1
|
Zhou Y, Li Z, Su X, Hou H, Jiang Y, Duan X, Qu H, Jiang G. Histone deacetylase SlHDA7 impacts fruit ripening and shelf life in tomato. HORTICULTURE RESEARCH 2024; 11:uhae234. [PMID: 39507699 PMCID: PMC11534877 DOI: 10.1093/hr/uhae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/08/2024] [Indexed: 11/08/2024]
Abstract
Fruit ripening depends on the accurate control of ripening-related genes expression, with histone deacetylases (HDACs) playing crucial roles in transcriptional regulation. However, the functions of HDACs in fruit maturation remain largely unexplored. Here, we show that SlHDA7 acts as a suppressor of fruit ripening and functions as an H4ac HDAC in tomato. Deletion of SlHDA7 accelerated fruit ripening, while overexpression of SlHDA7 delayed the maturation process. Additionally, ethylene production and carotenoid biosynthesis significantly increased in slhda7 mutant fruits but decreased in SlHDA7-overexpressing fruits. Furthermore, SlHDA7 repress the expression of ethylene production and signaling, carotenoid metabolism, cell wall modification, and transcriptional regulation-related genes. RT-qPCR and ChIP-qPCR analyses indicated that SlHDA7 may deacetylate H4ac, leading to reduced transcript levels of ACO1, GGPPS2, Z-ISO, EXP1, and XYL1 mRNA, consequently suppressing fruit ripening. Moreover, SlHDA7 suppresses fruit ripening by targeting specific ripening-associated transcription factors (TFs) like RIN, FUL1, and ERF.E1, ultimately leading to delayed ripening and prolonged fruit shelf life. In summary, our findings indicate that SlHDA7 negatively modulates tomato fruit maturation by adjusting H4ac levels of these ripening-associated genes and key TFs.
Collapse
Affiliation(s)
- Yijie Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong AIB Polytechnic, Guangzhou 510507, China
| | - Zhiwei Li
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinguo Su
- Guangdong AIB Polytechnic, Guangzhou 510507, China
| | - Huiyu Hou
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Yueming Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewu Duan
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Qu
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxiang Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Tantisuwanichkul K, Komaki S, Watanabe M, Tohge T, Sirikantaramas S. Unveiling the regulatory role of DzAGL6-1 in carotenoid biosynthesis during durian (Durio zibethinus) fruit development. PLANT CELL REPORTS 2024; 43:217. [PMID: 39153055 DOI: 10.1007/s00299-024-03302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
KEY MESSAGE Approximately 119 MADS-box genes have been identified in durian. Moreover, DzAGL6-1 primarily expressed during fruit development, activates the DzPSY promoter. Transient expression of DzAGL6-1 in tomatoes influences carotenoid production. MADS-box transcription factors play a crucial role in regulating plant biological processes, including fruit ripening and associated events. This study aimed to comprehend the mechanisms involved in durian fruit development and ripening and carotenoid production by conducting a genome-wide analysis of MADS-box proteins in durian (Durio zibethinus L.), an economically important fruit in Southeast Asia. A total of 119 durian MADS-box proteins were identified from the genome of the 'Musang King' cultivar. Based on the phylogenetic analysis, the proteins were classified into types I and II, which exhibited similar conserved motif compositions. Notably, only 16 durian MADS-box genes exhibited fruit-specific expression patterns. Among these genes, DzAGL6-1 was predominantly expressed during fruit development, a stage at which carotenoid biosynthesis is activated. Transient expression of DzAGL6-1 in tomato fruit increased the transcript level of the carotenoid biosynthetic gene phytoene synthase (PSY) and the β-carotene content. Furthermore, DzAGL6-1 activated the promoter activity of DzPSY, as demonstrated by a dual-luciferase assay. These findings provide insights into the role of MADS-box transcription factors in regulating carotenoid biosynthesis during durian fruit development.
Collapse
Affiliation(s)
- Kittiya Tantisuwanichkul
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Shinichiro Komaki
- Plant Secondary Metabolism, Division of Biological Science, NARA Institute of Science and Technology, Nara, Japan
| | - Mutsumi Watanabe
- Plant Secondary Metabolism, Division of Biological Science, NARA Institute of Science and Technology, Nara, Japan
| | - Takayuki Tohge
- Plant Secondary Metabolism, Division of Biological Science, NARA Institute of Science and Technology, Nara, Japan
| | - Supaart Sirikantaramas
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
3
|
He X, Liu K, Wu Y, Xu W, Wang R, Pirrello J, Bouzayen M, Wu M, Liu M. A transcriptional cascade mediated by two APETALA2 family members orchestrates carotenoid biosynthesis in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1227-1241. [PMID: 38546046 DOI: 10.1111/jipb.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/06/2024] [Indexed: 06/21/2024]
Abstract
Carotenoids are important nutrients for human health that must be obtained from plants since they cannot be biosynthesized by the human body. Dissecting the regulatory mechanism of carotenoid metabolism in plants represents the first step toward manipulating carotenoid contents in plants by molecular design breeding. In this study, we determined that SlAP2c, an APETALA2 (AP2) family member, acts as a transcriptional repressor to regulate carotenoid biosynthesis in tomato (Solanum lycopersicum). Knockout of SlAP2c in both the "MicroTom" and "Ailsa Craig" backgrounds resulted in greater lycopene accumulation, whereas overexpression of this gene led to orange-ripe fruit with significantly lower lycopene contents than the wild type. We established that SlAP2c represses the expression of genes involved in lycopene biosynthesis by directly binding to the cis-elements in their promoters. Moreover, SlAP2c relies on its EAR motif to recruit the co-repressors TOPLESS (TPL)2/4 and forms a complex with histone deacetylase (had)1/3, thereby reducing the histone acetylation levels of lycopene biosynthesis genes. Furthermore, SlAP2a, a homolog of SlAP2c, acts upstream of SlAP2c and alleviates the SlAP2c-induced repression of lycopene biosynthesis genes by inhibiting SlAP2c transcription during fruit ripening. Therefore, we identified a transcriptional cascade mediated by AP2 family members that regulates lycopene biosynthesis during fruit ripening in tomato, laying the foundation for the manipulation of carotenoid metabolism in plants.
Collapse
Affiliation(s)
- Xiaoqing He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Yi Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Weijie Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ruochen Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, 31013, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, 31013, France
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Song J, Liu Y, Cai W, Zhou S, Fan X, Hu H, Ren L, Xue Y. Unregulated GmAGL82 due to Phosphorus Deficiency Positively Regulates Root Nodule Growth in Soybean. Int J Mol Sci 2024; 25:1802. [PMID: 38339080 PMCID: PMC10855635 DOI: 10.3390/ijms25031802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Nitrogen fixation, occurring through the symbiotic relationship between legumes and rhizobia in root nodules, is crucial in sustainable agriculture. Nodulation and soybean production are influenced by low levels of phosphorus stress. In this study, we discovered a MADS transcription factor, GmAGL82, which is preferentially expressed in nodules and displays significantly increased expression under conditions of phosphate (Pi) deficiency. The overexpression of GmAGL82 in composite transgenic plants resulted in an increased number of nodules, higher fresh weight, and enhanced soluble Pi concentration, which subsequently increased the nitrogen content, phosphorus content, and overall growth of soybean plants. Additionally, transcriptome analysis revealed that the overexpression of GmAGL82 significantly upregulated the expression of genes associated with nodule growth, such as GmENOD100, GmHSP17.1, GmHSP17.9, GmSPX5, and GmPIN9d. Based on these findings, we concluded that GmAGL82 likely participates in the phosphorus signaling pathway and positively regulates nodulation in soybeans. The findings of this research may lay the theoretical groundwork for further studies and candidate gene resources for the genetic improvement of nutrient-efficient soybean varieties in acidic soils.
Collapse
Affiliation(s)
- Jia Song
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
| | - Ying Liu
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Wangxiao Cai
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (W.C.); (S.Z.); (X.F.)
| | - Silin Zhou
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (W.C.); (S.Z.); (X.F.)
| | - Xi Fan
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (W.C.); (S.Z.); (X.F.)
| | - Hanqiao Hu
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Lei Ren
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Yingbin Xue
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
5
|
Gambhir P, Raghuvanshi U, Kumar R, Sharma AK. Transcriptional regulation of tomato fruit ripening. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:289-303. [PMID: 38623160 PMCID: PMC11016043 DOI: 10.1007/s12298-024-01424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
An intrinsic and genetically determined ripening program of tomato fruits often depends upon the appropriate activation of tissue- and stage-specific transcription factors in space and time. The past two decades have yielded considerable progress in detailing these complex transcriptional as well as hormonal regulatory circuits paramount to fleshy fruit ripening. This non-linear ripening process is strongly controlled by the MADS-box and NOR family of proteins, triggering a transcriptional response associated with the progression of fruit ripening. Deepening insights into the connection between MADS-RIN and plant hormones related transcription factors, such as ERFs and ARFs, further conjugates the idea that several signaling units work in parallel to define an output fruit ripening transcriptome. Besides these TFs, the role of other families of transcription factors such as MYB, GLK, WRKY, GRAS and bHLH have also emerged as important ripening regulators. Other regulators such as EIN and EIL proteins also determine the transcriptional landscape of ripening fruits. Despite the abundant knowledge of the complex spectrum of ripening networks in the scientific domain, identifying more ripening effectors would pave the way for a better understanding of fleshy fruit ripening at the molecular level. This review provides an update on the transcriptional regulators of tomato fruit ripening.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
6
|
Baranov D, Timerbaev V. Recent Advances in Studying the Regulation of Fruit Ripening in Tomato Using Genetic Engineering Approaches. Int J Mol Sci 2024; 25:760. [PMID: 38255834 PMCID: PMC10815249 DOI: 10.3390/ijms25020760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tomato (Solanum lycopersicum L.) is one of the most commercially essential vegetable crops cultivated worldwide. In addition to the nutritional value, tomato is an excellent model for studying climacteric fruits' ripening processes. Despite this, the available natural pool of genes that allows expanding phenotypic diversity is limited, and the difficulties of crossing using classical selection methods when stacking traits increase proportionally with each additional feature. Modern methods of the genetic engineering of tomatoes have extensive potential applications, such as enhancing the expression of existing gene(s), integrating artificial and heterologous gene(s), pointing changes in target gene sequences while keeping allelic combinations characteristic of successful commercial varieties, and many others. However, it is necessary to understand the fundamental principles of the gene molecular regulation involved in tomato fruit ripening for its successful use in creating new varieties. Although the candidate genes mediate ripening have been identified, a complete picture of their relationship has yet to be formed. This review summarizes the latest (2017-2023) achievements related to studying the ripening processes of tomato fruits. This work attempts to systematize the results of various research articles and display the interaction pattern of genes regulating the process of tomato fruit ripening.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
7
|
Liang MH, Li XY. Involvement of Transcription Factors and Regulatory Proteins in the Regulation of Carotenoid Accumulation in Plants and Algae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18660-18673. [PMID: 38053506 DOI: 10.1021/acs.jafc.3c05662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Carotenoids are essential for photosynthesis and photoprotection in photosynthetic organisms, which are widely used in food coloring, feed additives, nutraceuticals, cosmetics, and pharmaceuticals. Carotenoid biofortification in crop plants or algae has been considered as a sustainable strategy to improve human nutrition and health. However, the regulatory mechanisms of carotenoid accumulation are still not systematic and particularly scarce in algae. This article focuses on the regulatory mechanisms of carotenoid accumulation in plants and algae through regulatory factors (transcription factors and regulatory proteins), demonstrating the complexity of homeostasis regulation of carotenoids, mainly including transcriptional regulation as the primary mechanism, subsequent post-translational regulation, and cross-linking with other metabolic processes. Different organs of plants and different plant/algal species usually have specific regulatory mechanisms for the biosynthesis, storage, and degradation of carotenoids in response to the environmental and developmental signals. In plants and algae, regulators such as MYB, bHLH, MADS, bZIP, AP2/ERF, WRKY, and orange proteins can be involved in the regulation of carotenoid metabolism. And many more regulators, regulatory networks, and mechanisms need to be explored. Our paper will provide a basis for multitarget or multipathway engineering for carotenoid biofortification in plants and algae.
Collapse
Affiliation(s)
- Ming-Hua Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xian-Yi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
8
|
Zhao J, Xu Y, Li H, Zhu X, Yin Y, Zhang X, Qin X, Zhou J, Duan L, Liang X, Huang T, Zhang B, Wan R, Shi Z, Cao Y, An W. ERF5.1 modulates carotenoid accumulation by interacting with CCD4.1 in Lycium. HORTICULTURE RESEARCH 2023; 10:uhad230. [PMID: 38143484 PMCID: PMC10745278 DOI: 10.1093/hr/uhad230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
Carotenoids are important natural pigments and have medical and health functions for humans. Carotenoid cleavage dioxygenase 4 (CCD4) and ethylene responsive factor (ERF) participate in carotenoid metabolism, but their roles in Lycium have not been discovered. Here, we annotated LbCCDs from the Lycium reference genome and found that LbCCD4.1 expression was significantly correlated with the carotenoid metabolites during Lycium five fruit developmental stages. Over-expression of LbCCD4.1 in NQ's leaves resulted in a series of significantly lower contents of carotenoid metabolites, including β-carotene and β-cryptoxanthin. Moreover, LbERF5.1, a transcription factor belonging to the ERF family that was located in the nucleus, was isolated. Significant reductions in the carotenoids, especially lutein, violaxanthin and their derivatives, were observed in over-expressing ERF5.1 transgenic NQ's leaves. Over-expression or virus-induced gene silencing of LbERF5.1 in NQ's leaves induced a consistent up- or down-expression, respectively, of LbCCD4.1. Furthermore, yeast one-hybrid and dual-luciferase reporter assays showed that ERF5.1 interacted with the promoter of CCD4.1 to increase its expression, and LbERF5.1 could bind to any one of the three predicted binding sites in the promoter of LbCCD4.1. A transcriptome analysis of LbERF5.1 and LbCCD4.1 over-expressed lines showed similar global transcript expression, and geranylgeranyl diphosphate synthase, phytoene synthase, lycopene δ-cyclase cytochrome, cytochrome P450-type monooxygenase 97A, cytochrome P450-type monooxygenase 97C, and zeaxanthin epoxidase in the carotenoid biosynthesis pathway were differentially expressed. In summary, we uncovered a novel molecular mechanism of carotenoid accumulation that involved an interaction between ERF5.1 and CCD4.1, which may be used to enhance carotenoid in Lycium.
Collapse
Affiliation(s)
- Jianhua Zhao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Yuhui Xu
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Haoxia Li
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xinlei Zhu
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Yue Yin
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xiyan Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | | | - Jun Zhou
- College of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Linyuan Duan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Ting Huang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Bo Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Ru Wan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Zhigang Shi
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Youlong Cao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Wei An
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| |
Collapse
|
9
|
Lin Z, He Z, Ye D, Deng H, Lin L, Wang J, Lv X, Deng Q, Luo X, Liang D, Xia H. Genome-wide identification of the AcMADS-box family and functional validation of AcMADS32 involved in carotenoid biosynthesis in Actinidia. FRONTIERS IN PLANT SCIENCE 2023; 14:1159942. [PMID: 37404538 PMCID: PMC10315656 DOI: 10.3389/fpls.2023.1159942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023]
Abstract
MADS-box is a large transcription factor family in plants and plays a crucial role in various plant developmental processes; however, it has not been systematically analyzed in kiwifruit. In the present study, 74 AcMADS genes were identified in the Red5 kiwifruit genome, including 17 type-I and 57 type-II members according to the conserved domains. The AcMADS genes were randomly distributed across 25 chromosomes and were predicted to be mostly located in the nucleus. A total of 33 fragmental duplications were detected in the AcMADS genes, which might be the main force driving the family expansion. Many hormone-associated cis-acting elements were detected in the promoter region. Expression profile analysis showed that AcMADS members had tissue specificity and different responses to dark, low temperature, drought, and salt stress. Two genes in the AG group, AcMADS32 and AcMADS48, had high expression levels during fruit development, and the role of AcMADS32 was further verified by stable overexpression in kiwifruit seedlings. The content of α-carotene and the ratio of zeaxanthin/β-carotene was increased in transgenic kiwifruit seedlings, and the expression level of AcBCH1/2 was significantly increased, suggesting that AcMADS32 plays an important role in regulating carotenoid accumulation. These results have enriched our understanding of the MADS-box gene family and laid a foundation for further research of the functions of its members during kiwifruit development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hui Xia
- *Correspondence: Dong Liang, ; Hui Xia,
| |
Collapse
|
10
|
Liu Z, Mao L, Yang B, Cui Q, Dai Y, Li X, Chen Y, Dai X, Zou X, Ou L, Yang S. A multi-omics approach identifies bHLH71-like as a positive regulator of yellowing leaf pepper mutants exposed to high-intensity light. HORTICULTURE RESEARCH 2023; 10:uhad098. [PMID: 37426880 PMCID: PMC10323627 DOI: 10.1093/hr/uhad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 07/11/2023]
Abstract
Light quality and intensity can have a significant impact on plant health and crop productivity. Chlorophylls and carotenoids are classes of plant pigments that are responsible for harvesting light energy and protecting plants from the damaging effects of intense light. Our understanding of the role played by plant pigments in light sensitivity has been aided by light-sensitive mutants that change colors upon exposure to light of variable intensity. In this study, we conducted transcriptomic, metabolomic, and hormone analyses on a novel yellowing mutant of pepper (yl1) to shed light on the molecular mechanism that regulates the transition from green to yellow leaves in this mutant upon exposure to high-intensity light. Our results revealed greater accumulation of the carotenoid precursor phytoene and the carotenoids phytofluene, antheraxanthin, and zeaxanthin in yl1 compared with wild-type plants under high light intensity. A transcriptomic analysis confirmed that enzymes involved in zeaxanthin and antheraxanthin biosynthesis were upregulated in yl1 upon exposure to high-intensity light. We also identified a single basic helix-loop-helix (bHLH) transcription factor, bHLH71-like, that was differentially expressed and positively correlated with light intensity in yl1. Silencing of bHLH71-like in pepper plants suppressed the yellowing phenotype and led to reduced accumulation of zeaxanthin and antheraxanthin. We propose that the yellow phenotype of yl1 induced by high light intensity could be caused by an increase in yellow carotenoid pigments, concurrent with a decrease in chlorophyll accumulation. Our results also suggest that bHLH71-like functions as a positive regulator of carotenoid biosynthesis in pepper.
Collapse
Affiliation(s)
- Zhoubin Liu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Lianzhen Mao
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Bozhi Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Qingzhi Cui
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Yunhua Dai
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Xueqiao Li
- Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou 570100, China
| | - Yisong Chen
- Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou 570100, China
| | - Xiongze Dai
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Xuexiao Zou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Lijun Ou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Sha Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| |
Collapse
|
11
|
Liang MH, Xie SR, Chen HH, Jiang JG. DbMADS regulates carotenoid metabolism by repressing two carotenogenic genes in the green alga Dunaliella sp. FACHB-847. J Cell Physiol 2023; 238:1324-1335. [PMID: 37087727 DOI: 10.1002/jcp.31017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 04/24/2023]
Abstract
MADS transcription factors are involved in the regulation of fruit development and carotenoid metabolism in plants. However, whether and how carotenoid accumulation is regulated by algal MADS are largely unknown. In this study, we first used functional complementation to confirm the functional activity of phytoene synthase from the lutein-rich Dunaliella sp. FACHB-847 (DbPSY), the key rate-limiting enzyme in the carotenoid biosynthesis. Promoters of DbPSY and DbLcyB (lycopene β-cyclase) possessed multiple cis-acting elements such as light-, UV-B-, dehydration-, anaerobic-, and salt-responsive elements, W-box, and C-A-rich-G-box (MADS-box). Meanwhile, we isolated one nucleus-localized MADS transcription factor (DbMADS), belonging to type I MADS gene. Three carotenogenic genes, DbPSY, DbLcyB, and DbBCH (β-carotene hydroxylase) genes were upregulated at later stages, which was well correlated with the carotenoid accumulation. In contrast, DbMADS gene was highly expressed at lag phase with low carotenoid accumulation. Yeast one-hybrid assay and dual-luciferase reporter assay demonstrated that DbMADS could directly bind to the promoters of two carotenogenic genes, DbPSY and DbLcyB, and repress their transcriptions. This study suggested that DbMADS may act as a negative regulator of carotenoid biosynthesis by repressing DbPSY and DbLcyB at the lag phase, which provide new insights into the regulatory mechanisms of carotenoid metabolism in Dunaliella.
Collapse
Affiliation(s)
- Ming-Hua Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shan-Rong Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hao-Hong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Gao H, Suo X, Zhao L, Ma X, Cheng R, Wang G, Zhang H. Molecular evolution, diversification, and expression assessment of MADS gene family in Setaria italica, Setaria viridis, and Panicum virgatum. PLANT CELL REPORTS 2023; 42:1003-1024. [PMID: 37012438 DOI: 10.1007/s00299-023-03009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE This paper sheds light on the evolution and expression patterns of MADS genes in Setaria and Panicum virgatum. SiMADS51 and SiMADS64 maybe involved in the ABA-dependent pathway of drought response. The MADS gene family is a key regulatory factor family that controls growth, reproduction, and response to abiotic stress in plants. However, the molecular evolution of this family is rarely reported. Here, a total of 265 MADS genes were identified in Setaria italica (foxtail millet), Setaria viridis (green millet), and Panicum virgatum (switchgrass) and analyzed by bioinformatics, including physicochemical characteristics, subcellular localization, chromosomal position and duplicate, motif distribution, genetic structure, genetic evolvement, and expression patterns. Phylogenetic analysis was used to categorize these genes into M and MIKC types. The distribution of motifs and gene structure were similar for the corresponding types. According to a collinearity study, the MADS genes have been mostly conserved during evolution. The principal cause of their expansion is segmental duplication. However, the MADS gene family tends to shrink in foxtail millet, green millet, and switchgrass. The MADS genes were subjected to purifying selection, but several positive selection sites were also identified in three species. And most of the promoters of MADS genes contain cis-elements related to stress and hormonal response. RNA-seq and quantitative Real-time PCR (qRT-PCR) analysis also were examined. SiMADS genes expression levels are considerably changed in reaction to various treatments, following qRT-PCR analysis. This sheds fresh light on the evolution and expansion of the MADS family in foxtail millet, green millet, and switchgrass, and lays the foundation for further research on their functions.
Collapse
Affiliation(s)
- Hui Gao
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Department of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, Hebei, China
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiaoman Suo
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Department of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, Hebei, China
| | - Ling Zhao
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xinlei Ma
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Department of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, Hebei, China
| | - Ruhong Cheng
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
| | - Genping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
| | - Haoshan Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
- Chinese Academy of Agricultural Sciences Institute of Crop Sciences, Beijing, 100081, China.
| |
Collapse
|
13
|
Naik B, Kumar V, Rizwanuddin S, Chauhan M, Choudhary M, Gupta AK, Kumar P, Kumar V, Saris PEJ, Rather MA, Bhuyan S, Neog PR, Mishra S, Rustagi S. Genomics, Proteomics, and Metabolomics Approaches to Improve Abiotic Stress Tolerance in Tomato Plant. Int J Mol Sci 2023; 24:3025. [PMID: 36769343 PMCID: PMC9918255 DOI: 10.3390/ijms24033025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
To explore changes in proteins and metabolites under stress circumstances, genomics, proteomics, and metabolomics methods are used. In-depth research over the previous ten years has gradually revealed the fundamental processes of plants' responses to environmental stress. Abiotic stresses, which include temperature extremes, water scarcity, and metal toxicity brought on by human activity and urbanization, are a major cause for concern, since they can result in unsustainable warming trends and drastically lower crop yields. Furthermore, there is an emerging reliance on agrochemicals. Stress is responsible for physiological transformations such as the formation of reactive oxygen, stomatal opening and closure, cytosolic calcium ion concentrations, metabolite profiles and their dynamic changes, expression of stress-responsive genes, activation of potassium channels, etc. Research regarding abiotic stresses is lacking because defense feedbacks to abiotic factors necessitate regulating the changes that activate multiple genes and pathways that are not properly explored. It is clear from the involvement of these genes that plant stress response and adaptation are complicated processes. Targeting the multigenicity of plant abiotic stress responses caused by genomic sequences, transcripts, protein organization and interactions, stress-specific and cellular transcriptome collections, and mutant screens can be the first step in an integrative approach. Therefore, in this review, we focused on the genomes, proteomics, and metabolomics of tomatoes under abiotic stress.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun 248014, Uttarakhand, India
| | - Sheikh Rizwanuddin
- Department of Life Sciences, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Mansi Chauhan
- Department of Life Sciences, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun 248014, Uttarakhand, India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Pankaj Kumar
- Department of Microbiology, Dolphin (PG) Institute of Biomedical and Natural Sciences, Dehradun 248007, Uttarakhand, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun 248014, Uttarakhand, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Panchi Rani Neog
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
14
|
Peng Z, Liu G, Li H, Wang Y, Gao H, Jemrić T, Fu D. Molecular and Genetic Events Determining the Softening of Fleshy Fruits: A Comprehensive Review. Int J Mol Sci 2022; 23:12482. [PMID: 36293335 PMCID: PMC9604029 DOI: 10.3390/ijms232012482] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit softening that occurs during fruit ripening and postharvest storage determines the fruit quality, shelf life and commercial value and makes fruits more attractive for seed dispersal. In addition, over-softening results in fruit eventual decay, render fruit susceptible to invasion by opportunistic pathogens. Many studies have been conducted to reveal how fruit softens and how to control softening. However, softening is a complex and delicate life process, including physiological, biochemical and metabolic changes, which are closely related to each other and are affected by environmental conditions such as temperature, humidity and light. In this review, the current knowledge regarding fruit softening mechanisms is summarized from cell wall metabolism (cell wall structure changes and cell-wall-degrading enzymes), plant hormones (ETH, ABA, IAA and BR et al.), transcription factors (MADS-Box, AP2/ERF, NAC, MYB and BZR) and epigenetics (DNA methylation, histone demethylation and histone acetylation) and a diagram of the regulatory relationship between these factors is provided. It will provide reference for the cultivation of anti-softening fruits.
Collapse
Affiliation(s)
- Zhenzhen Peng
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Gangshuai Liu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongli Li
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tomislav Jemrić
- Department of Pomology, Division of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
15
|
Shi Y, Li BJ, Su G, Zhang M, Grierson D, Chen KS. Transcriptional regulation of fleshy fruit texture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1649-1672. [PMID: 35731033 DOI: 10.1111/jipb.13316] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/22/2022] [Indexed: 05/24/2023]
Abstract
Fleshy fruit texture is a critically important quality characteristic of ripe fruit. Softening is an irreversible process which operates in most fleshy fruits during ripening which, together with changes in color and taste, contributes to improvements in mouthfeel and general attractiveness. Softening results mainly from the expression of genes encoding enzymes responsible for cell wall modifications but starch degradation and high levels of flavonoids can also contribute to texture change. Some fleshy fruit undergo lignification during development and post-harvest, which negatively affects eating quality. Excessive softening can also lead to physical damage and infection, particularly during transport and storage which causes severe supply chain losses. Many transcription factors (TFs) that regulate fruit texture by controlling the expression of genes involved in cell wall and starch metabolism have been characterized. Some TFs directly regulate cell wall targets, while others act as part of a broader regulatory program governing several aspects of the ripening process. In this review, we focus on advances in our understanding of the transcriptional regulatory mechanisms governing fruit textural change during fruit development, ripening and post-harvest. Potential targets for breeding and future research directions for the control of texture and quality improvement are discussed.
Collapse
Affiliation(s)
- Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Bai-Jun Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Guanqing Su
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Mengxue Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Donald Grierson
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Kun-Song Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
16
|
Zhu F, Wen W, Cheng Y, Fernie AR. The metabolic changes that effect fruit quality during tomato fruit ripening. MOLECULAR HORTICULTURE 2022; 2:2. [PMID: 37789428 PMCID: PMC10515270 DOI: 10.1186/s43897-022-00024-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/12/2022] [Indexed: 10/05/2023]
Abstract
As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here, both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network analysis of representative genes of fruit quality has been carried out and the potential of the combined application of the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel candidate genes determinants of fruit quality is discussed.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany.
| |
Collapse
|
17
|
Trubanová N, Shi J, Schilling S. Firming up your tomato: a natural promoter variation in a MADS-box gene is causing all-flesh tomatoes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1-4. [PMID: 34986230 PMCID: PMC8730695 DOI: 10.1093/jxb/erab442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This article comments on: Liu L, Zhang K, Bai JR, Lu J, Lu X, Hu J, Pan C, He S, Yuan J, Zhang Y, Zhang M, Guo Y, Wang X, Huang Z, Du Y, Cheng F, Li J. 2022. All-flesh fruit in tomato is controlled by reduced expression dosage of AFF through a structural variant mutation in the promoter. Journal of Experimental Botany 73, 123–138.
Collapse
Affiliation(s)
- Nina Trubanová
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Ireland
| | - Jiaqi Shi
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Ireland
| | - Susanne Schilling
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Ireland
| |
Collapse
|
18
|
Saradadevi GP, Das D, Mangrauthia SK, Mohapatra S, Chikkaputtaiah C, Roorkiwal M, Solanki M, Sundaram RM, Chirravuri NN, Sakhare AS, Kota S, Varshney RK, Mohannath G. Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review. BIOLOGY 2021; 10:biology10121255. [PMID: 34943170 PMCID: PMC8698797 DOI: 10.3390/biology10121255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Globally, soil salinity, which refers to salt-affected soils, is increasing due to various environmental factors and human activities. Soil salinity poses one of the most serious challenges in the field of agriculture as it significantly reduces the growth and yield of crop plants, both quantitatively and qualitatively. Over the last few decades, several studies have been carried out to understand plant biology in response to soil salinity stress with a major emphasis on genetic and other hereditary components. Based on the outcome of these studies, several approaches are being followed to enhance plants’ ability to tolerate salt stress while still maintaining reasonable levels of crop yields. In this manuscript, we comprehensively list and discuss various biological approaches being followed and, based on the recent advances in the field of molecular biology, we propose some new approaches to improve salinity tolerance of crop plants. The global scientific community can make use of this information for the betterment of crop plants. This review also highlights the importance of maintaining global soil health to prevent several crop plant losses. Abstract Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades. In this comprehensive review, with a major focus on recent advances in the field of plant molecular biology, we discuss several approaches to enhance salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria (PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we propose novel approaches to create and exploit heritable genome-wide epigenetic variation in crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods to generate them. The proposed epigenetic approaches also have the potential to create additional genetic variation by modulating meiotic crossover frequency.
Collapse
Affiliation(s)
- Gargi Prasad Saradadevi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Satendra K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Sridev Mohapatra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Manish Solanki
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Raman Meenakshi Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Neeraja N. Chirravuri
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Akshay S. Sakhare
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Suneetha Kota
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| |
Collapse
|
19
|
Antioxidant Activity and Healthy Benefits of Natural Pigments in Fruits: A Review. Int J Mol Sci 2021; 22:ijms22094945. [PMID: 34066601 PMCID: PMC8125642 DOI: 10.3390/ijms22094945] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Natural pigments, including carotenoids, flavonoids and anthocyanidins, determine the attractive color of fruits. These natural pigments are essential secondary metabolites, which play multiple roles in the whole life cycle of plants and are characterized by powerful antioxidant activity. After decades of research and development, multiple benefits of these natural pigments to human health have been explored and recognized and have shown bright application prospects in food, medicine, cosmetics and other industries. In this paper, the research progress of natural fruit pigments in recent years was reviewed, including the structural characteristics and classification, distribution in fruits and analysis methods, biosynthetic process, antioxidant capacity and mechanism, bioaccessibility and bioavailability, and health benefits. Overall, this paper summarizes the recent advances in antioxidant activity and other biological functions of natural fruit pigments, which aims to provide guidance for future research.
Collapse
|
20
|
Salava H, Thula S, Mohan V, Kumar R, Maghuly F. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects. Int J Mol Sci 2021; 22:E682. [PMID: 33445555 PMCID: PMC7827871 DOI: 10.3390/ijms22020682] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Plants regularly face the changing climatic conditions that cause biotic and abiotic stress responses. The abiotic stresses are the primary constraints affecting crop yield and nutritional quality in many crop plants. The advances in genome sequencing and high-throughput approaches have enabled the researchers to use genome editing tools for the functional characterization of many genes useful for crop improvement. The present review focuses on the genome editing tools for improving many traits such as disease resistance, abiotic stress tolerance, yield, quality, and nutritional aspects of tomato. Many candidate genes conferring tolerance to abiotic stresses such as heat, cold, drought, and salinity stress have been successfully manipulated by gene modification and editing techniques such as RNA interference, insertional mutagenesis, and clustered regularly interspaced short palindromic repeat (CRISPR/Cas9). In this regard, the genome editing tools such as CRISPR/Cas9, which is a fast and efficient technology that can be exploited to explore the genetic resources for the improvement of tomato and other crop plants in terms of stress tolerance and nutritional quality. The review presents examples of gene editing responsible for conferring both biotic and abiotic stresses in tomato simultaneously. The literature on using this powerful technology to improve fruit quality, yield, and nutritional aspects in tomato is highlighted. Finally, the prospects and challenges of genome editing, public and political acceptance in tomato are discussed.
Collapse
Affiliation(s)
- Hymavathi Salava
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Sravankumar Thula
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic;
| | - Vijee Mohan
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
| | - Rahul Kumar
- Plant Translational Research Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Fatemeh Maghuly
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
21
|
Wang Y, Feng G, Zhang Z, Liu Y, Ma Y, Wang Y, Ma F, Zhou Y, Gross R, Xu H, Wang R, Xiao F, Liu Y, Niu X. Overexpression of Pti4, Pti5, and Pti6 in tomato promote plant defense and fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110702. [PMID: 33288015 DOI: 10.1016/j.plantsci.2020.110702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/19/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
Pseudomonas syringae pv. tomato (Pst) is a pathogenic microorganism that causes bacterial speck disease and affects tomato yield and quality. Pto is a disease resistant gene for plant to recognize and defense against Pst. Pto interacts with Pti (Pto interacting) proteins, which include three transcription factors, Pti4, Pti5, Pti6, and they were thought to be downstream of Pto-mediated pathway to promote the expression of disease-related genes. In the present work, the overexpression plants of Pti4, Pti5 or Pti6 were obtained by Agrobacterium-mediated transformation in tomato. The Pti4/5/6-overexpressed lines indicated enhanced expression of pathogenesis-related genes and resistance to pathogenic bacteria Pst DC3000. Meanwhile, the transgenic plants showed that Pti4/5/6 function in ripening but performed no obvious adverse influence on flowering time, seed-setting rate, weight and soluble solids content of fruits. Furthermore, Pti-overexpressed fruits exhibited increased enzymatic activities of phenylalnine ammonialyase, catalase, peroxidase and decreased content of malondialdehyde. Additionally, cell-free and in vivo ubiquitination assay indicated that Pti4, Pti5 and Pti6 degraded by 26S proteasome which suggested that these Pti transcription regulators' functions could be regulated by ubiquitin-mediated post translational regulation in tomato.
Collapse
Affiliation(s)
- Yang Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guodong Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zheng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ying Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yilong Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yingying Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fei Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yu Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Rachel Gross
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Huanhuan Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ruipeng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; School of Horticulture, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xiangli Niu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
22
|
Liu Y, Shi Y, Su D, Lu W, Li Z. SlGRAS4 accelerates fruit ripening by regulating ethylene biosynthesis genes and SlMADS1 in tomato. HORTICULTURE RESEARCH 2021; 8:3. [PMID: 33384413 PMCID: PMC7775462 DOI: 10.1038/s41438-020-00431-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/12/2020] [Accepted: 10/12/2020] [Indexed: 05/29/2023]
Abstract
GRAS proteins are plant-specific transcription factors that play crucial roles in plant development and stress responses. However, their involvement in the ripening of economically important fruits and their transcriptional regulatory mechanisms remain largely unclear. Here, we demonstrated that SlGRAS4, encoding a transcription factor of the GRAS family, was induced by the tomato ripening process and regulated by ethylene. Overexpression of SlGRAS4 accelerated fruit ripening, increased the total carotenoid content and increased PSY1 expression in SlGRAS4-OE fruit compared to wild-type fruit. The expression levels of key ethylene biosynthesis genes (SlACS2, SlACS4, SlACO1, and SlACO3) and crucial ripening regulators (RIN and NOR) were increased in SlGRAS4-OE fruit. The negative regulator of tomato fruit ripening, SlMADS1, was repressed in OE fruit. Exogenous ethylene and 1-MCP treatment revealed that more endogenous ethylene was derived in SlGRAS4-OE fruit. More obvious phenotypes were observed in OE seedlings after ACC treatment. Yeast one-hybrid and dual-luciferase assays confirmed that SlGRAS4 can directly bind SlACO1 and SlACO3 promoters to activate their transcription, and SlGRAS4 can also directly repress SlMADS1 expression. Our study identified that SlGRAS4 acts as a new regulator of fruit ripening by regulating ethylene biosynthesis genes in a direct manner. This provides new knowledge of GRAS transcription factors involved in regulating fruit ripening.
Collapse
Affiliation(s)
- Yudong Liu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Yuan Shi
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Deding Su
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Wang Lu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China.
| |
Collapse
|
23
|
Naing AH, Kyu SY, Pe PPW, Park KI, Lee JM, Lim KB, Kim CK. Silencing of the phytoene desaturase ( PDS) gene affects the expression of fruit-ripening genes in tomatoes. PLANT METHODS 2019; 15:110. [PMID: 31592162 PMCID: PMC6777038 DOI: 10.1186/s13007-019-0491-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/04/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Past research has shown that virus-induced phytoene desaturase (PDS) gene silencing via agroinjection in the attached and detached fruit of tomato plants results in a pale-yellow fruit phenotype. Although the PDS gene is often used as a marker for gene silencing in tomatoes, little is known about the role of PDS in fruit ripening. In this study, we investigated whether the pepper PDS gene silenced endogenous PDS genes in the fruit of two tomato cultivars, Dotaerang Plus and Legend Summer. RESULTS We found that the pepper PDS gene successfully silenced endogenous PDS in tomato fruit at a silencing frequency of 100% for both cultivars. A pale-yellow silenced area was observed over virtually the entire surface of individual fruit due to the transcriptional reduction in phytoene desaturase (PDS), zeta-carotene (ZDS), prolycopene isomerase (CrtlSO), and beta-carotene hydroxylase (CrtR-b2), which are the carotenoid biosynthesis genes responsible for the red coloration in tomatoes. PDS silencing also affected the expression levels of the fruit-ripening genes Tomato AGAMOUS-LIKE1 (TAGL1), RIPENING INHIBITOR (RIN), pectin esterase gene (PE), lipoxygenase (LOX), FRUITFULL1/FRUITFUL2 (FUL1/FUL2), and the ethylene biosynthesis and response genes 1-aminocyclopropane-1-carboxylate oxidase 1 and 3 (ACO1 and ACO3) and ethylene-responsive genes (E4 and E8). CONCLUSION These results suggest that PDS is a positive regulator of ripening in tomato fruit, which must be considered when using it as a marker for virus-induced gene silencing (VIGS) experiments in order to avoid fruit-ripening side effects.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Swum Yi Kyu
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Phyo Phyo Win Pe
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan, South Korea
| | - Kyeung Il Park
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan, South Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Ki Byung Lim
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
24
|
Wang Y, Zhang J, Hu Z, Guo X, Tian S, Chen G. Genome-Wide Analysis of the MADS-Box Transcription Factor Family in Solanum lycopersicum. Int J Mol Sci 2019; 20:ijms20122961. [PMID: 31216621 PMCID: PMC6627509 DOI: 10.3390/ijms20122961] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 11/16/2022] Open
Abstract
MADS-box family genes encode transcription factors that are involved in multiple developmental processes in plants, especially in floral organ specification, fruit development, and ripening. However, a comprehensive analysis of tomato MADS-box family genes, which is an important model plant to study flower fruit development and ripening, remains obscure. To gain insight into the MADS-box genes in tomato, 131 tomato MADS-box genes were identified. These genes could be divided into five groups (Mα, Mβ, Mγ, Mδ, and MIKC) and were found to be located on all 12 chromosomes. We further analyzed the phylogenetic relationships among Arabidopsis and tomato, as well as the protein motif structure and exon–intron organization, to better understand the tomato MADS-box gene family. Additionally, owing to the role of MADS-box genes in floral organ identification and fruit development, the constitutive expression patterns of MADS-box genes at different stages in tomato development were identified. We analyzed 15 tomato MADS-box genes involved in floral organ identification and five tomato MADS-box genes related to fruit development by qRT-PCR. Collectively, our study provides a comprehensive and systematic analysis of the tomato MADS-box genes and would be valuable for the further functional characterization of some important members of the MADS-box gene family.
Collapse
Affiliation(s)
- Yunshu Wang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Jianling Zhang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Xuhu Guo
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Shibing Tian
- The Institute of Vegetable Research, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
25
|
Li S, Chen K, Grierson D. A critical evaluation of the role of ethylene and MADS transcription factors in the network controlling fleshy fruit ripening. THE NEW PHYTOLOGIST 2019; 221:1724-1741. [PMID: 30328615 DOI: 10.1111/nph.15545] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 1724 I. Introduction 1725 II. Ripening genes 1725 III. The importance of ethylene in controlling ripening 1727 IV. The importance of MADS-RIN in controlling ripening 1729 V. Interactions between components of the ripening regulatory network 1734 VI. Conclusions 1736 Acknowledgements 1738 Author contributions 1738 References 1738 SUMMARY: Understanding the regulation of fleshy fruit ripening is biologically important and provides insights and opportunities for controlling fruit quality, enhancing nutritional value for animals and humans, and improving storage and waste reduction. The ripening regulatory network involves master and downstream transcription factors (TFs) and hormones. Tomato is a model for ripening regulation, which requires ethylene and master TFs including NAC-NOR and the MADS-box protein MADS-RIN. Recent functional characterization showed that the classical RIN-MC gene fusion, previously believed to be a loss-of-function mutation, is an active TF with repressor activity. This, and other evidence, has highlighted the possibility that MADS-RIN itself is not important for ripening initiation but is required for full ripening. In this review, we discuss the diversity of components in the control network, their targets, and how they interact to control initiation and progression of ripening. Both hormones and individual TFs affect the status and activity of other network participants, which changes overall network signaling and ripening outcomes. MADS-RIN, NAC-NOR and ethylene play critical roles but there are still unanswered questions about these and other TFs. Further attention should be paid to relationships between ethylene, MADS-RIN and NACs in ripening control.
Collapse
Affiliation(s)
- Shan Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Don Grierson
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
26
|
Shahan R, Li D, Liu Z. Identification of genes preferentially expressed in wild strawberry receptacle fruit and demonstration of their promoter activities. HORTICULTURE RESEARCH 2019; 6:50. [PMID: 31044078 PMCID: PMC6491448 DOI: 10.1038/s41438-019-0134-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/08/2019] [Accepted: 02/18/2019] [Indexed: 05/11/2023]
Abstract
Fragaria vesca (F. vesca), the wild strawberry, is a diploid model for the commercial, octoploid strawberry as well as other members of the economically relevant Rosaceae family. Unlike the fruits of tomato and Arabidopsis, the fleshy fruit of strawberry is unique in that it is derived from the floral receptacle and has an external seed configuration. Thus, identification and subsequent characterization of receptacle-expressed genes may shed light on novel developmental processes or provide insight into how developmental regulation differs between receptacle-derived and ovary-derived fruits. Further, since fruit and flower tissues are the last organs to form on a plant, the development of receptacle fruit-specific promoters may provide useful molecular tools for research and application. In this work, we mined previously generated RNA-Seq datasets and identified 589 genes preferentially expressed in the strawberry receptacle versus all other profiled tissues. Promoters of a select subset of the 589 genes were isolated and their activities tested using a GUS transcriptional reporter. These promoters may now be used by the F. vesca research community for a variety of purposes, including driving expression of tissue-specific reporters, RNAi constructs, or specific genes to manipulate fruit development. Further, identified genes with receptacle-specific expression patterns, including MADS-Box and KNOX family transcription factors, are potential key regulators of fleshy fruit development and attractive candidates for functional characterization.
Collapse
Affiliation(s)
- Rachel Shahan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
- Present Address: Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, NC 27708 USA
| | - Dongdong Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
27
|
Castelán-Muñoz N, Herrera J, Cajero-Sánchez W, Arrizubieta M, Trejo C, García-Ponce B, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. MADS-Box Genes Are Key Components of Genetic Regulatory Networks Involved in Abiotic Stress and Plastic Developmental Responses in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:853. [PMID: 31354752 PMCID: PMC6636334 DOI: 10.3389/fpls.2019.00853] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/13/2019] [Indexed: 05/05/2023]
Abstract
Plants, as sessile organisms, adapt to different stressful conditions, such as drought, salinity, extreme temperatures, and nutrient deficiency, via plastic developmental and growth responses. Depending on the intensity and the developmental phase in which it is imposed, a stress condition may lead to a broad range of responses at the morphological, physiological, biochemical, and molecular levels. Transcription factors are key components of regulatory networks that integrate environmental cues and concert responses at the cellular level, including those that imply a stressful condition. Despite the fact that several studies have started to identify various members of the MADS-box gene family as important molecular components involved in different types of stress responses, we still lack an integrated view of their role in these processes. In this review, we analyze the function and regulation of MADS-box gene family members in response to drought, salt, cold, heat, and oxidative stress conditions in different developmental processes of several plants. In addition, we suggest that MADS-box genes are key components of gene regulatory networks involved in plant responses to stress and plant developmental plasticity in response to seasonal changes in environmental conditions.
Collapse
Affiliation(s)
- Natalia Castelán-Muñoz
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Postgrado en Recursos Genéticos y Productividad-Fisiología Vegetal, Colegio de Postgraduados, Texcoco, Mexico
| | - Joel Herrera
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Wendy Cajero-Sánchez
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maite Arrizubieta
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Trejo
- Postgrado en Botánica, Colegio de Postgraduados, Texcoco, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Adriana Garay-Arroyo
| |
Collapse
|
28
|
Hu P, Li G, Zhao X, Zhao F, Li L, Zhou H. Transcriptome profiling by RNA-Seq reveals differentially expressed genes related to fruit development and ripening characteristics in strawberries ( Fragaria × ananassa). PeerJ 2018; 6:e4976. [PMID: 29967718 PMCID: PMC6026456 DOI: 10.7717/peerj.4976] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/24/2018] [Indexed: 11/21/2022] Open
Abstract
Strawberry (Fragaria × ananassa) is an ideal plant for fruit development and ripening research due to the rapid substantial changes in fruit color, aroma, taste, and softening. To gain deeper insights into the genes that play a central regulatory role in strawberry fruit development and ripening characteristics, transcriptome profiling was performed for the large green fruit, white fruit, turning fruit, and red fruit stages of strawberry. A total of 6,608 differentially expressed genes (DEGs) with 2,643 up-regulated and 3,965 down-regulated genes were identified in the fruit development and ripening process. The DEGs related to fruit flavonoid biosynthesis, starch and sucrose biosynthesis, the citrate cycle, and cell-wall modification enzymes played important roles in the fruit development and ripening process. Particularly, some candidate genes related to the ubiquitin mediated proteolysis pathway and MADS-box were confirmed to be involved in fruit development and ripening according to their possible regulatory functions. A total of five ubiquitin-conjugating enzymes and 10 MADS-box transcription factors were differentially expressed between the four fruit ripening stages. The expression levels of DEGs relating to color, aroma, taste, and softening of fruit were confirmed by quantitative real-time polymerase chain reaction. Our study provides important insights into the complicated regulatory mechanism underlying the fruit ripening characteristics in Fragaria × ananassa.
Collapse
Affiliation(s)
- Panpan Hu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gang Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xia Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Fengli Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Liangjie Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Houcheng Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| |
Collapse
|
29
|
Yin W, Yu X, Chen G, Tang B, Wang Y, Liao C, Zhang Y, Hu Z. Suppression of SlMBP15 Inhibits Plant Vegetative Growth and Delays Fruit Ripening in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:938. [PMID: 30022990 PMCID: PMC6039764 DOI: 10.3389/fpls.2018.00938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/11/2018] [Indexed: 05/04/2023]
Abstract
MADS-box genes have been demonstrated to participate in a number of processes in tomato development, especially fruit ripening. In this study, we reported a novel MADS-box gene, SlMBP15, which is implicated in fruit ripening. Based on statistical analysis, the ripening time of SlMBP15-silenced tomato was delayed by 2-4 days compared with that of the wild-type (WT). The accumulation of carotenoids and biosynthesis of ethylene in fruits were decreased in SlMBP15-silenced tomato. Genes related to carotenoid and ethylene biosynthesis were greatly repressed. SlMBP15 can interact with RIN, a MADS-box regulator affecting the carotenoid accumulation and ethylene biosynthesis in tomato. In addition, SlMBP15-silenced tomato produced dark green leaves, and its plant height was reduced. The gibberellin (GA) content of transgenic plants was lower than that of the WT and GA biosynthesis genes were repressed. These results demonstrated that SlMBP15 not only positively regulated tomato fruit ripening but also affected the morphogenesis of the vegetative organs.
Collapse
Affiliation(s)
- Wencheng Yin
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Boyan Tang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Changguang Liao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Yanjie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
- *Correspondence: Zongli Hu,
| |
Collapse
|