1
|
Xue P, Sun Y, Hu D, Zhang J, Wan X. Genome-wide characterization of DcHsp90 gene family in carnation (Dianthus caryophyllus L.) and functional analysis of DcHsp90-6 in heat tolerance. PROTOPLASMA 2023; 260:807-819. [PMID: 36264387 DOI: 10.1007/s00709-022-01815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Plant heat shock protein 90 (Hsp90) participates in various physiological processes including protein folding, degradation, and signal transduction. However, the DcHsp90 gene family in carnation (Dianthus caryophyllus L.) has not been systematically analyzed. We thoroughly examined and comprehensively analyzed the carnation DcHsp90 gene family in this study and discovered 9 DcHsp90 genes. Based on the phylogenetic examination, DcHsp90 proteins may be divided into two groups. DcHsp90 structural features were similar but varied between groups. Promoter analysis revealed the presence of many cis-acting elements, most of which were connected to growth and development, hormones, and stress. DcHsp90 genes may play distinct functions in heat stress response, according to gene expression analyses. The DcHsp90-6 was isolated, and its role in the reaction to heat stress was studied. Thermotolerance and superoxide dismutase activity in transgenic seedlings were enhanced by Arabidopsis overexpression of DcHsp90-6. After heat stress, transgenic plants' electrolyte leakage and malondialdehyde levels were much lower than wild-type plants. Furthermore, overexpression of DcHsp90-6 altered the expressions of stress-responsive genes such as AtHsp101, AtHsp90, AtGolS1, AtRS4/5, and AtHsfB1. This study provides comprehensive information on the DcHsp90 gene family and suggests that overexpressed DcHsp90-6 positively regulates thermotolerance highlighting the adaptation mechanism of carnation under heat stress.
Collapse
Affiliation(s)
- Pengcheng Xue
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Yuying Sun
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Diandian Hu
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Junwei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xueli Wan
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Yuan C, Li C, Zhao X, Yan C, Wang J, Mou Y, Sun Q, Shan S. Genome-Wide Identification and Characterization of HSP90-RAR1-SGT1-Complex Members From Arachis Genomes and Their Responses to Biotic and Abiotic Stresses. Front Genet 2021; 12:689669. [PMID: 34512718 PMCID: PMC8430224 DOI: 10.3389/fgene.2021.689669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
The molecular chaperone complex HSP90-RAR1-SGT1 (HRS) plays important roles in both biotic and abiotic stress responses in plants. A previous study showed that wild peanut Arachis diogoi SGT1 (AdSGT1) could enhance disease resistance in transgenic tobacco and peanut. However, no systematic analysis of the HRS complex in Arachis has been conducted to date. In this study, a comprehensive analysis of the HRS complex were performed in Arachis. Nineteen HSP90, two RAR1 and six SGT1 genes were identified from the allotetraploid peanut Arachis hypogaea, a number close to the sum of those from the two wild diploid peanut species Arachis duranensis and Arachis ipaensis. According to phylogenetic and chromosomal location analyses, thirteen orthologous gene pairs from Arachis were identified, all of which except AhHSP90-A8, AhHSP90-B9, AdHSP90-9, and AiHSP90-9 were localized on the syntenic locus, and they shared similar exon-intron structures, conserved motifs and expression patterns. Phylogenetic analysis showed that HSP90 and RAR1 from dicot and monocot plants diverged into different clusters throughout their evolution. Chromosomal location analysis indicated that AdSGT1 (the orthologous gene of AhSGT1-B3 in this study) might provide resistance to leaf late spot disease dependent on the orthologous genes of AhHSP90-B10 and AhRAR1-B in the wild peanut A. diogoi. Several HRS genes exhibited tissue-specific expression patterns, which may reflect the sites where they perform functions. By exploring published RNA-seq data, we found that several HSP90 genes play major roles in both biotic and abiotic stress responses, especially salt and drought responses. Autoactivation assays showed that AhSGT1-B1 could not be used as bait for yeast two-hybrid (Y2H) library screening. AhRAR1 and AhSGT1 could strongly interact with each other and interact with AhHSP90-B8. The present study represents the first systematic analysis of HRS complex genes in Arachis and provides valuable information for functional analyses of HRS complex genes. This study also offers potential stress-resistant genes for peanut improvement.
Collapse
Affiliation(s)
- Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, China
| | - Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao, China
| | - Juan Wang
- Shandong Peanut Research Institute, Qingdao, China
| | - Yifei Mou
- Shandong Peanut Research Institute, Qingdao, China
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao, China
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, China
| |
Collapse
|
3
|
Yadav PK, Gupta N, Verma V, Gupta AK. Overexpression of SlHSP90.2 leads to altered root biomass and architecture in tomato ( Solanum lycopersicum). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:713-725. [PMID: 33967458 PMCID: PMC8055811 DOI: 10.1007/s12298-021-00976-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 05/19/2023]
Abstract
The Heat shock proteins 90 family plays pivotal roles in root growth and plant development. Its isoforms have been identified in several plant species with transcripts presents in almost all stages of plant growth. However, its functional relevance has not been completely established. Therefore, in this study, we provide evidence about the role of SlHSP90.2 in tomato (Solanum lycopersicum) root development. Using tomato cultivars with differing root phenotypes, we have shown that SlHSP90.2 transcripts are in accordance with root architecture, i.e. high rooting cultivars had more expression of SlHSP90.2 as compared to low rooting cultivars. Moreover, overexpression of SlHSP90.2 gene in transgenic tomato plants showed significant increase in root biomass and architecture, as evident from the analysis of fresh and dry weights of root and shoot samples, primary root length and length and number of lateral roots. The transgenic lines are also more tolerant to salinity and drought stresses. The results of the present study suggest that genetic manipulation of HSP90.2 homologs in other crops can offer promising leads to develop plant with better root biomass and architecture and improved agronomics traits, like better water and mineral absorption, salinity and drought tolerance potential.
Collapse
Affiliation(s)
- Pawan K. Yadav
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, N.H.-8, Kishangarh, Ajmer, Rajasthan 305817 India
| | - Nisha Gupta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560 012 India
| | - Vivek Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, N.H.-8, Kishangarh, Ajmer, Rajasthan 305817 India
| | - Aditya K. Gupta
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, N.H.-8, Kishangarh, Ajmer, Rajasthan 305817 India
| |
Collapse
|
4
|
Venios X, Korkas E, Nisiotou A, Banilas G. Grapevine Responses to Heat Stress and Global Warming. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121754. [PMID: 33322341 PMCID: PMC7763569 DOI: 10.3390/plants9121754] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 05/08/2023]
Abstract
The potential effects of the forthcoming climate change include the rising of the average annual temperature and the accumulation of extreme weather events, like frequent and severe heatwaves, a phenomenon known as global warming. Temperature is an important environmental factor affecting almost all aspects of growth and development in plants. The grapevine (Vitis spp.) is quite sensitive to extreme temperatures. Over the current century, temperatures are projected to continue rising with negative impacts on viticulture. These consequences range from short-term effects on wine quality to long-term issues such as the suitability of certain varieties and the sustainability of viticulture in traditional wine regions. Many viticultural zones, particularly in Mediterranean climate regions, may not be suitable for growing winegrapes in the near future unless we develop heat-stress-adapted genotypes or identify and exploit stress-tolerant germplasm. Grapevines, like other plants, have developed strategies to maintain homeostasis and cope with high-temperature stress. These mechanisms include physiological adaptations and activation of signaling pathways and gene regulatory networks governing heat stress response and acquisition of thermotolerance. Here, we review the major impacts of global warming on grape phenology and viticulture and focus on the physiological and molecular responses of the grapevine to heat stress.
Collapse
Affiliation(s)
- Xenophon Venios
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Athens, Greece; (X.V.); (E.K.)
| | - Elias Korkas
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Athens, Greece; (X.V.); (E.K.)
| | - Aspasia Nisiotou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “Demeter”, Sofokli Venizelou 1, 14123 Lykovryssi, Greece;
| | - Georgios Banilas
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Athens, Greece; (X.V.); (E.K.)
- Correspondence:
| |
Collapse
|
5
|
Lv J, Pang Q, Chen X, Li T, Fang J, Lin S, Jia H. Transcriptome analysis of strawberry fruit in response to exogenous arginine. PLANTA 2020; 252:82. [PMID: 33040169 DOI: 10.1007/s00425-020-03489-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/01/2020] [Indexed: 05/19/2023]
Abstract
Transcriptome and physiological analysis showed that exogenous arginine can delay the ripening process of postharvest strawberry fruit. Arginine (Arg) plays an important role in the growth and development of plants, but its growth and development regulatory mechanisms in strawberry fruit are unknown. In this study, we found that the content of Arg decreased after the onset of fruit coloration and exogenous Arg inhibited fruit coloration. We comprehensively analyzed the transcriptome of 'Sweet Charlie' strawberry fruit with or without Arg treatment and identified a large number of differential genes and metabolites. Based on the transcriptome data, we also found that Arg inhibited ripening, which coincided with changes in several physiological parameters and their corresponding gene transcripts, including firmness, anthocyanin content, sugar content, Arg content, indole-acetic acid (IAA) content, abscisic acid (ABA) content, and ethylene emissions. We also found that Arg induced the expression of heat-shock proteins (HSPs) and antioxidant enzyme genes, which improved strawberry stress resistance. This study elucidated the molecular mechanism by which exogenous Arg delays strawberry fruit ripening, providing some genetic information to help guide the future improvement and cultivation of strawberry.
Collapse
Affiliation(s)
- Jinhua Lv
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qianqian Pang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xueqin Chen
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Teng Li
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shaoyan Lin
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
6
|
ul Haq S, Khan A, Ali M, Khattak AM, Gai WX, Zhang HX, Wei AM, Gong ZH. Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. Int J Mol Sci 2019; 20:E5321. [PMID: 31731530 PMCID: PMC6862505 DOI: 10.3390/ijms20215321] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Due to the present scenario of climate change, plants have to evolve strategies to survive and perform under a plethora of biotic and abiotic stresses, which restrict plant productivity. Maintenance of plant protein functional conformation and preventing non-native proteins from aggregation, which leads to metabolic disruption, are of prime importance. Plant heat shock proteins (HSPs), as chaperones, play a pivotal role in conferring biotic and abiotic stress tolerance. Moreover, HSP also enhances membrane stability and detoxifies the reactive oxygen species (ROS) by positively regulating the antioxidant enzymes system. Additionally, it uses ROS as a signal to molecules to induce HSP production. HSP also enhances plant immunity by the accumulation and stability of pathogenesis-related (PR) proteins under various biotic stresses. Thus, to unravel the entire plant defense system, the role of HSPs are discussed with a special focus on plant response to biotic and abiotic stresses, which will be helpful in the development of stress tolerance in plant crops.
Collapse
Affiliation(s)
- Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
- Department of Horticulture, University of Agriculture Peshawar, Peshawar 25130, Pakistan;
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Abdul Mateen Khattak
- Department of Horticulture, University of Agriculture Peshawar, Peshawar 25130, Pakistan;
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin 300192, China;
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
| |
Collapse
|
7
|
UV-B priming of Oryza sativa var. Kanchana seedlings augments its antioxidative potential and gene expression of stress-response proteins under various abiotic stresses. 3 Biotech 2019; 9:375. [PMID: 31588399 DOI: 10.1007/s13205-019-1903-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/17/2019] [Indexed: 01/12/2023] Open
Abstract
Priming is one of the mechanisms for the induction of the antioxidant defense system and various stress-responsive proteins which help plants to survive under various abiotic stresses. Based on the observation that the rice seedlings primed with UV-B (low dose of UV-B irradiation-6 kJm-2) induced the acclimation against NaCl, PEG and UV-B stresses, it was of interest to see the augmentation of antioxidative potential and stress-responsive proteins accumulation in rice seedlings due to UV-B priming under these stresses. Various stresses result in production of ROS, which cause membrane degradation resulting in the accumulation of malondialdehyde. These negative impacts were observed exceedingly in rice seedlings from non-primed PEG stress (NP+P) condition than UV-B and NaCl stresses. The production of non-enzymatic antioxidants, activity/mRNA-level expressions of enzymatic antioxidants and stress-responsive proteins were effectively augmented in UV-B-primed rice seedlings subjected to NaCl stress (P+N) condition followed by UV-B stress (P+U) and PEG stress (P+P). The activation of stress-responsive proteins (HSP and LEA) in rice due to the UV-B priming of rice seedlings is being reported for the first time. The results revealed that the UV-B seedling priming was alleviating the effect of NaCl, PEG, and UV-B stresses in rice seedlings. The positive impacts of UV-B seedling priming were more prominent in rice seedlings subjected to NaCl stress, indicating the cross tolerance imparted by UV-B priming.
Collapse
|
8
|
Huang Y, Xuan H, Yang C, Guo N, Wang H, Zhao J, Xing H. GmHsp90A2 is involved in soybean heat stress as a positive regulator. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:26-33. [PMID: 31203891 DOI: 10.1016/j.plantsci.2019.04.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 05/09/2023]
Abstract
Heat shock protein 90 s (Hsp90s), one of the most conserved and abundant molecular chaperones, is an essential component of the protective stress response. A previous study reported at least 12 genes in the GmHsp90s family in soybean and that GmHsp90A2 overexpression enhanced thermotolerance in Arabidopsis thaliana. Here, we investigate the roles of GmHsp90A2 in soybean by utilizing stable transgenic soybean lines overexpressing GmHsp90A2 and mutant lines generated by the CRISPR/Cas9 system. The results showed that compared with wild-type plants (WT) and empty vector control plants (VC), T3 transgenic soybean plants overexpressing GmHsp90A2 exhibited increased tolerance to heat stress through higher chlorophyll and lower malondialdehyde (MDA) contents in plants. Conversely, reduced chlorophyll and increased MDA contents in T2 homozygous GmHsp90A2-knockout mutants indicated decreased tolerance to heat stress. GmHsp90A2 was found to interact with GmHsp90A1 in yeast two-hybrid assays. Furthermore, subcellular localization analyses revealed that GmHsp90A2 was localized to the cytoplasm and cell membrane; as shown by bimolecular fluorescence complementation (BiFC) assays, GmHsp90A2 interacted with GmHsp90A1 in the nucleus and cytoplasm and cell membrane. Hence, we conclude that GmHsp90A1 is able to bind to GmHsp90A2 to form a complex and that this complex enters the nucleus. In summary, GmHsp90A2 might respond to heat stress and positively regulate thermotolerance by interacting with GmHsp90A1.
Collapse
Affiliation(s)
- Yanzhong Huang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huidong Xuan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengfeng Yang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Na Guo
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitang Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinming Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Han Xing
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
A Systematic View Exploring the Role of Chloroplasts in Plant Abiotic Stress Responses. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6534745. [PMID: 31396532 PMCID: PMC6668530 DOI: 10.1155/2019/6534745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022]
Abstract
Chloroplasts are intracellular semiautonomous organelles central to photosynthesis and are essential for plant growth and yield. The significance of the function of chloroplast-related genes in response to climate change has not been well studied in crops. In the present study, the initial focus was on genes that were predicted to be located in the chloroplast genome in rice, a model crop plant, with genes either preferentially expressed in the leaf or ubiquitously expressed in all organs. The characteristics were analyzed by Gene Ontology (GO) enrichment and MapMan functional classification tools. It was then identified that 110 GO terms (45 for leaf expression and 65 for ubiquitous expression) and 1,695 genes mapped to MapMan overviews were strongly associated with chloroplasts. In particular, the MapMan cellular response overview revealed a close association between heat stress response and chloroplast-related genes in rice. Moreover, features of these genes in response to abiotic stress were analyzed using a large-scale publicly available transcript dataset. Consequently, the expression of 215 genes was found to be upregulated in response to high temperature stress. Conversely, genes that responded to other stresses were extremely limited. In other words, chloroplast-related genes were found to affect abiotic stress response mainly through high temperature response, with little effect on response to drought and salinity stress. These results suggest that genes involved in diurnal rhythm in the leaves participate in the reaction to recognize temperature changes in the environment. Furthermore, the predicted protein–protein interaction network analysis associated with high temperature stress is expected to provide a very important basis for the study of molecular mechanisms by which chloroplasts will respond to future climate changes.
Collapse
|
10
|
Zeng R, Farooq MU, Wang L, Su Y, Zheng T, Ye X, Jia X, Zhu J. Study on Differential Protein Expression in Natural Selenium-Enriched and Non-Selenium-Enriched Rice Based on iTRAQ Quantitative Proteomics. Biomolecules 2019; 9:biom9040130. [PMID: 30935009 PMCID: PMC6523350 DOI: 10.3390/biom9040130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
This work was designated to scrutinize the protein differential expression in natural selenium-enriched and non-selenium-enriched rice using the Isobaric-tags for relative and absolute quantification (iTRAQ) proteomics approach. The extracted proteins were subjected to enzyme digestion, desalting, and identified by iTRAQ coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology. High pH C18 separation analysis was performed, and the data were then analyzed by Protein PilotTM (V4.5) search engine. Protein differential expression was searched out by comparing relatively quantified proteins. The analysis was conducted using gene ontology (GO), cluster of orthologous groups of proteins (COG) and Kyoto encyclopedia of genes and genomes (KEGG) metabolic pathways. A total of 3235 proteins were detected and 3161 proteins were quantified, of which 401 were differential proteins. 208 down-regulated and 193 up-regulated proteins were unveiled. 77 targeted significant differentially expressed proteins were screened out for further analysis, and were classified into 10 categories: oxidoreductases, transferases, isomerases, heat shock proteins, lyases, hydrolases, ligases, synthetases, tubulin, and actin. The results indicated that the anti-stress, anti-oxidation, active oxygen metabolism, carbohydrate and amino acid metabolism of natural selenium-enriched rice was higher than that of non-selenium rice. The activation of the starch synthesis pathway was found to be bounteous in non-selenium-enriched rice. Cysteine synthase (CYS) and methyltransferase (metE) might be the two key proteins that cause amino acid differences. OsAPx02, CatC, riPHGPX, HSP70 and HSP90 might be the key enzymes regulating antioxidant and anti-stress effect differences in two types of rice. This study provides basic information about deviations in protein mechanism and secondary metabolites in selenium-enriched and non-selenium-enriched rice.
Collapse
Affiliation(s)
- Rui Zeng
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Dujiangyan Agricultural and Rural Bureau, Dujiangyan 611830, Sichuan, China.
| | - Muhammad Umer Farooq
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Li Wang
- Meishan Vocational & Technical College, Meishan 62000, Sichuan, China.
| | - Yang Su
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Tengda Zheng
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xiaoying Ye
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xiaomei Jia
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Jianqing Zhu
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
11
|
Wang D, Li L, Wu G, Vasseur L, Yang G, Huang P. De novo transcriptome sequencing of Isaria cateniannulata and comparative analysis of gene expression in response to heat and cold stresses. PLoS One 2017; 12:e0186040. [PMID: 29023475 PMCID: PMC5638334 DOI: 10.1371/journal.pone.0186040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/22/2017] [Indexed: 11/19/2022] Open
Abstract
Isaria cateniannulata is a very important and virulent entomopathogenic fungus that infects many insect pest species. Although I. cateniannulata is commonly exposed to extreme environmental temperature conditions, little is known about its molecular response mechanism to temperature stress. Here, we sequenced and de novo assembled the transcriptome of I. cateniannulata in response to high and low temperature stresses using Illumina RNA-Seq technology. Our assembly encompassed 17,514 unigenes (mean length = 1,197 bp), in which 11,445 unigenes (65.34%) showed significant similarities to known sequences in NCBI non-redundant protein sequences (Nr) database. Using digital gene expression analysis, 4,483 differentially expressed genes (DEGs) were identified after heat treatment, including 2,905 up-regulated genes and 1,578 down-regulated genes. Under cold stress, 1,927 DEGs were identified, including 1,245 up-regulated genes and 682 down-regulated genes. The expression patterns of 18 randomly selected candidate DEGs resulting from quantitative real-time PCR (qRT-PCR) were consistent with their transcriptome analysis results. Although DEGs were involved in many pathways, we focused on the genes that were involved in endocytosis: In heat stress, the pathway of clathrin-dependent endocytosis (CDE) was active; however at low temperature stresses, the pathway of clathrin-independent endocytosis (CIE) was active. Besides, four categories of DEGs acting as temperature sensors were observed, including cell-wall-major-components-metabolism-related (CWMCMR) genes, heat shock protein (Hsp) genes, intracellular-compatible-solutes-metabolism-related (ICSMR) genes and glutathione S-transferase (GST). These results enhance our understanding of the molecular mechanisms of I. cateniannulata in response to temperature stresses and provide a valuable resource for the future investigations.
Collapse
Affiliation(s)
- Dingfeng Wang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, Fujian, China
| | - Liangde Li
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, Fujian, China
| | - Guangyuan Wu
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, Fujian, China
- * E-mail: (GYW); (GY)
| | - Liette Vasseur
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Department of Biological Sciences, Brock University, St Catharines, Ontario, Canada
| | - Guang Yang
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail: (GYW); (GY)
| | - Pengrong Huang
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Thagela P, Yadav RK, Mishra V, Dahuja A, Ahmad A, Singh PK, Tiwari BS, Abraham G. Salinity-induced inhibition of growth in the aquatic pteridophyte Azolla microphylla primarily involves inhibition of photosynthetic components and signaling molecules as revealed by proteome analysis. PROTOPLASMA 2017; 254:303-313. [PMID: 26837223 DOI: 10.1007/s00709-016-0946-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/18/2016] [Indexed: 05/21/2023]
Abstract
Salinity stress causes adverse physiological and biochemical changes in the growth and productivity of a plant. Azolla, a symbiotic pteridophyte and potent candidate for biofertilizer due to its nitrogen fixation ability, shows reduced growth and nitrogen fixation during saline stress. To better understand regulatory components involved in salinity-induced physiological changes, in the present study, Azolla microphylla plants were exposed to NaCl (6.74 and 8.61 ds/m) and growth, photochemical reactions of photosynthesis, ion accumulation, and changes in cellular proteome were studied. Maximum dry weight was accumulated in control and untreated plant while a substantial decrease in dry weight was observed in the plants exposed to salinity. Exposure of the organism to different concentrations of salt in hydroponic conditions resulted in differential level of Na+ and K+ ion accumulation. Comparative analysis of salinity-induced proteome changes in A. microphylla revealed 58 salt responsive proteins which were differentially expressed during the salt exposure. Moreover, 42 % spots among differentially expressed proteins were involved in different signaling events. The identified proteins are involved in photosynthesis, energy metabolism, amino acid biosynthesis, protein synthesis, and defense. Downregulation of these key metabolic proteins appears to inhibit the growth of A. microphylla in response to salinity. Altogether, the study revealed that in Azolla, increased salinity primarily affected signaling and photosynthesis that in turn leads to reduced biomass.
Collapse
Affiliation(s)
- Preeti Thagela
- Centre for Conservation and Utilization of BGA, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ravindra Kumar Yadav
- Centre for Conservation and Utilization of BGA, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vagish Mishra
- NRCPB, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, U.P., India
| | - Pawan Kumar Singh
- Department of Botany, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Budhi Sagar Tiwari
- School of Biological Sciences and Biotechnology, University and Institute of Advanced Research, Gandhinagar, 382007, Gujrat, India
| | - Gerard Abraham
- Centre for Conservation and Utilization of BGA, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Centre for Conservation and Utilization of BGA, CCUBGA, NEAR AUDITORIUM, New Delhi, 110012, India.
| |
Collapse
|
13
|
Na2CO3-responsive mechanisms in halophyte Puccinellia tenuiflora roots revealed by physiological and proteomic analyses. Sci Rep 2016; 6:32717. [PMID: 27596441 PMCID: PMC5011731 DOI: 10.1038/srep32717] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/15/2016] [Indexed: 11/16/2022] Open
Abstract
Soil alkalization severely affects crop growth and agricultural productivity. Alkali salts impose ionic, osmotic, and high pH stresses on plants. The alkali tolerance molecular mechanism in roots from halophyte Puccinellia tenuiflora is still unclear. Here, the changes associated with Na2CO3 tolerance in P. tenuiflora roots were assessed using physiological and iTRAQ-based quantitative proteomic analyses. We set up the first protein dataset in P. tenuiflora roots containing 2,671 non-redundant proteins. Our results showed that Na2CO3 slightly inhibited root growth, caused ROS accumulation, cell membrane damage, and ion imbalance, as well as reduction of transport and protein synthesis/turnover. The Na2CO3-responsive patterns of 72 proteins highlighted specific signaling and metabolic pathways in roots. Ca2+ signaling was activated to transmit alkali stress signals as inferred by the accumulation of calcium-binding proteins. Additionally, the activities of peroxidase and glutathione peroxidase, and the peroxiredoxin abundance were increased for ROS scavenging. Furthermore, ion toxicity was relieved through Na+ influx restriction and compartmentalization, and osmotic homeostasis reestablishment due to glycine betaine accumulation. Importantly, two transcription factors were increased for regulating specific alkali-responsive gene expression. Carbohydrate metabolism-related enzymes were increased for providing energy and carbon skeletons for cellular metabolism. All these provide new insights into alkali-tolerant mechanisms in roots.
Collapse
|
14
|
Zhang L, Hu X, Miao X, Chen X, Nan S, Fu H. Genome-Scale Transcriptome Analysis of the Desert Shrub Artemisia sphaerocephala. PLoS One 2016; 11:e0154300. [PMID: 27115614 PMCID: PMC4846011 DOI: 10.1371/journal.pone.0154300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/12/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Artemisia sphaerocephala, a semi-shrub belonging to the Artemisia genus of the Compositae family, is an important pioneer plant that inhabits moving and semi-stable sand dunes in the deserts and steppes of northwest and north-central China. It is very resilient in extreme environments. Additionally, its seeds have excellent nutritional value, and the abundant lipids and polysaccharides in the seeds make this plant a potential valuable source of bio-energy. However, partly due to the scarcity of genetic information, the genetic mechanisms controlling the traits and environmental adaptation capacity of A. sphaerocephala are unknown. RESULTS Here, we present the first in-depth transcriptomic analysis of A. sphaerocephala. To maximize the representation of conditional transcripts, mRNA was obtained from 17 samples, including living tissues of desert-growing A. sphaerocephala, seeds germinated in the laboratory, and calli subjected to no stress (control) and high and low temperature, high and low osmotic, and salt stresses. De novo transcriptome assembly performed using an Illumina HiSeq 2500 platform resulted in the generation of 68,373 unigenes. We analyzed the key genes involved in the unsaturated fatty acid synthesis pathway and identified 26 A. sphaerocephala fad2 genes, which is the largest fad2 gene family reported to date. Furthermore, a set of genes responsible for resistance to extreme temperatures, salt, drought and a combination of stresses was identified. CONCLUSION The present work provides abundant genomic information for functional dissection of the important traits of A. sphaerocephala and contributes to the current understanding of molecular adaptive mechanisms of A. sphaerocephala in the desert environment. Identification of the key genes in the unsaturated fatty acid synthesis pathway could increase understanding of the biological regulatory mechanisms of fatty acid composition traits in plants and facilitate genetic manipulation of the fatty acid composition of oil crops.
Collapse
Affiliation(s)
- Lijing Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaowei Hu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiumei Miao
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaolong Chen
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Shuzhen Nan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hua Fu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Role of Heat Shock Proteins in Improving Heat Stress Tolerance in Crop Plants. HEAT SHOCK PROTEINS AND PLANTS 2016. [DOI: 10.1007/978-3-319-46340-7_14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Abu-Romman S. Genotypic response to heat stress in durum wheat and the expression of small HSP genes. RENDICONTI LINCEI 2015. [DOI: 10.1007/s12210-015-0471-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Raman S, Suguna K. Functional characterization of heat-shock protein 90 from Oryza sativa and crystal structure of its N-terminal domain. Acta Crystallogr F Struct Biol Commun 2015; 71:688-96. [PMID: 26057797 PMCID: PMC4461332 DOI: 10.1107/s2053230x15006639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/02/2015] [Indexed: 11/12/2023] Open
Abstract
Heat-shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that is essential for the normal functioning of eukaryotic cells. It plays crucial roles in cell signalling, cell-cycle control and in maintaining proteome integrity and protein homeostasis. In plants, Hsp90s are required for normal plant growth and development. Hsp90s are observed to be upregulated in response to various abiotic and biotic stresses and are also involved in immune responses in plants. Although there are several studies elucidating the physiological role of Hsp90s in plants, their molecular mechanism of action is still unclear. In this study, biochemical characterization of an Hsp90 protein from rice (Oryza sativa; OsHsp90) has been performed and the crystal structure of its N-terminal domain (OsHsp90-NTD) was determined. The binding of OsHsp90 to its substrate ATP and the inhibitor 17-AAG was studied by fluorescence spectroscopy. The protein also exhibited a weak ATPase activity. The crystal structure of OsHsp90-NTD was solved in complex with the nonhydrolyzable ATP analogue AMPPCP at 3.1 Å resolution. The domain was crystallized by cross-seeding with crystals of the N-terminal domain of Hsp90 from Dictyostelium discoideum, which shares 70% sequence identity with OsHsp90-NTD. This is the second reported structure of a domain of Hsp90 from a plant source.
Collapse
Affiliation(s)
- Swetha Raman
- Molecular Biophysics Unit, Indian institute of Science, Bangalore, India 560 012, India
| | - Kaza Suguna
- Molecular Biophysics Unit, Indian institute of Science, Bangalore, India 560 012, India
| |
Collapse
|
18
|
Cloning and expression of a cytosolic HSP90 gene in Chlorella vulgaris. BIOMED RESEARCH INTERNATIONAL 2014; 2014:487050. [PMID: 24738061 PMCID: PMC3971552 DOI: 10.1155/2014/487050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/16/2014] [Indexed: 12/31/2022]
Abstract
Heat shock protein 90 (HSP90), a highly conserved molecular chaperone, plays essential roles in folding, keeping structural integrity, and regulating the subset of cytosolic proteins. We cloned the cDNA of Chlorella vulgaris HSP90 (named CvHSP90) by combining homology cloning with rapid amplification of cDNA ends (RACE). Sequence analysis indicated that CvHSP90 is a cytosolic member of the HSP90 family. Quantitative RT-PCR was applied to determine the expression level of messenger RNA (mRNA) in CvHSP90 under different stress conditions. C. vulgaris was kept in different temperatures (5–45°C) for 1 h. The mRNA expression level of CvHSP90 increased with temperature from 5 to 10°C, went further from 35 to 40°C, and reached the maximum at 40°C. On the other hand, for C. vulgaris kept at 35°C for different durations, the mRNA expression level of CvHSP90 increased gradually and reached the peak at 7 h and then declined progressively. In addition, the expression level of CvHSP90 at 40 or 45 in salinity (‰) was almost fourfold of that at 25 in salinity (‰) for 2 h. Therefore, CvHSP90 may be a potential biomarker to monitor environment changes.
Collapse
|
19
|
Cha JY, Ahn G, Kim JY, Kang SB, Kim MR, Su'udi M, Kim WY, Son D. Structural and functional differences of cytosolic 90-kDa heat-shock proteins (Hsp90s) in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:368-373. [PMID: 23827697 DOI: 10.1016/j.plaphy.2013.05.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 05/20/2013] [Indexed: 06/02/2023]
Abstract
The seven members of the 90-kDa heat shock protein (Hsp90) family encode highly conserved molecular chaperones essential for cell survival in Arabidopsis thaliana. Hsp90 are abundant proteins, localized in different compartments with AtHsp90.1-4 in the cytosol and AtHsp90.5-7 in different organelles. Among the AtHsp90, AtHsp90.1, is stress-inducible and shares comparatively low sequence identity with the constitutively expressed AtHsp90.2-4. Even though abundant information is available on mammalian cytosolic Hsp90 proteins, it is unknown whether cytosolic Hsp90 proteins display different structural and functional properties. We have now analyzed two A. thalianas cytosolic Hsp90s, AtHsp90.1 and AtHsp90.3, for functional divergence. AtHsp90.3 showed higher holdase chaperone activity than AtHsp90.1, although both AtHsp90s exhibited effective chaperone activity. Size-exclusion chromatography revealed different oligomeric states distinguishing the two Hsp90 proteins. While AtHsp90.1 exists in several oligomeric states, including monomers, dimers and higher oligomers, AtHsp90.3 exists predominantly in a high oligomeric state. High oligomeric state of AtHsp90.1 showed higher holdase chaperone activity than the respective monomer or dimer states. When high oligomeric forms of AtHsp90.1 and AtHsp90.3 are reduced by DTT, activity was reduced compared to that found in the native high oligomeric state. In addition, ATP-dependent foldase chaperone activity of AtHsp90.3 was higher with strong intrinsic ATPase activity than that of AtHsp90.1. As a conclusion, the two A. thaliana cytosolic Hsp90 proteins display different functional activities depending on structural differences, implying functional divergence although the proteins are localized to the same sub-cellular organelle.
Collapse
Affiliation(s)
- Joon-Yung Cha
- Division of Applied Life Science (BK21 and WCU Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cloning and Expression Analysis of Heat Shock Protein Gene ZmHsp90-1 in Maize. ACTA AGRONOMICA SINICA 2013. [DOI: 10.3724/sp.j.1006.2012.01839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Xu J, Xue C, Xue D, Zhao J, Gai J, Guo N, Xing H. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana. PLoS One 2013; 8:e69810. [PMID: 23936107 PMCID: PMC3723656 DOI: 10.1371/journal.pone.0069810] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
Hsp90 is one of the most conserved and abundant molecular chaperones and is an essential component of the protective stress response; however, its roles in abiotic stress responses in soybean (Glycine max) remain obscure. Here, 12 GmHsp90 genes from soybean were identified and found to be expressed and to function differentially under abiotic stresses. The 12 GmHsp90 genes were isolated and named GmHsp90A1-GmHsp90A6, GmHsp90B1, GmHsp90B2, GmHsp90C1.1, GmHsp90C1.2, GmHsp90C2.1 and GmHsp90C2.2 based on their characteristics and high homology to other Hsp90s according to a new nomenclature system. Quantitative real-time PCR expression data revealed that all the genes exhibited higher transcript levels in leaves and could be strongly induced under heat, osmotic and salt stress but not cold stress. Overexpression of five typical genes (GmHsp90A2, GmHsp90A4, GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1) in Arabidopsis thaliana provided useful evidences that GmHsp90 genes can decrease damage of abiotic stresses. In addition, an abnormal accumulation of proline was detected in some transgenic Arabidopsis plants suggested overexpressing GmHsp90s may affect the synthesis and response system of proline. Our work represents a systematic determination of soybean genes encoding Hsp90s, and provides useful evidence that GmHsp90 genes function differently in response to abiotic stresses and may affect the synthesis and response system of proline.
Collapse
Affiliation(s)
- Jinyan Xu
- Key Laboratory of Biology and Genetics and Breeding for Soybean/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture/National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, P.R. China
| | - Chenchen Xue
- Key Laboratory of Biology and Genetics and Breeding for Soybean/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture/National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, P.R. China
| | - Dong Xue
- Key Laboratory of Biology and Genetics and Breeding for Soybean/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture/National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, P.R. China
| | - Jinming Zhao
- Key Laboratory of Biology and Genetics and Breeding for Soybean/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture/National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, P.R. China
| | - Junyi Gai
- Key Laboratory of Biology and Genetics and Breeding for Soybean/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture/National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, P.R. China
| | - Na Guo
- Key Laboratory of Biology and Genetics and Breeding for Soybean/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture/National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, P.R. China
| | - Han Xing
- Key Laboratory of Biology and Genetics and Breeding for Soybean/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture/National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
22
|
Zhao Q, Zhang H, Wang T, Chen S, Dai S. Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteomics 2013; 82:230-53. [PMID: 23385356 DOI: 10.1016/j.jprot.2013.01.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/10/2013] [Accepted: 01/25/2013] [Indexed: 12/29/2022]
Abstract
Salinity is one of the major abiotic stresses that limits agricultural productivity worldwide. Plant roots function as the primary site of salinity perception. Salt responses in roots are essential for maintaining root functionality, as well as for transmitting the salt signal to shoot for proper salt response and adaptation in the entire plant. Therefore, a thorough understanding of signaling and metabolic mechanisms of salt response in roots is critical for improving plant salt tolerance. Current proteomic studies have provided salt-responsive expression patterns of 905 proteins in 14 plant species. Through integrative analysis of salt-responsive proteins and previous physiological and molecular findings, this review summarizes current understanding of salt responses in roots and highlights proteomic findings on the molecular mechanisms in the fine-tuned salt-responsive networks. At the proteome level, the following processes become dominant in root salt response: (i) salt signal perception and transduction; (ii) detoxification of reactive oxygen species (ROS); (iii) salt uptake/exclusion and compartmentalization; (iv) protein translation and/or turnover dynamics; (v) cytoskeleton/cell wall dynamics; (vi) carbohydrate and energy metabolism; and (vii) other salt-responsive metabolisms. These processes work together to gain cellular homeostasis in roots and determine the overall phenotype of plant growth and development under salt stress.
Collapse
Affiliation(s)
- Qi Zhao
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin 150040, China
| | | | | | | | | |
Collapse
|
23
|
Shavrukov Y. Salt stress or salt shock: which genes are we studying? JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:119-127. [PMID: 23186621 DOI: 10.1093/jxb/ers316] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Depending on the method of NaCl application, whether gradual or in a single step, plants may experience either salt stress or salt shock, respectively. The first phase of salt stress is osmotic stress. However, in the event of salt shock, plants suffer osmotic shock, leading to cell plasmolysis and leakage of osmolytes, phenomena that do not occur with osmotic stress. Patterns of gene expression are different in response to salt stress and salt shock. Salt stress initiates relatively smooth changes in gene expression in response to osmotic stress and a more pronounced change in expression of significant numbers of genes related to the ionic phase of salt stress. There is a considerable time delay between changes in expression of genes related to the osmotic and ionic phases of salt stress. In contrast, osmotic shock results in strong, rapid changes in the expression of genes with osmotic function, and fewer changes in ionic-responsive genes that occur earlier. There are very few studies in which the effects of salt stress and salt shock are described in parallel experiments. However, the patterns of changes in gene expression observed in these studies are consistently as described above, despite the use of diverse plant species. It is concluded that gene expression profiles are very different depending the method of salt application. Imposition of salt stress by gradual exposure to NaCl rather than salt shock with a single application of a high concentration of NaCl is recommended for genetic and molecular studies, because this more closely reflects natural incidences of salinity.
Collapse
Affiliation(s)
- Yuri Shavrukov
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, SA 5064, Australia.
| |
Collapse
|
24
|
Xu ZS, Li ZY, Chen Y, Chen M, Li LC, Ma YZ. Heat shock protein 90 in plants: molecular mechanisms and roles in stress responses. Int J Mol Sci 2012; 13:15706-23. [PMID: 23443089 PMCID: PMC3546657 DOI: 10.3390/ijms131215706] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 12/17/2022] Open
Abstract
The heat shock protein 90 (Hsp90) family mediates stress signal transduction, and plays important roles in the control of normal growth of human cells and in promoting development of tumor cells. Hsp90s have become a currently important subject in cellular immunity, signal transduction, and anti-cancer research. Studies on the physiological functions of Hsp90s began much later in plants than in animals and fungi. Significant progress has been made in understanding complex mechanisms of HSP90s in plants, including ATPase-coupled conformational changes and interactions with cochaperone proteins. A wide range of signaling proteins interact with HSP90s. Recent studies revealed that plant Hsp90s are important in plant development, environmental stress response, and disease and pest resistance. In this study, the plant HSP90 family was classified into three clusters on the basis of phylogenetic relationships, gene structure, and biological functions. We discuss the molecular functions of Hsp90s, and systematically review recent progress of Hsp90 research in plants.
Collapse
Affiliation(s)
- Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | | | | | | | | | | |
Collapse
|
25
|
Liu CW, Hsu YK, Cheng YH, Yen HC, Wu YP, Wang CS, Lai CC. Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1649-60. [PMID: 22730086 DOI: 10.1002/rcm.6271] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
RATIONALE Ubiquitination of proteins plays an important role in regulating a myriad of physiological functions in plants such as xylogenesis, senescence, cell cycle control, and stress response. However, only a limited number of proteins in plants have been identified as being ubiquitinated in response to salt stress. The relationships between ubiquitination and salt-stress responses in plants are not clear. METHODS Rice (Oryza sativa) seedlings from the same genetic background with various salt tolerances exposed to salt stress were studied. The proteins of roots were extracted then analyzed using western blotting against ubiquitin. Differentially expressed ubiquitinated proteins were identified by nanospray liquid chromatography/tandem mass spectrometry (nano-LC/MS/MS) and quantified by label-free methods based on the Exponentially Modified Protein Abundance Index (emPAI) and on the peak areas of XIC spectra derived from ubiquitinated peptides. In addition, we performed a gel-based shotgun proteomic analysis to detect the ubiquitinated proteome that may be involved in response to salt stress. RESULTS The expressions of ubiquitination on pyruvate phosphate dikinase 1, heat shock protein 81-1, probable aldehyde oxidase 3, plasma membrane ATPase, cellulose synthase A catalytic subunit 4 [UDP-forming] and cyclin-C1-1 were identified and compared before and after salt treatment. The functions of those ubiquitinated proteins were further discussed for defence against salt stress. In addition, a large number of ubiquitinated proteins were successfully identified as well in this study. CONCLUSIONS The ubiquitination of proteins affected the protective mechanisms in rice seedlings to resist the salt stress during the initial phase. The findings in the present study also demonstrate that the regulated mechanisms through protein ubiquitination are important for rice seedlings against salt stress.
Collapse
Affiliation(s)
- Chih-Wei Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
26
|
Mittal D, Madhyastha DA, Grover A. Genome-wide transcriptional profiles during temperature and oxidative stress reveal coordinated expression patterns and overlapping regulons in rice. PLoS One 2012; 7:e40899. [PMID: 22815860 PMCID: PMC3397947 DOI: 10.1371/journal.pone.0040899] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 06/14/2012] [Indexed: 11/19/2022] Open
Abstract
Genome wide transcriptional changes by cold stress, heat stress and oxidative stress in rice seedlings were analyzed. Heat stress resulted in predominant changes in transcripts of heat shock protein and heat shock transcription factor genes, as well as genes associated with synthesis of scavengers of reactive oxygen species and genes that control the level of sugars, metabolites and auxins. Cold stress treatment caused differential expression of transcripts of various transcription factors including desiccation response element binding proteins and different kinases. Transcripts of genes that are part of calcium signaling, reactive oxygen scavenging and diverse metabolic reactions were differentially expressed during cold stress. Oxidative stress induced by hydrogen peroxide treatment, resulted in significant up-regulation in transcript levels of genes related to redox homeostasis and down-regulation of transporter proteins. ROS homeostasis appeared to play central role in response to temperature extremes. The key transcription factors that may underlie the concerted transcriptional changes of specific components in various signal transduction networks involved are highlighted. Co-ordinated expression pattern and promoter architectures based analysis (promoter models and overrepresented transcription factor binding sites) suggested potential regulons involved in stress responses. A considerable overlap was noted at the level of transcription as well as in regulatory modules of differentially expressed genes.
Collapse
Affiliation(s)
- Dheeraj Mittal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
27
|
Nejat N, Vadamalai G, Dickinson M. Expression patterns of genes involved in the defense and stress response of Spiroplasma citri infected Madagascar Periwinkle Catharanthus roseus. Int J Mol Sci 2012; 13:2301-2313. [PMID: 22408455 PMCID: PMC3292024 DOI: 10.3390/ijms13022301] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 01/01/2012] [Accepted: 02/09/2012] [Indexed: 12/02/2022] Open
Abstract
Madagascar periwinkle is an ornamental and a medicinal plant, and is also an indicator plant that is highly susceptible to phytoplasma and spiroplasma infections from different crops. Periwinkle lethal yellows, caused by Spiroplasma citri, is one of the most devastating diseases of periwinkle. The response of plants to S. citri infection is very little known at the transcriptome level. In this study, quantitative real-time PCR (RT-qPCR) was used to investigate the expression levels of four selected genes involved in defense and stress responses in naturally and experimentally Spiroplasma citri infected periwinkles. Strictosidine β-glucosidase involved in terpenoid indole alkaloids (TIAs) biosynthesis pathway showed significant upregulation in experimentally and naturally infected periwinkles. The transcript level of extensin increased in leaves of periwinkles experimentally infected by S. citri in comparison to healthy ones. A similar level of heat shock protein 90 and metallothionein expression was observed in healthy, naturally and experimentally spiroplasma-diseased periwinkles. Overexpression of Strictosidine β-glucosidase demonstrates the potential utility of this gene as a host biomarker to increase the fidelity of S. citri detection and can also be used in breeding programs to develop stable disease-resistance varieties.
Collapse
Affiliation(s)
- Naghmeh Nejat
- Institute of Tropical Agriculture, University Putra Malaysia, Serdang 43400, Malaysia
| | - Ganesan Vadamalai
- Institute of Tropical Agriculture, University Putra Malaysia, Serdang 43400, Malaysia
- Plant Protection Department, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Malaysia; E-Mail:
| | - Matthew Dickinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; E-Mail:
| |
Collapse
|
28
|
Tombuloglu H, Semizoglu N, Sakcali S, Kekec G. Boron induced expression of some stress-related genes in tomato. CHEMOSPHERE 2012; 86:433-438. [PMID: 22018856 DOI: 10.1016/j.chemosphere.2011.09.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 09/08/2011] [Accepted: 09/20/2011] [Indexed: 05/31/2023]
Abstract
Boron (B) is a potential environmental toxicant for plants under excessive conditions. To understand the molecular stress response involved in high B exposure, we focused on the transcript accumulation of three stress-related genes: Hsp90, MT2 and GR1. Transcript accumulations were determined on B-stressed tomato plants by using a quantitative real-time PCR technique. Tomato seedlings were exposed to B ranging from 80 to 5120 μM for 24 h in nutrient solution. Root and shoot transcript accumulations were assessed. Results showed that the genes were over-expressed in B-stressed tomato. The highest relative fold change value was measured on GR1 for both root and shoot (8-10 and 30-34-fold increases, respectively), indicating the activation of the oxidative stress enzyme to tolerate B-stress as an early response. The activation of these genes could be a protection mechanism against to B stress.
Collapse
Affiliation(s)
- Huseyin Tombuloglu
- Department of Biology, Fatih University, 34500 Buyukcekmece, Istanbul, Turkey.
| | | | | | | |
Collapse
|
29
|
Expression profile analysis of 9 heat shock protein genes throughout the life cycle and under abiotic stress in rice. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4863-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Manaa A, Ben Ahmed H, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, Faurobert M. Salt and genotype impact on plant physiology and root proteome variations in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2797-813. [PMID: 21330356 DOI: 10.1093/jxb/erq460] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To evaluate the genotypic variation of salt stress response in tomato, physiological analyses and a proteomic approach have been conducted in parallel on four contrasting tomato genotypes. After a 14 d period of salt stress in hydroponic conditions, the genotypes exhibited different responses in terms of plant growth, particularly root growth, foliar accumulation of Na(+), and foliar K/Na ratio. As a whole, Levovil appeared to be the most tolerant genotype while Cervil was the most sensitive one. Roma and Supermarmande exhibited intermediary behaviours. Among the 1300 protein spots reproducibly detected by two-dimensional electrophoresis, 90 exhibited significant abundance variations between samples and were submitted to mass spectrometry for identification. A common set of proteins (nine spots), up- or down-regulated by salt-stress whatever the genotype, was detected. But the impact of the tomato genotype on the proteome variations was much higher than the salt effect: 33 spots that were not variable with salt stress varied with the genotype. The remaining number of variable spots (48) exhibited combined effects of the genotype and the salt factors, putatively linked to the degrees of genotype tolerance. The carbon metabolism and energy-related proteins were mainly up-regulated by salt stress and exhibited most-tolerant versus most-sensitive abundance variations. Unexpectedly, some antioxidant and defence proteins were also down-regulated, while some proteins putatively involved in osmoprotectant synthesis and cell wall reinforcement were up-regulated by salt stress mainly in tolerant genotypes. The results showed the effect of 14 d stress on the tomato root proteome and underlined significant genotype differences, suggesting the importance of making use of genetic variability.
Collapse
Affiliation(s)
- Arafet Manaa
- Unité d'Ecophysiologie et Nutrition des Plantes, Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1060 Tunisie
| | | | | | | | | | | | | |
Collapse
|
31
|
Al-Whaibi MH. Plant heat-shock proteins: A mini review. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2011. [PMID: 0 DOI: 10.1016/j.jksus.2010.06.022] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
32
|
Reddy PS, Thirulogachandar V, Vaishnavi CS, Aakrati A, Sopory SK, Reddy MK. Molecular characterization and expression of a gene encoding cytosolic Hsp90 from Pennisetum glaucum and its role in abiotic stress adaptation. Gene 2010; 474:29-38. [PMID: 21185362 DOI: 10.1016/j.gene.2010.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 01/16/2023]
Abstract
Heat shock protein 90 (Hsp90) is an abundant and highly conserved molecular chaperone that is essential for viability in eukaryotes. They have a crucial role in the folding of a set of proteins involved in the regulation of many essential cellular pathways and also re-folding of stress-denatured polypeptides. However, their exact function is still not clearly elucidated. In this study the full-length cDNA encoding for Hsp90 polypeptide and its corresponding gene was isolated from Pennisetum glaucum (designated PgHsp90). PgHsp90 cDNA encoded for a polypeptide of 698 amino acids with a predicted molecular mass of 80.3kDa and shared a high sequence homology (97-81%) to other plant cytosolic Hsp90s and shared less sequence homology (40-45%) to organelle and endoplasmic reticulum specific Hsp90 isoforms. A deduced amino acid sequence possessed three structural domains: N-terminus (1-211) ATP binding domain, middle (281-540) client protein interacting domain and C-terminus (541-698) dimerization domain; the N-terminus and middle domain is linked by a charged linker domain (212-280). It possesses the five-conserved amino acid signature sequence motifs characteristic of the Hsp90 family and a C-terminus MEEVD penta-peptide characteristic of the cytosolic Hsp90 isoform. The predicted quaternary architecture generated for PgHsp90 through molecular modeling was globally akin to that of yeast Hsp90. The PgHsp90 gene consists of 3 exons and 2 introns. The position and phasing of these introns were conserved in other plant cytosolic Hsp90 genes. Recombinant PgHsp90 protein was expressed in E. coli and purified to homogeneity, which possessed in vitro chaperone activity. E. coli expressing PgHsp90 protein showed enhanced tolerance to heat, salt and dehydration stresses. The quantitative up-regulation of PgHsp90 gene expression positively correlates in response to different stresses to meet the additional demand for protein folding support. Cumulatively, the in vivo and in vitro experiments indicated that PgHsp90 plays an adaptive or protective role to counter the stress induced protein damage.
Collapse
Affiliation(s)
- Palakolanu Sudhakar Reddy
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | | | | | |
Collapse
|
33
|
Expression characteristics of heat shock protein genes in two comparable inbred lines of Chinese cabbage, Chiifu and Kenshin. Genes Genomics 2010. [DOI: 10.1007/s13258-010-0004-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Xu X, Song H, Zhou Z, Shi N, Ying Q, Wang H. Functional characterization of AtHsp90.3 in Saccharomyces cerevisiae and Arabidopsis thaliana under heat stress. Biotechnol Lett 2010; 32:979-87. [DOI: 10.1007/s10529-010-0240-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 02/22/2010] [Indexed: 12/30/2022]
|
35
|
Priyanka B, Sekhar K, Reddy VD, Rao KV. Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:76-87. [PMID: 20055960 DOI: 10.1111/j.1467-7652.2009.00467.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A hybrid-proline-rich protein encoding gene (CcHyPRP) has been isolated and characterized, for the first time, from the subtracted cDNA library of pigeonpea (Cajanus cajan L.) plants subjected to drought stress. Functionality of CcHyPRP has been validated for abiotic stress tolerance using the heterologous yeast and Arabidopsis systems. The CcHyPRP contained a repetitive proline-rich (PR) N-terminal domain and a conserved eight cysteine motif (8CM) at the C-terminus. Southern analysis disclosed single-copy nature of CcHyPRP gene in the pigeonpea genome. Northern analysis revealed higher levels of CcHyPRP transcripts in PEG, NaCl, heat (42 degrees C), cold and ABA-treated plants compared with the weak signals observed in the untreated plants, suggesting stress-responsive nature of the CcHyPRP gene. In yeast, expression of CcHyPRP imparted marked tolerance against abiotic stresses exerted by PEG, high temperature, NaCl and LiCl. Transgenic Arabidopsis lines, expressing CcHyPRP under the control of CaMV35S and rd29A promoters, when subjected to PEG, mannitol, NaCl, LiCl and heat (42 degrees C) stress, developed into healthy plants with profuse root system and increased biomass in contrast to the weak-stunted wild-type plants. The CcHyPRP-transgenics driven by stress-inducible rd29A exhibited similar stress-tolerance as that of CaMV35S-lines without any negative effects on plant morphology, implying that stress-inducible promoters are preferable for production of stress tolerant transgenics. The overall results amply demonstrate the profound effect of CcHyPRP in bestowing multiple abiotic stress tolerance at cellular and whole plant levels. Accordingly, the multipotent CcHyPRP seems promising as a prime candidate gene to fortify crop plants with abiotic stress tolerance.
Collapse
Affiliation(s)
- Bhyri Priyanka
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, AP, India
| | | | | | | |
Collapse
|
36
|
Legay S, Lamoureux D, Hausman JF, Hoffmann L, Evers D. Monitoring gene expression of potato under salinity using cDNA microarrays. PLANT CELL REPORTS 2009; 28:1799-816. [PMID: 19851774 DOI: 10.1007/s00299-009-0780-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/11/2009] [Accepted: 09/25/2009] [Indexed: 05/08/2023]
Abstract
The molecular response to salt exposure was studied in the leaves of a Solanum tuberosum clone using cDNA microarray. Differentially expressed genes were classified according to their known or predicted function and their expression ratio as compared to the control. The major changes upon a 150 mM NaCl exposure in potato leaves occurred in the photosystem apparatus and Calvin cycle: many transcripts coding for proteins belonging to photosystems I and II and chlorophyll synthesis were repressed. On the other hand, we observed the induction of various kinds of transcription factors implicated in osmotic stress response via ABA-dependent or ABA-independent pathways but also in plant defense pathways. This revealed a crosstalk between abiotic and biotic stress responses during salt exposure, which activated several adaptation mechanisms including heat shock proteins, late embryogenesis abundant, dehydrins and PR proteins. Gene expression changes related to carbohydrate and amino acid metabolism were also observed, pointing at putative modifications at the metabolic level.
Collapse
Affiliation(s)
- Sylvain Legay
- Department EVA Environment and Agrobiotechnologies, Centre de Recherche Public-Gabriel Lippmann, 4422 Belvaux, Luxembourg
| | | | | | | | | |
Collapse
|
37
|
Cha JY, Jung MH, Ermawati N, Su'udi M, Rho GJ, Han CD, Lee KH, Son D. Functional characterization of orchardgrass endoplasmic reticulum-resident Hsp90 (DgHsp90) as a chaperone and an ATPase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:859-866. [PMID: 19625192 DOI: 10.1016/j.plaphy.2009.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/02/2009] [Accepted: 06/18/2009] [Indexed: 05/28/2023]
Abstract
Hsp90 proteins are essential molecular chaperones regulating multiple cellular processes in distinct subcellular organelles. In this study, we report the functional characterization of a cDNA encoding endoplasmic reticulum (ER)-resident Hsp90 from orchardgrass (DgHsp90). DgHsp90 is a 2742bp cDNA with an open reading frame predicted to encode an 808 amino acid protein. DgHsp90 has a well conserved N-terminal ATPase domain and a C-terminal Hsp90 domain and ER-retention motif. Expression of DgHsp90 increased during heat stress at 35 degrees C or H(2)O(2) treatment. DgHsp90 also functions as a chaperone protein by preventing thermal aggregation of malate dehydrogenase (EC 1.1.1.37) and citrate synthase (EC 2.3.3.1). The intrinsic ATPase activity of DgHsp90 was inhibited by geldanamycin, an Hsp90 inhibitor, and the inhibition reduced the chaperone activity of DgHsp90. Yeast cells overexpressing DgHsp90 exhibited enhanced thermotolerance.
Collapse
Affiliation(s)
- Joon-Yung Cha
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang ZL, Zhu JH, Zhang QQ, Cai YB. Molecular characterization of an ethephon-induced Hsp70 involved in high and low-temperature responses in Hevea brasiliensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:954-9. [PMID: 19577934 DOI: 10.1016/j.plaphy.2009.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 05/04/2009] [Accepted: 06/05/2009] [Indexed: 05/08/2023]
Abstract
Hsp70s have been shown to play important roles in helping cells to cope with adverse environments, especially in response to temperature. In this study a novel ethephon-induced Hsp gene, designated as HbHsp70, was isolated from Hevea brasiliensis. The HbHsp70 cDNA contained a 1965 bp open reading frame encoding 655 amino acids. The deduced HbHsp70 protein showed high identities to Hsp70s from other plants. Expression studies revealed more significant accumulation of HbHsp70 transcripts in leaves and stems than in roots, barks and latex. The transcription of HbHsp70 was induced by ethephon, heat treatment and low temperature stress, whereas jasmonic acid had little effects. Recombinant HbHsp70 was expressed in Escherichia coli and purified by Ni-NTA affinity chromatography. Measuring the light scattering of luciferase (Luc) revealed that HbHsp70 prevents the aggregation of luc during high-temperature stress. In vitro experiments showed that HbHsp70 had protective functions not only against heat stress but also against chilling stress. All these data suggest that HbHsp70 may play roles in responses to heat shock and low temperature in H. brasiliensis.
Collapse
Affiliation(s)
- Zhi-Li Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | | | | | | |
Collapse
|
39
|
Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X. Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:851-61. [PMID: 19135278 DOI: 10.1016/j.jplph.2008.11.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 05/03/2023]
Abstract
Expression profiles of nine rice heat shock protein genes (OsHSPs) were analyzed by semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR). The nine genes exhibited distinctive expression in different organs. Expression of nine OsHSP genes was affected differentially by abiotic stresses and abscisic acid (ABA). All nine OsHSP genes were induced strongly by heat shock treatment, whereas none of them were induced by cold. The transcripts of OsHSP80.2, OsHSP71.1 and OsHSP23.7 were increased during salt tress treatment. Expression of OsHSP80.2 and OsHSP24.1 genes were enhanced while treated with 10% PEG. Only OsHSP71.1 was induced by ABA while OsHSP24.1 was suppressed by ABA. These observations imply that the nine OsHSP genes may play different roles in plant development and abiotic stress responses.
Collapse
Affiliation(s)
- Jie Zou
- Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha 410128, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Song H, Zhao R, Fan P, Wang X, Chen X, Li Y. Overexpression of AtHsp90.2, AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses. PLANTA 2009; 229:955-64. [PMID: 19148673 DOI: 10.1007/s00425-008-0886-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Accepted: 12/23/2008] [Indexed: 05/24/2023]
Abstract
Three AtHsp90 isoforms, cytosolic AtHsp90.2, chloroplast-located AtHsp90.5, and endoplasmic reticulum (ER)-located AtHsp90.7, were characterized by constitutive overexpressing their genes in Arabidopsis thaliana. Both types of the transgenic plants overexpressing cytosolic and organellar AtHsp90s showed reduced tolerance to salt and drought stresses with lower germination rates and fresh weights, but improved tolerance to high concentration of Ca(2+) comparing with the wild type plants. Transcriptional analysis of ABA-responsive genes, RD29A, RD22 and KIN2 under salt and drought stresses, indicated that the induction expression of these genes was delayed by constitutive overexpression of cytosolic AtHsp90.2, but was hardly affected by that of organellar AtHsp90.5 and AtHsp90.7. These results implied that Arabidopsis different cellular compartments-located Hsp90s in Arabidopsis might be involved in abiotic stresses by different functional mechanisms, probably through ABA-dependent or Ca(2+) pathways, and proper homeostasis of Hsp90 was critical for cellular stress response and/or tolerance in plants.
Collapse
Affiliation(s)
- Hongmiao Song
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | | | | | | | | | | |
Collapse
|
41
|
Fu DQ, Ghabrial S, Kachroo A. GmRAR1 and GmSGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:86-95. [PMID: 19061405 DOI: 10.1094/mpmi-22-1-0086] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
RAR1, SGT1, and HSP90 are important components of effector-triggered immunity (ETI) in diverse plants, where RAR1 and SGT1 are thought to serve as HSP90 co-chaperones. We show that ETI in soybean requires RAR1 and SGT1 but not HSP90. Rsv1-mediated extreme resistance to Soybean mosaic virus (SMV) and Rpg-1b-mediated resistance to Pseudomonas syringae were compromised in plants silenced for GmRAR1 and GmSGT1-2 but not GmHSP90. This suggests that RAR1- or SGT1-dependant signaling is not always associated with a dependence on HSP90. Unlike in Arabidopsis, SGT1 in soybean also mediates ETI against the bacterial pathogen P. syringae. Similar to Arabidopsis, soybean RAR1 and SGT1 proteins interact with each other and two related HSP90 proteins. Plants silenced for GmHSP90 genes or GmRAR1 exhibited altered morphology, suggesting that these proteins also contribute to developmental processes. Silencing GmRAR1 and GmSGT1-2 impaired resistance to virulent bacteria and systemic acquired resistance (SAR) in soybean as well. Because the Arabidopsis rar1 mutant also showed a defect in SAR, we conclude that RAR1 and SGT1 serve as a point of convergence for basal resistance, ETI, and SAR. We demonstrate that, although soybean defense signaling pathways recruit structurally conserved components, they have distinct requirements for specific proteins.
Collapse
Affiliation(s)
- Da-Qi Fu
- Department of Plant Pathology, University of Kentucky, Lexington 40546, USA
| | | | | |
Collapse
|
42
|
Enhanced thermotolerance of E. coli by expressed OsHsp90 from rice (Oryza sativa L.). Curr Microbiol 2008; 58:129-33. [PMID: 18946700 DOI: 10.1007/s00284-008-9288-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/12/2008] [Indexed: 01/20/2023]
Abstract
A gene encoding the rice (Oryza sativa L.) 90-kDa heat shock protein (OsHsp90) was introduced into Escherichia coli using the pGEX-6p-3 expression vector with a glutathione-S-transferase (GST) tag to analyze the possible function of this protein under heat stress for the first time. We compared the survivability of E. coli (BL21) cells transformed with a recombinant plasmid containing GST-OsHsp90 fusion protein with control E. coli cells transformed with the plasmid containing GST and the wild type BL21 under heat shock after isopropyl beta-D: -thiogalactopyranoside induction. Cells expressing GST-OsHsp90 demonstrated thermotolerance at 42, 50, and 70 degrees C, treatments that were more harmful to cells expressing GST and the wild type. Further studies were carried out to analyze the heat-induced characteristics of OsHsp90 at 42, 50, and 70 degrees C in vitro. When cell lysates from E. coli transformants were heated at these heat stresses, expressed GST-OsHsp90 prevented the denaturation of bacterial proteins treated with 42 degrees C heat shocks, and partially prevented that of proteins treated at 50 and 70 degrees C; meanwhile, cells expressing GST-OsHsp90 withstood the duration at 50 degrees C. These results indicate that OsHsp90 functioned as a chaperone, binding to a subset of substrates, and maintained E. coli growth well at high temperatures.
Collapse
|
43
|
Caramelo JJ, Iusem ND. When cells lose water: Lessons from biophysics and molecular biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 99:1-6. [PMID: 18977383 DOI: 10.1016/j.pbiomolbio.2008.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Organisms living in deserts and anhydrobiotic species are useful models for unraveling mechanisms used to overcome water loss. In this context, late embryogenesis abundant (LEA) proteins and sugars have been extensively studied for protection against desiccation stress and desiccation tolerance. This article aims to reappraise the current understanding of these molecules by focusing on converging contributions from biochemistry, molecular biology, and the use of biophysical tools. Such tools have greatly advanced the field by uncovering intriguing aspects of protein 3-D structure, such as folding upon stress. We summarize the current research on cellular responses against water deficit at the molecular level, considering both plausible water loss-sensing mechanisms and genes governing signal transduction pathways. Finally, we propose models that could guide future experimentation, for example, by concentrating on the behavior of selected proteins in living cells.
Collapse
Affiliation(s)
- Julio J Caramelo
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
| | | |
Collapse
|
44
|
Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Funct Integr Genomics 2008; 8:287-300. [PMID: 18305970 DOI: 10.1007/s10142-008-0075-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 12/25/2007] [Accepted: 12/29/2007] [Indexed: 10/22/2022]
Abstract
The response of a grass halophyte Spartina alterniflora at early stages of salt stress was investigated through generation and systematic analysis of expressed sequence tags (ESTs) from both leaf and root tissues. Random EST sequencing produced 1,227 quality ESTs, which were clustered into 127 contigs, and 368 were singletons. Of the 495 unigenes, 27% represented genes for stress response. Comparison of the 368 singletons against the Oryza sativa gene index showed that >85% of these genes had similarity with the rice unigenes. Moreover, the phylogenetic analysis of an EST similar to myo-inositol 1-phosphate synthase of Spartina and some selected grasses and halophytes showed closeness of Spartina with maize and rice. Transcript abundance analysis involving eight known genes of various metabolic pathways and nine transcription factor genes showed temporal and tissue-dependent variation in expression under salinity. Reverse northern analysis of a few selected unknown and ribosomal genes exhibited much higher abundance of transcripts in response to salt stress. The results provide evidence that, in addition to several unknown genes discovered in this study, genes involved in ion transport, osmolyte production, and house-keeping functions may play an important role in the primary responses to salt stress in this grass halophyte.
Collapse
|
45
|
Swindell WR, Huebner M, Weber AP. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 2007. [PMID: 17519032 DOI: 10.1186/1471‐2164‐8‐125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The heat shock response of Arabidopsis thaliana is dependent upon a complex regulatory network involving twenty-one known transcription factors and four heat shock protein families. It is known that heat shock proteins (Hsps) and transcription factors (Hsfs) are involved in cellular response to various forms of stress besides heat. However, the role of Hsps and Hsfs under cold and non-thermal stress conditions is not well understood, and it is unclear which types of stress interact least and most strongly with Hsp and Hsf response pathways. To address this issue, we have analyzed transcriptional response profiles of Arabidopsis Hsfs and Hsps to a range of abiotic and biotic stress treatments (heat, cold, osmotic stress, salt, drought, genotoxic stress, ultraviolet light, oxidative stress, wounding, and pathogen infection) in both above and below-ground plant tissues. RESULTS All stress treatments interact with Hsf and Hsp response pathways to varying extents, suggesting considerable cross-talk between heat and non-heat stress regulatory networks. In general, Hsf and Hsp expression was strongly induced by heat, cold, salt, and osmotic stress, while other types of stress exhibited family or tissue-specific response patterns. With respect to the Hsp20 protein family, for instance, large expression responses occurred under all types of stress, with striking similarity among expression response profiles. Several genes belonging to the Hsp20, Hsp70 and Hsp100 families were specifically upregulated twelve hours after wounding in root tissue, and exhibited a parallel expression response pattern during recovery from heat stress. Among all Hsf and Hsp families, large expression responses occurred under ultraviolet-B light stress in aerial tissue (shoots) but not subterranean tissue (roots). CONCLUSION Our findings show that Hsf and Hsp family member genes represent an interaction point between multiple stress response pathways, and therefore warrant functional analysis under conditions apart from heat shock treatment. In addition, our analysis revealed several family and tissue-specific heat shock gene expression patterns that have not been previously described. These results have implications regarding the molecular basis of cross-tolerance in plant species, and raise new questions to be pursued in future experimental studies of the Arabidopsis heat shock response network.
Collapse
Affiliation(s)
- William R Swindell
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
46
|
Swindell WR, Huebner M, Weber AP. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 2007; 8:125. [PMID: 17519032 PMCID: PMC1887538 DOI: 10.1186/1471-2164-8-125] [Citation(s) in RCA: 352] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 05/22/2007] [Indexed: 12/29/2022] Open
Abstract
Background The heat shock response of Arabidopsis thaliana is dependent upon a complex regulatory network involving twenty-one known transcription factors and four heat shock protein families. It is known that heat shock proteins (Hsps) and transcription factors (Hsfs) are involved in cellular response to various forms of stress besides heat. However, the role of Hsps and Hsfs under cold and non-thermal stress conditions is not well understood, and it is unclear which types of stress interact least and most strongly with Hsp and Hsf response pathways. To address this issue, we have analyzed transcriptional response profiles of Arabidopsis Hsfs and Hsps to a range of abiotic and biotic stress treatments (heat, cold, osmotic stress, salt, drought, genotoxic stress, ultraviolet light, oxidative stress, wounding, and pathogen infection) in both above and below-ground plant tissues. Results All stress treatments interact with Hsf and Hsp response pathways to varying extents, suggesting considerable cross-talk between heat and non-heat stress regulatory networks. In general, Hsf and Hsp expression was strongly induced by heat, cold, salt, and osmotic stress, while other types of stress exhibited family or tissue-specific response patterns. With respect to the Hsp20 protein family, for instance, large expression responses occurred under all types of stress, with striking similarity among expression response profiles. Several genes belonging to the Hsp20, Hsp70 and Hsp100 families were specifically upregulated twelve hours after wounding in root tissue, and exhibited a parallel expression response pattern during recovery from heat stress. Among all Hsf and Hsp families, large expression responses occurred under ultraviolet-B light stress in aerial tissue (shoots) but not subterranean tissue (roots). Conclusion Our findings show that Hsf and Hsp family member genes represent an interaction point between multiple stress response pathways, and therefore warrant functional analysis under conditions apart from heat shock treatment. In addition, our analysis revealed several family and tissue-specific heat shock gene expression patterns that have not been previously described. These results have implications regarding the molecular basis of cross-tolerance in plant species, and raise new questions to be pursued in future experimental studies of the Arabidopsis heat shock response network.
Collapse
Affiliation(s)
- William R Swindell
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Marianne Huebner
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Andreas P Weber
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
47
|
Liu S, Cheng Y, Zhang X, Guan Q, Nishiuchi S, Hase K, Takano T. Expression of an NADP-malic enzyme gene in rice (Oryza sativa. L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. PLANT MOLECULAR BIOLOGY 2007; 64:49-58. [PMID: 17245561 DOI: 10.1007/s11103-007-9133-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 01/02/2007] [Indexed: 05/13/2023]
Abstract
NADP-malic enzyme (NADP-ME, EC 1.1.1.40) functions in many different pathways in plants, and has recently been implicated in plant defense such as in responses to wounding and UV-B radiation. In this study, we isolated a complementary DNA (cDNA) clone by using the differential display method and screening of a root cDNA library of rice (Oryza sativa. L) under carbonate (NaHCO3) stress, and identified it as one of the rice NADP-ME genes (we named it NADP-ME2, GenBank accession no. AB053295). The 5' end of NADP-ME2 was obtained by the 5'-RACE method, and the full-length cDNA had a length of 2217 bp encoding 593 amino acids. Expression of NADP-ME2 mRNA in roots was induced by stress from carbonates (NaHCO3 and Na2CO3, NaCl, and environmental pH changes. NADP-ME2 transcripts increased during 72-h exposures to NaHCO3, NaCl, and PEG stresses. Furthermore, NADP-ME activities in leaves and roots of rice seedlings increased by more than 50% in the presence of carbonates (NaHCO3 and Na2CO3), NaCl, and PEG. These results indicate that rice NADP-ME2 responds to salts and osmotic stresses. Transgenic Arabidopsis plants over-expressing NADP-ME2 were obtained through transformation, screening, Northern analysis and in situ NADP-ME activity assay. Transgenic Arabidopsis plants over-expressing NADP-ME2 grew well in 1/2 x MS medium with 100 mM NaCl or 4% mannitol, whereas growth of wild-type (WT) Arabidopsis seedlings was strongly inhibited. In addition, under 125 mM NaCl stress, the root lengths of transgenic lines were about twice as long as those of the WT. These results suggest that NADP-ME2 has a role in enhancing tolerance of plants to salt and osmotic stress.
Collapse
Affiliation(s)
- Shenkui Liu
- Alkali Soil Natural Environmental Science Center (ASNESC), Stress Molecular Biology Laboratory, Northeast Forestry University, Harbin 150040, P. R. China
| | | | | | | | | | | | | |
Collapse
|