1
|
Hu CH, Li BB, Chen P, Shen HY, Xi WG, Zhang Y, Yue ZH, Wang HX, Ma KS, Li LL, Chen KM. Identification of CDPKs involved in TaNOX7 mediated ROS production in wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1108622. [PMID: 36756230 PMCID: PMC9900008 DOI: 10.3389/fpls.2022.1108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
As the critical sensors and decoders of calcium signal, calcium-dependent protein kinase (CDPK) has become the focus of current research, especially in plants. However, few resources are available on the properties and functions of CDPK gene family in Triticum aestivum (TaCDPK). Here, a total of 79 CDPK genes were identified in the wheat genome. These TaCDPKs could be classified into four subgroups on phylogenesis, while they may be classified into two subgroups based on their tissue and organ-spatiotemporal expression profiles or three subgroups according to their induced expression patterns. The analysis on the signal network relationships and interactions of TaCDPKs and NADPH (reduced nicotinamide adenine dinucleotide phosphate oxidases, NOXs), the key producers for reactive oxygen species (ROS), showed that there are complicated cross-talks between these two family proteins. Further experiments demonstrate that, two members of TaCDPKs, TaCDPK2/4, can interact with TaNOX7, an important member of wheat NOXs, and enhanced the TaNOX7-mediated ROS production. All the results suggest that TaCDPKs are highly expressed in wheat with distinct tissue or organ-specificity and stress-inducible diversity, and play vital roles in plant development and response to biotic and abiotic stresses by directly interacting with TaNOXs for ROS production.
Collapse
Affiliation(s)
- Chun-Hong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Peng Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Hai-Yan Shen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Wei-Gang Xi
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Zong-Hao Yue
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Hong-Xing Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Ke-Shi Ma
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Li-Li Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Atif RM, Shahid L, Waqas M, Ali B, Rashid MAR, Azeem F, Nawaz MA, Wani SH, Chung G. Insights on Calcium-Dependent Protein Kinases (CPKs) Signaling for Abiotic Stress Tolerance in Plants. Int J Mol Sci 2019; 20:E5298. [PMID: 31653073 PMCID: PMC6862689 DOI: 10.3390/ijms20215298] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Abiotic stresses are the major limiting factors influencing the growth and productivity of plants species. To combat these stresses, plants can modify numerous physiological, biochemical, and molecular processes through cellular and subcellular signaling pathways. Calcium-dependent protein kinases (CDPKs or CPKs) are the unique and key calcium-binding proteins, which act as a sensor for the increase and decrease in the calcium (Ca) concentrations. These Ca flux signals are decrypted and interpreted into the phosphorylation events, which are crucial for signal transduction processes. Several functional and expression studies of different CPKs and their encoding genes validated their versatile role for abiotic stress tolerance in plants. CPKs are indispensable for modulating abiotic stress tolerance through activation and regulation of several genes, transcription factors, enzymes, and ion channels. CPKs have been involved in supporting plant adaptation under drought, salinity, and heat and cold stress environments. Diverse functions of plant CPKs have been reported against various abiotic stresses in numerous research studies. In this review, we have described the evaluated functions of plant CPKs against various abiotic stresses and their role in stress response signaling pathways.
Collapse
Affiliation(s)
- Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Luqman Shahid
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Waqas
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Babar Ali
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Abdul Rehman Rashid
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38040, Pakistan.
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia.
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190001, India.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea.
| |
Collapse
|
3
|
Villalobo A, González-Muñoz M, Berchtold MW. Proteins with calmodulin-like domains: structures and functional roles. Cell Mol Life Sci 2019; 76:2299-2328. [PMID: 30877334 PMCID: PMC11105222 DOI: 10.1007/s00018-019-03062-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
The appearance of modular proteins is a widespread phenomenon during the evolution of proteins. The combinatorial arrangement of different functional and/or structural domains within a single polypeptide chain yields a wide variety of activities and regulatory properties to the modular proteins. In this review, we will discuss proteins, that in addition to their catalytic, transport, structure, localization or adaptor functions, also have segments resembling the helix-loop-helix EF-hand motifs found in Ca2+-binding proteins, such as calmodulin (CaM). These segments are denoted CaM-like domains (CaM-LDs) and play a regulatory role, making these CaM-like proteins sensitive to Ca2+ transients within the cell, and hence are able to transduce the Ca2+ signal leading to specific cellular responses. Importantly, this arrangement allows to this group of proteins direct regulation independent of other Ca2+-sensitive sensor/transducer proteins, such as CaM. In addition, this review also covers CaM-binding proteins, in which their CaM-binding site (CBS), in the absence of CaM, is proposed to interact with other segments of the same protein denoted CaM-like binding site (CLBS). CLBS are important regulatory motifs, acting either by keeping these CaM-binding proteins inactive in the absence of CaM, enhancing the stability of protein complexes and/or facilitating their dimerization via CBS/CLBS interaction. The existence of proteins containing CaM-LDs or CLBSs substantially adds to the enormous versatility and complexity of Ca2+/CaM signaling.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain.
- Instituto de Investigaciones Sanitarias, Hospital Universitario La Paz, Edificio IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - María González-Muñoz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, 2100, Copenhagen, Denmark.
| |
Collapse
|
4
|
Caló G, Scheidegger D, Martínez-Noël GMA, Salerno GL. Ancient signal for nitrogen status sensing in the green lineage: Functional evidence of CDPK repertoire in Ostreococcus tauri. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:377-384. [PMID: 28710945 DOI: 10.1016/j.plaphy.2017.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 05/08/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) regulate plant development and many stress signalling pathways through the complex cytosolic [Ca2+] signalling. The genome of Ostreococcus tauri (Ot), a model prasinophyte organism that is on the base of the green lineage, harbours three sequences homologous to those encoding plant CDPKs with the three characteristic conserved domains (protein kinase, autoregulatory/autoinhibitory, and regulatory domain). Phylogenetic and structural analyses revealed that putative OtCDPK proteins are closely related to CDPKs from other Chlorophytes. We functionally characterised the first marine picophytoeukaryote CDPK gene (OtCDPK1) and showed that the expression of the three OtCDPK genes is up-regulated by nitrogen depletion. We conclude that CDPK signalling pathway might have originated early in the green lineage and may play a key role in prasinophytes by sensing macronutrient changes in the marine environment.
Collapse
Affiliation(s)
- Gonzalo Caló
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina
| | - Dana Scheidegger
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina
| | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina
| | - Graciela L Salerno
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina.
| |
Collapse
|
5
|
van Arkel J, Sévenier R, Hakkert J, Bouwmeester H, Koops A, van der Meer I. Fructan Biosynthesis Regulation and the Production of Tailor-Made Fructan in Plants. POLYSACCHARIDES 2014. [DOI: 10.1201/b17121-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
6
|
Tognetti JA, Pontis HG, Martínez-Noël GM. Sucrose signaling in plants: a world yet to be explored. PLANT SIGNALING & BEHAVIOR 2013; 8:e23316. [PMID: 23333971 PMCID: PMC3676498 DOI: 10.4161/psb.23316] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 05/18/2023]
Abstract
The role of sucrose as a signaling molecule in plants was originally proposed several decades ago. However, recognition of sucrose as a true signal has been largely debated and only recently this role has been fully accepted. The best-studied cases of sucrose signaling involve metabolic processes, such as the induction of fructan or anthocyanin synthesis, but a large volume of scattered information suggests that sucrose signals may control a vast array of developmental processes along the whole life cycle of the plant. Also, wide gaps exist in our current understanding of the intracellular steps that mediate sucrose action. Sucrose concentration in plant tissues tends to be directly related to light intensity, and inversely related to temperature, and accordingly, exogenous sucrose supply often mimics the effect of high light and cold. However, many exceptions to this rule seem to occur due to interactions with other signaling pathways. In conclusion, the sucrose role as a signal molecule in plants is starting to be unveiled and much research is still needed to have a complete map of its significance in plant function.
Collapse
Affiliation(s)
- Jorge A. Tognetti
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC); Buenos Aires, Argentina
- Facultad de Ciencias Agrarias; Universidad Nacional de Mar del Plata; Buenos Aires, Argentina
| | - Horacio G. Pontis
- Fundación para Investigaciones Biológicas Aplicadas; Buenos Aires, Argentina
| | - Giselle M.A. Martínez-Noël
- Fundación para Investigaciones Biológicas Aplicadas; Buenos Aires, Argentina
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires, Argentina
- Correspondence to: Giselle M.A. Martínez-Noël,
| |
Collapse
|
7
|
Xue GP, Kooiker M, Drenth J, McIntyre CL. TaMYB13 is a transcriptional activator of fructosyltransferase genes involved in β-2,6-linked fructan synthesis in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:857-70. [PMID: 21838777 DOI: 10.1111/j.1365-313x.2011.04737.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fructans are soluble fructosyl-oligosaccharides deposited in many cool-season grass species as a carbon reserve; they are synthesised by fructosyltransferases. In wheat and barley fructans can accumulate in mature stems at a very high level and serve as an important carbon source for grain filling. Fructan synthesis in temperate cereals is regulated by sucrose level and developmental signals, and functions as a metabolic adjustment for carbon balance between carbon supply and sink demand. In this study the expression levels of a highly homologous group of Triticum aestivumMYB genes (TaMYB13-1, TaMYB13-2 and TaMYB13-3) were found to be positively correlated with the mRNA levels of sucrose:sucrose 1-fructosyltransferase (1-SST) and sucrose:fructan 6-fructosyltransferase (6-SFT) in wheat stems among recombinant inbred lines with a wide range of fructan concentrations through Affymetrix array expression analysis. This expression correction extended to expression profiles during stem development. TaMYB13 contains an R2R3-type MYB domain. In vitro random DNA-binding site selection followed by base substitution mutagenesis revealed that TaMYB13 bound to a (A/G/T)TT(A/T/C)GGT core sequence, which was present in the promoters of wheat Ta1-SST and Ta6-SFT genes as well as a barley Hv6-SFT gene. Transactivation analysis showed that TaMYB13 was a transcriptional activator and could markedly enhance the expression of 1-SST and 6-SFT promoter-driven reporter genes in wheat. Elimination of TaMYB13-binding sites in Ta6-SFT and Ta1-SST promoters markedly reduced TaMYB13-mediated reporter gene transactivation. These data suggest that TaMYB13 and its orthologues are positive regulators for controlling the expression of major fructosyltransferases involved in the fructan synthetic pathway in temperate cereals.
Collapse
Affiliation(s)
- Gang-Ping Xue
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, Qld 4067, Australia.
| | | | | | | |
Collapse
|
8
|
Structure and Function of CDPK: A Sensor Responder of Calcium. CODING AND DECODING OF CALCIUM SIGNALS IN PLANTS 2011. [DOI: 10.1007/978-3-642-20829-4_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Sojikul P, Kongsawadworakul P, Viboonjun U, Thaiprasit J, Intawong B, Narangajavana J, Svasti MRJ. AFLP-based transcript profiling for cassava genome-wide expression analysis in the onset of storage root formation. PHYSIOLOGIA PLANTARUM 2010; 140:189-198. [PMID: 20536786 DOI: 10.1111/j.1399-3054.2010.01389.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a root crop that accumulates large quantities of starch, and it is an important source of carbohydrate. Study on gene expressions during storage root development provides important information on storage root formation and starch accumulation as well as unlock new traits for improving of starch yield. cDNA-Amplified Fragment Length Polymorphism (AFLP) was used to compare gene expression profiles in fibrous and storage roots of cassava cultivar Kasetsart 50. Total of 155 differentially expressed transcript-derived fragments with undetectable or low expression in leaves were characterized and classified into 11 groups regarding to their functions. The four major groups were no similarity (20%), hypothetical or unknown proteins (17%), cellular metabolism and biosynthesis (17%) and cellular communication and signaling (14%). Interestingly, sulfite reductase (MeKD82), calcium-dependent protein kinase (CDPK) (MeKD83), ent-kaurene synthase (KS) (MeKD106) and hexose transporter (HT) (MeKD154) showed root-specific expression patterns. This finding is consistent with previously reported genes involved in the initiation of potato tuber. Semi-quantitative reverse transcription polymerase chain reaction of early-developed root samples confirmed that those four genes exhibited significant expression with similar pattern in the storage root initiation and early developmental stages. We proposed that KS and HT may involve in transient induction of CDPK expression, which may play an important role in the signaling pathway of storage root initiation. Sulfite reductase, on the other hand, may involve in storage root development by facilitating sulfur-containing protein biosynthesis or detoxifying the cyanogenic glucoside content through aspartate biosynthesis.
Collapse
Affiliation(s)
- Punchapat Sojikul
- Center for Cassava Molecular Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | | | | | | | | | | | | |
Collapse
|
10
|
Cloning and Characterization of Genes Coding for Fructan Biosynthesis Enzymes (FBEs) in Triticeae Plants. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1671-2927(09)60099-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Martinez-Noël GA, Tognetti JA, Salerno GL, Pontis HG. Sugar signaling of fructan metabolism: New insights on protein phosphatases in sucrose-fed wheat leaves. PLANT SIGNALING & BEHAVIOR 2010; 5:311-3. [PMID: 20220311 PMCID: PMC2881287 DOI: 10.4161/psb.5.3.10924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein phosphatase type 2A (PP2A) activity is required for the sucrose induction of fructan metabolism in wheat leaves, as shown in experiments with the addition of the specific inhibitor okadaic acid (OA) together with sucrose. However, a decrease in total PP2A activity has been found along sucrose treatment. Here we analyze the effect of sucrose feeding to wheat leaves on PP2A activity profiles after Deae-Sephacel and Superose separation, in comparison with those of control leaves. The results show no evidence of changes in PP2A activity profiles as a consequence of sucrose feeding. In all, our data suggest that constitutive levels of PP2A activity may be sufficient for the sucrose-mediated induction of fructan metabolism and that general decrease of PP2A activity produced by long-term treatment with sucrose may be due to a negative feedback regulation.
Collapse
|
12
|
Martinez-Noël GA, Tognetti JA, Salerno GL, Pontis HG. Sugar signaling of fructan metabolism: New insights on protein phosphatases in sucrose-fed wheat leaves. PLANT SIGNALING & BEHAVIOR 2010; 230:1071-9. [PMID: 20220311 DOI: 10.1007/s00425-009-1002-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 08/05/2009] [Indexed: 05/21/2023]
Abstract
Protein phosphatase type 2A (PP2A) activity is required for the sucrose induction of fructan metabolism in wheat leaves, as shown in experiments with the addition of the specific inhibitor okadaic acid (OA) together with sucrose. However, a decrease in total PP2A activity has been found along sucrose treatment. Here we analyze the effect of sucrose feeding to wheat leaves on PP2A activity profiles after Deae-Sephacel and Superose separation, in comparison with those of control leaves. The results show no evidence of changes in PP2A activity profiles as a consequence of sucrose feeding. In all, our data suggest that constitutive levels of PP2A activity may be sufficient for the sucrose-mediated induction of fructan metabolism and that general decrease of PP2A activity produced by long-term treatment with sucrose may be due to a negative feedback regulation.
Collapse
|
13
|
Cloning and Expression of Calcium-Dependent Protein Kinase (CDPK) Gene Family in Common Tobacco (Nicotiana tabacum). ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1671-2927(08)60358-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Ritsema T, Brodmann D, Diks SH, Bos CL, Nagaraj V, Pieterse CM, Boller T, Wiemken A, Peppelenbosch MP. Are small GTPases signal hubs in sugar-mediated induction of fructan biosynthesis? PLoS One 2009; 4:e6605. [PMID: 19672308 PMCID: PMC2720452 DOI: 10.1371/journal.pone.0006605] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 06/20/2009] [Indexed: 11/19/2022] Open
Abstract
External sugar initiates biosynthesis of the reserve carbohydrate fructan, but the molecular processes mediating this response remain obscure. Previously it was shown that a phosphatase and a general kinase inhibitor hamper fructan accumulation. We use various phosphorylation inhibitors both in barley and in Arabidopsis and show that the expression of fructan biosynthetic genes is dependent on PP2A and different kinases such as Tyr-kinases and PI3-kinases. To further characterize the phosphorylation events involved, comprehensive analysis of kinase activities in the cell was performed using a PepChip, an array of >1000 kinase consensus substrate peptide substrates spotted on a chip. Comparison of kinase activities in sugar-stimulated and mock(sorbitol)-treated Arabidopsis demonstrates the altered phosphorylation of many consensus substrates and documents the differences in plant kinase activity upon sucrose feeding. The different phosphorylation profiles obtained are consistent with sugar-mediated alterations in Tyr phosphorylation, cell cycling, and phosphoinositide signaling, and indicate cytoskeletal rearrangements. The results lead us to infer a central role for small GTPases in sugar signaling.
Collapse
Affiliation(s)
- Tita Ritsema
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
- Plant-Microbe interactions, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - David Brodmann
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Sander H. Diks
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carina L. Bos
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vinay Nagaraj
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Corné M.J. Pieterse
- Plant-Microbe interactions, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Thomas Boller
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Andres Wiemken
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Maikel P. Peppelenbosch
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
15
|
Manickavelu A, Koba T, Mishina K, Sassa H. Identification of differential gene expression for Kr1 gene in bread wheat using annealing control primer system. Mol Biol Rep 2008; 36:2111-8. [PMID: 19105046 DOI: 10.1007/s11033-008-9423-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 12/03/2008] [Indexed: 11/30/2022]
Abstract
Intergeneric hybridization is an important strategy to introgress alien genes into common wheat for its improvement. But presence of cross ability barrier mechanism regulated by Kr1 gene played a major destructive role for hybridization than other reported genes. In order to know the underlying molecular mechanism and to dissect out this barrier, a new annealing system, ACP (anneling control primer) system was used in chromosome 5B (containing Kr1 gene) specific Recombinant Inbred Line (RIL) population. Two differentially expressed fragments for Kr1 gene was identified, cloned and sequenced. Further the expression was confirmed by northern blotting analysis. Sequence analysis of the resulted clones revealed classes of putative genes, including stress responsive and signal transduction.
Collapse
Affiliation(s)
- Alagu Manickavelu
- Faculty of Horticulture, Chiba University, 648 Matsudo 271-8510, Japan.
| | | | | | | |
Collapse
|
16
|
Li AL, Zhu YF, Tan XM, Wang X, Wei B, Guo HZ, Zhang ZL, Chen XB, Zhao GY, Kong XY, Jia JZ, Mao L. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2008; 66:429-43. [PMID: 18185910 DOI: 10.1007/s11103-007-9281-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 12/21/2007] [Indexed: 05/05/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are crucial sensors of calcium concentration changes in plant cells under diverse endogenous and environmental stimuli. We identified 20 CDPK genes from bread wheat and performed a comprehensive study on their structural, functional and evolutionary characteristics. Full-length cDNA sequences of 14 CDPKs were obtained using various approaches. Wheat CDPKs were found to be similar to their counterparts in rice in genomic structure, GC content, subcellular localization, and subgroup classification. Divergence time estimation of wheat CDPK gene pairs and wheat-rice orthologs suggested that most duplicated genes already existed in the common ancestor of wheat and rice. The number of CDPKs in diploid wheat genome was estimated to be at least 26, a number close to that in rice, Arabidopsis, and poplar. However, polymorphism among EST sequences uncovered transcripts of all three homoeologous alleles for 13 out of 20 CDPKs. Thus, the hexaploid wheat should have 2-3 fold more CDPK genes expressing in their cells than the diploid species. Wheat CDPK genes were found to respond to various biotic and abiotic stimuli, including cold, hydrogen peroxide (H(2)O(2)), salt, drought, powdery mildew (Blumeria graminis tritici, Bgt), as well as phytohormones abscisic acid (ABA) and gibberellic acid (GA). Each CDPK gene often responded to multiple treatments, suggesting that wheat CDPKs are converging points for multiple signal transduction pathways. The current work represents the first comprehensive study of CDPK genes in bread wheat and provides a foundation for further functional study of this important gene family in Triticeae.
Collapse
Affiliation(s)
- Ai-Li Li
- National Key Facility of Crop Gene Resources and Genetic Improvement (NFCRI), Key Laboratory of Crop Germplasm & Biotechnology, Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing 100081, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Vargas WA, Pontis HG, Salerno GL. Differential expression of alkaline and neutral invertases in response to environmental stresses: characterization of an alkaline isoform as a stress-response enzyme in wheat leaves. PLANTA 2007; 226:1535-45. [PMID: 17674033 DOI: 10.1007/s00425-007-0590-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 07/13/2007] [Indexed: 05/16/2023]
Abstract
It is well accepted that sucrose (Suc) metabolism is involved in responses to environmental stresses in many plant species. In the present study we showed that alkaline invertase (A-Inv) expression is up-regulated in wheat leaves after an osmotic stress or a low-temperature treatment. We demonstrated that the increase of total alkaline/neutral Inv activity in wheat leaves after a stress could be due to the induction of an A-Inv isoform. Also, we identified and functionally characterized the first wheat cDNA sequence that codes for an A-Inv. The wheat leaf full-length sequence encoded a protein 70% similar to a neutral Inv of Lolium temulentum; however, after functional characterization, it resulted to encode a protein that hydrolyzed Suc to hexoses with an optimum pH of 8, and, consequently, the encoding sequence was named Ta-A-Inv. By RT-PCR assays we demonstrated that Ta-A-Inv expression is induced in response to osmotic and cold stress in mature primary wheat leaves. We propose that Ta-A-Inv activity could play an important role associated with a more efficient cytosolic Suc hydrolysis during environmental stresses.
Collapse
Affiliation(s)
- Walter A Vargas
- Centro de Investigaciones Biológicas, Fundación para Investigaciones Biológicas Aplicadas (FIBA), C.C. 1348, 7600, Mar del Plata, Argentina
| | | | | |
Collapse
|