1
|
Singh V, Hallan V, Pati PK. Withania somnifera osmotin (WsOsm) confers stress tolerance in tobacco and establishes novel interactions with the defensin protein (WsDF). PHYSIOLOGIA PLANTARUM 2024; 176:e14513. [PMID: 39262029 DOI: 10.1111/ppl.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Pathogenesis-related proteins (PR), including osmotins, play a vital role in plant defense, being activated in response to diverse biotic and abiotic stresses. Despite their significance, the mechanistic insights into the role of osmotins in plant defense have not been extensively explored. The present study explores the cloning and characterization of the osmotin gene (WsOsm) from Withania somnifera, aiming to illuminate its role in plant defense mechanisms. Quantitative real-time PCR analysis revealed significant induction of WsOsm in response to various phytohormones e.g. abscisic acid, salicylic acid, methyl jasmonate, brassinosteroids, and ethrel, as well as biotic and abiotic stresses like heat, cold, salt, and drought. To further elucidate WsOsm's functional role, we overexpressed the gene in Nicotiana tabacum, resulting in heightened resistance against the Alternaria solani pathogen. Additionally, we observed enhancements in shoot length, root length, and root biomass in the transgenic tobacco plants compared to wild plants. Notably, the WsOsm- overexpressing seedlings demonstrated improved salt and drought stress tolerance, particularly at the seedling stage. Confocal histological analysis of H2O2 and biochemical studies of antioxidant enzyme activities revealed higher levels in the WsOsm overexpressing lines, indicating enhanced antioxidant defense. Furthermore, a pull-down assay and mass spectrometry analysis revealed a potential interaction between WsOsm and defensin, a known antifungal PR protein (WsDF). This suggests a novel role of WsOsm in mediating plant defense responses by interacting with other PR proteins. Overall, these findings pave the way for potential future applications of WsOsm in developing stress-tolerant crops and improving plant defense strategies against pathogens.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vipin Hallan
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
2
|
Lv G, Li Z, Zhao Z, Liu H, Li L, Li M. The factors affecting the development of medicinal plants from a value chain perspective. PLANTA 2024; 259:108. [PMID: 38555562 DOI: 10.1007/s00425-024-04380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
MAIN CONCLUSION From a value chain perspective, this paper examines the important factors from the selection of planting areas to storage, which restrict the development of medicinal plants. The purpose of this paper is to provide theoretical basis for the sustainable development of medicinal plants. Medicinal plants have significant economic and medicinal value. Due to the gradual depletion of wild medicinal plant resources, cultivators of medicinal plants must resort to artificial cultivation to cope. However, there are still many problems in the production process of medicinal plants, resulting in decreases in both yield and quality, thus hindering sustainable development. To date, research on the value chain of medicinal plants is still limited. Therefore, this paper analyzes the factors affecting the development of medicinal plants from the perspective of the value chain, including the selection of growing areas to the storage process of medicinal plants, and summarizes the challenges faced in the production process of medicinal plants. The purpose of this paper is to provide theoretical basis for the sustainable development of medicinal plants.
Collapse
Affiliation(s)
- Guoshuai Lv
- University Engineering Research Center of Chinese (Mongolia), Ecological Planting Medicinal Materials (Nurture) in Inner Mongolia Autonomous Region, College of Agronomy, Inner Mongolia Minzu University, Tongliao, China
| | - Zhihe Li
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zeyuan Zhao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Haolin Liu
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ling Li
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Minhui Li
- University Engineering Research Center of Chinese (Mongolia), Ecological Planting Medicinal Materials (Nurture) in Inner Mongolia Autonomous Region, College of Agronomy, Inner Mongolia Minzu University, Tongliao, China.
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, Inner Mongolia, China.
| |
Collapse
|
3
|
Liang Y, Wei F, Qin S, Li M, Hu Y, Lin Y, Wei G, Wei K, Miao J, Zhang Z. Sophora tonkinensis: response and adaptation of physiological characteristics, functional traits, and secondary metabolites to drought stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1109-1120. [PMID: 37815250 DOI: 10.1111/plb.13578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 10/11/2023]
Abstract
The medicinal plant Sophora tonkinensis is a characteristic Chinese shrub of karst areas. The arid climate in karst areas produces high-quality S. tonkinensis; however, the mechanisms of drought tolerance are not clear, which restricts sustainable plantings of S. tonkinensis. This study involved a 20-day drought stress experiment with potted S. tonkinensis and threee soil water regimes: control (CK), mild drought (MDT), and severe drought (SDT). Plant morphology, biomass, physiological indicators, alkaloid content, and other changes under drought stress were monitored. The content of soluble sugars and proteins, and activity of antioxidant enzymes in leaves and roots were higher under drought than CK, indicating that S. tonkinensis is tolerant to osmotic stress in early drought stages. Content of matrine and oxymatrine increased gradually with increasing drought duration in the short term. The epidermis of S. tonkinensis leaves have characteristics of desert plants, including upper epidermal waxy layer, lower epidermal villi, and relatively sunken stomata, suggesting that S. tonkinensis has strong drought tolerance. In conclusion, drought stress changed the cell structure of S. tonkinensis, induced antioxidant enzyme activity and increased its resistance to drought.
Collapse
Affiliation(s)
- Y Liang
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - F Wei
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - S Qin
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - M Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Y Hu
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Y Lin
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - G Wei
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - K Wei
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - J Miao
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Z Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Li J, Wang J, Pang Q, Yan X. Analysis of N 6-methyladenosine reveals a new important mechanism regulating the salt tolerance of sugar beet (Beta vulgaris). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111794. [PMID: 37459955 DOI: 10.1016/j.plantsci.2023.111794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023]
Abstract
Salinity is an important environmental factor in crop growth and development. N6-methyladenosine (m6A) is an essential epigenetic modification that regulates plant-environment interaction. Sugar beet is a major sugar-yielding crop that has a certain tolerance to salt, but the dynamic response elicited by the m6A modification of transcripts under salt stress remains unknown. In this study, sugar beet was exposed to 300 mM NaCl to investigate its physiological response to high salinity and transcriptome-wide m6A modification profile. After the salt treatment, 7737 significantly modified m6A sites and 4981 differentially expressed genes (DEGs) were identified. Among the 312 m6A-modified DEGs, 113 hypomethylated DEGs were up-regulated and 99 hypermethylated DEGs were down-regulated, indicating a negative correlation between m6A modification and gene expression. Well-known salt tolerance genes (e.g., sodium/hydrogen exchanger 1, choline monooxygenase, and nucleoredoxin 2) and phospholipid signaling pathway genes (phosphoinositol-specific phospholipase C, phospholipase D, diacylglycerol kinase 1, etc.) were also among the m6A-modified genes. Further analysis showed that m6A modification may regulate salt-tolerant related gene expression by controlling mRNA stability. Therefore, changes in m6A modification may negatively regulate the expression of the salt-resistant genes in sugar beet, at least in part by modulating the stability of the mRNA via demethylase BvAlkbh10B. These findings could provide a better understanding of the epigenetic mechanisms of salt tolerance in sugar beets and uncover new candidate genes for improving the production of sugar beets planted in high-salinity soil.
Collapse
Affiliation(s)
- Junliang Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China; Post-doctoral Research Stations, Northeast Forestry University, Harbin 150040, China
| | - Jiayuan Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
| | - Qiuying Pang
- Post-doctoral Research Stations, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China.
| |
Collapse
|
5
|
Singh R. Spectral reflectance and fluorescence is a rapid, non-destructive tool for drought tolerance monitoring in Withania somnifera (L.) Dunal. PROTOPLASMA 2023; 260:1421-1435. [PMID: 37119439 DOI: 10.1007/s00709-023-01859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
Withania somnifera plants were exposed to drought stress for 23 days. Relative water content (RWC), gaseous exchange, fluorescence parameters, and spectral reflectance changes were monitored under drought stress. Assimilation rate and RWC decreased by 81% and 65%, respectively, during drought exposure of 23 days. Photosynthetic reflectance index (PRI) and water index (WI) showed a decreasing pattern under drought stress and correlated with Amax and RWC. Anthocyanin reflectance index and anthocyanin content increased with drought stress. Similarly, rational among R727, R696, R770, and R731 reflects chlorophyll content and Chl a/b ratio and copes with actual chlorophyll content. Fluorescence changes showed the opening and closing of PSII reaction centers, while absorbance change at 830/875 nm showed activity and energy balance of PSI. Non-photochemical quenching increased under drought, which showed depoxydation of xanthine cycle pigment. Energy balance at the acceptor and donor side of PSI adjusted under drought stress by increasing electron carrying limitation at donor side. Energy balance between PSI and PSII is maintained by increasing cyclic electron flux under mild drought stress. Both protective mechanism depoxydation of xanthine cycle pigment and enhancement of cyclic electron flux reduced or diminished under severe drought stress. Decrease in leaf area and stomatal closure may cause a reduction in transpiration that results into loss of RWC and altered physiological processes. Since fluorescence, absorbance change and spectral reflectance are non-invasive measurements that may be used as indicators for assessing drought tolerance in medicinal plants.
Collapse
Affiliation(s)
- Ruchi Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India, 226015.
| |
Collapse
|
6
|
Sun Y, Alseekh S, Fernie AR. Plant secondary metabolic responses to global climate change: A meta-analysis in medicinal and aromatic plants. GLOBAL CHANGE BIOLOGY 2023; 29:477-504. [PMID: 36271675 DOI: 10.1111/gcb.16484] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Plant secondary metabolites (SMs) play crucial roles in plant-environment interactions and contribute greatly to human health. Global climate changes are expected to dramatically affect plant secondary metabolism, yet a systematic understanding of such influences is still lacking. Here, we employed medicinal and aromatic plants (MAAPs) as model plant taxa and performed a meta-analysis from 360 publications using 1828 paired observations to assess the responses of different SMs levels and the accompanying plant traits to elevated carbon dioxide (eCO2 ), elevated temperature (eT), elevated nitrogen deposition (eN) and decreased precipitation (dP). The overall results showed that phenolic and terpenoid levels generally respond positively to eCO2 but negatively to eN, while the total alkaloid concentration was increased remarkably by eN. By contrast, dP promotes the levels of all SMs, while eT exclusively exerts a positive influence on the levels of phenolic compounds. Further analysis highlighted the dependence of SM responses on different moderators such as plant functional types, climate change levels or exposure durations, mean annual temperature and mean annual precipitation. Moreover, plant phenolic and terpenoid responses to climate changes could be attributed to the variations of C/N ratio and total soluble sugar levels, while the trade-off supposition contributed to SM responses to climate changes other than eCO2 . Taken together, our results predicted the distinctive SM responses to diverse climate changes in MAAPs and allowed us to define potential moderators responsible for these variations. Further, linking SM responses to C-N metabolism and growth-defence balance provided biological understandings in terms of plant secondary metabolic regulation.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-Sen), Nanjing, China
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
7
|
Thorat SA, Kaniyassery A, Poojari P, Rangel M, Tantry S, Kiran KR, Joshi MB, Rai PS, Botha AM, Muthusamy A. Differential Gene Expression and Withanolides Biosynthesis During in vitro and ex vitro Growth of Withania somnifera (L.) Dunal. FRONTIERS IN PLANT SCIENCE 2022; 13:917770. [PMID: 35774803 PMCID: PMC9237602 DOI: 10.3389/fpls.2022.917770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 05/03/2023]
Abstract
Ashwagandha (Withania somnifera L. Dunal) is a medicinally important plant with withanolides as its major bioactive compounds, abundant in the roots and leaves. We examined the influence of plant growth regulators (PGRs) on direct organogenesis, adventitious root development, withanolide biosynthetic pathway gene expression, withanolide contents, and metabolites during vegetative and reproductive growth phases under in vitro and ex vitro conditions. The highest shooting responses were observed with 6-benzylaminopurine (BAP) (2.0 mg L-1) + Kinetin (KIN) (1.5 mg L-1) supplementation. Furthermore, BAP (2.0 mg L-1) + KIN (1.5 mg L-1) + gibberellic acid (GA3) (0.5 mg L-1) exhibited better elongation responses with in vitro flowering. Half-strength MS medium with indole-3-butyric acid (IBA) (1.5 mg L-1) exhibited the highest rooting responses and IBA (1.0 mg L-1) with highest fruits, and overall biomass. Higher contents of withaferin A (WFA) [∼8.2 mg g-1 dry weight (DW)] were detected in the reproductive phase, whereas substantially lower WFA contents (∼1.10 mg g-1 DW) were detected in the vegetative phase. Cycloartenol synthase (CAS) (P = 0.0025), sterol methyltransferase (SMT) (P = 0.0059), and 1-deoxy-D-xylulose-5-phosphate reductase (DXR) (P = 0.0375) genes resulted in a significant fold change in expression during the reproductive phase. The liquid chromatography-mass spectrometry (LC-MS) analysis revealed metabolites that were common (177) and distinct in reproductive (218) and vegetative (167) phases. Adventitious roots cultured using varying concentrations of indole-3-acetic acid (IAA) (0.5 mg L-1) + IBA (1.0 mg L-1) + GA3 (0.2 mg L-1) exhibited the highest biomass, and IAA (0.5 mg L-1) + IBA (1.0 mg L-1) exhibited the highest withanolides content. Overall, our findings demonstrate the peculiarity of withanolide biosynthesis during distinct growth phases, which is relevant for the large-scale production of withanolides.
Collapse
Affiliation(s)
- Sachin Ashok Thorat
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Arya Kaniyassery
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Poornima Poojari
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Melissa Rangel
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Shashikala Tantry
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kodsara Ramachandra Kiran
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Manjunath B. Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Padmalatha S. Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anna-Maria Botha
- Department of Genetics, Faculty of Agriculture, University of Stellenbosch, Stellenbosch, South Africa
| | - Annamalai Muthusamy
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
8
|
Chen Q, Xie H, Wei G, Guo X, Zhang J, Lu X, Tang Z. Metabolic differences of two constructive species in saline-alkali grassland in China. BMC PLANT BIOLOGY 2022; 22:53. [PMID: 35081916 PMCID: PMC8790901 DOI: 10.1186/s12870-021-03401-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/14/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Salinization of soil is an urgent problem that restricts agroforestry production and environmental protection. Substantial accumulation of metal ions or highly alkaline soil alters plant metabolites and may even cause plant death. To explore the differences in the response strategies between Suaeda salsa (S. salsa) and Puccinellia tenuiflora (P. tenuiflora), two main constructive species that survive in saline-alkali soil, their metabolic differences were characterized. RESULT Metabolomics was conducted to study the role of metabolic differences between S. salsa and P. tenuiflora under saline-alkali stress. A total of 68 significantly different metabolites were identified by GC-MS, including 9 sugars, 13 amino acids, 8 alcohols, and 34 acids. A more detailed analysis indicated that P. tenuiflora utilizes sugars more effectively and may be saline-alkali tolerant via sugar consumption, while S. salsa utilizes mainly amino acids, alcohols, and acids to resist saline-alkali stress. Measurement of phenolic compounds showed that more C6C3C6-compounds accumulated in P. tenuiflora, while more C6C1-compounds, phenolic compounds that can be used as signalling molecules to defend against stress, accumulated in S. salsa. CONCLUSIONS Our observations suggest that S. salsa resists the toxicity of saline-alkali stress using aboveground organs and that P. tenuiflora eliminates this toxicity via roots. S. salsa has a stronger habitat transformation ability and can provide better habitat for other plants.
Collapse
Affiliation(s)
- Qi Chen
- School of Life Sciences Nantong University, Nantong, China
| | - Huansong Xie
- School of Life Sciences Nantong University, Nantong, China
| | - Guanyun Wei
- School of Life Sciences Nantong University, Nantong, China
| | - Xiaorui Guo
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China
| | - Jian Zhang
- School of Life Sciences Nantong University, Nantong, China
| | - Xueyan Lu
- Northeast Agricultural University, Harbin, China.
| | - Zhonghua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China.
| |
Collapse
|
9
|
RNASeq analysis of drought-stressed guayule reveals the role of gene transcription for modulating rubber, resin, and carbohydrate synthesis. Sci Rep 2021; 11:21610. [PMID: 34732788 PMCID: PMC8566568 DOI: 10.1038/s41598-021-01026-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
The drought-adapted shrub guayule (Parthenium argentatum) produces rubber, a natural product of major commercial importance, and two co-products with potential industrial use: terpene resin and the carbohydrate fructan. The rubber content of guayule plants subjected to water stress is higher compared to that of well-irrigated plants, a fact consistently reported in guayule field evaluations. To better understand how drought influences rubber biosynthesis at the molecular level, a comprehensive transcriptome database was built from drought-stressed guayule stem tissues using de novo RNA-seq and genome-guided assembly, followed by annotation and expression analysis. Despite having higher rubber content, most rubber biosynthesis related genes were down-regulated in drought-stressed guayule, compared to well-irrigated plants, suggesting post-transcriptional effects may regulate drought-induced rubber accumulation. On the other hand, terpene resin biosynthesis genes were unevenly affected by water stress, implying unique environmental influences over transcriptional control of different terpene compounds or classes. Finally, drought induced expression of fructan catabolism genes in guayule and significantly suppressed these fructan biosynthesis genes. It appears then, that in guayule cultivation, irrigation levels might be calibrated in such a regime to enable tunable accumulation of rubber, resin and fructan.
Collapse
|
10
|
Liang Y, Wei G, Ning K, Li M, Zhang G, Luo L, Zhao G, Wei J, Liu Y, Dong L, Chen S. Increase in carbohydrate content and variation in microbiome are related to the drought tolerance of Codonopsis pilosula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:19-35. [PMID: 34034158 DOI: 10.1016/j.plaphy.2021.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Drought stress is one of the main limiting factors in geographical distribution and production of Codonopsis pilosula. Understanding the biochemical and genetic information of the response of C. pilosula to drought stress is urgently needed for breeding tolerant varieties. Here, carbohydrates, namely trehalose, raffinose, maltotetraose, sucrose, and melezitose, significantly accumulated in C. pilosula roots under drought stress and thus served as biomarkers for drought stress response. Compared with those in the control group, the expression levels of key genes such as adenosine diphosphate glucose pyrophosphorylase, starch branching enzyme, granule-bound starch synthase, soluble starch synthase, galacturonate transferase, cellulose synthase A catalytic subunit, cellulase Korrigan in the carbohydrate biosynthesis pathway were markedly up-regulated in C. pilosula roots in the drought treatment group, some of them even exceeded 70%. Notably, and that of key genes including trehalose-6-phosphatase, trehalose-6-phosphate phosphatase, galactinol synthase, and raffinose synthase in the trehalose and raffinose biosynthesis pathways was improved by 12.6%-462.2% in C. pilosula roots treated by drought stress. The accumulation of carbohydrates in C. pilosula root or rhizosphere soil was correlated with microbiome variations. Analysis of exogenous trehalose and raffinose confirmed that increased carbohydrate content improved the drought tolerance of C. pilosula in a dose-dependent manner. This study provided solid foundation for breeding drought-tolerant C. pilosula varieties and developing drought-resistant microbial fertilizers.
Collapse
Affiliation(s)
- Yichuan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Kang Ning
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Mengzhi Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lu Luo
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Guanghui Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China.
| | - Youping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
11
|
Tetali SD, Acharya S, Ankari AB, Nanakram V, Raghavendra AS. Metabolomics of Withania somnifera (L.) Dunal: Advances and applications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113469. [PMID: 33075439 DOI: 10.1016/j.jep.2020.113469] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/30/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera L. (Solanaceae), commonly known as Ashwagandha or Indian ginseng, is used in Ayurveda (Indian system of traditional medicine) for vitality, cardio-protection and treating other ailments, such as neurological disorders, gout, and skin diseases. AIM OF THE REVIEW We present a critical overview of the information on the metabolomics of W. somnifera and highlight the significance of the technique for use in quality control of medicinal products. We have also pointed out the use of metabolomics to distinguish varieties and to identify best methods of cultivation, collection, as well as extraction. MATERIAL AND METHODS The relevant information on medicinal value, phytochemical studies, metabolomics of W. somnifera, and their applications were collected from a rigorous electronic search through scientific databases, including Scopus, PubMed, Web of Science and Google Scholar. Structures of selected metabolites were from the PubChem. RESULTS The pharmacological activities of W. somnifera were well documented. Roots are the most important parts of the plant used in Ayurvedic preparations. Stem and leaves also have a rich content of bioactive phytochemicals like steroidal lactones, alkaloids, and phenolic acids. Metabolomic studies revealed that metabolite profiles of W. somnifera depended on plant parts collected and the developmental stage of the plant, besides the season of sample collection and geographical location. The levels of withanolides were variable, depending on the morpho/chemotypes within the species of W. somnifera. Although studies on W. somnifera were initiated several years ago, the complexity of secondary metabolites was not realized due to the lack of adequate and fool-proof technology for phytochemical fingerprinting. Sophistications in chromatography coupled to mass spectrometry facilitated the discovery of several new metabolites. Mutually complementary techniques like LC-MS, GC-MS, HPTLC, and NMR were employed to obtain a comprehensive metabolomic profile. Subsequent data analyses and searches against spectral databases enabled the annotation of signals and dereplication of metabolites in several numbers without isolating them individually. CONCLUSIONS The present review provides a critical update of metabolomic data and the diverse application of the technique. The identification of parameters for standardization and quality control of herbal products is essential to facilitate mandatory checks for the purity of formulation. Such studies would enable us to identify the best geographical location of plants and the time of collection. We recommend the use of metabolomic analysis of herbal products based on W. somnifera for quality control as well as the discovery of novel bioactive compounds.
Collapse
Affiliation(s)
- Sarada D Tetali
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India.
| | - Satyabrata Acharya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India
| | - Aditya B Ankari
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India
| | - Vadthyavath Nanakram
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India.
| |
Collapse
|
12
|
Jothimani K, Arulbalachandran D. Physiological and biochemical studies of black gram (Vigna mungo (L.) Hepper) under polyethylene glycol induced drought stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Gao T, Zhang Z, Liu X, Wu Q, Chen Q, Liu Q, van Nocker S, Ma F, Li C. Physiological and transcriptome analyses of the effects of exogenous dopamine on drought tolerance in apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:260-272. [PMID: 31982861 DOI: 10.1016/j.plaphy.2020.01.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 05/19/2023]
Abstract
Water shortage is one of the main limiting factors in apple (Malus domestica Borkh.) production. Although dopamine is produced in plants and has been linked with response to abiotic stress, the underlying mechanism remains unknown. In this study, physiological analyses revealed that pretreatment with 100 μM dopamine alleviated drought stress in apple seedlings. Dopamine inhibited the degradation of photosynthetic pigments and increased net photosynthetic rate under drought stress. Dopamine also reduced H2O2 content, possibly through direct scavenging and by mediating the antioxidant enzyme activity. Seedlings pretreated with dopamine had higher sucrose and malic acid contents but lower starch accumulation in their leaves. RNA-Seq analysis identified 1052 differentially expressed genes (DEGs) between non-treated and dopamine-pretreated plants under drought. An in-depth analysis of these DEGs revealed that dopamine regulated the expression of genes related to metabolism of nitrogen, secondary compounds, and amino acids under drought stress. In addition, dopamine may improve apple drought tolerance by activating Ca2+ signaling pathways through increased expression of CNGC and CAM/CML family genes. Moreover, analysis of transcription factor expression suggested that dopamine affected drought tolerance mainly through the regulation of WRKY, ERF, and NAC transcription factors.
Collapse
Affiliation(s)
- Tengteng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Qian Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Qi Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Qianwei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, 48824, USA.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
14
|
Leonova T, Popova V, Tsarev A, Henning C, Antonova K, Rogovskaya N, Vikhnina M, Baldensperger T, Soboleva A, Dinastia E, Dorn M, Shiroglasova O, Grishina T, Balcke GU, Ihling C, Smolikova G, Medvedev S, Zhukov VA, Babakov V, Tikhonovich IA, Glomb MA, Bilova T, Frolov A. Does Protein Glycation Impact on the Drought-Related Changes in Metabolism and Nutritional Properties of Mature Pea ( Pisum sativum L.) Seeds? Int J Mol Sci 2020; 21:E567. [PMID: 31952342 PMCID: PMC7013545 DOI: 10.3390/ijms21020567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/24/2022] Open
Abstract
Protein glycation is usually referred to as an array of non-enzymatic post-translational modifications formed by reducing sugars and carbonyl products of their degradation. The resulting advanced glycation end products (AGEs) represent a heterogeneous group of covalent adducts, known for their pro-inflammatory effects in mammals, and impacting on pathogenesis of metabolic diseases and ageing. In plants, AGEs are the markers of tissue ageing and response to environmental stressors, the most prominent of which is drought. Although water deficit enhances protein glycation in leaves, its effect on seed glycation profiles is still unknown. Moreover, the effect of drought on biological activities of seed protein in mammalian systems is still unstudied with respect to glycation. Therefore, here we address the effects of a short-term drought on the patterns of seed protein-bound AGEs and accompanying alterations in pro-inflammatory properties of seed protein in the context of seed metabolome dynamics. A short-term drought, simulated as polyethylene glycol-induced osmotic stress and applied at the stage of seed filling, resulted in the dramatic suppression of primary seed metabolism, although the secondary metabolome was minimally affected. This was accompanied with significant suppression of NF-kB activation in human SH-SY5Y neuroblastoma cells after a treatment with protein hydrolyzates, isolated from the mature seeds of drought-treated plants. This effect could not be attributed to formation of known AGEs. Most likely, the prospective anti-inflammatory effect of short-term drought is related to antioxidant effect of unknown secondary metabolite protein adducts, or down-regulation of unknown plant-specific AGEs due to suppression of energy metabolism during seed filling.
Collapse
Affiliation(s)
- Tatiana Leonova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Veronika Popova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Christian Henning
- Institute of Chemistry - Food Chemistry, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Kristina Antonova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Nadezhda Rogovskaya
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, 188663 Leningrad Oblast, Russia
| | - Maria Vikhnina
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Tim Baldensperger
- Institute of Chemistry - Food Chemistry, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Ekaterina Dinastia
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
- Postovsky Institute of Organic Synthesis of Ural Division of Russian Academy of Sciences, 620137 Yekaterinburg, Russia
| | - Mandy Dorn
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Olga Shiroglasova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Tatiana Grishina
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
| | - Gerd U Balcke
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Vladimir A Zhukov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Vladimir Babakov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, 188663 Leningrad Oblast, Russia
| | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Marcus A Glomb
- Institute of Chemistry - Food Chemistry, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Tatiana Bilova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| |
Collapse
|
15
|
Kostopoulou S, Ntatsi G, Arapis G, Aliferis KA. Assessment of the effects of metribuzin, glyphosate, and their mixtures on the metabolism of the model plant Lemna minor L. applying metabolomics. CHEMOSPHERE 2020; 239:124582. [PMID: 31514011 DOI: 10.1016/j.chemosphere.2019.124582] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 05/14/2023]
Abstract
Chemical plant protection products (PPPs) is a major group of xenobiotics that are being released in the environment. Although the effects of individual active ingredients (a.i.) on organisms have been studied, information on those of mixtures, is fragmented. Aquatic environments are being polluted by PPPs, posing serious risks for the environment, human, and other organisms. Based on the potential of the model aquatic plant Lemna minor L. in the assessment of PPPs-caused stresses, we have undertaken the task of developing a metabolomics approach for the study of the effects of metribuzin and glyphosate, and their mixtures. Bioassays revealed that metribuzin exhibit higher toxicity than glyphosate and metabolomics highlighted corresponding changes in its metabolome. Treatments had a substantial impact on plants' amino acid pool, resulting in elevated levels of the majority of the identified amino acids. Results indicate that the increased proteolytic activity is a common effect of the a.i. and their mixtures. Additionally, the activation of salicylate-signaling pathways was recorded as a response to the toxicity caused by mixtures. Among the identified metabolites that were discovered as biomarkers were γ-aminobutyric acid (GABA), salicylate, caffeate, α,α-trehalose, and squalene, which play multiple roles in plants' metabolism such as, signaling, antioxidant, and structure protection. No reports exist on the combined effects of PPPs on Lemna and results confirm the applicability of Lemna metabolomics in the study of the combined effects of herbicides and its potential in the monitoring of the environmental health of aquatic environments based on fluctuations of the plant's metabolism.
Collapse
Affiliation(s)
- Sofia Kostopoulou
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece; Laboratory of Vegetable Production Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Georgia Ntatsi
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization ELGO-DEMETER, Thermi, Thessaloniki, GR-57001, Greece; Laboratory of Vegetable Production Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Gerasimos Arapis
- Laboratory of Ecology and Environmental Sciences, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece.
| | - Konstantinos A Aliferis
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece; Department of Plant Science, McGill University, Macdonald Campus, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
16
|
Antunes AC, Acunha TDS, Perin EC, Rombaldi CV, Galli V, Chaves FC. Untargeted metabolomics of strawberry (Fragaria x ananassa 'Camarosa') fruit from plants grown under osmotic stress conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6973-6980. [PMID: 31414485 DOI: 10.1002/jsfa.9986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Plants activate defense mechanisms to cope with adverse environmental conditions, leading to the accumulation and / or depletion of general and specialized metabolites. In this study, a multiplatform untargeted metabolomics strategy was employed to evaluate metabolic changes in strawberry fruit of cv. Camarosa grown under osmotic stress conditions. Liquid chromatography-mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) data from strawberries grown under two water-deficit conditions, irrigated at 95% crop evapotranspiration (ETc) and 85% ETc, and one excess salt condition with a 80 mmol L-1 NaCl solution, were analyzed to determine treatment effects on fruit metabolism. RESULTS Multivariate principal component analysis, orthogonal projections to latent structures - discriminant analysis (OPLS-DA), and univariate statistical analyses were applied to the data set. While multivariate analyses showed group separation by treatment, T-tests and fold change revealed 12 metabolites differentially accumulated in strawberries from different treatments - among them phenolic compounds, glycerophospholipids, phytosterols, carbohydrates, and an aromatic amino acid. CONCLUSION Untargeted metabolomic analysis allowed for the annotation of compounds differentially accumulated in strawberry fruit from plants grown under osmotic stress and non-stressed plants. The metabolic disturbance in plants under stress involved metabolites associated with the inhibition of reactive oxygen species and cell-wall and membrane lipid biosynthesis, which might serve as osmotic stress biomarkers. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana Cn Antunes
- Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, School of Agronomy 'Eliseu Maciel', Federal University of Pelotas, Pelotas, Brazil
| | - Tanize Dos S Acunha
- Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, School of Agronomy 'Eliseu Maciel', Federal University of Pelotas, Pelotas, Brazil
- Graduate Program of the School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Ellen C Perin
- School of Food Technology, Federal University of Technology - Paraná, Francisco Beltrão, Brazil
| | - Cesar V Rombaldi
- Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, School of Agronomy 'Eliseu Maciel', Federal University of Pelotas, Pelotas, Brazil
| | - Vanessa Galli
- Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, School of Agronomy 'Eliseu Maciel', Federal University of Pelotas, Pelotas, Brazil
| | - Fabio C Chaves
- Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, School of Agronomy 'Eliseu Maciel', Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|