1
|
Quiñones CO, Gesto-Borroto R, Wilson RV, Hernández-Madrigal SV, Lorence A. Alternative pathways leading to ascorbate biosynthesis in plants: lessons from the last 25 years. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2644-2663. [PMID: 38488689 DOI: 10.1093/jxb/erae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/14/2024] [Indexed: 05/04/2024]
Abstract
l-Ascorbic acid (AsA) is an antioxidant with important roles in plant stress physiology, growth, and development. AsA also plays an essential role in human health, preventing scurvy. Humans do not synthesize AsA, which needs to be supplied via a diet rich in fresh produce. Research efforts have provided progress in the elucidation of a complex metabolic network with at least four routes leading to AsA formation in plants. In this review, three alternative pathways, namely the d-galacturonate, the l-gulose, and the myo-inositol pathways, are presented with the supporting evidence of their operation in multiple plant species. We critically discuss feeding studies using precursors and their conversion to AsA in plant organs, and research where the expression of key genes encoding enzymes involved in the alternative pathways showed >100% AsA content increase in the transgenics and in many cases accompanied by enhanced tolerance to multiple stresses. We propose that the alternative pathways are vital in AsA production in response to stressful conditions and to compensate in cases where the flux through the d-mannose/l-galactose pathway is reduced. The genes and enzymes that have been characterized so far in these alternative pathways represent important tools that are being used to develop more climate-tolerant crops.
Collapse
Affiliation(s)
- Cherryl O Quiñones
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Reinier Gesto-Borroto
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Rachael V Wilson
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Sara V Hernández-Madrigal
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
- Department of Chemistry and Physics, Arkansas State University, PO Box 419, State University, AR 72467, USA
| |
Collapse
|
2
|
Popović AV, Čamagajevac IŠ, Vuković R, Matić M, Velki M, Gupta DK, Galić V, Lončarić Z. Biochemical and molecular responses of the ascorbate-glutathione cycle in wheat seedlings exposed to different forms of selenium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108460. [PMID: 38447422 DOI: 10.1016/j.plaphy.2024.108460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Biofortification aims to increase selenium (Se) concentration and bioavailability in edible parts of crops such as wheat (Triticum aestivum L.), resulting in increased concentration of Se in plants and/or soil. Higher Se concentrations can disturb protein structure and consequently influence glutathione (GSH) metabolism in plants which can affect antioxidative and other detoxification pathways. The aim of this study was to elucidate the impact of five different concentrations of selenate and selenite (0.4, 4, 20, 40 and 400 mg kg-1) on the ascorbate-glutathione cycle in wheat shoots and roots and to determine biochemical and molecular tissue-specific responses. Content of investigated metabolites, activities of detoxification enzymes and expression of their genes depended both on the chemical form and concentration of the applied Se, as well as on the type of plant tissue. The most pronounced changes in the expression level of genes involved in GSH metabolism were visible in wheat shoots at the highest concentrations of both forms of Se. Obtained results can serve as a basis for further research on Se toxicity and detoxification mechanisms in wheat. New insights into the Se impact on GSH metabolism could contribute to the further development of biofortification strategies.
Collapse
Affiliation(s)
- Ana Vuković Popović
- Department of Biology, Josip Juraj Strossmayer University, 31000, Osijek, Croatia
| | | | - Rosemary Vuković
- Department of Biology, Josip Juraj Strossmayer University, 31000, Osijek, Croatia
| | - Magdalena Matić
- Faculty of Agrobiotechnical Sciences Osijek, 31000, Osijek, Croatia
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University, 31000, Osijek, Croatia
| | - Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change, 110003, New Delhi, India
| | - Vlatko Galić
- Agricultural Institute Osijek, Južno predgrađe 17, 31000, Osijek, Croatia
| | - Zdenko Lončarić
- Faculty of Agrobiotechnical Sciences Osijek, 31000, Osijek, Croatia
| |
Collapse
|
3
|
Liao G, Xu Q, Allan AC, Xu X. L-Ascorbic acid metabolism and regulation in fruit crops. PLANT PHYSIOLOGY 2023; 192:1684-1695. [PMID: 37073491 PMCID: PMC10315321 DOI: 10.1093/plphys/kiad241] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
L-Ascorbic acid (AsA) is more commonly known as vitamin C and is an indispensable compound for human health. As a major antioxidant, AsA not only maintains redox balance and resists biological and abiotic stress but also regulates plant growth, induces flowering, and delays senescence through complex signal transduction networks. However, AsA content varies greatly in horticultural crops, especially in fruit crops. The AsA content of the highest species is approximately 1,800 times higher than that of the lowest species. There have been significant advancements in the understanding of AsA accumulation in the past 20 years. The most noteworthy accomplishment was the identification of the critical rate-limiting genes for the 2 major AsA synthesis pathways (L-galactose pathway and D-galacturonic acid pathway) in fruit crops. The rate-limiting genes of the former are GMP, GME, GGP, and GPP, and the rate-limiting gene of the latter is GalUR. Moreover, APX, MDHAR, and DHAR are also regarded as key genes in degradation and regeneration pathways. Interestingly, some of these key genes are sensitive to environmental factors, such as GGP being induced by light. The efficiency of enhancing AsA content is high by editing upstream open reading frames (uORF) of the key genes and constructing multi-gene expression vectors. In summary, the AsA metabolism has been well understood in fruit crops, but the transport mechanism of AsA and the synergistic improvement of AsA and other traits is less known, which will be the focus of AsA research in fruit crops.
Collapse
Affiliation(s)
- Guanglian Liao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Kiwifruit Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Xiaobiao Xu
- Kiwifruit Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| |
Collapse
|
4
|
Analysis of enzymes and phenolic metabolites which affecting the anti-browning property of ‘Shannongsu’ pear. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Zheng X, Yuan Y, Huang B, Hu X, Tang Y, Xu X, Wu M, Gong Z, Luo Y, Gong M, Gao X, Wu G, Zhang Q, Zhang L, Chan H, Zhu B, Li Z, Ferguson L, Deng W. Control of fruit softening and Ascorbic acid accumulation by manipulation of SlIMP3 in tomato. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1213-1225. [PMID: 35258157 PMCID: PMC9129080 DOI: 10.1111/pbi.13804] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/25/2022] [Indexed: 05/29/2023]
Abstract
Postharvest deterioration is among the major challenges for the fruit industry. Regulation of the fruit softening rate is an effective strategy for extending shelf-life and reducing the economic losses due postharvest deterioration. The tomato myoinositol monophosphatase 3 gene SlIMP3, which showed highest expression level in fruit, was expressed and purified. SlIMP3 demonstrated high affinity with the L-Gal 1-P and D-Ins 3-P, and acted as a bifunctional enzyme in the biosynthesis of AsA and myoinositol. Overexpression of SlIMP3 not only improved AsA and myoinositol content, but also increased cell wall thickness, improved fruit firmness, delayed fruit softening, decreased water loss, and extended shelf-life. Overexpression of SlIMP3 also increased uronic acid, rhamnose, xylose, mannose, and galactose content in cell wall of fruit. Treating fruit with myoinositol obtained similar fruit phenotypes of SlIMP3-overexpressed fruit, with increased cell wall thickness and delayed fruit softening. Meanwhile, overexpression of SlIMP3 conferred tomato fruit tolerance to Botrytis cinerea. The function of SlIMP3 in cell wall biogenesis and fruit softening were also verified using another tomato species, Ailsa Craig (AC). Overexpression of SlDHAR in fruit increased AsA content, but did not affect the cell wall thickness or fruit firmness and softening. The results support a critical role for SlIMP3 in AsA biosynthesis and cell wall biogenesis, and provide a new method of delaying tomato fruit softening, and insight into the link between AsA and cell wall metabolism.
Collapse
Affiliation(s)
- Xianzhe Zheng
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Yujin Yuan
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Xiaowei Hu
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Yuwei Tang
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Mengbo Wu
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Zehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Yingqing Luo
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Min Gong
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Xueli Gao
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Guanle Wu
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Qiongdan Zhang
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Lu Zhang
- Department of Horticulture and Landscape ArchitectureOklahoma State UniversityStillwaterOKUSA
| | - Helen Chan
- Department of Plant SciencesUniversity of California Davis, One Shields AvenueDavisCAUSA
| | - Benzhong Zhu
- Laboratory of Fruit BiologyCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Louise Ferguson
- Department of Plant SciencesUniversity of California Davis, One Shields AvenueDavisCAUSA
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| |
Collapse
|
6
|
Alós E, Rey F, Gil JV, Rodrigo MJ, Zacarias L. Ascorbic Acid Content and Transcriptional Profiling of Genes Involved in Its Metabolism during Development of Petals, Leaves, and Fruits of Orange ( Citrus sinensis cv. Valencia Late). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122590. [PMID: 34961061 PMCID: PMC8707836 DOI: 10.3390/plants10122590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 05/13/2023]
Abstract
Citrus fruit is one of the most important contributors to the ascorbic acid (AsA) intake in humans. Here, we report a comparative analysis of AsA content and transcriptional changes of genes related to its metabolism during development of petals, leaves and fruits of Valencia Late oranges (Citrus sinensis). Petals of close flowers and at anthesis contained the highest concentration of AsA. In fruits, AsA content in the flavedo reached a maximum at color break, whereas the pulp accumulated lower levels and experienced minor fluctuations during development. AsA levels in leaves were similar to those in the flavedo at breaker stage. The transcriptional profiling of AsA biosynthetic, degradation, and recycling genes revealed a complex and specific interplay of the different pathways for each tissue. The D-galacturonic acid pathway appeared to be relevant in petals, whereas in leaves the L-galactose pathway (GGP and GME) also contributed to AsA accumulation. In the flavedo, AsA content was positively correlated with the expression of GGP of the L-galactose pathway and negatively with DHAR1 gene of the recycling pathway. In the pulp, AsA appeared to be mainly controlled by the coordination among the D-galacturonic acid pathway and the MIOX and GalDH genes. Analysis of the promoters of AsA metabolism genes revealed a number of cis-acting elements related to developmental signals, but their functionalities remain to be investigated.
Collapse
Affiliation(s)
- Enriqueta Alós
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Valencia, Spain; (E.A.); (F.R.); (J.V.G.); (M.J.R.)
| | - Florencia Rey
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Valencia, Spain; (E.A.); (F.R.); (J.V.G.); (M.J.R.)
| | - José Vicente Gil
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Valencia, Spain; (E.A.); (F.R.); (J.V.G.); (M.J.R.)
- Food Technology Area, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
| | - María Jesús Rodrigo
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Valencia, Spain; (E.A.); (F.R.); (J.V.G.); (M.J.R.)
| | - Lorenzo Zacarias
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Valencia, Spain; (E.A.); (F.R.); (J.V.G.); (M.J.R.)
- Correspondence: ; Tel.: +34-96-3900022
| |
Collapse
|
7
|
Medyouni I, Zouaoui R, Rubio E, Serino S, Ahmed HB, Bertin N. Effects of water deficit on leaves and fruit quality during the development period in tomato plant. Food Sci Nutr 2021; 9:1949-1960. [PMID: 33841813 PMCID: PMC8020918 DOI: 10.1002/fsn3.2160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/13/2021] [Indexed: 01/17/2023] Open
Abstract
In nature, plants are often exposed to a multitude of environmental constraints that severely limit crop productivity. Water deficit is one of the factors that most affects agricultural production. The aim of this work is to evaluate the effect of water deficit on morphology, development, nutritional behavior, as well as chlorophyll fluorescence and certain important metabolic parameters (soluble sugars, organic acids, starch, carotenoid, and vitamin C) of the cultivated tomato (Solanum lycopersicum cv Plovdiv). In this study, the water supply was reduced by 60% compared to control conditions. The conditions of water deficit showed that the size of the different organs (leaves, fruits) was reduced. A reduction in the number, width, and length of the leaves, respectively, 9%, 36%, and 37%, then the leaf surface was also observed. Reduction of fluorescence (Fo, Fm, and Fv) and total index performance were among the other symptoms of plants with water deficiency. For fruit, we observed a significant decrease in diameter, fresh weight, and moisture content during the cell division period, the cell expansion period, and the fruit ripening period. In contrast, the composition of the Plovdiv fruit changed only during cell division and expansion phase. On the other hand, the water deficit induces an increase in the total carotenoid and vitamin C content of the fruits.. Besides, water deficit induced a reduction of fruit size, moisture content, and production dry matter during different phases of development. Decrease levels of soluble sugars and organic acid but increase in vitamin C and carotenoid content.
Collapse
Affiliation(s)
- Ibtissem Medyouni
- Laboratory of Plants Soil and Environment Interactions (LIPSE)Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
- INRA—Centre d’AvignonUR1115 Plantes et Systèmes de Culture HorticolesAvignonFrance
| | - Refka Zouaoui
- Ecology and Sylvo‐Pastoral Improvement LaboratoryWater and Forests (INRGREF)National Research Institute of Rural EngineeringTunisTunisia
| | - Emilie Rubio
- INRA—Centre d’AvignonUR1115 Plantes et Systèmes de Culture HorticolesAvignonFrance
| | - Sylvie Serino
- INRA—Centre d’AvignonUR1115 Plantes et Systèmes de Culture HorticolesAvignonFrance
| | - Hela Ben Ahmed
- Laboratory of Plants Soil and Environment Interactions (LIPSE)Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Nadia Bertin
- INRA—Centre d’AvignonUR1115 Plantes et Systèmes de Culture HorticolesAvignonFrance
| |
Collapse
|
8
|
The role of glucose-6-phosphate dehydrogenase in reactive oxygen species metabolism in apple exocarp induced by acibenzolar-S-methyl. Food Chem 2020; 308:125663. [DOI: 10.1016/j.foodchem.2019.125663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/27/2019] [Accepted: 10/06/2019] [Indexed: 12/29/2022]
|
9
|
Li H, Liu ZW, Wu ZJ, Wang YX, Teng RM, Zhuang J. Differentially expressed protein and gene analysis revealed the effects of temperature on changes in ascorbic acid metabolism in harvested tea leaves. HORTICULTURE RESEARCH 2018; 5:65. [PMID: 30302261 PMCID: PMC6165846 DOI: 10.1038/s41438-018-0070-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/06/2018] [Accepted: 06/15/2018] [Indexed: 05/02/2023]
Abstract
Tea is an important non-alcoholic beverage worldwide. Tea quality is determined by numerous secondary metabolites in harvested tea leaves, including tea polyphenols, theanine, caffeine, and ascorbic acid (AsA). AsA metabolism in harvested tea leaves is affected by storage and transportation temperature. However, the molecular mechanisms underlying AsA metabolism in harvested tea leaves exposed to different storage and transportation temperature conditions remain unclear. Here we performed RP-HPLC to detect dynamic changes in AsA content in tea leaves subjected to high- (38 °C), low- (4 °C), or room-temperature (25 °C) treatments. The AsA distribution and levels in the treated tea leaves were analyzed using cytological-anatomical characterization methods. The differentially expressed CsAPX1 and CsDHAR2 proteins, which are involved in the AsA recycling pathway, were identified from the corresponding proteomic data using iTRAQ. We also analyzed the expression profiles of 18 genes involved in AsA metabolism, including CsAPX1 and CsDHAR2. AsA was mainly distributed in tea leaf mesophyll cells. High- and low-temperature treatments upregulated the CsAPX1 and CsDHAR2 proteins and induced CsAPX and CsDHAR2 gene expression. These results indicated that the CsAPX1 and CsDHAR2 proteins might have critical roles in AsA recycling in tea leaves. Our results provide a foundation for the in-depth investigation of AsA metabolism in tea leaves during storage and transportation, and they will promote better tea flavor in tea production.
Collapse
Affiliation(s)
- Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhi-Jun Wu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Rui-Min Teng
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
10
|
Mellidou I, Kanellis AK. Genetic Control of Ascorbic Acid Biosynthesis and Recycling in Horticultural Crops. Front Chem 2017; 5:50. [PMID: 28744455 PMCID: PMC5504230 DOI: 10.3389/fchem.2017.00050] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ascorbic acid (AsA) is an essential compound present in almost all living organisms that has important functions in several aspects of plant growth and development, hormone signaling, as well as stress defense networks. In recent years, the genetic regulation of AsA metabolic pathways has received much attention due to its beneficial role in human diet. Despite the great variability within species, genotypes, tissues and developmental stages, AsA accumulation is considered to be controlled by the fine orchestration of net biosynthesis, recycling, degradation/oxidation, and/or intercellular and intracellular transport. To date, several structural genes from the AsA metabolic pathways and transcription factors are considered to significantly affect AsA in plant tissues, either at the level of activity, transcription or translation via feedback inhibition. Yet, all the emerging studies support the notion that the steps proceeding through GDP-L-galactose phosphorylase and to a lesser extent through GDP-D-mannose-3,5-epimerase are control points in governing AsA pool size in several species. In this mini review, we discuss the current consensus of the genetic regulation of AsA biosynthesis and recycling, with a focus on horticultural crops. The aspects of AsA degradation and transport are not discussed herein. Novel insights of how this multifaceted trait is regulated are critical to prioritize candidate genes for follow-up studies toward improving the nutritional value of fruits and vegetables.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece.,Laboratory of Agricultural Chemistry, Department of Crop Science, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| |
Collapse
|
11
|
Li H, Huang W, Wang GL, Wang WL, Cui X, Zhuang J. Transcriptomic analysis of the biosynthesis, recycling, and distribution of ascorbic acid during leaf development in tea plant (Camellia sinensis (L.) O. Kuntze). Sci Rep 2017; 7:46212. [PMID: 28393854 PMCID: PMC5385563 DOI: 10.1038/srep46212] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/13/2017] [Indexed: 01/09/2023] Open
Abstract
Ascorbic acid (AsA), known as vitamin C, is an essential nutrient for humans and mainly absorbed from food. Tea plant (Camellia sinensis (L.) O. Kuntze) leaves can be a dietary source of AsA for humans. However, experimental evidence on the biosynthesis, recycling pathway and distribution of AsA during leaf development in tea plants is unclear. To gain insight into the mechanism and distribution of AsA in the tea plant leaf, we identified 18 related genes involved in AsA biosynthesis and recycling pathway based on the transcriptome database of tea plants. Tea plant leaves were used as samples at different developmental stages. AsA contens in tea plant leaves at three developmental stages were measured by reversed-phase high-performance liquid chromatography (RP-HPLC). The correlations between expression levels of these genes and AsA contents during the development of tea plant leaves were discussed. Results indicated that the l-galactose pathway might be the primary pathway of AsA biosynthesis in tea plant leaves. CsMDHAR and CsGGP might play a regulatory role in AsA accumulation in the leaves of three cultivars of tea plants. These findings may provide a further glimpse to improve the AsA accumulation in tea plants and the commercial quality of tea.
Collapse
Affiliation(s)
- Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen-Li Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Cui
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Liang D, Zhu T, Ni Z, Lin L, Tang Y, Wang Z, Wang X, Wang J, Lv X, Xia H. Ascorbic acid metabolism during sweet cherry (Prunus avium) fruit development. PLoS One 2017; 12:e0172818. [PMID: 28245268 PMCID: PMC5330498 DOI: 10.1371/journal.pone.0172818] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/11/2017] [Indexed: 11/19/2022] Open
Abstract
To elucidate metabolism of ascorbic acid (AsA) in sweet cherry fruit (Prunus avium 'Hongdeng'), we quantified AsA concentration, cloned sequences involved in AsA metabolism and investigated their mRNA expression levels, and determined the activity levels of selected enzymes during fruit development and maturation. We found that AsA concentration was highest at the petal-fall period (0 days after anthesis) and decreased progressively during ripening, but with a slight increase at maturity. AsA did nevertheless continue to accumulate over time because of the increase in fruit fresh weight. Full-length cDNAs of 10 genes involved in the L-galactose pathway of AsA biosynthesis and 10 involved in recycling were obtained. Gene expression patterns of GDP-L-galactose phosphorylase (GGP2), L-galactono-1, 4-lactone dehydrogenase (GalLDH), ascorbate peroxidase (APX3), ascorbate oxidase (AO2), glutathione reductase (GR1), and dehydroascorbate reductase (DHAR1) were in accordance with the AsA concentration pattern during fruit development, indicating that genes involved in ascorbic acid biosynthesis, degradation, and recycling worked in concert to regulate ascorbic acid accumulation in sweet cherry fruit.
Collapse
Affiliation(s)
- Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tingting Zhu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhiyou Ni
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Huang W, Wang GL, Li H, Wang F, Xu ZS, Xiong AS. Transcriptional profiling of genes involved in ascorbic acid biosynthesis, recycling, and degradation during three leaf developmental stages in celery. Mol Genet Genomics 2016; 291:2131-2143. [PMID: 27604234 DOI: 10.1007/s00438-016-1247-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
Ascorbic acid (AsA) is an important nutrient in the human body and performs various healthy functions. With considerable medicinal properties, celery (Apium graveolens L.) could be a good source of AsA for human health. However, the biosynthetic, recycling, and degradation pathways of AsA in celery have yet to be characterized. To study the metabolic pathways involved in AsA, the genes involved in AsA biosynthesis, recycling, and degradation were isolated from celery, and their expression profiles and AsA levels were analyzed in the leaf blades and petioles of two celery varieties at three different growth stages. AsA levels were higher in 'Ventura' compared with 'Liuhehuangxinqin' in both tissues possibly because of different transcription levels of genes, such as L-galactose dehydrogenase (GalDH), L-galactono-1,4-lactone dehydrogenase (GalLDH), and glutathione reductase (GR). Results revealed that the D-mannose/L-galactose pathway may be the predominant pathway in celery, and the D-galacturonic acid pathway appeared to contribute largely to AsA accumulation in petioles than in leaf blades in 'Liuhehuangxinqin.' AsA contents are regulated by complex regulatory mechanisms and vary at different growth stages, tissues, and varieties in celery. The results provide novel insights into AsA metabolic pathways in leaf during celery growth and development.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Cholet C, Claverol S, Claisse O, Rabot A, Osowsky A, Dumot V, Ferrari G, Gény L. Tartaric acid pathways in Vitis vinifera L. (cv. Ugni blanc): a comparative study of two vintages with contrasted climatic conditions. BMC PLANT BIOLOGY 2016; 16:144. [PMID: 27350040 PMCID: PMC4924324 DOI: 10.1186/s12870-016-0833-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/15/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND The acid component of grape berries, originating in the metabolism of malate and tartrate, the latter being less well-known than the former, is a key factor at play in the microbiological stability of wines destined for distillation. Grape acidity is increasingly affected by climate changes. The ability to compare two vintages with contrasted climatic conditions may contribute to a global understanding of the regulation of acid metabolism and the future consequences for berry composition. RESULTS The results of the analyses (molecular, protein, enzymatic) of tartrate biosynthesis pathways were compared with the developmental accumulation of tartrate in Ugni blanc grape berries, from floral bud to maturity. The existence of two distinct steps during this pathway was confirmed: one prior to ascorbate, with phases of VvGME, VvVTC2, VvVTC4, VvL-GalDH, VvGLDH gene expression and abundant protein, different for each vintage; the other downstream of ascorbate, leading to the synthesis of tartrate with maximum VvL-IdnDH genetic and protein expression towards the beginning of the growth process, and in correlation with enzyme activity regardless of the vintage. CONCLUSIONS Overall results suggest that the two steps of this pathway do not appear to be regulated in the same way and could both be activated very early on during berry development.
Collapse
Affiliation(s)
- Céline Cholet
- />Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, EA 4577 Unité de recherche œnologie, France
- />INRA, ISVV, USC INRA 1366 Œnologie, 210 Chemin de Leysotte, CS 50008, F-33882 Villenave d’Ornon, France
| | - Stéphane Claverol
- />Centre Génomique Fonctionnelle, Université de Bordeaux, Plateforme Protéome, France
| | - Olivier Claisse
- />Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, EA 4577 Unité de recherche œnologie, France
- />INRA, ISVV, USC INRA 1366 Œnologie, 210 Chemin de Leysotte, CS 50008, F-33882 Villenave d’Ornon, France
| | - Amélie Rabot
- />Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, EA 4577 Unité de recherche œnologie, France
- />INRA, ISVV, USC INRA 1366 Œnologie, 210 Chemin de Leysotte, CS 50008, F-33882 Villenave d’Ornon, France
| | - Audrey Osowsky
- />Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, EA 4577 Unité de recherche œnologie, France
- />INRA, ISVV, USC INRA 1366 Œnologie, 210 Chemin de Leysotte, CS 50008, F-33882 Villenave d’Ornon, France
| | - Vincent Dumot
- />Bureau National Interprofessionnel du Cognac, Station Viticole, France
| | - Gerald Ferrari
- />Bureau National Interprofessionnel du Cognac, Station Viticole, France
| | - Laurence Gény
- />Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, EA 4577 Unité de recherche œnologie, France
- />INRA, ISVV, USC INRA 1366 Œnologie, 210 Chemin de Leysotte, CS 50008, F-33882 Villenave d’Ornon, France
| |
Collapse
|
15
|
Wang GL, Xu ZS, Wang F, Li MY, Tan GF, Xiong AS. Regulation of ascorbic acid biosynthesis and recycling during root development in carrot (Daucus carota L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 94:10-8. [PMID: 25956452 DOI: 10.1016/j.plaphy.2015.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/15/2015] [Accepted: 04/28/2015] [Indexed: 05/18/2023]
Abstract
Ascorbic acid (AsA), also known as vitamin C, is an essential nutrient in fruits and vegetables. The fleshy root of carrot (Daucus carota L.) is a good source of AsA for humans. However, the metabolic pathways and molecular mechanisms involved in the control of AsA content during root development in carrot have not been elucidated. To gain insights into the regulation of AsA accumulation and to identify the key genes involved in the AsA metabolism, we cloned and analyzed the expression of 21 related genes during carrot root development. The results indicate that AsA accumulation in the carrot root is regulated by intricate pathways, of which the l-galactose pathway may be the major pathway for AsA biosynthesis. Transcript levels of the genes encoding l-galactose-1-phosphate phosphatase and l-galactono-1,4-lactone dehydrogenase were strongly correlated with AsA levels during root development. Data from this research may be used to assist breeding for improved nutrition, quality, and stress tolerance in carrots.
Collapse
Affiliation(s)
- Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Fei Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
16
|
Zhang L, Ma G, Yamawaki K, Ikoma Y, Matsumoto H, Yoshioka T, Ohta S, Kato M. Regulation of ascorbic acid metabolism by blue LED light irradiation in citrus juice sacs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:134-142. [PMID: 25711821 DOI: 10.1016/j.plantsci.2015.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 05/14/2023]
Abstract
In the present study, the effects of red and blue LED lights on the accumulation of ascorbic acid (AsA) were investigated in the juice sacs of three citrus varieties, Satsuma mandarin, Valencia orange, and Lisbon lemon. The results showed that the blue LED light treatment effectively increased the AsA content in the juice sacs of the three citrus varieties, whereas the red LED light treatment did not. By increasing the blue LED light intensity, the juice sacs of the three citrus varieties accumulated more AsA. Moreover, continuous irradiation with blue LED light was more effective than pulsed irradiation for increasing the AsA content in the juice sacs of the three citrus varieties. Gene expression results showed that the modulation of AsA accumulation by blue LED light was highly regulated at the transcription level. The up-regulation of AsA biosynthetic genes (CitVTC1, CitVTC2, CitVTC4, and CitGLDH), AsA regeneration genes (CitMDAR1, CitMDAR2, and CitDHAR) and two GSH-producing genes (CitGR and CitchGR) contributed to these increases in the AsA content in the three citrus varieties.
Collapse
Affiliation(s)
- Lancui Zhang
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Gang Ma
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Kazuki Yamawaki
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Yoshinori Ikoma
- Department of Citrus Research, NARO Institute of Fruit Tree Science, Okitsunakacho, Shimizu, Shizuoka 424-0292, Japan
| | - Hikaru Matsumoto
- Department of Citrus Research, NARO Institute of Fruit Tree Science, Okitsunakacho, Shimizu, Shizuoka 424-0292, Japan
| | - Terutaka Yoshioka
- Department of Citrus Research, NARO Institute of Fruit Tree Science, Okitsunakacho, Shimizu, Shizuoka 424-0292, Japan
| | - Satoshi Ohta
- Department of Citrus Research, NARO Institute of Fruit Tree Science, Okitsunakacho, Shimizu, Shizuoka 424-0292, Japan
| | - Masaya Kato
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| |
Collapse
|
17
|
Lado J, Alós E, Rodrigo MJ, Zacarías L. Light avoidance reduces ascorbic acid accumulation in the peel of Citrus fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:138-47. [PMID: 25575999 DOI: 10.1016/j.plantsci.2014.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 05/09/2023]
Abstract
Citrus fruits are highly consumed worldwide and represent one of the most important sources of ascorbic acid (AsA). However, information about the molecular mechanisms regulating AsA accumulation in Citrus fruit and the effects of environmental factors is scarce. In this study we have investigated the effect of fruit shading on AsA content and the expression of AsA biosynthetic, degrading and recycling genes in fruits of different Citrus species. Immature-green fruits were covered at the end of the cell enlargement phase and AsA concentration in the flavedo declined and remained at low levels as compared with light-exposed fruits. Fruit shading marginally altered the expression of genes from the l-galactose pathway and this effect was variable in the four Citrus species. However, specific isoforms (GalUR8 or GalUR12) from the l-galacturonic acid pathway were significantly repressed paralleling the reduction in AsA concentration. No significant effect of shading was detected in transcription of genes of the myo-inositol and l-gulose pathways as well as recycling and degradation. Collectively, results indicate that light avoidance inhibited accumulation of AsA in the flavedo of Citrus fruits and suggest that the l-galacturonic acid pathway has a relevant contribution to AsA content in this tissue.
Collapse
Affiliation(s)
- Joanna Lado
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain; Instituto Nacional de Investigación Agropecuaria (INIA), Camino a la Represa s/n, Salto, Uruguay
| | - Enriqueta Alós
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain; Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo, Córdoba, Spain
| | - María Jesús Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
18
|
Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmad I, Tuteja R, Tuteja N. Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. PROTOPLASMA 2014; 251:1265-83. [PMID: 24682425 DOI: 10.1007/s00709-014-0636-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/11/2014] [Indexed: 05/23/2023]
Abstract
The enhanced generation of reactive oxygen species (ROS) under metal/metalloid stress is most common in plants, and the elevated ROS must be successfully metabolized in order to maintain plant growth, development, and productivity. Ascorbate (AsA) is a highly abundant metabolite and a water-soluble antioxidant, which besides positively influencing various aspects in plants acts also as an enigmatic component of plant defense armory. As a significant component of the ascorbate-glutathione (AsA-GSH) pathway, it performs multiple vital functions in plants including growth and development by either directly or indirectly metabolizing ROS and its products. Enzymes such as monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) and dehydroascorbate reductase (DHAR, EC 1.8.5.1) maintain the reduced form of AsA pool besides metabolically controlling the ratio of AsA with its oxidized form (dehydroascorbate, DHA). Ascorbate peroxidase (APX, EC 1.11.1.11) utilizes the reduced AsA pool as the specific electron donor during ROS metabolism. Thus, AsA, its redox couple (AsA/DHA), and related enzymes (MDHAR, DHAR, and APX) cumulatively form an AsA redox system to efficiently protect plants particularly against potential anomalies caused by ROS and its products. Here we present a critical assessment of the recent research reports available on metal/metalloid-accrued modulation of reduced AsA pool, AsA/DHA redox couple and AsA-related major enzymes, and the cumulative significance of these antioxidant system components in plant metal/metalloid stress tolerance.
Collapse
Affiliation(s)
- Naser A Anjum
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Huang M, Xu Q, Deng XX. L-Ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (Rosa roxburghii Tratt). JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1205-16. [PMID: 25019249 DOI: 10.1016/j.jplph.2014.03.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 05/14/2023]
Abstract
Chestnut rose (Rosa roxburghii Tratt) is a fruit crop that contains unusually high levels of l-ascorbic acid (AsA; ∼1300 mg 100g(-1) FW). To explore the mechanisms underlying AsA metabolism, we investigated the distribution and abundance of AsA during fruit development. We also analyzed gene expression patterns, enzyme activities, and content of metabolites related to AsA biosynthesis and recycling. AsA first accumulated during late fruit development and continued to accumulate during ripening, with the highest accumulation rate near fruit maturity. The redox state of AsA in fruit was also enhanced during late fruit development, while leaf and other tissues had much lower levels of AsA and the redox state of AsA was lower. In mature fruit, AsA was mainly distributed in the cytoplasm of the mesocarp. Correlation analysis suggested that the gene expression patterns, enzyme activities, and related metabolite concentrations involved in the l-galactose pathway showed relatively high correlations with the accumulation rate of AsA. The gene expression pattern and activity of dehydroascorbate reductase (DHAR, EC 1.8.5.1) correlated strongly with AsA concentration, possibly indicating the crucial role of DHAR in the accumulation of high levels of AsA in chestnut rose fruit. Over expression of DHAR in Arabidopsis significantly increased the reduced AsA content and redox state. This was more effective than over expression of the l-galactose pathway gene GDP-d-mannose-3,5-epimerase (EC 5.1.3.18). These findings will enhance understanding of the molecular mechanisms regulating accumulation of AsA in chestnut rose.
Collapse
Affiliation(s)
- Ming Huang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiu-Xin Deng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
20
|
Liu X, Zhai R, Feng W, Zhang S, Wang Z, Qiu Z, Zhang J, Ma F, Xu L. Proteomic analysis of 'Zaosu' pear (Pyrus bretschneideri Rehd.) and its early-maturing bud sport. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:120-35. [PMID: 24908513 DOI: 10.1016/j.plantsci.2014.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/13/2014] [Accepted: 04/16/2014] [Indexed: 05/09/2023]
Abstract
Maturation of fruits involves a series of physiological, biochemical, and organoleptic changes that eventually make fleshy fruits attractive, palatable, and nutritional. In order to understand the mature mechanism of the early-maturing bud sport of 'Zaosu' pear, we analyzed the differences of proteome expression between the both pears in different mature stages by the methods of a combination of two-dimensional electrophoresis (2-DE) and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Seventy-five differential expressed protein spots (p<0.05) were obtained between 'Zaosu' pear and its early-maturing bud sport, but only sixty-eight were demonstratively identified in the database of NCBI and uniprot. The majority of proteins were linked to metabolism, energy, stress response/defense and cell structure. Additionally, our data confirmed an increase of proteins related to cell-wall modification, oxidative stress and pentose phosphate metabolism and a decrease of proteins related to photosynthesis and glycolysis during the development process of both pears, but all these proteins increased or decreased faster in the early-maturing bud sport. This comparative analysis between both pears showed that these proteins were closely associated with maturation and could provide more detailed characteristics of the maturation process of both pears.
Collapse
Affiliation(s)
- Xueting Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Rui Zhai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Wenting Feng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Shiwei Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Zonghao Qiu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Junke Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
21
|
Xu Y, Zhu X, Chen Y, Gong Y, Liu L. Expression profiling of genes involved in ascorbate biosynthesis and recycling during fleshy root development in radish. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:269-277. [PMID: 23800662 DOI: 10.1016/j.plaphy.2013.05.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
Ascorbate is a primary antioxidant and an essential enzyme cofactor in plants, which has an important effect on the development of plant root system. To investigate the molecular mechanisms of ascorbate accumulation during root development and reveal the key genes of the ascorbate biosynthesis and recycling pathways, the expression of 16 related genes together with ascorbate abundance were analyzed in the flesh and skin of radish (Raphanus sativus L.) fleshy root. The content of ascorbate decreased with root growth in both the flesh and skin. Expression of GDP-d-mannose pyrophosphorylase, GDP-d-mannose-3',5'-epimerase and d-galacturonate reductase were also decreased and correlated with ascorbate levels in the flesh. In the skin, the expression of GDP-d-mannose pyrophosphorylase and l-galactose dehydrogenase was correlated with ascorbate levels. These results suggested that ascorbate accumulation is affected mainly by biosynthesis rather than recycling in radish root, and the l-galactose pathway may be the major biosynthetic route of ascorbate, and moreover, the salvage pathway may also contribute to ascorbate accumulation. The data suggested that GDP-d-mannose pyrophosphorylase could play an important role in the regulation of ascorbate accumulation during radish fleshy taproot development.
Collapse
Affiliation(s)
- Yao Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | |
Collapse
|
22
|
Li J, Cui M, Li M, Wang X, Liang D, Ma F. Expression pattern and promoter analysis of the gene encoding GDP-d-mannose 3′,5′-epimerase under abiotic stresses and applications of hormones by kiwifruit. SCIENTIA HORTICULTURAE 2013; 150:187-194. [PMID: 0 DOI: 10.1016/j.scienta.2012.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
23
|
Li J, Li M, Liang D, Cui M, Ma F. Expression patterns and promoter characteristics of the gene encoding Actinidia deliciosa L-galactose-1-phosphate phosphatase involved in the response to light and abiotic stresses. Mol Biol Rep 2013; 40:1473-85. [PMID: 23070919 DOI: 10.1007/s11033-012-2190-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/09/2012] [Indexed: 12/25/2022]
Abstract
The gene encoding L-galactose-1-phosphate phosphatase (GPP) plays a central role in ascorbic acid (AsA) biosynthesis in plants. Here, we report AsA contents, GPP expression, and functioning of its promoter in response to light, exogenous stress-signalling hormones, or abiotic stresses in kiwifruit (Actinidia deliciosa). To identify the upstream region of GPP required for promoter activity, we constructed a series of promoter deletion derivatives. Each construct was analyzed by Agrobacterium-mediated transient transformation in tobacco leaves after various treatments. Some correlation was observed between the relative levels of GPP mRNA and AsA contents when kiwi leaves were exposed to varying light conditions, treatment with ABA or SA, wounding, or a hypoxic environment. Analysis of a series of 5' deletions in tobacco leaves indicated that the proximal area 390 bp from the transcription initiation site was needed for establishing both the constitutive and the induced patterns of expression. This promoter was induced by light or one of our abiotic treatments. These results suggest that GPP is regulated by light or abiotic stress and that it plays an important role in controlling AsA contents in kiwifruit.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Mellidou I, Chagné D, Laing WA, Keulemans J, Davey MW. Allelic variation in paralogs of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit. PLANT PHYSIOLOGY 2012; 160:1613-29. [PMID: 23001142 PMCID: PMC3490610 DOI: 10.1104/pp.112.203786] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/19/2012] [Indexed: 05/18/2023]
Abstract
To identify the genetic factors underlying the regulation of fruit vitamin C (L-ascorbic acid [AsA]) concentrations, quantitative trait loci (QTL) studies were carried out in an F1 progeny derived from a cross between the apple (Malus × domestica) cultivars Telamon and Braeburn over three years. QTL were identified for AsA, glutathione, total antioxidant activity in both flesh and skin tissues, and various quality traits, including flesh browning. Four regions on chromosomes 10, 11, 16, and 17 contained stable fruit AsA-QTL clusters. Mapping of AsA metabolic genes identified colocations between orthologs of GDP-L-galactose phosphorylase (GGP), dehydroascorbate reductase (DHAR), and nucleobase-ascorbate transporter within these QTL clusters. Of particular interest are the three paralogs of MdGGP, which all colocated within AsA-QTL clusters. Allelic variants of MdGGP1 and MdGGP3 derived from the cultivar Braeburn parent were also consistently associated with higher fruit total AsA concentrations both within the mapping population (up to 10-fold) and across a range of commercial apple germplasm (up to 6-fold). Striking differences in the expression of the cv Braeburn MdGGP1 allele between fruit from high- and low-AsA genotypes clearly indicate a key role for MdGGP1 in the regulation of fruit AsA concentrations, and this MdGGP allele-specific single-nucleotide polymorphism marker represents an excellent candidate for directed breeding for enhanced fruit AsA concentrations. Interestingly, colocations were also found between MdDHAR3-3 and a stable QTL for browning in the cv Telamon parent, highlighting links between the redox status of the AsA pool and susceptibility to flesh browning.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Laboratory for Fruit Breeding and Biotechnology, Department Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B–3001 Heverlee, Belgium (I.M., J.K., M.W.D.); New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4442, New Zealand (D.C.); and New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1142, New Zealand (W.A.L.)
| | - David Chagné
- Laboratory for Fruit Breeding and Biotechnology, Department Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B–3001 Heverlee, Belgium (I.M., J.K., M.W.D.); New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4442, New Zealand (D.C.); and New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1142, New Zealand (W.A.L.)
| | - William A. Laing
- Laboratory for Fruit Breeding and Biotechnology, Department Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B–3001 Heverlee, Belgium (I.M., J.K., M.W.D.); New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4442, New Zealand (D.C.); and New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1142, New Zealand (W.A.L.)
| | - Johan Keulemans
- Laboratory for Fruit Breeding and Biotechnology, Department Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B–3001 Heverlee, Belgium (I.M., J.K., M.W.D.); New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4442, New Zealand (D.C.); and New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1142, New Zealand (W.A.L.)
| | - Mark W. Davey
- Laboratory for Fruit Breeding and Biotechnology, Department Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B–3001 Heverlee, Belgium (I.M., J.K., M.W.D.); New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4442, New Zealand (D.C.); and New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1142, New Zealand (W.A.L.)
| |
Collapse
|
25
|
Li M, Ma F, Liang D, Li J, Wang Y. Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi. PLoS One 2010; 5:e14281. [PMID: 21151561 PMCID: PMC3000333 DOI: 10.1371/journal.pone.0014281] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 11/14/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ascorbic acid (AsA) is a unique antioxidant as well as an enzyme cofactor. Although it has multiple roles in plants, it is unclear how its accumulation is controlled at the expression level, especially in sink tissues. Kiwifruit (Actinidia) is well-known for its high ascorbate content. Our objective was to determine whether AsA accumulates in the fruits primarily through biosynthesis or because it is imported from the foliage. METHODOLOGY/PRINCIPAL FINDINGS We systematically investigated AsA levels, biosynthetic capacity, and mRNA expression of genes involved in AsA biosynthesis in kiwi (A. deliciosa cv. Qinmei). Recycling and AsA localization were also monitored during fruit development and among different tissue types. Over time, the amount of AsA, with its capacity for higher biosynthesis and lower recycling, peaked at 30 days after anthesis (DAA), and then decreased markedly up to 60 DAA before declining more slowly. Expression of key genes showed similar patterns of change, except for L-galactono-1,4-lactone dehydrogenase and L-galactose-1-phosphate phosphatase (GPP). However, GPP had good correlation with the rate of AsA accumulation. The expression of these genes could be detected in phloem of stem as well as petiole of leaf and fruit. Additionally, fruit petioles had greater ascorbate amounts, although that was the site of lowest expression by most genes. Fruit microtubule tissues also had higher AsA. However, exogenous applications of AsA to those petioles did not lead to its transport into fruits, and distribution of ascorbate was cell-specific in the fruits, with more accumulation occurring in larger cells. CONCLUSIONS These results suggest that AsA biosynthesis in kiwi during early fruit development is the main reason for its accumulation in the fruits. We also postulate here that GPP is a good candidate for regulating AsA biosynthesis whereas GDP-L-galactose-1-phosphate phosphorylase is not.
Collapse
Affiliation(s)
- Mingjun Li
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Dong Liang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Juan Li
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Yanlei Wang
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
26
|
Li M, Ma F, Liu J, Li J. Shading the whole vines during young fruit development decreases ascorbate accumulation in kiwi. PHYSIOLOGIA PLANTARUM 2010; 140:225-237. [PMID: 20618762 DOI: 10.1111/j.1399-3054.2010.01395.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We investigated how different lighting conditions affected the levels of ascorbate (AsA), sugar contents, the mRNA expression of genes involved in AsA biosynthesis and recycling and enzyme activity in kiwi fruits. Shaded leaves had dramatically less AsA as well as altered transcript levels and enzyme activities. In contrast, fruits that had been covered directly at various developmental stages showed no changes in those parameters. Fruits had significantly less AsA content before 40 days after anthesis (DAA) when whole vines were shaded only from 0 to 40 DAA, whereas transcript levels of most related genes (except those for GDP-L-galactose-1-phosphate phosphorylase and GDP-mannose pyrophosphorylase) followed a parallel trend. When the shading was removed after 40 DAA, values for the ripening fruits returned to those measured for the control. Such a response, however, was not observed when shading treatments were delayed until after 40 DAA. Fruits were also smaller at harvest when vines were shaded at the earliest time point. The present results suggest that lighting conditions can indirectly affect the capacity of biosynthesis and recycling of AsA in young fruits of kiwi, and this regulation might occur via the interaction of signal from leaves and development of fruit.
Collapse
Affiliation(s)
- Mingjun Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | |
Collapse
|