1
|
Jouhet J, Alves E, Boutté Y, Darnet S, Domergue F, Durand T, Fischer P, Fouillen L, Grube M, Joubès J, Kalnenieks U, Kargul JM, Khozin-Goldberg I, Leblanc C, Letsiou S, Lupette J, Markov GV, Medina I, Melo T, Mojzeš P, Momchilova S, Mongrand S, Moreira ASP, Neves BB, Oger C, Rey F, Santaeufemia S, Schaller H, Schleyer G, Tietel Z, Zammit G, Ziv C, Domingues R. Plant and algal lipidomes: Analysis, composition, and their societal significance. Prog Lipid Res 2024; 96:101290. [PMID: 39094698 DOI: 10.1016/j.plipres.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical, cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composition, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and environmental applications. This aligns with the main challenges for society, upholding the natural resources of our planet and respecting their limits.
Collapse
Affiliation(s)
- Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/INRAE/CEA/Grenoble Alpes Univ., 38000 Grenoble, France.
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | | | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Pauline Fischer
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Joanna M Kargul
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Dryland Agriculture and Biotechnology, The J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 8499000, Israel
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Sophia Letsiou
- Department of Food Science and Technology, University of West Attica, Ag. Spiridonos str. Egaleo, 12243 Athens, Greece
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Isabel Medina
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Svetlana Momchilova
- Department of Lipid Chemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 9, BG-1113 Sofia, Bulgaria
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Ana S P Moreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Bruna B Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Felisa Rey
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Sergio Santaeufemia
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67083 Strasbourg, France
| | - Guy Schleyer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev 8531100, Israel
| | - Gabrielle Zammit
- Laboratory of Applied Phycology, Department of Biology, University of Malta, Msida MSD 2080, Malta
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal.
| |
Collapse
|
2
|
Zhang J, Meng Q, Wang Q, Zhang H, Tian H, Wang T, Xu F, Yan X, Luo M. Cotton sphingosine kinase GhLCBK1 participates in fiber cell elongation by affecting sphingosine-1-phophate and auxin synthesis. Int J Biol Macromol 2024; 267:131323. [PMID: 38574912 DOI: 10.1016/j.ijbiomac.2024.131323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Sphingolipids serve as essential components of biomembrane and possess significant bioactive properties. Sphingosine-1-phophate (S1P) plays a key role in plant resistance to stress, but its specific impact on plant growth and development remains to be fully elucidated. Cotton fiber cells are an ideal material for investigating the growth and maturation of plant cells. In this study, we examined the content and composition of sphingosine (Sph) and S1P throughout the progression of fiber cell development. The content of S1P elevated gradually during fiber elongation but declined during the transition stage. Exogenous application of S1P promoted fiber elongation while using of FTY720 (an antagonist of S1P), and DMS (an inhibitor of LCBK) hindered fiber elongation. Cotton Long Chain Base Kinase 1 (GhLCBK1) was notably expressed during the fiber elongation stage, containing all conserved domains of LCBK protein and localized in the endoplasmic reticulum. Overexpression GhLCBK1 increased the S1P content and promoted fiber elongation while retarded secondary cell wall (SCW) deposition. Conversely, downregulation of GhLCBK1 reduced the S1P levels, and suppressed fiber elongation, and accelerated SCW deposition. Transcriptome analysis revealed that upregulating GhLCBK1 or applying S1P induced the expression of GhEXPANSIN and auxin related genes. Furthermore, the levels of IAA were elevated and reduced in the fibers when up-regulating or down-regulating GhLCBK1, respectively. Our investigation demonstrated that GhLCBK1 and its product S1P facilitated the elongation of fiber cells by affecting auxin biosynthesis. This study contributes novel insights into the intricate regulatory pathways involved in fiber cell elongation, identifying GhLCBK1 as a potential target gene and laying the groundwork for enhancing fiber quality via genetic manipulation.
Collapse
Affiliation(s)
- Jian Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Qian Meng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Qiaoling Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Hongju Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Huidan Tian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Tiantian Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Fan Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Xingying Yan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Ming Luo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Yang C, Wang LY, Li YK, Lin JT, Chen DK, Yao N. Arabidopsis Leaf Chloroplasts Have a Specific Sphingolipidome. PLANTS (BASEL, SWITZERLAND) 2024; 13:299. [PMID: 38276756 PMCID: PMC10818918 DOI: 10.3390/plants13020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Sphingolipids are ubiquitous in eukaryotes and certain prokaryotes, where they serve as vital components of biological membranes and bioactive molecules. Chloroplasts have complex membrane structures that play crucial roles in photosynthesis, but their specific sphingolipidome remains unreported. In this study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to analyze the sphingolipidome of purified Arabidopsis thaliana chloroplasts. We detected 92 chloroplast sphingolipids. The chloroplast sphingolipidome differed from total leaf (TL) samples, with a higher content of free long-chain bases and hydroxyceramides and a greater proportion of complex sphingolipids with 16C fatty acid (FA) forms. Notably, chloroplast glucosylceramides were predominantly the d18:1 h16:0 and t18:1 h16:0 forms rather than the 24C FA form found in TL and other cellular structures. Comparing the sphingolipidomes of different cellular structures underscores the inhomogeneity of the intracellular distribution of sphingolipids. This provides a robust reference for further elucidating the function of sphingolipids in plant cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (C.Y.); (L.-Y.W.); (J.-T.L.); (D.-K.C.)
| |
Collapse
|
4
|
Li R, Zhao R, Yang M, Zhang X, Lin J. Membrane microdomains: Structural and signaling platforms for establishing membrane polarity. PLANT PHYSIOLOGY 2023; 193:2260-2277. [PMID: 37549378 DOI: 10.1093/plphys/kiad444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
Cell polarity results from the asymmetric distribution of cellular structures, molecules, and functions. Polarity is a fundamental cellular trait that can determine the orientation of cell division, the formation of particular cell shapes, and ultimately the development of a multicellular body. To maintain the distinct asymmetric distribution of proteins and lipids in cellular membranes, plant cells have developed complex trafficking and regulatory mechanisms. Major advances have been made in our understanding of how membrane microdomains influence the asymmetric distribution of proteins and lipids. In this review, we first give an overview of cell polarity. Next, we discuss current knowledge concerning membrane microdomains and their roles as structural and signaling platforms to establish and maintain membrane polarity, with a special focus on the asymmetric distribution of proteins and lipids, and advanced microscopy techniques to observe and characterize membrane microdomains. Finally, we review recent advances regarding membrane trafficking in cell polarity establishment and how the balance between exocytosis and endocytosis affects membrane polarity.
Collapse
Affiliation(s)
- Ruili Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Ran Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Mei Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Xi Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Lin Y, Zhu Y, Wang L, Zheng Y, Xie Y, Cai Q, He W, Xie H, Liu H, Wang Y, Cui L, Wei Y, Xie H, Zhang J. Overexpression of a GIPC glycosyltransferase gene, OsGMT1, suppresses plant immunity and delays heading time in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111674. [PMID: 36948404 DOI: 10.1016/j.plantsci.2023.111674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Glycosylinositol phosphorylceramides (GIPCs) are the major sphingolipids in the plant plasma membrane. In Arabidopsis, mutations of genes involved in the synthesis of GIPCs affect many physiological aspects of plants, including growth, pollen fertility, defense, and stress signaling. Loss of function of the GIPC MANNOSYL-TRANSFERASE1 (AtGMT1) results in GIPC misglycosylation and induces plant immune responses accompanied by a severely dwarfed phenotype, thus indicating that GIPCs play important roles in plant immunity. Here, we investigated the enzymatic activity and phenotypes of transgenic lines of OsGMT1, the ortholog of AtGMT1. Sphingolipidomic analysis indicated that OsGMT1 retained the enzymatic activity of GIPC hexose (Hex) glycosylation, but the knockout lines did not accumulate H2O2. In contrast, the OsGMT1 overexpression lines showed significant down-regulation of several defense-associated or cell wall synthesis-associated genes, and enhanced sensitivity to rice blast. Furthermore, we first demonstrated the sensitivity of rice cells to MoNLP1 protein through calcein AM release assays using rice protoplasts, thus legitimizing the presence of MoNLPs in rice blast fungus. In addition, yeast two-hybrid screens using OsGMT1 as bait revealed that OsGMT1 may regulate heading time through the OsHAP5C signaling pathway. Together, our findings suggested clear physiological functional differentiation of GMT1 orthologs between rice and Arabidopsis.
Collapse
Affiliation(s)
- Yuelong Lin
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Lanning Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Yunjie Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Wei He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Haitao Liu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Yingheng Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Lili Cui
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China
| | - Huaan Xie
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China.
| | - Jianfu Zhang
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory for Ecological Control of Crop Pests between Fujian and Taiwan/National Engineering Laboratory of Rice/South China Research Base of State Key Laboratory of Hybrid Rice/Incubating Base of State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology/Fuzhou Branch of National Rice Improvement Center/Key Laboratory of Hybrid Rice Germplasm Innovation and Molecular Breeding of Ministry of Agriculture and Rural Areas for South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, Fujian, China.
| |
Collapse
|
6
|
Zhao Y, Liu Z, Wang L, Liu H. Fumonisin B1 as a Tool to Explore Sphingolipid Roles in Arabidopsis Primary Root Development. Int J Mol Sci 2022; 23:12925. [PMID: 36361715 PMCID: PMC9654530 DOI: 10.3390/ijms232112925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 03/28/2024] Open
Abstract
Fumonisin B1 is a mycotoxin that is structurally analogous to sphinganine and sphingosine and inhibits the biosynthesis of complex sphingolipids by repressing ceramide synthase. Based on the connection between FB1 and sphingolipid metabolism, FB1 has been widely used as a tool to explore the multiple functions of sphingolipids in mammalian and plant cells. The aim of this work was to determine the effect of sphingolipids on primary root development by exposing Arabidopsis (Arabidopsis thaliana) seedlings to FB1. We show that FB1 decreases the expression levels of several PIN-FORMED (PIN) genes and the key stem cell niche (SCN)-defining transcription factor genes WUSCHEL-LIKE HOMEOBOX5 (WOX5) and PLETHORAs (PLTs), resulting in the loss of quiescent center (QC) identity and SCN maintenance, as well as stunted root growth. In addition, FB1 induces cell death at the root apical meristem in a non-cell-type-specific manner. We propose that sphingolipids play a key role in primary root growth through the maintenance of the root SCN and the amelioration of cell death in Arabidopsis.
Collapse
Affiliation(s)
- Yanxue Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Zhongjie Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Lei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| |
Collapse
|
7
|
Aranda-Caño L, Valderrama R, Chaki M, Begara-Morales JC, Melguizo M, Barroso JB. Nitrated Fatty-Acids Distribution in Storage Biomolecules during Arabidopsis thaliana Development. Antioxidants (Basel) 2022; 11:antiox11101869. [PMID: 36290592 PMCID: PMC9598412 DOI: 10.3390/antiox11101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
The non-enzymatic interaction of polyunsaturated fatty acids with nitric oxide (NO) and derived species results in the formation of nitrated fatty acids (NO2-FAs). These signaling molecules can release NO, reversibly esterify with complex lipids, and modulate protein function through the post-translational modification called nitroalkylation. To date, NO2-FAs act as signaling molecules during plant development in plant systems and are involved in defense responses against abiotic stress conditions. In this work, the previously unknown storage biomolecules of NO2-FAs in Arabidopsis thaliana were identified. In addition, the distribution of NO2-FAs in storage biomolecules during plant development was determined, with phytosterol esters (SE) and TAGs being reservoir biomolecules in seeds, which were replaced by phospholipids and proteins in the vegetative, generative, and senescence stages. The detected esterified NO2-FAs were nitro-linolenic acid (NO2-Ln), nitro-oleic acid (NO2-OA), and nitro-linoleic acid (NO2-LA). The last two were detected for the first time in Arabidopsis. The levels of the three NO2-FAs that were esterified in both lipid and protein storage biomolecules showed a decreasing pattern throughout Arabidopsis development. Esterification of NO2-FAs in phospholipids and proteins highlights their involvement in both biomembrane dynamics and signaling processes, respectively, during Arabidopsis plant development.
Collapse
Affiliation(s)
- Lorena Aranda-Caño
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
| | - Juan C. Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
| | - Manuel Melguizo
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, E-23071 Jaén, Spain
| | - Juan B. Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
- Correspondence:
| |
Collapse
|
8
|
Cheong BE, Yu D, Martinez-Seidel F, Ho WWH, Rupasinghe TWT, Dolferus R, Roessner U. The Effect of Cold Stress on the Root-Specific Lipidome of Two Wheat Varieties with Contrasting Cold Tolerance. PLANTS 2022; 11:plants11101364. [PMID: 35631789 PMCID: PMC9147729 DOI: 10.3390/plants11101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Complex glycerolipidome analysis of wheat upon low temperature stress has been reported for above-ground tissues only. There are no reports on the effects of cold stress on the root lipidome nor on tissue-specific responses of cold stress wheat roots. This study aims to investigate the changes of lipid profiles in the different developmental zones of the seedling roots of two wheat varieties with contrasting cold tolerance exposed to chilling and freezing temperatures. We analyzed 273 lipid species derived from 21 lipid classes using a targeted profiling approach based on MS/MS data acquired from schedule parallel reaction monitoring assays. For both the tolerant Young and sensitive Wyalkatchem species, cold stress increased the phosphatidylcholine and phosphatidylethanolamine compositions, but decreased the monohexosyl ceramide compositions in the root zones. We show that the difference between the two varieties with contrasting cold tolerance could be attributed to the change in the individual lipid species, rather than the fluctuation of the whole lipid classes. The outcomes gained from this study may advance our understanding of the mechanisms of wheat adaptation to cold and contribute to wheat breeding for the improvement of cold-tolerance.
Collapse
Affiliation(s)
- Bo Eng Cheong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan Universiti, Kota Kinabalu 88400, Malaysia
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Correspondence: ; Tel.: +60-88-320000 (ext. 8530)
| | - Dingyi Yu
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Protein Chemistry and Metabolism Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Federico Martinez-Seidel
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - William Wing Ho Ho
- Advanced Genomics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | | | - Rudy Dolferus
- CSIRO Agriculture & Food, GPO Box 1700, Canberra, ACT 2601, Australia;
| | - Ute Roessner
- School of Bio Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (D.Y.); (F.M.-S.); (U.R.)
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
9
|
Liu Y, Wang L, Li X, Luo M. Detailed sphingolipid profile responded to salt stress in cotton root and the GhIPCS1 is involved in the regulation of plant salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111174. [PMID: 35151457 DOI: 10.1016/j.plantsci.2021.111174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 05/24/2023]
Abstract
Sphingolipids are major structural components of membrane and active signaling molecules and play an important role in plant developmental processes and stress responses. As land salinization has increased globally, salinity has compromised the growth and productivity of crops such as cotton. Understanding the mechanisms of plant adaptation to salt stress is essential for breeding salt-tolerant crops. In this study, we explored the comprehensive metabolic profile of sphingolipids in cotton root under salt stress using lipidomics. 118 sphingolipid molecular species were identified, of which PhytoSph, PhytoCer, PhytoCer-OHFA, IPC, and GIPC were relatively high in content, and PhytoSph, PhytoCer, PhytoCer-OHFA, Phyto-GluCer, and IPC showed significant changes after salt stress, especially inositol phosphatidyl ceramide (IPC), which was significantly upregulated after salt treatment. Subsequently, we identified the genes encoding IPC synthase (IPCS), and ectopic expression of GhIPCS1 enhanced salt sensitivity in Arabidopsis, which might result from the disruption on the balance between various sphingolipid classes and/or molecular species. Overall, this study reveals key lipids and genes response to salt stress in cotton and provides a theoretical basis for the use of genetic engineering to improve cotton stress resistance.
Collapse
Affiliation(s)
- Yujie Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Xing Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
| | - Ming Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; Key Laboratory of Biotechnology and Crop Quality, Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
10
|
Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Prog Lipid Res 2021; 85:101138. [PMID: 34774919 DOI: 10.1016/j.plipres.2021.101138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
Monounsaturated fatty acids are straight-chain aliphatic monocarboxylic acids comprising a unique carbon‑carbon double bond, also termed unsaturation. More than 50 distinct molecular structures have been described in the plant kingdom, and more remain to be discovered. The evolution of land plants has apparently resulted in the convergent evolution of non-homologous enzymes catalyzing the dehydrogenation of saturated acyl chain substrates in a chemo-, regio- and stereoselective manner. Contrasted enzymatic characteristics and different subcellular localizations of these desaturases account for the diversity of existing fatty acid structures. Interestingly, the location and geometrical configuration of the unsaturation confer specific characteristics to these molecules found in a variety of membrane, storage, and surface lipids. An ongoing research effort aimed at exploring the links existing between fatty acid structures and their biological functions has already unraveled the importance of several monounsaturated fatty acids in various physiological and developmental contexts. What is more, the monounsaturated acyl chains found in the oils of seeds and fruits are widely and increasingly used in the food and chemical industries due to the physicochemical properties inherent in their structures. Breeders and plant biotechnologists therefore develop new crops with high monounsaturated contents for various agro-industrial purposes.
Collapse
|
11
|
Liu NJ, Hou LP, Bao JJ, Wang LJ, Chen XY. Sphingolipid metabolism, transport, and functions in plants: Recent progress and future perspectives. PLANT COMMUNICATIONS 2021; 2:100214. [PMID: 34746760 PMCID: PMC8553973 DOI: 10.1016/j.xplc.2021.100214] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/12/2021] [Accepted: 06/26/2021] [Indexed: 05/08/2023]
Abstract
Sphingolipids, which comprise membrane systems together with other lipids, are ubiquitous in cellular organisms. They show a high degree of diversity across plant species and vary in their structures, properties, and functions. Benefiting from the development of lipidomic techniques, over 300 plant sphingolipids have been identified. Generally divided into free long-chain bases (LCBs), ceramides, glycosylceramides (GlcCers) and glycosyl inositol phosphoceramides (GIPCs), plant sphingolipids exhibit organized aggregation within lipid membranes to form raft domains with sterols. Accumulating evidence has revealed that sphingolipids obey certain trafficking and distribution rules and confer unique properties to membranes. Functional studies using sphingolipid biosynthetic mutants demonstrate that sphingolipids participate in plant developmental regulation, stimulus sensing, and stress responses. Here, we present an updated metabolism/degradation map and summarize the structures of plant sphingolipids, review recent progress in understanding the functions of sphingolipids in plant development and stress responses, and review sphingolipid distribution and trafficking in plant cells. We also highlight some important challenges and issues that we may face during the process of studying sphingolipids.
Collapse
Affiliation(s)
- Ning-Jing Liu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- Corresponding author
| | - Li-Pan Hou
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing-Jing Bao
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling-Jian Wang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
12
|
Chen Q, Xu F, Wang L, Suo X, Wang Q, Meng Q, Huang L, Ma C, Li G, Luo M. Sphingolipid Profile during Cotton Fiber Growth Revealed That a Phytoceramide Containing Hydroxylated and Saturated VLCFA Is Important for Fiber Cell Elongation. Biomolecules 2021; 11:biom11091352. [PMID: 34572565 PMCID: PMC8466704 DOI: 10.3390/biom11091352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022] Open
Abstract
Cotton fiber is a single-celled seed trichrome that arises from the epidermis of the ovule’s outer integument. The fiber cell displays high polar expansion and thickens but not is disrupted by cell division. Therefore, it is an ideal model for studying the growth and development of plant cells. Sphingolipids are important components of membranes and are also active molecules in cells. However, the sphingolipid profile during fiber growth and the differences in sphingolipid metabolism at different developmental stages are still unclear. In this study, we detected that there were 6 classes and 95 molecular species of sphingolipids in cotton fibers by ultrahigh performance liquid chromatography-MS/MS (UHPLC-MS/MS). Among these, the phytoceramides (PhytoCer) contained the most molecular species, and the PhytoCer content was highest, while that of sphingosine-1-phosphate (S1P) was the lowest. The content of PhytoCer, phytoceramides with hydroxylated fatty acyls (PhytoCer-OHFA), phyto-glucosylceramides (Phyto-GluCer), and glycosyl-inositol-phospho-ceramides (GIPC) was higher than that of other classes in fiber cells. With the development of fiber cells, phytosphingosine-1-phosphate (t-S1P) and PhytoCer changed greatly. The sphingolipid molecular species Ceramide (Cer) d18:1/26:1, PhytoCer t18:1/26:0, PhytoCer t18:0/26:0, PhytoCer t18:1/h20:0, PhytoCer t18:1/h26:0, PhytoCer t18:0/h26:0, and GIPC t18:0/h16:0 were significantly enriched in 10-DPA fiber cells while Cer d18:1/20:0, Cer d18:1/22:0, and GIPC t18:0/h18:0 were significantly enriched in 20-DPA fiber cells, indicating that unsaturated PhytoCer containing hydroxylated and saturated very long chain fatty acids (VLCFA) play some role in fiber cell elongation. Consistent with the content analysis results, the related genes involved in long chain base (LCB) hydroxylation and unsaturation as well as VLCFA synthesis and hydroxylation were highly expressed in rapidly elongating fiber cells. Furthermore, the exogenous application of a potent inhibitor of serine palmitoyltransferase, myriocin, severely blocked fiber cell elongation, and the exogenous application of sphingosine antagonized the inhibition of myriocin for fiber elongation. Taking these points together, we concluded that sphingolipids play crucial roles in fiber cell elongation and SCW deposition. This provides a new perspective for further studies on the regulatory mechanism of the growth and development of cotton fiber cells.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Fan Xu
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaodong Suo
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Qiaoling Wang
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Qian Meng
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Li Huang
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Caixia Ma
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Guiming Li
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
| | - Ming Luo
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.C.); (F.X.); (X.S.); (Q.W.); (Q.M.); (L.H.); (C.M.); (G.L.)
- Correspondence:
| |
Collapse
|
13
|
Gömann J, Herrfurth C, Zienkiewicz K, Haslam TM, Feussner I. Sphingolipid Δ4-desaturation is an important metabolic step for glycosylceramide formation in Physcomitrium patens. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5569-5583. [PMID: 34111292 PMCID: PMC8318264 DOI: 10.1093/jxb/erab238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/22/2021] [Indexed: 05/24/2023]
Abstract
Glycosylceramides are abundant membrane components in vascular plants and are associated with cell differentiation, organogenesis, and protein secretion. Long-chain base (LCB) Δ4-desaturation is an important structural feature for metabolic channeling of sphingolipids into glycosylceramide formation in plants and fungi. In Arabidopsis thaliana, LCB Δ4-unsaturated glycosylceramides are restricted to pollen and floral tissue, indicating that LCB Δ4-desaturation has a less important overall physiological role in A. thaliana. In the bryophyte Physcomitrium patens, LCB Δ4-desaturation is a feature of the most abundant glycosylceramides of the gametophyte generation. Metabolic changes in the P. patens null mutants for the sphingolipid Δ4-desaturase (PpSD4D) and the glycosylceramide synthase (PpGCS), sd4d-1 and gcs-1, were determined by ultra-performance liquid chromatography coupled with nanoelectrospray ionization and triple quadrupole tandem mass spectrometry analysis. sd4d-1 plants lacked unsaturated LCBs and the most abundant glycosylceramides. gcs-1 plants lacked all glycosylceramides and accumulated hydroxyceramides. While sd4d-1 plants mostly resembled wild-type plants, gcs-1 mutants were impaired in growth and development. These results indicate that LCB Δ4-desaturation is a prerequisite for the formation of the most abundant glycosylceramides in P. patens. However, loss of unsaturated LCBs does not affect plant viability, while blockage of glycosylceramide synthesis in gcs-1 plants causes severe plant growth and development defects.
Collapse
Affiliation(s)
- Jasmin Gömann
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Tegan M Haslam
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Gömann J, Herrfurth C, Zienkiewicz A, Ischebeck T, Haslam TM, Hornung E, Feussner I. Sphingolipid long-chain base hydroxylation influences plant growth and callose deposition in Physcomitrium patens. THE NEW PHYTOLOGIST 2021; 231:297-314. [PMID: 33720428 DOI: 10.1111/nph.17345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Sphingolipids are enriched in microdomains in the plant plasma membrane (PM). Hydroxyl groups in the characteristic long-chain base (LCB) moiety might be essential for the interaction between sphingolipids and sterols during microdomain formation. Investigating LCB hydroxylase mutants in Physcomitrium patens might therefore reveal the role of certain plant sphingolipids in the formation of PM subdomains. Physcomitrium patens mutants for the LCB C-4 hydroxylase S4H were generated by homologous recombination. Plants were characterised by analysing their sphingolipid and steryl glycoside (SG) profiles and by investigating different gametophyte stages. s4h mutants lost the hydroxyl group at the C-4 position of their LCB moiety. Loss of this hydroxyl group caused global changes in the moss sphingolipidome and in SG composition. Changes in membrane lipid composition may trigger growth defects by interfering with the localisation of membrane-associated proteins that are crucial for growth processes such as signalling receptors or callose-modifying enzymes. Loss of LCB-C4 hydroxylation substantially changes the P. patens sphingolipidome and reveals a key role for S4H during development of nonvascular plants. Physcomitrium patens is a valuable model for studying the diversification of plant sphingolipids. The simple anatomy of P. patens facilitates visualisation of physiological processes in biological membranes.
Collapse
Affiliation(s)
- Jasmin Gömann
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, D-37077, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, D-37077, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, D-37077, Germany
| | - Agnieszka Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, D-37077, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, D-37077, Germany
- Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, D-37077, Germany
| | - Tegan M Haslam
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, D-37077, Germany
| | - Ellen Hornung
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, D-37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, D-37077, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, D-37077, Germany
- Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, D-37077, Germany
| |
Collapse
|
15
|
Steinberger AR, Merino WO, Cahoon RE, Cahoon EB, Lynch DV. Disruption of long-chain base hydroxylation alters growth and impacts sphingolipid synthesis in Physcomitrella patens. PLANT DIRECT 2021; 5:e336. [PMID: 34355113 PMCID: PMC8320657 DOI: 10.1002/pld3.336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 05/24/2023]
Abstract
Sphingolipids have roles as membrane structural components and as bioactive molecules in plants. In Physcomitrella patens, 4-hydroxysphinganine (phytosphingosine, t18:0) is the predominant sphingolipid long-chain base (LCB). To assess the functional significance of t18:0, CRISPR-Cas9 mutagenesis was used to generate mutant lines lacking the sole SPHINGOID BASE HYDROXYLASE (SBH) gene encoding the hydroxylase responsible for converting sphinganine (d18:0) to t18:0. Total sphingolipid content in sbh protonemata was 2.4-fold higher than in wild-type. Modest changes in glycosyl inositolphosphorylceramide (GIPC) glycosylation patterns occurred. Sphingolipidomic analyses of mutants lacking t18:0 indicated modest alterations in acyl-chain pairing with d18:0 in GIPCs and ceramides, but dramatic alterations in acyl-chain pairing in glucosylceramides, in which 4,8-sphingadienine (d18:2) was the principal LCB. A striking accumulation of free and phosphorylated LCBs accompanied loss of the hydroxylase. The sbh lines exhibited altered morphology, including smaller chloronemal cell size, irregular cell shape, reduced gametophore size, and increased pigmentation. In the presence of the synthetic trihydroxy LCB t17:0, the endogenous sphingolipid content of sbh lines decreased to wild-type levels, and the mutants exhibited phenotypes more similar to wild-type plants. These results demonstrate the importance of sphingolipid content and composition to Physcomitrella growth. They also illuminate similarities in regulating sphingolipid content but differences in regulating sphingolipid species composition between the bryophyte P. patens and angiosperm A. thaliana.
Collapse
Affiliation(s)
| | | | - Rebecca E. Cahoon
- Center for Plant Science Innovation and Department of BiochemistryUniversity of NebraskaLincolnNEUSA
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of BiochemistryUniversity of NebraskaLincolnNEUSA
| | | |
Collapse
|
16
|
Redeuil K, Theurillat X, Nicolas M, Nagy K. Recommendations for Oil Extraction and Refining Process to Prevent the Formation of Monochloropropane-diol Esters in Sunflower Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6043-6053. [PMID: 34018724 DOI: 10.1021/acs.jafc.1c00597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aim of this study was to identify the chlorine source during sunflower oil production and propose mitigation strategies in order to prevent monochloropropane-diol ester (MCPDE) formation. Whole sunflower seeds, the separated kernel, hulls, and pressed cake were studied to pinpoint the location of chlorine donors originating from the crop. Acid-water-based degumming, bleaching, cooling, and heat treatment were performed to mimic the current refining process practices. Various oil extraction and refining scenarios were tested. MCPDE and total monochloropropane-diol (MCPD) content of the heat-treated samples were determined by liquid chromatography-HRMS and by an AOCS Official method. The results show that the oil produced from crop hulls and the bleaching clay used are the strongest chlorine sources boosting the MCPDE formation. Using a mixture of pressed and solvent extracted cake oil as model, total 3-MCPD decreased by a factor of 2 when applying static cooling in combination with a washed bleaching clay.
Collapse
Affiliation(s)
- Karine Redeuil
- Société des Produits Nestlé S.A-, Nestlé Research Lausanne, Route du Jorat 57, Lausanne 26 1000, Switzerland
| | - Xanthippe Theurillat
- Société des Produits Nestlé S.A-, Nestlé Research Lausanne, Route du Jorat 57, Lausanne 26 1000, Switzerland
| | - Marine Nicolas
- Société des Produits Nestlé S.A-, Nestlé Research Lausanne, Route du Jorat 57, Lausanne 26 1000, Switzerland
| | - Kornél Nagy
- Société des Produits Nestlé S.A-, Nestlé Research Lausanne, Route du Jorat 57, Lausanne 26 1000, Switzerland
| |
Collapse
|
17
|
Carmona-Salazar L, Cahoon RE, Gasca-Pineda J, González-Solís A, Vera-Estrella R, Treviño V, Cahoon EB, Gavilanes-Ruiz M. Plasma and vacuolar membrane sphingolipidomes: composition and insights on the role of main molecular species. PLANT PHYSIOLOGY 2021; 186:624-639. [PMID: 33570616 PMCID: PMC8154057 DOI: 10.1093/plphys/kiab064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/24/2021] [Indexed: 05/04/2023]
Abstract
Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity, asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes and plasma membranes (PMs) and comprise four classes: ceramides, hydroxyceramides, glucosylceramides, and glycosylinositolphosphoceramides (GIPCs). They constitute an array of chemical structures whose distribution in plant membranes is unknown. With the aim of describing the hydrophobic portion of sphingolipids, 18 preparations from microsomal (MIC), vacuolar (VM), PM, and detergent-resistant membranes (DRM) were isolated from Arabidopsis (Arabidopsis thaliana) leaves. Sphingolipid species, encompassing pairing of long-chain bases and fatty acids, were identified and quantified in these membranes. Sphingolipid concentrations were compared using univariate and multivariate analysis to assess sphingolipid diversity, abundance, and predominance across membranes. The four sphingolipid classes were present at different levels in each membrane: VM was enriched in glucosylceramides, hydroxyceramides, and GIPCs; PM in GIPCs, in agreement with their key role in signal recognition and sensing; and DRM in GIPCs, as reported by their function in nanodomain formation. While a total of 84 sphingolipid species was identified in MIC, VM, PM, and DRM, only 34 were selectively distributed in the four membrane types. Conversely, every membrane contained a different number of predominant species (11 in VM, 6 in PM, and 17 in DRM). This study reveals that MIC, VM, PM, and DRM contain the same set of sphingolipid species but every membrane source contains its own specific assortment based on the proportion of sphingolipid classes and on the predominance of individual species.
Collapse
Affiliation(s)
- Laura Carmona-Salazar
- Dpto. de Bioquímica, Facultad de Química, Conj. E. Universidad Nacional Autónoma de México, UNAM. Cd. Universitaria, Coyoacán. 04510, Cd. de México, México
| | - Rebecca E Cahoon
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, NE 68588–0665, USA
| | - Jaime Gasca-Pineda
- UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, UNAM, 54090, Estado de México, México
| | - Ariadna González-Solís
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, NE 68588–0665, USA
| | - Rosario Vera-Estrella
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM. Cuernavaca, Morelos, México
| | - Victor Treviño
- Tecnológico de Monterrey, Escuela de Medicina, 64710 Monterrey, Nuevo León, México
| | - Edgar B Cahoon
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, NE 68588–0665, USA
| | - Marina Gavilanes-Ruiz
- Dpto. de Bioquímica, Facultad de Química, Conj. E. Universidad Nacional Autónoma de México, UNAM. Cd. Universitaria, Coyoacán. 04510, Cd. de México, México
- Author for communication:
| |
Collapse
|
18
|
Yang B, Li M, Phillips A, Li L, Ali U, Li Q, Lu S, Hong Y, Wang X, Guo L. Nonspecific phospholipase C4 hydrolyzes phosphosphingolipids and sustains plant root growth during phosphate deficiency. THE PLANT CELL 2021; 33:766-780. [PMID: 33955494 PMCID: PMC8136900 DOI: 10.1093/plcell/koaa054] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/23/2020] [Indexed: 05/07/2023]
Abstract
Phosphate is a vital macronutrient for plant growth, and its availability in soil is critical for agricultural sustainability and productivity. A substantial amount of cellular phosphate is used to synthesize phospholipids for cell membranes. Here, we identify a key enzyme, nonspecific phospholipase C4 (NPC4) that is involved in phosphosphingolipid hydrolysis and remodeling in Arabidopsis during phosphate starvation. The level of glycosylinositolphosphorylceramide (GIPC), the most abundant sphingolipid in Arabidopsis thaliana, decreased upon phosphate starvation. NPC4 was highly induced by phosphate deficiency, and NPC4 knockouts in Arabidopsis decreased the loss of GIPC and impeded root growth during phosphate starvation. Enzymatic analysis showed that NPC4 hydrolyzed GIPC and displayed a higher activity toward GIPC as a substrate than toward the common glycerophospholipid phosphatidylcholine. NPC4 was associated with the plasma membrane lipid rafts in which GIPC is highly enriched. These results indicate that NPC4 uses GIPC as a substrate in planta and the NPC4-mediated sphingolipid remodeling plays a positive role in root growth in Arabidopsis response to phosphate deficiency.
Collapse
Affiliation(s)
- Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Maoyin Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Anne Phillips
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Author for correspondence: (L.G) and (X.W.)
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Author for correspondence: (L.G) and (X.W.)
| |
Collapse
|
19
|
Moore WM, Chan C, Ishikawa T, Rennie EA, Wipf HML, Benites V, Kawai-Yamada M, Mortimer JC, Scheller HV. Reprogramming sphingolipid glycosylation is required for endosymbiont persistence in Medicago truncatula. Curr Biol 2021; 31:2374-2385.e4. [PMID: 33857428 DOI: 10.1016/j.cub.2021.03.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2020] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
Plant endosymbiosis relies on the development of specialized membranes that encapsulate the endosymbiont and facilitate nutrient exchange. However, the identity and function of lipids within these membrane interfaces is largely unknown. Here, we identify GLUCOSAMINE INOSITOL PHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) as a sphingolipid glycosyltransferase highly expressed in Medicago truncatula root nodules and roots colonized by arbuscular mycorrhizal (AM) fungi and further demonstrate that this enzyme functions in the synthesis of N-acetyl-glucosamine-decorated glycosyl inositol phosphoryl ceramides (GIPCs) in planta. MtGINT1 expression was developmentally regulated in symbiotic tissues associated with the development of symbiosome and periarbuscular membranes. RNAi silencing of MtGINT1 did not affect overall root growth but strongly impaired nodulation and AM symbiosis, resulting in the senescence of symbiosomes and arbuscules. Our results indicate that, although M. truncatula root sphingolipidome predominantly consists of hexose-decorated GIPCs, local reprogramming of GIPC glycosylation by MtGINT1 is required for the persistence of endosymbionts within the plant cell.
Collapse
Affiliation(s)
- William M Moore
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Candace Chan
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Saitama 388-8570, Japan
| | - Emilie A Rennie
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Heidi M-L Wipf
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Veronica Benites
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama 388-8570, Japan
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
20
|
Davis J, Pares R, Palmgren M, López-Marqués R, Harper J. A potential pathway for flippase-facilitated glucosylceramide catabolism in plants. PLANT SIGNALING & BEHAVIOR 2020; 15:1783486. [PMID: 32857675 PMCID: PMC8550518 DOI: 10.1080/15592324.2020.1783486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Aminophospholipid ATPase (ALA) family of plant lipid flippases is involved in the selective transport of lipids across membrane bilayers. Recently, we demonstrated that double mutants lacking both ALA4 and -5 are severely dwarfed. Dwarfism in ala4/5 mutants was accompanied by cellular elongation defects and various lipidomic perturbations, including a 1.4-fold increase in the accumulation of glucosylceramides (GlcCers) relative to total sphingolipid content. Here, we present a potential model for flippase-facilitated GlcCer catabolism in plants, where a combination of ALA flippases transport GlcCers to cytosolic membrane surfaces where they are degraded by Glucosylceramidases (GCDs). GCDs remove the glucose headgroup from GlcCers to produce a ceramide (Cer) backbone, which can be further degraded to sphingoid bases (Sphs, e.g, phytosphingosine) and fatty acids (FAs). In the absence of GlcCer-transporting flippases, GlcCers are proposed to accumulate on extracytoplasmic (i.e., apoplastic) or lumenal membrane surfaces. As GlcCers are potential precursors for Sph production, impaired GlcCer catabolism might also result in the decreased production of the secondary messenger Sph-1-phosphate (Sph-1-P, e.g., phytosphingosine-1-P), a regulator of cell turgor. Importantly, we postulate that either GlcCer accumulation or reduced Sph-1-P signaling might contribute to the growth reductions observed in ala4/5 mutants. Similar catabolic pathways have been proposed for humans and yeast, suggesting flippase-facilitated GlcCer catabolism is conserved across eukaryotes.
Collapse
Affiliation(s)
- J.A. Davis
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
- CONTACT Davis, J.A. Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV89557, USA
| | - R.B. Pares
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - M. Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - R.L. López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - J.F. Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
21
|
Hasi RY, Majima D, Morito K, Ali H, Kogure K, Nanjundan M, Hayashi J, Kawakami R, Kanemaru K, Tanaka T. Isolation of glycosylinositol phosphoceramide and phytoceramide 1-phosphate in plants and their chemical stabilities. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122213. [PMID: 32615533 DOI: 10.1016/j.jchromb.2020.122213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022]
Abstract
Glycosylinositol phosphoceramide (GIPC) is a sphingophospholipid in plants. Recently, we identified that GIPC is hydrolyzed to phytoceramide 1-phosphate (PC1P) by an uncharacterized phospholipase D activity following homogenization of certain plant tissues. We now developed methods for isolation of GIPC and PC1P from plant tissues and characterized their chemical stabilities. Hydrophilic solvents, namely a lower layer of a mixed solvent system consisting of isopropanol/hexane/water (55:20:25, v/v/v) was efficient solvent for extraction and eluent in column chromatography. GIPC was isolated by Sephadex column chromatography followed by TLC. A conventional method, such as the Bligh and Dyer method, was applicable for PC1P extraction. Specifically, PC1P was isolated by TLC following mild alkali treatment of lipid extracts of plants. The yields of GIPC and PC1P in our methods were both around 50-70%. We found that PC1P is tolerant against heat (up to 125 °C), strong acid (up to 10 M HCl), and mild alkali (0.1 M KOH). In contrast, significant degradation of GIPC occurred at 100 °C and 1.0 M HCl treatment, suggesting the instability of the inositol glycan moiety in these conditions. These data will be useful for further biochemical and nutritional studies on these sphingolipids.
Collapse
Affiliation(s)
- Rumana Yesmin Hasi
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Dai Majima
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Katsuya Morito
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Hanif Ali
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Kentaro Kogure
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Meera Nanjundan
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Junji Hayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Kaori Kanemaru
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan.
| |
Collapse
|
22
|
Fumonisin B1-Induced Changes in Cotton Fiber Elongation Revealed by Sphingolipidomics and Proteomics. Biomolecules 2020; 10:biom10091258. [PMID: 32878249 PMCID: PMC7564794 DOI: 10.3390/biom10091258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Sphingolipids are essential biomolecules and membrane components, but their regulatory role in cotton fiber development is poorly understood. Here, we found that fumonisin B1 (FB1)—a sphingolipid synthesis inhibitor—could block fiber elongation severely. Using liquid chromatography tandem mass spectrometry (LC-MS/MS), we detected 95 sphingolipids that were altered by FB1 treatment; of these, 29 (mainly simple sphingolipids) were significantly increased, while 33 (mostly complex sphingolipids) were significantly decreased. A quantitative analysis of the global proteome, using an integrated quantitative approach with tandem mass tag (TMT) labeling and LC-MS/MS, indicated the upregulation of 633 and the downregulation of 672 proteins after FB1 treatment. Most differentially expressed proteins (DEPs) were involved in processes related to phenylpropanoid and flavonoid biosynthesis. In addition, up to 20 peroxidases (POD) were found to be upregulated, and POD activity was also increased by the inhibitor. To our knowledge, this is the first report on the effects of FB1 treatment on cotton fiber and ovule sphingolipidomics and proteomics. Our findings provide target metabolites and biological pathways for cotton fiber improvement.
Collapse
|
23
|
Dai GY, Yin J, Li KE, Chen DK, Liu Z, Bi FC, Rong C, Yao N. The Arabidopsis AtGCD3 protein is a glucosylceramidase that preferentially hydrolyzes long-acyl-chain glucosylceramides. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49930-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Dai GY, Yin J, Li KE, Chen DK, Liu Z, Bi FC, Rong C, Yao N. The Arabidopsis AtGCD3 protein is a glucosylceramidase that preferentially hydrolyzes long-acyl-chain glucosylceramides. J Biol Chem 2019; 295:717-728. [PMID: 31819005 DOI: 10.1074/jbc.ra119.011274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/01/2019] [Indexed: 11/06/2022] Open
Abstract
Cellular membranes contain many lipids, some of which, such as sphingolipids, have important structural and signaling functions. The common sphingolipid glucosylceramide (GlcCer) is present in plants, fungi, and animals. As a major plant sphingolipid, GlcCer is involved in the formation of lipid microdomains, and the regulation of GlcCer is key for acclimation to stress. Although the GlcCer biosynthetic pathway has been elucidated, little is known about GlcCer catabolism, and a plant GlcCer-degrading enzyme (glucosylceramidase (GCD)) has yet to be identified. Here, we identified AtGCD3, one of four Arabidopsis thaliana homologs of human nonlysosomal glucosylceramidase, as a plant GCD. We found that recombinant AtGCD3 has a low Km for the fluorescent lipid C6-NBD GlcCer and preferentially hydrolyzes long acyl-chain GlcCer purified from Arabidopsis leaves. Testing of inhibitors of mammalian glucosylceramidases revealed that a specific inhibitor of human β-glucosidase 2, N-butyldeoxynojirimycin, inhibits AtGCD3 more effectively than does a specific inhibitor of human β-glucosidase 1, conduritol β-epoxide. We also found that Glu-499 and Asp-647 in AtGCD3 are vital for GCD activity. GFP-AtGCD3 fusion proteins mainly localized to the plasma membrane or the endoplasmic reticulum membrane. No obvious growth defects or changes in sphingolipid contents were observed in gcd3 mutants. Our results indicate that AtGCD3 is a plant glucosylceramidase that participates in GlcCer catabolism by preferentially hydrolyzing long-acyl-chain GlcCers.
Collapse
Affiliation(s)
- Guang-Yi Dai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai-En Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhe Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang-Cheng Bi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chan Rong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
25
|
SUGAWARA T, AIDA K, DUAN J, TOMONAGA N, MANABE Y, HIRATA T. Analysis of Chemical Structures of Glucosylceramides from Rice and Other Foodstuffs. J Nutr Sci Vitaminol (Tokyo) 2019; 65:S228-S230. [DOI: 10.3177/jnsv.65.s228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | | | | | - Yuki MANABE
- Graduate School of Agriculture, Kyoto University
| | - Takashi HIRATA
- Graduate School of Agriculture, Kyoto University
- Department of Rehabilitation, Shijonawate Gakuen University
| |
Collapse
|
26
|
Membrane Lipid Remodeling in Response to Salinity. Int J Mol Sci 2019; 20:ijms20174264. [PMID: 31480391 PMCID: PMC6747501 DOI: 10.3390/ijms20174264] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022] Open
Abstract
Salinity is one of the most decisive environmental factors threatening the productivity of crop plants. Understanding the mechanisms of plant salt tolerance is critical to be able to maintain or improve crop yield under these adverse environmental conditions. Plant membranes act as biological barriers, protecting the contents of cells and organelles from biotic and abiotic stress, including salt stress. Alterations in membrane lipids in response to salinity have been observed in a number of plant species including both halophytes and glycophytes. Changes in membrane lipids can directly affect the properties of membrane proteins and activity of signaling molecules, adjusting the fluidity and permeability of membranes, and activating signal transduction pathways. In this review, we compile evidence on the salt stress responses of the major membrane lipids from different plant tissues, varieties, and species. The role of membrane lipids as signaling molecules in response to salinity is also discussed. Advances in mass spectrometry (MS)-based techniques have largely expanded our knowledge of salt-induced changes in lipids, however only a handful studies have investigated the underlying mechanisms of membrane lipidome regulation. This review provides a comprehensive overview of the recent works that have been carried out on lipid remodeling of plant membranes under salt treatment. Challenges and future perspectives in understanding the mechanisms of salt-induced changes to lipid metabolisms are proposed.
Collapse
|
27
|
Mamode Cassim A, Gouguet P, Gronnier J, Laurent N, Germain V, Grison M, Boutté Y, Gerbeau-Pissot P, Simon-Plas F, Mongrand S. Plant lipids: Key players of plasma membrane organization and function. Prog Lipid Res 2018; 73:1-27. [PMID: 30465788 DOI: 10.1016/j.plipres.2018.11.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022]
Abstract
The plasma membrane (PM) is the biological membrane that separates the interior of all cells from the outside. The PM is constituted of a huge diversity of proteins and lipids. In this review, we will update the diversity of molecular species of lipids found in plant PM. We will further discuss how lipids govern global properties of the plant PM, explaining that plant lipids are unevenly distributed and are able to organize PM in domains. From that observation, it emerges a complex picture showing a spatial and multiscale segregation of PM components. Finally, we will discuss how lipids are key players in the function of PM in plants, with a particular focus on plant-microbe interaction, transport and hormone signaling, abiotic stress responses, plasmodesmata function. The last chapter is dedicated to the methods that the plant membrane biology community needs to develop to get a comprehensive understanding of membrane organization in plants.
Collapse
Affiliation(s)
- Adiilah Mamode Cassim
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Nelson Laurent
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Magali Grison
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France.
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France.
| |
Collapse
|
28
|
Inês C, Parra-Lobato MC, Paredes MA, Labrador J, Gallardo M, Saucedo-García M, Gavilanes-Ruiz M, Gomez-Jimenez MC. Sphingolipid Distribution, Content and Gene Expression during Olive-Fruit Development and Ripening. FRONTIERS IN PLANT SCIENCE 2018; 9:28. [PMID: 29434611 PMCID: PMC5790798 DOI: 10.3389/fpls.2018.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/09/2018] [Indexed: 05/03/2023]
Abstract
Plant sphingolipids are involved in the building of the matrix of cell membranes and in signaling pathways of physiological processes and environmental responses. However, information regarding their role in fruit development and ripening, a plant-specific process, is unknown. The present study seeks to determine whether and, if so, how sphingolipids are involved in fleshy-fruit development and ripening in an oil-crop species such as olive (Olea europaea L. cv. Picual). Here, in the plasma-membranes of live protoplasts, we used fluorescence to examine various specific lipophilic stains in sphingolipid-enriched regions and investigated the composition of the sphingolipid long-chain bases (LCBs) as well as the expression patterns of sphingolipid-related genes, OeSPT, OeSPHK, OeACER, and OeGlcCerase, during olive-fruit development and ripening. The results demonstrate increased sphingolipid content and vesicle trafficking in olive-fruit protoplasts at the onset of ripening. Moreover, the concentration of LCB [t18:1(8Z), t18:1 (8E), t18:0, d18:2 (4E/8Z), d18:2 (4E/8E), d18:1(4E), and 1,4-anhydro-t18:1(8E)] increases during fruit development to reach a maximum at the onset of ripening, although these molecular species decreased during fruit ripening. On the other hand, OeSPT, OeSPHK, and OeGlcCerase were expressed differentially during fruit development and ripening, whereas OeACER gene expression was detected only at the fully ripe stage. The results provide novel data about sphingolipid distribution, content, and biosynthesis/turnover gene transcripts during fleshy-fruit ripening, indicating that all are highly regulated in a developmental manner.
Collapse
Affiliation(s)
- Carla Inês
- Department of Plant Physiology, University of Extremadura, Badajoz, Spain
| | | | - Miguel A. Paredes
- Department of Plant Physiology, University of Extremadura, Badajoz, Spain
| | - Juana Labrador
- Department of Plant Physiology, University of Extremadura, Badajoz, Spain
| | | | - Mariana Saucedo-García
- Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo, Mexico
| | - Marina Gavilanes-Ruiz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
29
|
Li Y, Lou Y, Mu T, Ke A, Ran Z, Xu J, Chen J, Zhou C, Yan X, Xu Q, Tan Y. Sphingolipids in marine microalgae: Development and application of a mass spectrometric method for global structural characterization of ceramides and glycosphingolipids in three major phyla. Anal Chim Acta 2017; 986:82-94. [PMID: 28870328 DOI: 10.1016/j.aca.2017.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 01/01/2023]
Abstract
Sphingolipid compositions are crucial for the structural and physiological properties of microalgae membranes. In the present study, we developed a quadrupole time-of-flight (Q-TOF) mass spectrometric method based on MSE data collection for the identification of sphingolipids with high efficiency, selectivity, sensitivity and mass accuracy and applied this method for precise structural identification and quantitative profiling of ceramides and glycosphingolipids in total lipid extracts from 17 strains of microalgae, including 11 strains of diatom, 3 strains of dinoflagellate and 3 strains of haptophyta. Using this method, four species of sphingolipids including 27 ceramides, 13 monosaccharide ceramides, 18 disaccharide ceramides and 18 trisaccharide ceramides were identified. The compositions of sphingolipid-included glycosyl moieties, long chain bases and N-acyl chains showed a significant difference among different microalgae categories. Some long chain bases including d19:2, d19:3 and d19:4, glycosyl moieties including disaccharide and trisaccharide, and N-acyl chains such as 14:0, 14:1, 24:0, 24:1, h18:1, h19:1 and h22:0-2 can be chosen as the molecular signature for microalgae from three major phyla. This methodology will be useful for a wide range of physiological and pathological studies of sphingolipids. Furthermore, the diversity of sphingolipid structure could provide a new criterion for microalgae chemotaxonomy.
Collapse
Affiliation(s)
- Yanrong Li
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China; Ningbo Institute of Oceanography, Ningbo, Zhejiang 315832, China
| | - Yamin Lou
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China
| | - Tong Mu
- Ningbo Institute of Oceanography, Ningbo, Zhejiang 315832, China
| | - Aiying Ke
- Zhejiang Mariculture Research Institute, Wenzhou 325000, China
| | - Zhaoshou Ran
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China
| | - Jilin Xu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China.
| | - Juanjuan Chen
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China
| | - Chengxu Zhou
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China
| | - Xiaojun Yan
- Ningbo Institute of Oceanography, Ningbo, Zhejiang 315832, China.
| | - Qingshan Xu
- Lijing Chenhai Baoer Bio. Ltd., Lijiang, Yunnan 674100, China
| | - Yinghong Tan
- Lijing Chenhai Baoer Bio. Ltd., Lijiang, Yunnan 674100, China
| |
Collapse
|
30
|
Reisberg M, Arnold N, Porzel A, Neubert RHH, Dräger B. Production of Rare Phyto-Ceramides from Abundant Food Plant Residues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1507-1517. [PMID: 28118713 DOI: 10.1021/acs.jafc.6b04275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ceramides (Cers) are major components of the outermost layer of the skin, the stratum corneum, and play a crucial role in permeability barrier functions. Alterations in Cer composition causing skin diseases are compensated with semisynthetic skin-identical Cers. Plants constitute new resources for Cer production as they contain glucosylceramides (GluCers) as major components. GluCers were purified from industrial waste plant materials, apple pomace (Malus domestica), wheat germs (Triticum sp.), and coffee grounds (Coffea sp.), with GluCer contents of 28.9 mg, 33.7 mg, and 4.4 mg per 100 g of plant material. Forty-five species of GluCers (1-45) were identified with different sphingoid bases, saturated or monounsaturated α-hydroxy fatty acids (C15-28), and β-glucose as polar headgroup. Three main GluCers were hydrolyzed by a recombinant human glucocerebrosidase to produce phyto-Cers (46-48). These studies showed that rare and expensive phyto-Cers can be obtained from industrial food plant residues.
Collapse
Affiliation(s)
- Mathias Reisberg
- Department of Pharmaceutical Biology and Pharmacology, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg , Hoher Weg 8, D-06120 Halle (Saale), Germany
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry , Weinberg 3, D-06120 Halle (Saale), Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry , Weinberg 3, D-06120 Halle (Saale), Germany
| | - Reinhard H H Neubert
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Birgit Dräger
- Department of Pharmaceutical Biology and Pharmacology, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg , Hoher Weg 8, D-06120 Halle (Saale), Germany
| |
Collapse
|
31
|
Parra-Lobato MC, Paredes MA, Labrador J, Saucedo-García M, Gavilanes-Ruiz M, Gomez-Jimenez MC. Localization of Sphingolipid Enriched Plasma Membrane Regions and Long-Chain Base Composition during Mature-Fruit Abscission in Olive. FRONTIERS IN PLANT SCIENCE 2017; 8:1138. [PMID: 28706527 PMCID: PMC5489598 DOI: 10.3389/fpls.2017.01138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/13/2017] [Indexed: 05/20/2023]
Abstract
Sphingolipids, found in membranes of eukaryotic cells, have been demonstrated to carry out functions in various processes in plant cells. However, the roles of these lipids in fruit abscission remain to be determined in plants. Biochemical and fluorescence microscopy imaging approach has been adopted to investigate the accumulation and distribution of sphingolipids during mature-fruit abscission in olive (Olea europaea L. cv. Picual). Here, a lipid-content analysis in live protoplasts of the olive abscission zone (AZ) was made with fluorescent dyes and lipid analogs, particularly plasma membrane sphingolipid-enriched domains, and their dynamics were investigated in relation to the timing of mature-fruit abscission. In olive AZ cells, the measured proportion of both polar lipids and sphingolipids increased as well as endocytosis was stimulated during mature-fruit abscission. Likewise, mature-fruit abscission resulted in quantitative and qualitative changes in sphingolipid long-chain bases (LCBs) in the olive AZ. The total LCB increase was due essentially to the increase of t18:1(8E) LCBs, suggesting that C-4 hydroxylation and Δ8 desaturation with a preference for (E)-isomer formation were quantitatively the most important sphingolipids in olive AZ during abscission. However, our results also showed a specific association between the dihydroxylated LCB sphinganine (d18:0) and the mature-fruit abscission. These results indicate a clear correlation between the sphingolipid composition and mature-fruit abscission. Moreover, measurements of endogenous sterol levels in the olive AZ revealed that it accumulated sitosterol and campesterol with a concomitant decrease in cycloartenol during abscission. In addition, underlying the distinct sterol composition of AZ during abscission, genes for key biosynthetic enzymes for sterol synthesis, for obtusifoliol 14α-demethylase (CYP51) and C-24 sterol methyltransferase2 (SMT2), were up-regulated during mature-fruit abscission, in parallel to the increase in sitosterol content. The differences found in AZ lipid content and the relationships established between LCB and sterol composition, offer new insights about sphingolipids and sterols in abscission.
Collapse
Affiliation(s)
| | - Miguel A. Paredes
- Department of Plant Physiology, University of ExtremaduraBadajoz, Spain
| | - Juana Labrador
- Department of Plant Physiology, University of ExtremaduraBadajoz, Spain
| | - Mariana Saucedo-García
- Institute of Agricultural Sciences, Autonomous University of the State of HidalgoTulancingo, Mexico
| | - Marina Gavilanes-Ruiz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Maria C. Gomez-Jimenez
- Department of Plant Physiology, University of ExtremaduraBadajoz, Spain
- *Correspondence: Maria C. Gomez-Jimenez,
| |
Collapse
|
32
|
Begum MA, Shi XX, Tan Y, Zhou WW, Hannun Y, Obeid L, Mao C, Zhu ZR. Molecular Characterization of Rice OsLCB2a1 Gene and Functional Analysis of its Role in Insect Resistance. FRONTIERS IN PLANT SCIENCE 2016; 7:1789. [PMID: 27990147 PMCID: PMC5130998 DOI: 10.3389/fpls.2016.01789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/14/2016] [Indexed: 05/22/2023]
Abstract
In plants, sphingolipids, such as long-chain bases (LCBs), act as bioactive molecules in stress responses. Until now, it is still not clear if these lipids are involved in biotic stress responses to herbivore. Herein we report that a rice LCB gene, OsLCB2a1 encoding a subunit of serine palmitoyltransferase (SPT), a key enzyme responsible for the de novo biosynthesis of sphingolipids, plays a critical role in plant defense response to the brown planthopper (BPH) attack and that its up-regulation protects plants from herbivore infestation. Transcripts of OsLCB2a1 gene in rice seedlings were increased at 4 h, but decreased at 8-24 h after BPH attack. Sphingolipid measurement profiling revealed that overexpression of OsLCB2a1 in Arabidopsis thaliana increased trihydroxylated LCB phytosphingosine (t18:0) and phytoceramide by 1.7 and 1.3-fold, respectively, compared with that of wild type (WT) plants. Transgenic Arabidopsis plants also showed higher callose and wax deposition in leaves than that of WT. Overexpression of OsLCB2a1 gene in A. thaliana reduced the population size of green peach aphid (Myzus persicae). Moreover, the electrical penetration graph (EPG) results indicated that the aphids encounter resistance factors while reaching for the phloem on the transgenic plants. The defense response genes related to salicylic acid signaling pathway, remained uplgulated in the OsLCB2a1-overexpressing transgenic plants. Our data highlight the key functions of OsLCB2a1 in biotic stress response in plants.
Collapse
Affiliation(s)
- Mahfuj A. Begum
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture and Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Xiao-Xiao Shi
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture and Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Ye Tan
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture and Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture and Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Yusuf Hannun
- Stony Brook Cancer Center, Department of Medicine, The State University of New York at Stony BrookNew York, NY, USA
| | - Lina Obeid
- Stony Brook Cancer Center, Department of Medicine, The State University of New York at Stony BrookNew York, NY, USA
| | - Cungui Mao
- Stony Brook Cancer Center, Department of Medicine, The State University of New York at Stony BrookNew York, NY, USA
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture and Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| |
Collapse
|
33
|
Li SF, Zhang GJ, Zhang XJ, Yuan JH, Deng CL, Hu ZM, Gao WJ. Genes encoding Δ(8)-sphingolipid desaturase from various plants: identification, biochemical functions, and evolution. JOURNAL OF PLANT RESEARCH 2016; 129:979-987. [PMID: 27294968 DOI: 10.1007/s10265-016-0838-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/13/2016] [Indexed: 06/06/2023]
Abstract
∆(8)-sphingolipid desaturase catalyzes the C8 desaturation of a long chain base, which is the characteristic structure of various complex sphingolipids. The genes of 20 ∆(8)-sphingolipid desaturases from 12 plants were identified and functionally detected by using Saccharomyces cerevisiae system to elucidate the relationship between the biochemical function and evolution of this enzyme. Results showed that the 20 genes all can encode a functional ∆(8)-sphingolipid desaturase, which catalyzes different ratios of two products, namely, 8(Z) and 8(E)-C18-phytosphingenine. The coded enzymes could be divided into two groups on the basis of biochemical functions: ∆(8)-sphingolipid desaturase with a preference for an E-isomer product and ∆(8)-sphingolipid desaturase with a preference for a Z-isomer product. The conversion rate of the latter was generally lower than that of the former. Phylogenetic analysis revealed that the 20 desaturases could also be clustered into two groups, and this grouping is consistent with that of the biochemical functions. Thus, the biochemical function of ∆(8)-sphingolipid desaturase is correlated with its evolution. The two groups of ∆(8)-sphingolipid desaturases could arise from distinct ancestors in higher plants. However, they might have initially evolved from ∆(8)-sphingolipid desaturases in lower organisms, such as yeasts, which can produce E-isomer products only. Furthermore, almost all of the transgenic yeasts harboring ∆(8)-sphingolipid desaturase genes exhibit an improvement in aluminum tolerance. Our study provided new insights into the biochemical function and evolution of ∆(8)-sphingolipid desaturases in plants.
Collapse
Affiliation(s)
- Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Guo-Jun Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue-Jin Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Jin-Hong Yuan
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Zan-Min Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
34
|
Michaelson LV, Napier JA, Molino D, Faure JD. Plant sphingolipids: Their importance in cellular organization and adaption. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:1329-1335. [PMID: 27086144 PMCID: PMC4970446 DOI: 10.1016/j.bbalip.2016.04.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Sphingolipids and their phosphorylated derivatives are ubiquitous bio-active components of cells. They are structural elements in the lipid bilayer and contribute to the dynamic nature of the membrane. They have been implicated in many cellular processes in yeast and animal cells, including aspects of signaling, apoptosis, and senescence. Although sphingolipids have a better defined role in animal systems, they have been shown to be central to many essential processes in plants including but not limited to, pollen development, signal transduction and in the response to biotic and abiotic stress. A fuller understanding of the roles of sphingolipids within plants has been facilitated by classical biochemical studies and the identification of mutants of model species. Recently the development of powerful mass spectrometry techniques hailed the advent of the emerging field of lipidomics enabling more accurate sphingolipid detection and quantitation. This review will consider plant sphingolipid biosynthesis and function in the context of these new developments. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Louise V Michaelson
- Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| | - Johnathan A Napier
- Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| | - Diana Molino
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, Paris, France.
| | - Jean-Denis Faure
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS3559, Saclay Plant Sciences, Versailles, France; Agro Paris Tech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS3559, Saclay Plant Sciences, Versailles, France.
| |
Collapse
|
35
|
Mikami D, Sakai S, Sasaki S, Igarashi Y. Effects of Asterias amurensis-derived Sphingoid Bases on the de novo Ceramide Synthesis in Cultured Normal Human Epidermal Keratinocytes. J Oleo Sci 2016; 65:671-80. [PMID: 27430385 DOI: 10.5650/jos.ess16051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Asterias amurensis starfish provide several bioactive species in addition to being fishery waste. Glucosyl ceramides (GlcCers) were extracted from the viscera of these starfish and were isolated by silica gel column chromatography. Degraded GlcCers generated A. amurensis sphingoid bases (ASBs) that mainly consisted of the triene-type bases d18:3 and 9-methyl-d18:3. The effect of these bases on ceramide synthesis and content were analyzed using normal human epidermal keratinocytes (NHEKs). The bases significantly enhanced the de novo ceramide synthesis and gene expression in NHEKs for proteins, such as serine-palmitoyltransferase and ceramide synthase. Total ceramide, GlcCer, and sphingomyelin contents increased dramatically upon ASB treatment. In particular, GlcCer bearing very-long-chain fatty acids (≥C28) exhibited a significant content increase. These ASB-induced enhancements on de novo ceramide synthesis were only observed in undifferentiated NHEKs. This stimulation of the de novo sphingolipid synthesis may improve skin barrier functions.
Collapse
Affiliation(s)
- Daisuke Mikami
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University
| | | | | | | |
Collapse
|
36
|
Abstract
Sphingolipids, a once overlooked class of lipids in plants, are now recognized as abundant and essential components of plasma membrane and other endomembranes of plant cells. In addition to providing structural integrity to plant membranes, sphingolipids contribute to Golgi trafficking and protein organizational domains in the plasma membrane. Sphingolipid metabolites have also been linked to the regulation of cellular processes, including programmed cell death. Advances in mass spectrometry-based sphingolipid profiling and analyses of Arabidopsis mutants have enabled fundamental discoveries in sphingolipid structural diversity, metabolism, and function that are reviewed here. These discoveries are laying the groundwork for the tailoring of sphingolipid biosynthesis and catabolism for improved tolerance of plants to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Kyle D Luttgeharm
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Athen N Kimberlin
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA.
| |
Collapse
|
37
|
Msanne J, Chen M, Luttgeharm KD, Bradley AM, Mays ES, Paper JM, Boyle DL, Cahoon RE, Schrick K, Cahoon EB. Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:188-201. [PMID: 26313010 PMCID: PMC4765501 DOI: 10.1111/tpj.13000] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 05/03/2023]
Abstract
Glucosylceramides (GlcCer), glucose-conjugated sphingolipids, are major components of the endomembrane system and plasma membrane in most eukaryotic cells. Yet the quantitative significance and cellular functions of GlcCer are not well characterized in plants and other multi-organ eukaryotes. To address this, we examined Arabidopsis lines that were lacking or deficient in GlcCer by insertional disruption or by RNA interference (RNAi) suppression of the single gene for GlcCer synthase (GCS, At2g19880), the enzyme that catalyzes GlcCer synthesis. Null mutants for GCS (designated 'gcs-1') were viable as seedlings, albeit strongly reduced in size, and failed to develop beyond the seedling stage. Heterozygous plants harboring the insertion allele exhibited reduced transmission through the male gametophyte. Undifferentiated calli generated from gcs-1 seedlings and lacking GlcCer proliferated in a manner similar to calli from wild-type plants. However, gcs-1 calli, in contrast to wild-type calli, were unable to develop organs on differentiation media. Consistent with a role for GlcCer in organ-specific cell differentiation, calli from gcs-1 mutants formed roots and leaves on media supplemented with the glucosylated sphingosine glucopsychosine, which was readily converted to GlcCer independent of GCS. Underlying these phenotypes, gcs-1 cells had altered Golgi morphology and fewer cisternae per Golgi apparatus relative to wild-type cells, indicative of protein trafficking defects. Despite seedling lethality in the null mutant, GCS RNAi suppression lines with ≤2% of wild-type GlcCer levels were viable and fertile. Collectively, these results indicate that GlcCer are essential for cell-type differentiation and organogenesis, and plant cells produce amounts of GlcCer in excess of that required for normal development.
Collapse
Affiliation(s)
- Joseph Msanne
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- School of Natural Resources, 807 Hardin Hall, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ming Chen
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kyle D. Luttgeharm
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Amanda M. Bradley
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Elizabeth S. Mays
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Janet M. Paper
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Daniel L. Boyle
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Rebecca E. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kathrin Schrick
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
- Corresponding Authors: Edgar B. Cahoon, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68506, USA, Phone: +1 402 472 5611, . Kathrin Schrick, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506-4901, Phone: +1 785 532 6360,
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Corresponding Authors: Edgar B. Cahoon, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68506, USA, Phone: +1 402 472 5611, . Kathrin Schrick, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506-4901, Phone: +1 785 532 6360,
| |
Collapse
|
38
|
Luttgeharm KD, Kimberlin AN, Cahoon RE, Cerny RL, Napier JA, Markham JE, Cahoon EB. Sphingolipid metabolism is strikingly different between pollen and leaf in Arabidopsis as revealed by compositional and gene expression profiling. PHYTOCHEMISTRY 2015; 115:121-9. [PMID: 25794895 DOI: 10.1016/j.phytochem.2015.02.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/05/2015] [Accepted: 02/22/2015] [Indexed: 05/28/2023]
Abstract
Although sphingolipids are essential for male gametophytic development in Arabidopsis thaliana, sphingolipid composition and biosynthetic gene expression have not been previously examined in pollen. In this report, electrospray ionization (ESI)-MS/MS was applied to characterization of sphingolipid compositional profiles in pollen isolated from wild type Arabidopsis Col-0 and a long-chain base (LCB) Δ4 desaturase mutant. Pollen fractions were highly enriched in glucosylceramides (GlcCer) relative to levels previously reported in leaves. Accompanying the loss of the Δ4 unsaturated LCB sphingadiene (d18:2) in the Δ4 desaturase mutant was a 50% reduction in GlcCer concentrations. In addition, pollen glycosylinositolphosphoceramides (GIPCs) were found to have a complex array of N-acetyl-glycosylated GIPCs, including species with up to three pentose units that were absent from leaf GIPCs. Underlying the distinct sphingolipid composition of pollen, genes for key biosynthetic enzymes for GlcCer and d18:2 synthesis and metabolism were more highly expressed in pollen than in leaves or seedlings, including genes for GlcCer synthase (GCS), sphingoid base C-4 hydroxylase 2 (SBH2), LCB Δ8 desaturases (SLD1 and SLD2), and LOH2 ceramide synthase (LOH2). Overall, these findings indicate strikingly divergent sphingolipid metabolism between pollen and leaves in Arabidopsis, the significance of which remains to be determined.
Collapse
Affiliation(s)
- Kyle D Luttgeharm
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Athen N Kimberlin
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Rebecca E Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Ronald L Cerny
- Department of Chemistry, 710 Hamilton Hall, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Johnathan A Napier
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom.
| | - Jennifer E Markham
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle Center, 1901 Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
39
|
Tapken W, Murphy AS. Membrane nanodomains in plants: capturing form, function, and movement. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1573-86. [PMID: 25725094 DOI: 10.1093/jxb/erv054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains.
Collapse
Affiliation(s)
- Wiebke Tapken
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
40
|
Grosjean K, Mongrand S, Beney L, Simon-Plas F, Gerbeau-Pissot P. Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols. J Biol Chem 2015; 290:5810-25. [PMID: 25575593 DOI: 10.1074/jbc.m114.598805] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains.
Collapse
Affiliation(s)
- Kevin Grosjean
- From UMR1347 Agroécologie, ERL 6300 CNRS, Université de Bourgogne, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Sébastien Mongrand
- the Laboratoire de Biogenèse Membranaire (LBM), CNRS, UMR 5200, F-33000 Villenave d'Ornon, France, the Laboratoire de Biogenèse Membranaire (LBM), Université de Bordeaux, UMR 5200, F-33000 Villenave d'Ornon, France
| | - Laurent Beney
- the Laboratoire Procédés Alimentaires et Microbiologiques, AgroSup Dijon, F-21000 Dijon, France, and
| | - Françoise Simon-Plas
- ERL 6300 CNRS, INRA, UMR1347 Agroécologie, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Patricia Gerbeau-Pissot
- From UMR1347 Agroécologie, ERL 6300 CNRS, Université de Bourgogne, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France,
| |
Collapse
|
41
|
Molino D, Van der Giessen E, Gissot L, Hématy K, Marion J, Barthelemy J, Bellec Y, Vernhettes S, Satiat-Jeunemaître B, Galli T, Tareste D, Faure JD. Inhibition of very long acyl chain sphingolipid synthesis modifies membrane dynamics during plant cytokinesis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1422-30. [DOI: 10.1016/j.bbalip.2014.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 05/23/2014] [Accepted: 06/24/2014] [Indexed: 01/08/2023]
|
42
|
Rennie EA, Ebert B, Miles GP, Cahoon RE, Christiansen KM, Stonebloom S, Khatab H, Twell D, Petzold CJ, Adams PD, Dupree P, Heazlewood JL, Cahoon EB, Scheller HV. Identification of a sphingolipid α-glucuronosyltransferase that is essential for pollen function in Arabidopsis. THE PLANT CELL 2014; 26:3314-25. [PMID: 25122154 PMCID: PMC4371831 DOI: 10.1105/tpc.114.129171] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 06/20/2014] [Accepted: 07/22/2014] [Indexed: 05/20/2023]
Abstract
Glycosyl inositol phosphorylceramide (GIPC) sphingolipids are a major class of lipids in fungi, protozoans, and plants. GIPCs are abundant in the plasma membrane in plants, comprising around a quarter of the total lipids in these membranes. Plant GIPCs contain unique glycan decorations that include a conserved glucuronic acid (GlcA) residue and various additional sugars; however, no proteins responsible for glycosylating GIPCs have been identified to date. Here, we show that the Arabidopsis thaliana protein INOSITOL PHOSPHORYLCERAMIDE GLUCURONOSYLTRANSFERASE1 (IPUT1) transfers GlcA from UDP-GlcA to GIPCs. To demonstrate IPUT1 activity, we introduced the IPUT1 gene together with genes for a UDP-glucose dehydrogenase from Arabidopsis and a human UDP-GlcA transporter into a yeast mutant deficient in the endogenous inositol phosphorylceramide (IPC) mannosyltransferase. In this engineered yeast strain, IPUT1 transferred GlcA to IPC. Overexpression or silencing of IPUT1 in Nicotiana benthamiana resulted in an increase or a decrease, respectively, in IPC glucuronosyltransferase activity in vitro. Plants in which IPUT1 was silenced accumulated IPC, the immediate precursor, as well as ceramides and glucosylceramides. Plants overexpressing IPUT1 showed an increased content of GIPCs. Mutations in IPUT1 are not transmitted through pollen, indicating that these sphingolipids are essential in plants.
Collapse
Affiliation(s)
- Emilie A Rennie
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Berit Ebert
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Godfrey P Miles
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Rebecca E Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Katy M Christiansen
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Solomon Stonebloom
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Hoda Khatab
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - David Twell
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Bioengineering, University of California, Berkeley, California 94720
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Joshua L Heazlewood
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Henrik Vibe Scheller
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
43
|
Voxeur A, Fry SC. Glycosylinositol phosphorylceramides from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:139-49. [PMID: 24804932 PMCID: PMC4230332 DOI: 10.1111/tpj.12547] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/15/2014] [Accepted: 04/28/2014] [Indexed: 05/18/2023]
Abstract
Boron (B) is essential for plant cell-wall structure and membrane functions. Compared with its role in cross-linking the pectic domain rhamnogalacturonan II (RG-II), little information is known about the biological role of B in membranes. Here, we investigated the involvement of glycosylinositol phosphorylceramides (GIPCs), major components of lipid rafts, in the membrane requirement for B. Using thin-layer chromatography and mass spectrometry, we first characterized GIPCs from Rosa cell culture. The major GIPC has one hexose residue, one hexuronic acid residue, inositol phosphate, and a ceramide moiety with a C18 trihydroxylated mono-unsaturated long-chain base and a C24 monohydroxylated saturated fatty acid. Disrupting B bridging (by B starvation in vivo or by treatment with cold dilute HCl or with excess borate in vitro) enhanced the GIPCs' extractability. As RG-II is the main B-binding site in plants, we investigated whether it could form a B-centred complex with GIPCs. Using high-voltage paper electrophoresis, we showed that addition of GIPCs decreased the electrophoretic mobility of radiolabelled RG-II, suggesting formation of a GIPC-B-RG-II complex. Last, using polyacrylamide gel electrophoresis, we showed that added GIPCs facilitate RG-II dimerization in vitro. We conclude that B plays a structural role in the plasma membrane. The disruption of membrane components by high borate may account for the phytotoxicity of excess B. Moreover, the in-vitro formation of a GIPC-B-RG-II complex gives the first molecular explanation of the wall-membrane attachment sites observed in vivo. Finally, our results suggest a role for GIPCs in the RG-II dimerization process.
Collapse
Affiliation(s)
- Aline Voxeur
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of EdinburghEdinburgh, EH9 3JH, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of EdinburghEdinburgh, EH9 3JH, UK
| |
Collapse
|
44
|
Eugenia de la Torre-Hernández M, Sánchez-Rangel D, Galeana-Sánchez E, Plasencia-de la Parra J. Fumonisinas –Síntesis y función en la interacción Fusarium verticillioides-maíz. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2014. [DOI: 10.1016/s1405-888x(14)70321-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
45
|
González-Solís A, Cano-Ramírez DL, Morales-Cedillo F, Tapia de Aquino C, Gavilanes-Ruiz M. Arabidopsis mutants in sphingolipid synthesis as tools to understand the structure and function of membrane microdomains in plasmodesmata. FRONTIERS IN PLANT SCIENCE 2014; 5:3. [PMID: 24478783 PMCID: PMC3900917 DOI: 10.3389/fpls.2014.00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/03/2014] [Indexed: 05/08/2023]
Abstract
Plasmodesmata-intercellular channels that communicate adjacent cells-possess complex membranous structures. Recent evidences indicate that plasmodesmata contain membrane microdomains. In order to understand how these submembrane regions collaborate to plasmodesmata function, it is necessary to characterize their size, composition and dynamics. An approach that can shed light on these microdomain features is based on the use of Arabidopsis mutants in sphingolipid synthesis. Sphingolipids are canonical components of microdomains together with sterols and some glycerolipids. Moreover, sphingolipids are transducers in pathways that display programmed cell death as a defense mechanism against pathogens. The study of Arabidopsis mutants would allow determining which structural features of the sphingolipids are important for the formation and stability of microdomains, and if defense signaling networks using sphingoid bases as second messengers are associated to plasmodesmata operation. Such studies need to be complemented by analysis of the ultrastructure and the use of protein probes for plasmodesmata microdomains and may constitute a very valuable source of information to analyze these membrane structures.
Collapse
Affiliation(s)
| | | | | | | | - Marina Gavilanes-Ruiz
- *Correspondence: Marina Gavilanes-Ruiz, Departamento de Bioquímica, Facultad de Química, Conj. E., Universidad Nacional Autónoma de Mexico, UNAM. Cd. Universitaria, 04510 Mexico City, Mexico e-mail:
| |
Collapse
|
46
|
Abstract
Plant stature and development are governed by cell proliferation and directed cell growth. These parameters are determined largely by cell wall characteristics. Cellulose microfibrils, composed of hydrogen-bonded β-1,4 glucans, are key components for anisotropic growth in plants. Cellulose is synthesized by plasma membrane-localized cellulose synthase complexes. In higher plants, these complexes are assembled into hexameric rosettes in intracellular compartments and secreted to the plasma membrane. Here, the complexes typically track along cortical microtubules, which may guide cellulose synthesis, until the complexes are inactivated and/or internalized. Determining the regulatory aspects that control the behavior of cellulose synthase complexes is vital to understanding directed cell and plant growth and to tailoring cell wall content for industrial products, including paper, textiles, and fuel. In this review, we summarize and discuss cellulose synthesis and regulatory aspects of the cellulose synthase complex, focusing on Arabidopsis thaliana.
Collapse
Affiliation(s)
- Heather E McFarlane
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada;
| | | | | |
Collapse
|
47
|
Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, Weber APM, Arias MC, Henrissat B, Coutinho PM, Krishnan A, Zäuner S, Morath S, Hilliou F, Egizi A, Perrineau MM, Yoon HS. Genome of the red alga Porphyridium purpureum. Nat Commun 2013; 4:1941. [PMID: 23770768 PMCID: PMC3709513 DOI: 10.1038/ncomms2931] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/26/2013] [Indexed: 11/09/2022] Open
Abstract
The limited knowledge we have about red algal genomes comes from the highly specialized extremophiles, Cyanidiophyceae. Here, we describe the first genome sequence from a mesophilic, unicellular red alga, Porphyridium purpureum. The 8,355 predicted genes in P. purpureum, hundreds of which are likely to be implicated in a history of horizontal gene transfer, reside in a genome of 19.7 Mbp with 235 spliceosomal introns. Analysis of light-harvesting complex proteins reveals a nuclear-encoded phycobiliprotein in the alga. We uncover a complex set of carbohydrate-active enzymes, identify the genes required for the methylerythritol phosphate pathway of isoprenoid biosynthesis, and find evidence of sexual reproduction. Analysis of the compact, function-rich genome of P. purpureum suggests that ancestral lineages of red algae acted as mediators of horizontal gene transfer between prokaryotes and photosynthetic eukaryotes, thereby significantly enriching genomes across the tree of photosynthetic life.
Collapse
Affiliation(s)
- Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cacas JL, Buré C, Furt F, Maalouf JP, Badoc A, Cluzet S, Schmitter JM, Antajan E, Mongrand S. Biochemical survey of the polar head of plant glycosylinositolphosphoceramides unravels broad diversity. PHYTOCHEMISTRY 2013; 96:191-200. [PMID: 23993446 DOI: 10.1016/j.phytochem.2013.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 05/28/2023]
Abstract
Although Glycosyl-Inositol-Phospho-Ceramides (GIPCs) are the main sphingolipids of plant tissues, they remain poorly characterized in term of structures. This lack of information, notably with regard to polar heads, currently hampers the understanding of GIPC functions in biological systems. This situation prompted us to undertake a large scale-analysis of plant GIPCs: 23 plant species chosen in various phylogenetic groups were surveyed for their total GIPC content. GIPCs were extracted and their polar heads were characterized by negative ion MALDI and ESI mass spectrometry. Our data shed light on an unexpected broad diversity of GIPC distributions within Plantae, and the occurrence of yet-unreported GIPC structures in green and red algae. In monocots, GIPCs with three saccharides were apparently found to be major, whereas a series with two saccharides was dominant in Eudicots within a few notable exceptions. In plant cell cultures, GIPC polar heads appeared to bear a higher number of glycan units than in the tissue from which they originate. Perspectives are discussed in term of GIPC metabolism diversity and function of these lipids.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200 CNRS-Université Bordeaux Segalen, 71 Avenue Edouard Bourlaux, 33883 Villenave-d'Ornon Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kimberlin AN, Majumder S, Han G, Chen M, Cahoon RE, Stone JM, Dunn TM, Cahoon EB. Arabidopsis 56-amino acid serine palmitoyltransferase-interacting proteins stimulate sphingolipid synthesis, are essential, and affect mycotoxin sensitivity. THE PLANT CELL 2013; 25:4627-39. [PMID: 24214397 PMCID: PMC3875740 DOI: 10.1105/tpc.113.116145] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Maintenance of sphingolipid homeostasis is critical for cell growth and programmed cell death (PCD). Serine palmitoyltransferase (SPT), composed of LCB1 and LCB2 subunits, catalyzes the primary regulatory point for sphingolipid synthesis. Small subunits of SPT (ssSPT) that strongly stimulate SPT activity have been identified in mammals, but the role of ssSPT in eukaryotic cells is unclear. Candidate Arabidopsis thaliana ssSPTs, ssSPTa and ssSPTb, were identified and characterized. Expression of these 56-amino acid polypeptides in a Saccharomyces cerevisiae SPT null mutant stimulated SPT activity from the Arabidopsis LCB1/LCB2 heterodimer by >100-fold through physical interaction with LCB1/LCB2. ssSPTa transcripts were more enriched in all organs and >400-fold more abundant in pollen than ssSPTb transcripts. Accordingly, homozygous ssSPTa T-DNA mutants were not recoverable, and 50% nonviable pollen was detected in heterozygous ssspta mutants. Pollen viability was recovered by expression of wild-type ssSPTa or ssSPTb under control of the ssSPTa promoter, indicating ssSPTa and ssSPTb functional redundancy. SPT activity and sensitivity to the PCD-inducing mycotoxin fumonisin B1 (FB1) were increased by ssSPTa overexpression. Conversely, SPT activity and FB1 sensitivity were reduced in ssSPTa RNA interference lines. These results demonstrate that ssSPTs are essential for male gametophytes, are important for FB1 sensitivity, and limit sphingolipid synthesis in planta.
Collapse
Affiliation(s)
- Athen N. Kimberlin
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Saurav Majumder
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Ming Chen
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Rebecca E. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Julie M. Stone
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
- Address correspondence to
| |
Collapse
|
50
|
Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry. Anal Bioanal Chem 2013; 406:995-1010. [PMID: 23887274 DOI: 10.1007/s00216-013-7130-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 01/08/2023]
Abstract
Although glycosyl inositol phosphoryl ceramides (GIPCs) represent the most abundant class of sphingolipids in plants, they still remain poorly characterized in terms of structure and biodiversity. More than 50 years after their discovery, little is known about their subcellular distribution and their exact roles in membrane structure and biological functions. This review is focused on extraction and characterization methods of GIPCs occurring in plants and fungi. Global methods for characterizing ceramide moieties of GIPCs revealed the structures of long-chain bases (LCBs) and fatty acids (FAs): LCBs are dominated by tri-hydroxylated molecules such as monounsaturated and saturated phytosphingosine (t18:1 and t18:0, respectively) in plants and mainly phytosphingosine (t18:0 and t20:0) in fungi; FA are generally 14-26 carbon atoms long in plants and 16-26 carbon atoms long in fungi, these chains being often hydroxylated in position 2. Mass spectrometry plays a pivotal role in the assessment of GIPC diversity and the characterization of their structures. Indeed, it allowed to determine that the core structure of GIPC polar heads in plants is Hex(R1)-HexA-IPC, with R1 being a hydroxyl, an amine, or a N-acetylamine group, whereas the core structure in fungi is Man-IPC. Notably, information gained from tandem mass spectrometry spectra was most useful to describe the huge variety of structures encountered in plants and fungi and reveal GIPCs with yet uncharacterized polar head structures, such as hexose-inositol phosphoceramide in Chondracanthus acicularis and (hexuronic acid)4-inositol phosphoceramide and hexose-(hexuronic acid)3-inositol phosphoceramide in Ulva lactuca.
Collapse
|