Moroccan barley ( Hordeum vulgare L.) cultivars submitted to drought stress. Heliyon 2023; 9:e13643. [PMID: 36873157 PMCID: PMC9975271 DOI: 10.1016/j.heliyon.2023.e13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Barley (Hordeum vulgare L.) is the second most consumed and cultivated cereal by the Moroccan population. However, it is predicted that frequent drought periods, caused by climate change, can cause problems in plant growth. Thus, the selection of drought-tolerant barley cultivars is essential to ensure the security of barley's needs. We aimed to screen drought stress tolerance in Moroccan barley cultivars. We tested the drought tolerance of nine Moroccan barley cultivars ('Adrar', 'Amalou', 'Amira', 'Firdaws', 'Laanaceur', 'Massine', 'Oussama', 'Taffa', and 'Tamellalt') based on physiological and biochemical parameters. Drought stress was applied by maintaining field capacity at 40% (90% for the control), and plants were randomly arranged in a greenhouse at 25 °C under natural light conditions. Drought stress decreased relative water content (RWC), shoot dry weight (SDW), and chlorophyll content (SPAD index), but significantly increased electrolyte leakage, hydrogen peroxide, malondialdehyde (MDA), water-soluble carbohydrates, and soluble protein contents, as well as catalase (CAT) and ascorbate peroxidase (APX) activities. High levels of SDW, RWC, CAT, and APX activities were recorded in 'Firdaws', 'Laanaceur', 'Massine', 'Taffa', and 'Oussama', which can be interpreted by high drought tolerance. On the other hand, 'Adrar', 'Amalou', 'Amira', and 'Tamellalt' showed higher values of MDA and H2O2 content, which can be linked with drought sensitivity. Physiological and biochemical parameter changes are discussed in terms of barley's tolerance to drought. Tolerant cultivars could be a good background for barley breeding in areas known for the alternative of long dry spells.
Collapse
|
24
|
Ijaz S, Haq IU, Razzaq HA. Mutation introduced in DDTFR10/A gene of ethylene response element-binding protein (EREBP) family through CRISPR/Cas9 genome editing confers increased Fusarium wilt tolerance in tomato. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1-10. [PMID: 36733839 PMCID: PMC9886765 DOI: 10.1007/s12298-022-01273-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
We investigated the role of the DDTFR10/A gene of the ethylene response element-binding protein (EREBP) family through the CRISPR/Cas9 genome editing approach. The associated role of this gene in tomato fruit ripening was known. The involvement of ripening-regulatory proteins in plant defense has been documented; therefore, to find the involvement of the DDTFR10/A gene in host susceptibility, we introduced the mutation in DDTFR10/A gene through CRISPR/cas9 in the genome of the tomato plant. The 50% biallelic and 50% homozygous mutations were observed in the T0 generation. The CRISPR/Cas9 edited plants showed 40% reduced symptoms of Fusarium wilt compared to control plants (non-edited). The DDTFR10/A gene expression in tomato plants was evaluated against biotic (Fusarium wilt) and abiotic (salinity) stresses, and the upregulated expression of this gene was found under both challenges. However, a comparative increase in DDTFR10/A gene expression was observed in tomato plants upon inoculation with Fusarium oxysporum f. sp. lycopersici. The phenotypic assay performed on edited tomato plants demonstrated the role of the DDTFR10/A gene in contributing toward susceptibility against Fusarium wilt. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01273-6.
Collapse
Affiliation(s)
- Siddra Ijaz
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| | - Imran Ul Haq
- Department of Plant Pathology, University of Agriculture, University Road, Faisalabad, Pakistan
| | - Hafiza Arooj Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| |
Collapse
|
25
|
Yang Y, Yu J, Qian Q, Shang L. Enhancement of Heat and Drought Stress Tolerance in Rice by Genetic Manipulation: A Systematic Review. RICE (NEW YORK, N.Y.) 2022; 15:67. [PMID: 36562861 PMCID: PMC9789292 DOI: 10.1186/s12284-022-00614-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 12/13/2022] [Indexed: 05/11/2023]
Abstract
As a result of global warming, plants are subjected to ever-increasing abiotic stresses including heat and drought. Drought stress frequently co-occurs with heat stress as a result of water evaporation. These stressors have adverse effects on crop production, which in turn affects human food security. Rice is a major food resource grown widely in crop-producing regions throughout the world. However, increasingly common heat and drought stresses in growth regions can have negative impacts on seedling morphogenesis, reproductive organ establishment, overall yield, and quality. This review centers on responses to heat and drought stress in rice. Current knowledge of molecular regulation mechanisms is summarized. We focus on approaches to cope with heat and drought stress, both at the genetic level and from an agricultural practice perspective. This review establishes a basis for improving rice stress tolerance, grain quality, and yield for human benefit.
Collapse
Affiliation(s)
- Yingxue Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Jianping Yu
- College of Plant Science and Technology, Key Laboratory of New Technology in Agricultural Application, Beijing University of Agriculture, Beijing, 102206 China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
- China National Rice Research Institute (CNRRI), Chinese Academy of Agricultural Sciences, Hangzhou, 311401 China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| |
Collapse
|
26
|
Natural variation of DROT1 confers drought adaptation in upland rice. Nat Commun 2022; 13:4265. [PMID: 35871266 PMCID: PMC9308802 DOI: 10.1038/s41467-022-31844-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/05/2022] [Indexed: 01/03/2023] Open
Abstract
AbstractUpland rice is a distinct ecotype that grows in aerobic environments and tolerates drought stress. However, the genetic basis of its drought resistance is unclear. Here, using an integrative approach combining a genome-wide association study with analyses of introgression lines and transcriptomic profiles, we identify a gene, DROUGHT1 (DROT1), encoding a COBRA-like protein that confers drought resistance in rice. DROT1 is specifically expressed in vascular bundles and is directly repressed by ERF3 and activated by ERF71, both drought-responsive transcription factors. DROT1 improves drought resistance by adjusting cell wall structure by increasing cellulose content and maintaining cellulose crystallinity. A C-to-T single-nucleotide variation in the promoter increases DROT1 expression and drought resistance in upland rice. The potential elite haplotype of DROT1 in upland rice could originate in wild rice (O. rufipogon) and may be beneficial for breeding upland rice varieties.
Collapse
|
27
|
Wu Y, Li X, Zhang J, Zhao H, Tan S, Xu W, Pan J, Yang F, Pi E. ERF subfamily transcription factors and their function in plant responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1042084. [PMID: 36531407 PMCID: PMC9748296 DOI: 10.3389/fpls.2022.1042084] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/09/2022] [Indexed: 06/09/2023]
Abstract
Ethylene Responsive Factor (ERF) subfamily comprise the largest number of proteins in the plant AP2/ERF superfamily, and have been most extensively studied on the biological functions. Members of this subfamily have been proven to regulate plant resistances to various abiotic stresses, such as drought, salinity, chilling and some other adversities. Under these stresses, ERFs are usually activated by mitogen-activated protein kinase induced phosphorylation or escape from ubiquitin-ligase enzymes, and then form complex with nucleic proteins before binding to cis-element in promoter regions of stress responsive genes. In this review, we will discuss the phylogenetic relationships among the ERF subfamily proteins, summarize molecular mechanism how the transcriptional activity of ERFs been regulated and how ERFs of different subgroup regulate the transcription of stress responsive genes, such as high-affinity K+ transporter gene PalHKT1;2, reactive oxygen species related genes LcLTP, LcPrx, and LcRP, flavonoids synthesis related genes FtF3H and LhMYBSPLATTER, etc. Though increasing researches demonstrate that ERFs are involved in various abiotic stresses, very few interact proteins and target genes of them have been comprehensively annotated. Hence, future research prospects are described on the mechanisms of how stress signals been transited to ERFs and how ERFs regulate the transcriptional expression of stress responsive genes.
Collapse
|
28
|
Li Q, Jiang W, Jiang Z, Du W, Song J, Qiang Z, Zhang B, Pang Y, Wang Y. Transcriptome and functional analyses reveal ERF053 from Medicago falcata as key regulator in drought resistances. FRONTIERS IN PLANT SCIENCE 2022; 13:995754. [PMID: 36304391 PMCID: PMC9594990 DOI: 10.3389/fpls.2022.995754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Medicago falcata L. is an important legume forage grass with strong drought resistant, which could be utilized as an important gene pool in molecular breed of forage grass. In this study, M. falcata seedlings were treated with 400 mM mannitol to simulate drought stress, and the morphological and physiological changes were investigated, as well as the transcriptome changes of M. falcata seedlings at different treatment time points (0 h, 2 h, 6 h, 12 h, 24 h, 36 h and 48 h). Transcriptome analyses revealed four modules were closely related with drought response in M. falcata by WGCNA analysis, and four ERF transcription factor genes related with drought stress were identified (MfERF053, MfERF9, MfERF034 and MfRAP2.1). Among them, MfERF053 was highly expressed in roots, and MfERF053 protein showed transcriptional activation activity by transient expression in tobacco leaves. Overexpression of MfERF053 in Arabidopsis improved root growth, number of lateral roots and fresh weight under drought, salt stress and exogenous ABA treatments. Transgenic Arabidopsis over-expressing MfERF053 gene grew significantly better than the wild type under both drought stress and salt stress when grown in soil. Taken together, our strategy with transcriptome combined WGCNA analyses identified key transcription factor genes from M. falcata, and the selected MfERF053 gene was verified to be able to enhance drought and salt resistance when over-expressed in Arabidopsis.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhihu Jiang
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Wenxuan Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxing Song
- College of Grassland Agriculture, Northwest A&F University, Shanxi, China
| | - Zhiquan Qiang
- College of Grassland Agriculture, Northwest A&F University, Shanxi, China
| | - Bo Zhang
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxiang Wang
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
29
|
Zhang K, Lan Y, Wu M, Wang L, Liu H, Xiang Y. PhePLATZ1, a PLATZ transcription factor in moso bamboo (Phyllostachys edulis), improves drought resistance of transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:121-134. [PMID: 35835078 DOI: 10.1016/j.plaphy.2022.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Drought is one of the most serious environmental stresses. Plant AT-rich sequence and zinc-binding (PLATZ) proteins perform indispensable functions to regulate plant growth and development and to respond to environmental stress. In this present study, we identified PhePLATZ1 in moso bamboo and found that its expression was up-regulated in response to 20% PEG-6000 and abscisic acid (ABA) treatments. Next, transgenic PhePLATZ1-overexpressing Arabidopsis lines were generated. Overexpression of PhePLATZ1 improved drought stress resistance of transgenic plants by mediating osmotic regulation, enhancing water retention capacity and reducing membrane and oxidative damage. These findings were corroborated by analysing physiological indicators including chlorophyll, relative water content, leaf water loss rate, electrolyte leakage, H2O2, proline, malondialdehyde content and the enzyme activities of peroxidase and catalase. Subsequent seed germination and seedling root length experiments that included exposure to exogenous ABA treatments showed that ABA sensitivity decreased in transgenic plants relative to wild-type plants. Moreover, transgenic PhePLATZ1-overexpressing plants promoted stomatal closure in response to ABA treatment, suggesting that PhePLATZ1 might play a positive regulatory role in the drought resistance of plants via the ABA signaling pathway. In addition, the transgenic PhePLATZ1-OE plants showed altered expression of some stress-related genes when grown under drought conditions. Taken together, these findings improve our understanding of the drought response of moso bamboo and provide a key candidate gene for the molecular breeding of this species for drought tolerance.
Collapse
Affiliation(s)
- Kaimei Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yangang Lan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Linna Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Hongxia Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
30
|
Fang X, Ma J, Guo F, Qi D, Zhao M, Zhang C, Wang L, Song B, Liu S, He S, Liu Y, Wu J, Xu P, Zhang S. The AP2/ERF GmERF113 Positively Regulates the Drought Response by Activating GmPR10-1 in Soybean. Int J Mol Sci 2022; 23:ijms23158159. [PMID: 35897735 PMCID: PMC9330420 DOI: 10.3390/ijms23158159] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
Ethylene response factors (ERFs) are involved in biotic and abiotic stress; however, the drought resistance mechanisms of many ERFs in soybeans have not been resolved. Previously, we proved that GmERF113 enhances resistance to the pathogen Phytophthora sojae in soybean. Here, we determined that GmERF113 is induced by 20% PEG-6000. Compared to the wild-type plants, soybean plants overexpressing GmERF113 (GmERF113-OE) displayed increased drought tolerance which was characterized by milder leaf wilting, less water loss from detached leaves, smaller stomatal aperture, lower Malondialdehyde (MDA) content, increased proline accumulation, and higher Superoxide dismutase (SOD) and Peroxidase (POD) activities under drought stress, whereas plants with GmERF113 silenced through RNA interference were the opposite. Chromatin immunoprecipitation and dual effector-reporter assays showed that GmERF113 binds to the GCC-box in the GmPR10-1 promoter, activating GmPR10-1 expression directly. Overexpressing GmPR10-1 improved drought resistance in the composite soybean plants with transgenic hairy roots. RNA-seq analysis revealed that GmERF113 downregulates abscisic acid 8′-hydroxylase 3 (GmABA8’-OH 3) and upregulates various drought-related genes. Overexpressing GmERF113 and GmPR10-1 increased the abscisic acid (ABA) content and reduced the expression of GmABA8’-OH3 in transgenic soybean plants and hairy roots, respectively. These results reveal that the GmERF113-GmPR10-1 pathway improves drought resistance and affects the ABA content in soybean, providing a theoretical basis for the molecular breeding of drought-tolerant soybean.
Collapse
Affiliation(s)
- Xin Fang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Jia Ma
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Fengcai Guo
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Dongyue Qi
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Ming Zhao
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Chuanzhong Zhang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150030, China
| | - Le Wang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150030, China
| | - Bo Song
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Shanshan Liu
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Shengfu He
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Yaguang Liu
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Harbin 150030, China;
| | - Pengfei Xu
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
- Correspondence: (P.X.); (S.Z.)
| | - Shuzhen Zhang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (X.F.); (J.M.); (F.G.); (D.Q.); (M.Z.); (C.Z.); (L.W.); (B.S.); (S.L.); (S.H.); (Y.L.)
- Correspondence: (P.X.); (S.Z.)
| |
Collapse
|
31
|
Hajibarat Z, Saidi A. Senescence-associated proteins and nitrogen remobilization in grain filling under drought stress condition. J Genet Eng Biotechnol 2022; 20:101. [PMID: 35819732 PMCID: PMC9276853 DOI: 10.1186/s43141-022-00378-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Background Plants use escape strategies including premature senescence and leaf reduction to cope in response to drought stress, which in turn reduces plant leaves and photosynthesis. This strategy allows the new generation (seeds) to survive under drought but, plants experience more yield loss during stress condition. The amount of damage caused by drought stress is compensated by the expression of genes involved in regulating leaf aging. Leaf senescence alters the expression of thousands of genes and ultimately affecting grain protein content, grain yield, and nitrogen utilization efficiency. Also, under drought stress, nitrogen in the soil will not become as much available and causes the beginning and acceleration of the senescence process of leaves. The main body of the abstract This review identified proteins signaling and functional proteins involved in senescence. Further, transcription factors and cell wall degradation enzymes (proteases) related to senescence during drought stress were surveyed. We discuss the regulatory pathways of genes as a result of the degradation of proteins during senescence process. Senescence is strongly influenced by plant hormones and environmental factors including the availability of nitrogen. During maturity or drought stress, reduced nitrogen uptake can cause nitrogen to be remobilized from leaves and stems to seeds, eventually leading to leaf senescence. Under these conditions, genes involved in chloroplast degradation and proteases show increased expression. The functional (proteases) and regulatory proteins such as protein kinases and phosphatases as well as transcription factors (AP2/ERF, NAC, WRKY, MYB, and bZIP) are involved in leaf senescence and drought stress. Short conclusion In this review, senescence-associated proteins involved in leaf senescence and regulatory and functional proteins in response to drought stress during grain filling were surveyed. The present study predicts on the role of nitrogen transporters, transcription factors and regulatory genes involved in the late stages of plant growth with the aim of understanding their mechanisms of action during grain filling stage. For a better understanding, the relevant evidence for the balance between grain filling and protein breakdown during grain filling in cereals is presented.
Collapse
Affiliation(s)
- Zohreh Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
32
|
Shi Y, Qin Y, Li F, Wang H. Genome-Wide Profiling of DNA Methylome and Transcriptome Reveals Epigenetic Regulation of Potato Response to DON Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:934379. [PMID: 35812951 PMCID: PMC9260311 DOI: 10.3389/fpls.2022.934379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 05/27/2023]
Abstract
Potato is an important food crop that occupies lesser area but has greater production than rice and wheat. However, potato production is affected by numerous biotic and abiotic stresses, among which Fusarium dry rot is a disease that has significant effect on potato production, storage, and processing. However, the role of DNA methylation in regulating potato response to Fusarium toxin deoxynivalenol (DON) stress is still not fully understood. In this study, we performed DNA methylome and transcriptome analyses of potato tubers treated with five concentrations of DON. The global DNA methylation levels in potato tubers treated with different concentrations of DON showed significant changes relative to those in the control. In particular, the 20 ng/ml treatment showed the largest decrease in all three contexts of methylation levels, especially CHH contexts in transposon regions. The differentially methylated region (DMR)-associated differentially expressed genes (DEGs) were significantly enriched in resistance-related metabolic pathways, indicating that DNA methylation plays an essential role in potato response to DON stress. Furthermore, we examined lesions on potato tubers infested with Fusarium after treatment. Furthermore, the potato tubers treated with 5 and 35 ng/ml DON had lesions of significantly smaller diameters than those of the control, indicating that DON stress may induce resistance. We speculate that this may be related to epigenetic memory created after DNA methylation changes. The detailed DNA methylome and transcriptome profiles suggest that DNA methylation plays a vital role in potato disease resistance and has great potential for enhancing potato dry rot resistance.
Collapse
Affiliation(s)
- Yan Shi
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fenglan Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Haifeng Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
33
|
Li L, Li X, Yang C, Cheng Y, Cai Z, Nian H, Ma Q. GsERF1 enhances Arabidopsis thaliana aluminum tolerance through an ethylene-mediated pathway. BMC PLANT BIOLOGY 2022; 22:258. [PMID: 35610574 PMCID: PMC9128276 DOI: 10.1186/s12870-022-03625-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 05/04/2022] [Indexed: 05/09/2023]
Abstract
Ethylene response factor (ERF) transcription factors constitute a subfamily of the AP2/ERF superfamily in plants and play multiple roles in plant growth and development as well as in stress responses. In this study, the GsERF1 gene from the wild soybean BW69 line (an Al-resistant Glycine soja line) was rapidly induced in response to aluminum stress. Quantitative real-time PCR (qRT-PCR) analysis showed that the GsERF1 gene maintained a constitutive expression pattern and was induced in soybean in response to aluminum stress, with increased amounts of transcripts detected in the roots. The putative GsERF1 protein, which contains an AP2 domain, was located in the nucleus and maintained transactivation activity. In addition, under AlCl3 treatment, GsERF1 overexpression increased the relative growth rate of the roots of Arabidopsis and weakened the hematoxylin staining of hairy roots. Ethylene synthesis-related genes such as ACS4, ACS5 and ACS6 were upregulated in GsERF1 transgenic lines compared with the wild type under AlCl3 treatment. Furthermore, the expression levels of stress/ABA-responsive marker genes, including ABI1, ABI2, ABI4, ABI5 and RD29B, in the GsERF1 transgenic lines were affected by AlCl3 treatment, unlike those in the wild type. Taken together, the results indicated that overexpression of GsERF1 may enhance aluminum tolerance of Arabidopsis through an ethylene-mediated pathway and/or ABA signaling pathway, the findings of which lay a foundation for breeding soybean plants tolerant to aluminum stress.
Collapse
Grants
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 2016ZX08004002-007 the Major Project of New Varieties Cultivation of Genetically Modified Organisms
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 31771816, 31971965 the National Natural Science Foundation of China
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 4100-C17106, 21301091702101 the Special Supervision on Quality and Safety of Agricultural Products of the Ministry of Agriculture and Rural Areas
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- 2018YFE0116900 the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- CARS-04-PS09 the China Agricultural Research System
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 2020B020220008 the Key-Area Research and Development Program of Guangdong Province
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- 201804020015 the Project of Science and Technology of Guangzhou
- the Key Projects of International Scientific and Technological Innovation Cooperation among Governments under National Key R & D Plan
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Xingang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Ce Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Yanbo Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Zhandong Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Hai Nian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| | - Qibin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Zengcheng Teaching and Research Base, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| |
Collapse
|
34
|
Yan W, Cao S, Wu Y, Ye Z, Zhang C, Yao G, Yu J, Yang D, Zhang J. Integrated Analysis of Physiological, mRNA Sequencing, and miRNA Sequencing Data Reveals a Specific Mechanism for the Response to Continuous Cropping Obstacles in Pogostemon cablin Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:853110. [PMID: 35432413 PMCID: PMC9010791 DOI: 10.3389/fpls.2022.853110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 06/02/2023]
Abstract
Pogostemon cablin (patchouli) is a commercially important medicinal and industrial crop grown worldwide for its medicinal and aromatic properties. Patchoulol and pogostone, derived from the essential oil of patchouli, are considered valuable components in the cosmetic and pharmaceutical industries. Due to its high application value in the clinic and industry, the demand for patchouli is constantly growing. Unfortunately, patchouli cultivation has suffered due to severe continuous cropping obstacles, resulting in a significant decline in yield and quality. Moreover, the physiological and transcriptional changes in patchouli in response to continuous cropping obstacles remain unclear. This has greatly restricted the development of the patchouli industry. To explore the mechanism underlying the rapid response of patchouli roots to continuous cropping stress, integrated analysis of the transcriptome and miRNA profiles of patchouli roots under continuous and noncontinuous cropping conditions in different growth periods was conducted using RNA sequencing (RNA-seq) and miRNA-seq and complemented with physiological data. The physiological and biochemical results showed that continuous cropping significantly inhibited root growth, decreased root activity, and increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and the levels of osmoregulators (malondialdehyde, soluble protein, soluble sugar, and proline). Subsequently, we found 4,238, 3,494, and 7,290 upregulated and 4,176, 3,202, and 8,599 downregulated differentially expressed genes (DEGs) in the three growth periods of continuously cropped patchouli, many of which were associated with primary carbon and nitrogen metabolism, defense responses, secondary metabolite biosynthesis, and transcription factors. Based on miRNA-seq, 927 known miRNAs and 130 novel miRNAs were identified, among which 67 differentially expressed miRNAs (DEMIs) belonging to 24 miRNA families were induced or repressed by continuous cropping. By combining transcriptome and miRNA profiling, we obtained 47 miRNA-target gene pairs, consisting of 18 DEMIs and 43 DEGs, that likely play important roles in the continuous cropping response of patchouli. The information provided in this study will contribute to clarifying the intricate mechanism underlying the patchouli response to continuous cropping obstacles. In addition, the candidate miRNAs and genes can provide a new strategy for breeding continuous cropping-tolerant patchouli.
Collapse
|
35
|
Saed-Moucheshi A, Mozafari AA. Alternate gene expression profiling of monoterpenes in Hymenocrater longiflorus as a novel pharmaceutical plant under water deficit. Sci Rep 2022; 12:4084. [PMID: 35260740 PMCID: PMC8904481 DOI: 10.1038/s41598-022-08062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
Hymenocrater longiflorus (surahalala) is a wild plant species with potential pharmaceutical and ornamental interest. To date, the genomics of this plant is unknown and the gene expression profiling of the genes related to its metabolite has never been studied before. In order to study the responses of in vitro-grown surahalala plants to abiotic stresses and the differential expression of the genes related to its essential oils under exogenous proline application; three levels of PEG600 (0, 10, and 20%) and five levels of proline (0, 5, 10, 15, and 20 µm) were combined in the culture media. Thus, water deficit increased oxidants levels and decreased fresh weight of surahalala tissues, whereas addition of proline up to 15 µm was able to relatively compensate the negative effect of water deficit. Contrarily, high proline level (20 µm) had a negative effect on surahalala plants probably due to the stress simulation (nutrition) under high proline concentration. In addition, the best combination for achieving highest essential oils content was 10 µm proline plus 10% PEG. The expressional profiling of the genes TPS27, L3H, TPS2, TPS1, OMT and GDH3 were successfully carried out and their involvement in 1,8-cineole, carvone, α-pinene, thymol, estragole and β-Citronellol biosynthesis, respectively, was verified. In addition, our results indicated that these genes could also be involved in the synthesis of other metabolites under water deficit condition.
Collapse
Affiliation(s)
- Armin Saed-Moucheshi
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Ali Akbar Mozafari
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| |
Collapse
|
36
|
Wang Z, Zhao X, Ren Z, Abou-Elwafa SF, Pu X, Zhu Y, Dou D, Su H, Cheng H, Liu Z, Chen Y, Wang E, Shao R, Ku L. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. PLANT, CELL & ENVIRONMENT 2022; 45:312-328. [PMID: 34873716 DOI: 10.1111/pce.14243] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Drought stress adversely impacts crop development and yield. Maize frequently encounters drought stress during its life cycle. Improvement of drought tolerance is a priority of maize breeding programs. Here, we identified a novel transcription factor encoding gene, APETALA2 (AP2)/Ethylene response factor (ERF), which is tightly associated with drought tolerance in maize seedlings. ZmERF21 is mainly expressed in the root and leaf and it can be highly induced by polyethylene glycol treatment. Genetic analysis showed that the zmerf21 mutant plants displayed a reduced drought tolerance phenotype, accompanied by phenotypical and physiological changes that are commonly observed in drought conditions. Overexpression of ZmERF21 in maize significantly increased the chlorophyll content and activities of antioxidant enzymes under drought conditions. RNA-Seq and DNA affinity purification sequencing analysis further revealed that ZmERF21 may directly regulate the expression of genes related to hormone (ethylene, abscisic acid) and Ca signaling as well as other stress-response genes through binding to the promoters of potential target genes. Our results thereby provided molecular evidence of ZmERF21 is involved in the drought stress response of maize.
Collapse
Affiliation(s)
- Zhiyong Wang
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhenzhen Ren
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | | | - Xiaoyu Pu
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Dandan Dou
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huihui Su
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Haiyang Cheng
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhixue Liu
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruixin Shao
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lixia Ku
- National Key Laboratory of Wheat and Maize Crop Science, Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
37
|
ERF Transcription Factor OsBIERF3 Positively Contributes to Immunity against Fungal and Bacterial Diseases but Negatively Regulates Cold Tolerance in Rice. Int J Mol Sci 2022; 23:ijms23020606. [PMID: 35054806 PMCID: PMC8775505 DOI: 10.3390/ijms23020606] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
We previously showed that overexpression of the rice ERF transcription factor gene OsBIERF3 in tobacco increased resistance against different pathogens. Here, we report the function of OsBIERF3 in rice immunity and abiotic stress tolerance. Expression of OsBIERF3 was induced by Xanthomonas oryzae pv. oryzae, hormones (e.g., salicylic acid, methyl jasmonate, 1-aminocyclopropane-1-carboxylic acid, and abscisic acid), and abiotic stress (e.g., drought, salt and cold stress). OsBIERF3 has transcriptional activation activity that depends on its C-terminal region. The OsBIERF3-overexpressing (OsBIERF3-OE) plants exhibited increased resistance while OsBIERF3-suppressed (OsBIERF3-Ri) plants displayed decreased resistance to Magnaporthe oryzae and X. oryzae pv. oryzae. A set of genes including those for PRs and MAPK kinases were up-regulated in OsBIERF3-OE plants. Cell wall biosynthetic enzyme genes were up-regulated in OsBIERF3-OE plants but down-regulated in OsBIERF3-Ri plants; accordingly, cell walls became thicker in OsBIERF3-OE plants but thinner in OsBIERF3-Ri plants than WT plants. The OsBIERF3-OE plants attenuated while OsBIERF3-Ri plants enhanced cold tolerance, accompanied by altered expression of cold-responsive genes and proline accumulation. Exogenous abscisic acid and 1-aminocyclopropane-1-carboxylic acid, a precursor of ethylene biosynthesis, restored the attenuated cold tolerance in OsBIERF3-OE plants while exogenous AgNO3, an inhibitor of ethylene action, significantly suppressed the enhanced cold tolerance in OsBIERF3-Ri plants. These data demonstrate that OsBIERF3 positively contributes to immunity against M. oryzae and X. oryzae pv. oryzae but negatively regulates cold stress tolerance in rice.
Collapse
|
38
|
Zeng WY, Tan YR, Long SF, Sun ZD, Lai ZG, Yang SZ, Chen HZ, Qing XY. Methylome and transcriptome analyses of soybean response to bean pyralid larvae. BMC Genomics 2021; 22:836. [PMID: 34794392 PMCID: PMC8603512 DOI: 10.1186/s12864-021-08140-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bean pyralid is one of the major leaf-feeding insects that affect soybean crops. DNA methylation can control the networks of gene expressions, and it plays an important role in responses to biotic stress. However, at present the genome-wide DNA methylation profile of the soybean resistance to bean pyralid has not been reported so far. RESULTS Using whole-genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq), we analyzed the highly resistant material (Gantai-2-2, HRK) and highly susceptible material (Wan82-178, HSK), under bean pyralid larvae feeding 0 h and 48 h, to clarify the molecular mechanism of the soybean resistance and explore its insect-resistant genes. We identified 2194, 6872, 39,704 and 40,018 differentially methylated regions (DMRs), as well as 497, 1594, 9596 and 9554 differentially methylated genes (DMGs) in the HRK0/HRK48, HSK0/HSK48, HSK0/HRK0 and HSK48/HRK48 comparisons, respectively. Through the analysis of global methylation and transcription, 265 differentially expressed genes (DEGs) were negatively correlated with DMGs, there were 34, 49, 141 and 116 negatively correlated genes in the HRK0/HRK48, HSK0/HSK48, HSK0/HRK0 and HSK48/HRK48, respectively. The MapMan cluster analysis showed that 114 negatively correlated genes were clustered in 24 pathways, such as protein biosynthesis and modification; primary metabolism; secondary metabolism; cell cycle, cell structure and component; RNA biosynthesis and processing, and so on. Moreover, CRK40; CRK62; STK; MAPK9; L-type lectin-domain containing receptor kinase VIII.2; CesA; CSI1; fimbrin-1; KIN-14B; KIN-14 N; KIN-4A; cytochrome P450 81E8; BEE1; ERF; bHLH25; bHLH79; GATA26, were likely regulatory genes involved in the soybean responses to bean pyralid larvae. Finally, 5 DMRs were further validated that the genome-wide DNA data were reliable through PS-PCR and 5 DEGs were confirmed the relationship between DNA methylation and gene expression by qRT-PCR. The results showed an excellent agreement with deep sequencing. CONCLUSIONS Genome-wide DNA methylation profile of soybean response to bean pyralid was obtained for the first time. Several specific DMGs which participated in protein kinase, cell and organelle, flavonoid biosynthesis and transcription factor were further identified to be likely associated with soybean response to bean pyralid. Our data will provide better understanding of DNA methylation alteration and their potential role in soybean insect resistance.
Collapse
Affiliation(s)
- Wei-Ying Zeng
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China
| | - Yu-Rong Tan
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China
| | - Sheng-Feng Long
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China
| | - Zu-Dong Sun
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China
| | - Zhen-Guang Lai
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China
| | - Shou-Zhen Yang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China
| | - Huai-Zhu Chen
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China
| | - Xia-Yan Qing
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China
| |
Collapse
|
39
|
Wu J, Yu C, Huang L, Gan Y. A rice transcription factor, OsMADS57, positively regulates high salinity tolerance in transgenic Arabidopsis thaliana and Oryza sativa plants. PHYSIOLOGIA PLANTARUM 2021; 173:1120-1135. [PMID: 34287928 DOI: 10.1111/ppl.13508] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 05/24/2023]
Abstract
MADS-box transcription factors (TFs) play indispensable roles in various aspects of plant growth, development as well as in response to environmental stresses. Several MADS-box genes have been reported to be involved in the salt tolerance in different plant species. However, the role of the transcription factor OsMADS57 under salinity stress is still unknown. Here, the results of this study showed that OsMADS57 was mainly expressed in roots and leaves of rice plants (Oryza sativa). Gene expression pattern analysis revealed that OsMADS57 was induced by NaCl. Overexpression of OsMADS57 in both Arabidopsis thaliana (A. thaliana) and rice could improve their salt tolerance, which was demonstrated by higher germination rates, longer root length and better growth status of overexpression plants than wild type (WT) under salinity conditions. In contrast, RNA interference (RNAi) lines of rice showed more sensitivity towards salinity. Moreover, less reactive oxygen species (ROS) accumulated in OsMADS57 overexpressing lines when exposed to salt stress, as measured by 3, 3'-diaminobenzidine (DAB) or nitroblue tetrazolium (NBT) staining. Further experiments exhibited that overexpression of OsMADS57 in rice significantly increased the tolerance ability of plants to oxidative damage under salt stress, mainly by increasing the activities of antioxidative enzymes such as superoxide dismutase (SOD) and peroxidase (POD), reducing malonaldehyde (MDA) content and improving the expression of stress-related genes. Taken together, these results demonstrated that OsMADS57 plays a positive role in enhancing salt tolerance by activating the antioxidant system.
Collapse
Affiliation(s)
- Junyu Wu
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chunyan Yu
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ludong University, College of Agriculture, Yantai, China
| | - Linli Huang
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinbo Gan
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| |
Collapse
|
40
|
Martin RC, Kronmiller BA, Dombrowski JE. Transcriptome Analysis of Lolium temulentum Exposed to a Combination of Drought and Heat Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112247. [PMID: 34834610 PMCID: PMC8621252 DOI: 10.3390/plants10112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Drought and heat are two major stresses predicted to increase in the future due to climate change. Plants exposed to multiple stressors elicit unique responses from those observed under individual stresses. A comparative transcriptome analysis of Lolium temulentum exposed to drought plus heat and non-stressed control plants revealed 20,221 unique up-regulated and 17,034 unique down-regulated differentially regulated transcripts. Gene ontology analysis revealed a strong emphasis on transcriptional regulation, protein folding, cell cycle/parts, organelles, binding, transport, signaling, oxidoreductase, and antioxidant activity. Differentially expressed genes (DEGs) encoding for transcriptional control proteins such as basic leucine zipper, APETALA2/Ethylene Responsive Factor, NAC, and WRKY transcription factors, and Zinc Finger (CCCH type and others) proteins were more often up-regulated, while DEGs encoding Basic Helix-Loop-Helix, MYB and GATA transcription factors, and C2H2 type Zinc Finger proteins were more often down-regulated. The DEGs encoding heat shock transcription factors were only up-regulated. Of the hormones, auxin-related DEGs were the most prevalent, encoding for auxin response factors, binding proteins, and efflux/influx carriers. Gibberellin-, cytokinin- and ABA-related DEGs were also prevalent, with fewer DEGs related to jasmonates and brassinosteroids. Knowledge of genes/pathways that grasses use to respond to the combination of heat/drought will be useful in developing multi-stress resistant grasses.
Collapse
Affiliation(s)
- Ruth C. Martin
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331-7102, USA;
| | - Brent A. Kronmiller
- Center for Quantitative Life Sciences, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-7102, USA;
| | - James E. Dombrowski
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331-7102, USA;
| |
Collapse
|
41
|
Tirry N, Kouchou A, El Omari B, Ferioun M, El Ghachtouli N. Improved chromium tolerance of Medicago sativa by plant growth-promoting rhizobacteria (PGPR). J Genet Eng Biotechnol 2021; 19:149. [PMID: 34613510 PMCID: PMC8494867 DOI: 10.1186/s43141-021-00254-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022]
Abstract
Background Soil pollution by heavy metals increases the bioavailability of metals like hexavalent chromium (Cr (VI)), subsequently limiting plant growth and reducing the efficiency of phytoremediation. Plant growth-promoting rhizobacteria (PGPR) have substantial potential to enhance plant growth as well as plant tolerance to metal stress. The aim of this research was to investigate Cr (VI) phytoremediation enhancement by PGPR. Results The results showed that the 27 rhizobacterial isolates studied were confirmed as Cr (VI)-resistant PGPR, by using classical biochemical tests (phosphate solubilization, nitrogen fixation, indole acetic acid, exopolysaccharides, hydrogen cyanide, siderophores, ammonia, cellulase, pectinase, and chitinase production) and showed variable levels of Cr (VI) resistance (300–600 mg/L). The best four selected Cr (VI)-resistant PGPR (NT15, NT19, NT20, and NT27) retained most of the PGP traits in the presence of 100–200 mg/L concentrations of Cr (VI). The inoculation of Medicago sativa with any of these four isolates improved the shoot and root dry weight. The NT27 isolate identified using 16S rDNA gene sequence analyses as a strain of Pseudomonas sp. was most effective in terms of plant growth promotion and stress level decrease. It increased shoot and root dry weights of M. sativa by 97.6 and 95.4%, respectively, in the presence of Cr (VI) when compared to non-inoculated control plants. It also greatly increased chlorophyll content and decreased the levels of stress markers, malondialdehyde, hydrogen peroxide, and proline. The results of the effect of Pseudomonas sp. on Cr content and bioaccumulation factor (BAF) of the shoots and roots of M. sativa plants showed the increase of plant biomass concomitantly with the increase of Cr root concentration in inoculated plants. This would lead to a higher potential of Cr (VI) phytostabilization. Conclusions This study demonstrates that the association M. sativa-Pseudomonas sp. may be an efficient biological system for the bioremediation of Cr (VI)-contaminated soils.
Collapse
Affiliation(s)
- Nabil Tirry
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| | - Aziza Kouchou
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| | - Bouchra El Omari
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| | - Mohamed Ferioun
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| | - Naïma El Ghachtouli
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fes, Morocco.
| |
Collapse
|
42
|
Li D, He Y, Li S, Shi S, Li L, Liu Y, Chen H. Genome-wide characterization and expression analysis of AP2/ERF genes in eggplant (Solanum melongena L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:492-503. [PMID: 34425394 DOI: 10.1016/j.plaphy.2021.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 05/20/2023]
Abstract
The AP2/ERF (APETALA2/Ethylene Response Factor) transcription factor superfamily plays crucial roles in a slew of physiological processes, such as plant growth and development, stress response, and secondary metabolites biosynthesis. Eggplant, especially the one rich with anthocyanins, is an economically important horticultural vegetable cultivated worldwide. In this study, we comprehensively analyzed the putative AP2/ERF gene family members and their response to abiotic stress in eggplant. As per the phylogenetic, conserved domains, and motif analysis, 178 AP2/ERF genes in this study belonged to five subfamilies. Chromosomal distributions analysis elucidated stochastic distribution of 178 putative SmAP2/ERF genes across the twelve chromosomes of eggplant. Expression profiles of sixteen selected AP2/ERF genes response to low temperature, drought, salt, abscisic acid, and ethylene treatments were analyzed, which revealed the involvement of SmAP2/ERF genes in diverse signaling pathways. In addition, we integrated RNA-Seq data on anthocyanin biosynthesis in eggplant with yeast one-hybrid and dual-luciferase assays and identified involvement of the SmAP2/ERF genes (Smechr0902114.1 and Smechr1102075.1) in the regulation of anthocyanin biosynthesis. This study will enable further functional characterization of AP2/ERF genes in eggplant and extend the current understanding of the role played by AP2/ERF genes in anthocyanin biosynthesis regulation.
Collapse
Affiliation(s)
- Dalu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - YongJun He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shaohang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Suli Shi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Linzhi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
43
|
Billah M, Aktar S, Brestic M, Zivcak M, Khaldun ABM, Uddin MS, Bagum SA, Yang X, Skalicky M, Mehari TG, Maitra S, Hossain A. Progressive Genomic Approaches to Explore Drought- and Salt-Induced Oxidative Stress Responses in Plants under Changing Climate. PLANTS (BASEL, SWITZERLAND) 2021; 10:1910. [PMID: 34579441 PMCID: PMC8471759 DOI: 10.3390/plants10091910] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022]
Abstract
Drought and salinity are the major environmental abiotic stresses that negatively impact crop development and yield. To improve yields under abiotic stress conditions, drought- and salinity-tolerant crops are key to support world crop production and mitigate the demand of the growing world population. Nevertheless, plant responses to abiotic stresses are highly complex and controlled by networks of genetic and ecological factors that are the main targets of crop breeding programs. Several genomics strategies are employed to improve crop productivity under abiotic stress conditions, but traditional techniques are not sufficient to prevent stress-related losses in productivity. Within the last decade, modern genomics studies have advanced our capabilities of improving crop genetics, especially those traits relevant to abiotic stress management. This review provided updated and comprehensive knowledge concerning all possible combinations of advanced genomics tools and the gene regulatory network of reactive oxygen species homeostasis for the appropriate planning of future breeding programs, which will assist sustainable crop production under salinity and drought conditions.
Collapse
Affiliation(s)
- Masum Billah
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.B.); (T.G.M.)
| | - Shirin Aktar
- Institute of Tea Research, Chinese Academy of Agricultural Sciences, South Meiling Road, Hangzhou 310008, China;
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
| | | | - Md. Shalim Uddin
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (A.B.M.K.); (M.S.U.); (S.A.B.)
| | - Shamim Ara Bagum
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (A.B.M.K.); (M.S.U.); (S.A.B.)
| | - Xinghong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Daizong St., Tai’an 271000, China;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Teame Gereziher Mehari
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.B.); (T.G.M.)
| | - Sagar Maitra
- Department of Agronomy, Centurion University of Technology and Management, Village Alluri Nagar, R.Sitapur 761211, Odisha, India;
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
44
|
Khan MIR, Palakolanu SR, Chopra P, Rajurkar AB, Gupta R, Iqbal N, Maheshwari C. Improving drought tolerance in rice: Ensuring food security through multi-dimensional approaches. PHYSIOLOGIA PLANTARUM 2021; 172:645-668. [PMID: 33006143 DOI: 10.1111/ppl.13223] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 05/27/2023]
Abstract
Drought has been highly prevalent around the world especially in Sub-Saharan Africa and South-East Asian countries. Consistent climatic instabilities and unpredictable rainfall patterns are further worsening the situation. Rice is a C3 staple cereal and an important food crop for the majority of the world's population and drought stress is one of the major growth retarding threats for rice that slashes down grain quality and yield. Drought deteriorates rice productivity and induces various acclimation responses that aids in stress mitigation. However, the complexity of traits associated with drought tolerance has made the understanding of drought stress-induced responses in rice a challenging process. An integrative understanding based on physiological adaptations, omics, transgenic and molecular breeding approaches successively backed up to developing drought stress-tolerant rice. The review represents a step forward to develop drought-resilient rice plants by exploiting the knowledge that collaborates with omics-based developments with integrative efforts to ensure the compilation of all the possible strategies undertaken to develop drought stress-tolerant rice.
Collapse
Affiliation(s)
| | - Sudhakar R Palakolanu
- Cell, Molecular Biology and Genetic Engineering Group, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Ashish B Rajurkar
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Ravi Gupta
- Department of Botany, Jamia Hamdard, New Delhi, India
| | | | - Chirag Maheshwari
- Agricultural Energy and Power Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
45
|
Plant Transcription Factors Involved in Drought and Associated Stresses. Int J Mol Sci 2021; 22:ijms22115662. [PMID: 34073446 PMCID: PMC8199153 DOI: 10.3390/ijms22115662] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Transcription factors (TFs) play a significant role in signal transduction networks spanning the perception of a stress signal and the expression of corresponding stress-responsive genes. TFs are multi-functional proteins that may simultaneously control numerous pathways during stresses in plants-this makes them powerful tools for the manipulation of regulatory and stress-responsive pathways. In recent years, the structure-function relationships of numerous plant TFs involved in drought and associated stresses have been defined, which prompted devising practical strategies for engineering plants with enhanced stress tolerance. Vast data have emerged on purposely basic leucine zipper (bZIP), WRKY, homeodomain-leucine zipper (HD-Zip), myeloblastoma (MYB), drought-response elements binding proteins/C-repeat binding factor (DREB/CBF), shine (SHN), and wax production-like (WXPL) TFs that reflect the understanding of their 3D structure and how the structure relates to function. Consequently, this information is useful in the tailored design of variant TFs that enhances our understanding of their functional states, such as oligomerization, post-translational modification patterns, protein-protein interactions, and their abilities to recognize downstream target DNA sequences. Here, we report on the progress of TFs based on their interaction pathway participation in stress-responsive networks, and pinpoint strategies and applications for crops and the impact of these strategies for improving plant stress tolerance.
Collapse
|
46
|
He F, Shi YJ, Mi JX, Zhao KJ, Cui XL, Chen LH, Yang HB, Zhang F, Zhao Q, Huang JL, Wan XQ. Genome-Wide Investigation of the NF-X1 Gene Family in Populus trichocarpa Expression Profiles during Development and Stress. Int J Mol Sci 2021; 22:4664. [PMID: 33925110 PMCID: PMC8124260 DOI: 10.3390/ijms22094664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
Poplar are planted extensively in reforestation and afforestation. However, their successful establishment largely depends on the environmental conditions of the newly established plantation and their resistance to abiotic as well as biotic stresses. NF-X1, a widespread transcription factor in plants, plays an irreplaceable role in plant growth, development, and stress tolerance. Although the whole genome sequence of Populus trichocarpa has been published for a long time, little is known about the NF-X1 genes in poplar, especially those related to drought stress, mechanical damage, insect feeding, and hormone response at the whole genome level. In this study, whole genome analysis of the poplar NF-X1 family was performed, and 4 PtrNF-X1 genes were identified. Then, bioinformatics analysis and qRT-PCR were applied to analyze the gene structure, phylogeny, chromosomal localization, gene replication, Cis-elements, and expression patterns of PtrNF-X1genes. Sequence analysis revealed that one-quarter of the PtrNF-X1 genes did not contain introns. Phylogenetic analysis revealed that all NF-X1 genes were split into three subfamilies. The number of two pairs of segmented replication genes were detected in poplars. Cis-acting element analysis identified a large number of elements of growth and development and stress-related elements on the promoters of different NF-X1 members. In addition, some PtrNF-X1 could be significantly induced by polyethylene glycol (PEG) and abscisic acid (ABA), thus revealing their potential role in regulating stress response. Comprehensive analysis is helpful in selecting candidate NF-X1 genes for the follow-up study of the biological function, and molecular genetic progress of stress resistance in forest trees provides genetic resources.
Collapse
Affiliation(s)
- Fang He
- Correspondence: (F.H.); (X.-Q.W.); Tel.: +86-176-8377-7884 (F.H.); +86-138-8163-4583 (X.-Q.W.)
| | | | | | | | | | | | | | | | | | | | - Xue-Qin Wan
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.-J.S.); (J.-X.M.); (K.-J.Z.); (X.-L.C.); (L.-H.C.); (H.-B.Y.); (F.Z.); (Q.Z.); (J.-L.H.)
| |
Collapse
|
47
|
Wang H, Chen JG, Chang Y. Identification, Expression, and Interaction Analysis of Ovate Family Proteins in Populus trichocarpa Reveals a Role of PtOFP1 Regulating Drought Stress Response. FRONTIERS IN PLANT SCIENCE 2021; 12:650109. [PMID: 33959141 PMCID: PMC8095670 DOI: 10.3389/fpls.2021.650109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Ovate family proteins (OFPs) are a family of plant growth regulators that play diverse roles in many aspects of physiological processes. OFPs have been characterized in various plant species including tomato, Arabidopsis, and rice. However, little is known about OFPs in woody species. Here, a total of 30 PtOFP genes were identified from the genome of Populus trichocarpa and were further grouped into four subfamilies based on their sequence similarities. Gene expression analysis indicated that some members of the PtOFP gene family displayed tissue/organ-specific patterns. Analysis of cis-acting elements in the promoter as well as gene expression by hormone treatment revealed putative involvement of PtOFPs in hormonal response. Furthermore, PtOFP1 (Potri.006G107700) was further experimentally demonstrated to act as a transcriptional repressor. Yeast two-hybrid assay showed physical interactions of PtOFP1 with other proteins, which suggests that they might function in various cellular processes by forming protein complexes. In addition, overexpression of PtOFP1 in Arabidopsis conferred enhanced tolerance to PEG-induced drought stress at seedling stage, as well as a higher survival rate than the wild type at mature stage. These results provide a systematic analysis of the Populus OFP gene family and lay a foundation for functional characterization of this gene family.
Collapse
Affiliation(s)
- Hemeng Wang
- Northeast Agricultural University, Harbin, China
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ying Chang
- Northeast Agricultural University, Harbin, China
| |
Collapse
|
48
|
Abstract
With the global climate anomalies and the destruction of ecological balance, the water shortage has become a serious ecological problem facing all mankind, and drought has become a key factor restricting the development of agricultural production. Therefore, it is essential to study the drought tolerance of crops. Based on previous studies, we reviewed the effects of drought stress on plant morphology and physiology, including the changes of external morphology and internal structure of root, stem, and leaf, the effects of drought stress on osmotic regulation substances, drought-induced proteins, and active oxygen metabolism of plants. In this paper, the main drought stress signals and signal transduction pathways in plants are described, and the functional genes and regulatory genes related to drought stress are listed, respectively. We summarize the above aspects to provide valuable background knowledge and theoretical basis for future agriculture, forestry breeding, and cultivation.
Collapse
|
49
|
Wytynck P, Lambin J, Chen S, Demirel Asci S, Verbeke I, De Zaeytijd J, Subramanyam K, Van Damme EJ. Effect of RIP Overexpression on Abiotic Stress Tolerance and Development of Rice. Int J Mol Sci 2021; 22:1434. [PMID: 33535383 PMCID: PMC7867109 DOI: 10.3390/ijms22031434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/31/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are a class of cytotoxic enzymes that can inhibit protein translation by depurinating rRNA. Most plant RIPs are synthesized with a leader sequence that sequesters the proteins to a cell compartment away from the host ribosomes. However, several rice RIPs lack these signal peptides suggesting they reside in the cytosol in close proximity to the plant ribosomes. This paper aims to elucidate the physiological function of two nucleocytoplasmic RIPs from rice, in particular, the type 1 RIP referred to as OsRIP1 and a presumed type 3 RIP called nuRIP. Transgenic rice lines overexpressing these RIPs were constructed and studied for developmental effects resulting from this overexpression under greenhouse conditions. In addition, the performance of transgenic seedlings in response to drought, salt, abscisic acid and methyl jasmonate treatment was investigated. Results suggest that both RIPs can affect methyl jasmonate mediated stress responses.
Collapse
Affiliation(s)
- Pieter Wytynck
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Jeroen Lambin
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Simin Chen
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Sinem Demirel Asci
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Isabel Verbeke
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Jeroen De Zaeytijd
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Kondeti Subramanyam
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
| | - Els J.M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (P.W.); (J.L.); (S.C.); (S.D.A.); (I.V.); (J.D.Z.); (K.S.)
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
50
|
Wang F, Niu H, Xin D, Long Y, Wang G, Liu Z, Li G, Zhang F, Qi M, Ye Y, Wang Z, Pei B, Hu L, Yuan C, Chen X. OsIAA18, an Aux/IAA Transcription Factor Gene, Is Involved in Salt and Drought Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:738660. [PMID: 34868122 PMCID: PMC8637529 DOI: 10.3389/fpls.2021.738660] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/19/2021] [Indexed: 05/08/2023]
Abstract
Auxin/indoleacetic acid (Aux/IAA) proteins play an important regulatory role in the developmental process of plants and their responses to stresses. A previous study has shown that constitutive expression of OsIAA18, an Aux/IAA transcription factor gene of rice improved salt and osmotic tolerance in transgenic Arabidopsis plants. However, little work is known about the regulatory functions of the OsIAA18 gene in regulating the abiotic stress tolerance of rice. In this study, the OsIAA18 gene was introduced into the rice cultivar, Zhonghua 11 and the OsIAA18 overexpression in rice plants exhibited significantly enhanced salt and drought tolerance compared to the wild type (WT). Moreover, overexpression of OsIAA18 in rice increased endogenous levels of abscisic acid (ABA) and the overexpression of OsIAA18 in rice plants showed hypersensitivity to exogenous ABA treatment at both the germination and postgermination stages compared to WT. Overexpression of OsIAA18 upregulated the genes involved in ABA biosynthesis and signaling pathways, proline biosynthesis pathway, and reactive oxygen species (ROS)-scavenging system in the overexpression of OsIAA18 in rice plants under salt and drought stresses. Proline content, superoxide dismutase (SOD), and peroxidase (POD) activities were significantly increased, whereas malonaldehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion radical (O2 -) content were significantly decreased in the transgenic plants under salt and drought stresses. Taken together, we suggest that OsIAA18 plays a positive role in drought and salt tolerance by regulating stress-induced ABA signaling. The OsIAA18 gene has a potential application in genetically modified crops with enhanced tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Feibing Wang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
- *Correspondence: Feibing Wang,
| | - Haofei Niu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Dongqing Xin
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Yi Long
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Guangpeng Wang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Zongmei Liu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Gang Li
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region, Huai’an, China
| | - Fan Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Mingyang Qi
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Yuxiu Ye
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Zunxin Wang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Baolei Pei
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Laibao Hu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Caiyong Yuan
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region, Huai’an, China
| | - Xinhong Chen
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| |
Collapse
|