1
|
Liu C, Gu W, Li B, Feng Y, Liu C, Shi X, Zhou Y. Screening key sorghum germplasms for low-nitrogen tolerance at the seedling stage and identifying from the carbon and nitrogen metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1340509. [PMID: 39328797 PMCID: PMC11424420 DOI: 10.3389/fpls.2024.1340509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/15/2024] [Indexed: 09/28/2024]
Abstract
Introduction Sorghum (Sorghum bicolor L.) can withstand drought and heat stress and efficiently utilize water and nutrients. However, the underlying mechanism of its tolerance to low-nitrogen (N) stress remains poorly understood. Materials and methods This study assessed low-N tolerance in 100 sorghum-inbred lines and identified those with exceptional resilience. Principal component analysis, Pearson's correlation, and Y value analysis were used to examine various seedling growth metrics, including plant and root dimensions, biomass, chlorophyll content, root N content, shoot N content, and root/shoot ratio. Results and discussion The genotypes were categorized into four distinct groups based on their respective Y values, revealing a spectrum from highly tolerant to sensitive. Low-N-tolerant sorghum lines maintained higher photosynthetic rates and exhibited increased enzymatic activities linked to carbon and N metabolism in the leaves and roots. Furthermore, low-N-tolerant genotypes had higher levels of key amino acids, including cystine, glycine, histidine, isoleucine, leucine, phenylalanine, threonine, and tyrosine, indicating a robust internal metabolic response to N deficiency. Conclusion This study provides a comprehensive and reliable approach for the evaluation of sorghum tolerance to low-N environments, sheds light on its morphological and physiological adaptations, and provides valuable insights for future breeding programs and agricultural practices.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Wendong Gu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bang Li
- College of Agronomy and Horticulture, Liaoning Agricultural Vocational and Technical College, Yingkou, Liaoning, China
| | - Yihao Feng
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chang Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaolong Shi
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yufei Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Huang S, Ashraf U, Duan M, Ren Y, Xing P, Yan Z, Tang X. Ultrasonic seed treatment improved seed germination, growth, and yield of rice by modulating associated physio-biochemical mechanisms. ULTRASONICS SONOCHEMISTRY 2024; 104:106821. [PMID: 38387222 PMCID: PMC10901143 DOI: 10.1016/j.ultsonch.2024.106821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Ultrasonic seed (US) treatment could alter seed germination mechanism, however, US induced alterations in morph-physiological attributes and yield of fragrant rice were rarely reported. In the present study, the seeds of three fragrant rice cultivars viz., Xiangyaxiangzhan, Meixiangzhan 2, Ruanhuayou 6100 and one non-fragrant rice viz., Wufengyou 615 were exposed to ultrasonic waves at 20-40 kHz for 1.5 min (T) whereas the seeds without exposure were taken as control (CK). Results showed that US treatment caused minor cracks on seed surface while improved seed germination rate (1.79 %-11.09 %) and 3-indoleacetic acid (IAA) (3.36 %-46.91 %). Furthermore, peroxidase (POD) activity and methionine sulfoxide reductase activity was increased by 29.15 %-74.13 % and 11.26 %-20.87 %, respectively; however, methionine sulfoxide reductase related protein repairing gene MSRA4 was down-regulated by 17.93 % -41.04 % under T, compared to CK. Besides, US treatment also improved soluble protein in flag leaf (0.92 %-40.79 %), photosynthesis (3.37 %-16.46 %), biomass (5.17 %-31.87 %), as well as 2-acetyl-1-pyrroline content (4.77 %-15.48 %) in rice grains. In addition, multivariate analysis showed that the dry weight at the maturity stage were significantly related to the POD, glutathione reductase (GR) activity, IAA, and abscisic acid (ABA) content while germination rate was positively related to the GR activity, ABA content, and yield, but which were negatively related to the IAA and gibberellic acid content.
Collapse
Affiliation(s)
- Suihua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China; Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Punjab, Pakistan
| | - Meiyang Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yong Ren
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, 537000, China
| | - Pipeng Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Zhuosheng Yan
- Guangzhou Golden Rice Agricultural Science & Technology Co., Ltd., Guangzhou 510900, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Liang K, Wang G, Shen Z, Wu J, Zou N, Yu H, Yu S, Chen F, Shi J. Application of the strip clear-cutting system in a running bamboo ( Phyllostachys glauca McClure) forest: feasibility and sustainability assessments. FRONTIERS IN PLANT SCIENCE 2024; 15:1335250. [PMID: 38410735 PMCID: PMC10895657 DOI: 10.3389/fpls.2024.1335250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024]
Abstract
Introduction As a renewable forest resource, bamboo plays a role in sustainable forest development. However, traditional cutting systems, selection cutting (SeC) and clear-cutting (ClC), result in an unsustainable production of bamboo forests due to labor-consuming or bamboo degradation. Recently, a strip clear-cutting (StC) was theoretically proposed to promote the sustainability of bamboo production, while little is known about its application consequence. Methods Based on a 6-year experiment, we applied the strip clear-cutting system in a typical running bamboo (Phyllostachys glauca McClure) forest to assess its feasibility and sustainability. Using SeC and ClC as controls, we set three treatments with different strip widths (5 m, 10 m, and 20 m) for strip clear-cutting, simplified as StC-5, StC-10, and StC-20, respectively. Then, we investigated leaf physiological traits, bamboo size and productivity, population features, and economic benefits for all treatments. Results The stands managed by StC had high eco-physiological activities, such as net photosynthetic rate (P n), photosynthetic nitrogen use efficiency (PNUE), and photosynthetic phosphorus use efficiency (PPUE), and thus grew well, achieved a large diameter at breast height (DBH), and were tall. The stand biomass of StC (8.78 t hm-2 year-1) was 1.19-fold and 1.49-fold greater than that of SeC and ClC, respectively, and StC-10 and StC-20 were significantly higher than SeC or ClC (p< 0.05). The income and profit increased with the increase in stand density and biomass, and StC-20 and StC-10 were significantly higher than SeC or ClC (p< 0.05). Using principal components analysis and subordinate function analysis, we constructed a composite index to indicate the sustainability of bamboo forests. For the sustainability assessment, StC-10 had the highest productive sustainability (0.59 ± 0.06) and the second highest economic sustainability (0.59 ± 0.11) in all cutting treatments. StC-10 had the maximum overall sustainability, with a value of 0.53 ± 0.02, which was significantly higher than that of ClC (p< 0.05). Conclusion The results verified that StC for Phyllostachys glauca forests is feasible and sustainable as its sustainability index outweighs those of traditional cutting systems (SeC and ClC), and 10 m is the optimum distance for the strip width of StC. Our findings provide a new cutting system for managing other running bamboo forests sustainably.
Collapse
Affiliation(s)
- Kuan Liang
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang, China
| | - Guangru Wang
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zhan Shen
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Juan Wu
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Soil and Water Conservation, Jiangxi Academy of Water Science and Engineering, Nanchang, China
| | - Na Zou
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Hongying Yu
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Shebao Yu
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Fusheng Chen
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang, China
| | - Jianmin Shi
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
4
|
Xu X, Zhang X, Ni W, Liu C, Qin H, Guan Y, Liu J, Feng Z, Xing Y, Tian G, Zhu Z, Ge S, Jiang Y. Nitrogen-potassium balance improves leaf photosynthetic capacity by regulating leaf nitrogen allocation in apple. HORTICULTURE RESEARCH 2024; 11:uhad253. [PMID: 38486813 PMCID: PMC10939330 DOI: 10.1093/hr/uhad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/15/2023] [Indexed: 03/17/2024]
Abstract
Nitrogen (N) and potassium (K) are two important mineral nutrients in regulating leaf photosynthesis. However, the influence of N and K interaction on photosynthesis is still not fully understood. Using a hydroponics approach, we studied the effects of different N and K conditions on the physiological characteristics, N allocation and photosynthetic capacity of apple rootstock M9T337. The results showed that high N and low K conditions significantly reduced K content in roots and leaves, resulting in N/K imbalance, and allocated more N in leaves to non-photosynthetic N. Low K conditions increased biochemical limitation (BL), mesophyll limitation (MCL), and stomatal limitation (SL). By setting different N supplies, lowering N levels under low K conditions increased the proportion of water-soluble protein N (Nw) and sodium dodecyl sulfate-soluble proteins (Ns) by balancing N/K and increased the proportion of carboxylation N and electron transfer N. This increased the maximum carboxylation rate and mesophyll conductance, which reduced MCL and BL and alleviated the low K limitation of photosynthesis in apple rootstocks. In general, our results provide new insights into the regulation of photosynthetic capacity by N/K balance, which is conducive to the coordinated supply of N and K nutrients.
Collapse
Affiliation(s)
- Xinxiang Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
- Yantai Academy of Agricultural Sciences, Institute of Pomology, Yan’tai 265500, Shandong, China
| | - Xu Zhang
- Yantai Academy of Agricultural Sciences, Institute of Pomology, Yan’tai 265500, Shandong, China
| | - Wei Ni
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Chunling Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Hanhan Qin
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Yafei Guan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Jingquan Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Ziquan Feng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Yue Xing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Ge Tian
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Zhanling Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Shunfeng Ge
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Yuanmao Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| |
Collapse
|
5
|
Srikanth B, Subrahmanyam D, Sanjeeva Rao D, Narender Reddy S, Supriya K, Raghuveer Rao P, Surekha K, Sundaram RM, Neeraja CN. Promising physiological traits associated with nitrogen use efficiency in rice under reduced N application. FRONTIERS IN PLANT SCIENCE 2023; 14:1268739. [PMID: 38053767 PMCID: PMC10694615 DOI: 10.3389/fpls.2023.1268739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/05/2023] [Indexed: 12/07/2023]
Abstract
Higher grain yield in high-yielding rice varieties is mostly driven by nitrogen (N) fertilizer applied in abundant amounts leading to increased production cost and environmental pollution. This has fueled the studies on nitrogen use efficiency (NUE) to decrease the N fertilizer application in rice to the possible extent. NUE is a complex physiological trait controlled by multiple genes, but yet to be completely deciphered in rice. With an objective of identifying the promising physiological traits associated with NUE in rice, the performance of 14 rice genotypes was assessed at N0, N50, N100, and N150 for four (two wet and two dry) seasons using agro-morphological, grain yield, flag leaf traits, photosynthetic pigment content, flag leaf gas exchange traits, and chlorophyll fluorescence traits. Furthermore, the data were used to derive various NUE indices to identify the most appropriate indices useful to screen rice genotypes at N50. Results indicate that with the increase in N application, cumulative grain yield increased significantly up to N100 (5.02 t ha-1); however, the increment in grain yield was marginal at N150 (5.09 t ha-1). The mean reduction of grain yield was only 26.66% at N50 ranging from 15.0% to 34.2%. The significant finding of the study is the identification of flag leaf chlorophyll fluorescence traits (Fv/Fm, ΦPSII, ETR, and qP) and Ci associated with grain yield under N50, which can be used to screen N use efficient genotypes in rice under reduced N application. Out of nine NUE indices assessed, NUpE, NUtE, and NUEyield were able to delineate the high-yielding genotypes at N50 and were useful to screen rice under reduced N conditions. Birupa emerged as one of the high yielders under N50, even though it is a moderate yielder at N100 and infers the possibility of cultivating some of the released rice varieties under reduced N inputs. The study indicates the possibility of the existence of promising genetic variability for grain yield under reduced N, the potential of flag leaf chlorophyll fluorescence, and gas exchange traits as physiological markers and best suitable NUE indices to be deployed in rice breeding programs.
Collapse
Affiliation(s)
- Bathula Srikanth
- ICAR-Indian Institute of Rice Research, Hyderabad, India
- Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | | | | | - Sadu Narender Reddy
- Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | - Kallakuri Supriya
- Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | | | - Kuchi Surekha
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | | | | |
Collapse
|
6
|
Song Q, Liu F, Bu H, Zhu XG. Quantifying Contributions of Different Factors to Canopy Photosynthesis in 2 Maize Varieties: Development of a Novel 3D Canopy Modeling Pipeline. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0075. [PMID: 37502446 PMCID: PMC10371248 DOI: 10.34133/plantphenomics.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
Crop yield potential is intrinsically related to canopy photosynthesis; therefore, improving canopy photosynthetic efficiency is a major focus of current efforts to enhance crop yield. Canopy photosynthesis rate (Ac) is influenced by several factors, including plant architecture, leaf chlorophyll content, and leaf photosynthetic properties, which interact with each other. Identifying factors that restrict canopy photosynthesis and target adjustments to improve canopy photosynthesis in a specific crop cultivar pose an important challenge for the breeding community. To address this challenge, we developed a novel pipeline that utilizes factorial analysis, canopy photosynthesis modeling, and phenomics data collected using a 64-camera multi-view stereo system, enabling the dissection of the contributions of different factors to differences in canopy photosynthesis between maize cultivars. We applied this method to 2 maize varieties, W64A and A619, and found that leaf photosynthetic efficiency is the primary determinant (17.5% to 29.2%) of the difference in Ac between 2 maize varieties at all stages, and plant architecture at early stages also contribute to the difference in Ac (5.3% to 6.7%). Additionally, the contributions of each leaf photosynthetic parameter and plant architectural trait were dissected. We also found that the leaf photosynthetic parameters were linearly correlated with Ac and plant architecture traits were non-linearly related to Ac. This study developed a novel pipeline that provides a method for dissecting the relationship among individual phenotypes controlling the complex trait of canopy photosynthesis.
Collapse
Affiliation(s)
- Qingfeng Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fusang Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongyi Bu
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Guang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
7
|
Song G, Wang Q. Seasonal dynamics of photosynthetic nitrogen content and partitioning in deciduous forests. PHOTOSYNTHESIS RESEARCH 2023; 156:355-366. [PMID: 36602713 DOI: 10.1007/s11120-022-00992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/06/2022] [Indexed: 05/23/2023]
Abstract
Nitrogen allocated to the photosynthetic apparatus and its partitioning into different photosynthetic components is crucial for understanding plant carbon gain and plant productivity. It is known that photosynthetic nitrogen content and partitioning are controlled by both environmental and vegetation factors and have versatile and dynamic responses. However, such responses are greatly simplified in most current gas exchange models, in which only a prescribed relationship is commonly applied to describe the effect of nitrogen on photosynthesis and with limited model performance. While within-canopy variation at a specific time in leaf photosynthetic nitrogen content and partitioning has been studied previously, far less attention has been paid to the seasonal dynamics of photosynthetic nitrogen content and partitioning, which is especially critical to deciduous forests. In this study, we integrated long-term field observations in deciduous forests in Japan to determine seasonal patterns of photosynthetic nitrogen content and partitioning (rubisco, electron transport, and light capture) and to examine how photosynthetic nitrogen content and partitioning varied seasonally in deciduous forest canopies growing at different altitudes. The results demonstrated that there were remarkable seasonal variations in both photosynthetic nitrogen content and partitioning in deciduous forests along the altitudinal gradient. Moreover, photosynthetic nitrogen use efficiency was well explained by nitrogen partitioning rather than total leaf nitrogen. These results suggest that seasonal patterns of nitrogen partitioning should be integrated into ecosystem models to accurately project emergent properties of ecosystem productivity on local, regional, and global scales.
Collapse
Affiliation(s)
- Guangman Song
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Quan Wang
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
8
|
Mishra D, Chitara MK, Upadhayay VK, Singh JP, Chaturvedi P. Plant growth promoting potential of urea doped calcium phosphate nanoparticles in finger millet ( Eleusine coracana (L.) Gaertn.) under drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1137002. [PMID: 37255562 PMCID: PMC10225717 DOI: 10.3389/fpls.2023.1137002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Drought is a leading threat that impinges on plant growth and productivity. Nanotechnology is considered an adequate tool for resolving various environmental issues by offering avant-garde and pragmatic solutions. Using nutrients in the nano-scale including CaP-U NPs is a novel fertilization strategy for crops. The present study was conducted to develop and utilize environment-friendly urea nanoparticles (NPs) based nano-fertilizers as a crop nutrient. The high solubility of urea molecules was controlled by integrating them with a matrix of calcium phosphate nanoparticles (CaP NPs). CaP NPs contain high phosphorous and outstanding biocompatibility. Scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD) were used to characterize the fabricated NPs. FE-SEM determined no areas of phase separation in urea and calcium phosphate, indicating the successful formation of an encapsulated nanocomposite between the two nano matrices. TEM examination confirmed a fiber-like structure of CaP-U NPs with 15 to 50 nm diameter and 100 to 200 nm length. The synthesized CaP-U NPs and bulk urea (0.0, 0.1% and 0.5%) were applied by foliar sprays at an interval of 15 days on pre-sowed VL-379 variety of finger millet (Eleusine coracana (L.) Gaertn.), under irrigated and drought conditions. The application of the CaP-U NPs significantly enhanced different plant growth attributes such as shoot length (29.4 & 41%), root length (46.4 & 51%), shoot fresh (33.6 & 55.8%) and dry weight (63 & 59.1%), and root fresh (57 & 61%) and dry weight (78 & 80.7%), improved pigment system (chlorophyll) and activated plant defense enzymes such as proline (35.4%), superoxide dismutase (47.7%), guaiacol peroxidase (30.2%), ascorbate peroxidase (70%) under both irrigated and drought conditions. Superimposition of five treatment combinations on drought suggested that CaP-U NPs at 0.5 followed by 0.1% provided the highest growth indices and defense-related enzymes, which were significantly different. Overall, our findings suggested that synthesized CaP-U NPs treatment of finger millet seeds improved plant growth and enzymatic regulation, particularly more in drought conditions providing insight into the strategy for not only finger millet but probably for other commercial cereals crops which suffer from fluctuating environmental conditions.
Collapse
Affiliation(s)
- Dhruv Mishra
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (U.K.), India
| | - Manoj Kumar Chitara
- Department of Plant Pathology, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Jagat Pal Singh
- Department of Physics, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Preeti Chaturvedi
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (U.K.), India
| |
Collapse
|
9
|
Parkash V, Snider JL, Sintim HY, Hand LC, Virk G, Pokhrel A. Differential sensitivities of photosynthetic processes and carbon loss mechanisms govern N-induced variation in net carbon assimilation rate for field-grown cotton. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2638-2652. [PMID: 36715336 DOI: 10.1093/jxb/erad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/28/2023] [Indexed: 06/06/2023]
Abstract
Nitrogen (N) deficiency limits the net carbon assimilation rate (AN), but the relative N sensitivities of photosynthetic component processes and carbon loss mechanisms remain relatively unexplored for field-grown cotton. Therefore, the objective of the current study was to define the relative sensitivity of individual physiological processes driving N deficiency-induced declines in AN for field-grown cotton. Among the potential diffusional limitations evaluated, mesophyll conductance was the only parameter substantially reduced by N deficiency, but this did not affect CO2 availability in the chloroplast. A number of metabolic processes were negatively impacted by N deficiency, and these effects were more pronounced at lower leaf positions in the cotton canopy. Ribulose bisphosphate (RuBP) regeneration and carboxylation, AN, and gross photosynthesis were the most sensitive metabolic processes to N deficiency, whereas photosynthetic electron transport processes, electron flux to photorespiration, and dark respiration exhibited intermediate sensitivity to N deficiency. Among thylakoid-specific processes, the quantum yield of PSI end electron acceptor reduction was the most sensitive process to N deficiency. It was concluded that AN is primarily limited by Rubisco carboxylation and RuBP regeneration under N deficiency in field-grown cotton, and the differential N sensitivities of the photosynthetic process and carbon loss mechanisms contributed significantly to photosynthetic declines.
Collapse
Affiliation(s)
- Ved Parkash
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA
| | - John L Snider
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA
| | - Henry Y Sintim
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA
| | - Lavesta C Hand
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA
| | - Gurpreet Virk
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA
| | - Amrit Pokhrel
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA
| |
Collapse
|
10
|
Wang S, Han Y, Jia Y, Chen Z, Wang G. Addressing the Relationship between Leaf Nitrogen and Carbon Isotope Discrimination from the Three Levels of Community, Population and Individual. PLANTS (BASEL, SWITZERLAND) 2023; 12:1551. [PMID: 37050177 PMCID: PMC10097192 DOI: 10.3390/plants12071551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
The carbon, nitrogen and water cycles of terrestrial ecosystems are important biogeochemical cycles. Addressing the relationship of leaf nitrogen (N) and carbon isotope discrimination (Δ) will enhance the understanding of the links between these three cycles in plant leaves because Δ can reflect time-integrated leaf-level water-use efficiency (WUE) over the period when the leaf material is produced. Previous studies have paid considerable attention to the relationship. However, these studies have not effectively eliminated the interference of environmental factors, inter-species, and inter-individual differences in this relationship, so new research is necessary. To minimize these interferences, the present work explored the relationship at the three levels of community, population, and plant individual. Three patterns of positive, negative and no relationship were observed across communities, populations, and individuals, which is dependent on environmental conditions, species, and plant individuals. The results strongly suggested that there is no general pattern for the relationship between leaf N and Δ. Furthermore, the results indicated that there is often no coupling between leaf-level long-term WUE and leaf N in the metabolic process of carbon, N and water in leaves. The main reason for the lack of this relationship is that most plants do not invest large amounts of nitrogen into photosynthesis. In addition, the present study also observed that, for most plant species, leaf N was not related to photosynthetic rate, and that variations in photosynthetic rates are mainly driven by stomatal conductance.
Collapse
Affiliation(s)
- Shuhan Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Department of Biotechonology, College of Biotechonology and Pharmceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yaowen Han
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yufu Jia
- Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Zixun Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoan Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Alam I, Zhang H, Du H, Rehman NU, Manghwar H, Lei X, Batool K, Ge L. Bioengineering Techniques to Improve Nitrogen Transformation and Utilization: Implications for Nitrogen Use Efficiency and Future Sustainable Crop Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3921-3938. [PMID: 36842151 DOI: 10.1021/acs.jafc.2c08051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) is crucial for plant growth and development, especially in physiological and biochemical processes such as component of different proteins, enzymes, nucleic acids, and plant growth regulators. Six categories, such as transporters, nitrate absorption, signal molecules, amino acid biosynthesis, transcription factors, and miscellaneous genes, broadly encompass the genes regulating NUE in various cereal crops. Herein, we outline detailed research on bioengineering modifications of N metabolism to improve the different crop yields and biomass. We emphasize effective and precise molecular approaches and technologies, including N transporters, transgenics, omics, etc., which are opening up fascinating opportunities for a complete analysis of the molecular elements that contribute to NUE. Moreover, the detection of various types of N compounds and associated signaling pathways within plant organs have been discussed. Finally, we highlight the broader impacts of increasing NUE in crops, crucial for better agricultural yield and in the greater context of global climate change.
Collapse
Affiliation(s)
- Intikhab Alam
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- College of Life Sciences, SCAU, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Hanyin Zhang
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Huan Du
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- College of Life Sciences, SCAU, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Naveed Ur Rehman
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Hakim Manghwar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, SCAU, Guangzhou 510642, China
| | - Xiao Lei
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Khadija Batool
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangfa Ge
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| |
Collapse
|
12
|
Bao G, Huang S, Ashraf U, Qiao J, Zheng A, Zhou Q, Li L, Wan X. Insights of Improved Aroma under Additional Nitrogen Application at Booting Stage in Fragrant Rice. Genes (Basel) 2022; 13:2092. [PMID: 36421767 PMCID: PMC9691032 DOI: 10.3390/genes13112092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 03/08/2024] Open
Abstract
Plant mineral nutrition substantially affects the growth, yield and quality of rice, whereas nitrogen (N) application contributes significantly in this regard. Undoubtedly, N application improves rice aroma biosynthesis; however, the molecular mechanism underlying the regulation of grain 2-acetyl-1-pyrroline (2-AP) biosynthesis in the presence of nitrogen application at the booting stage has remained largely unexplored. The present study examined the effects of three N levels, i.e., 0 g per pot (N0), 0.43 g per pot (N1) and 0.86 g per pot (N2) on intermediates, enzymes and genes involved in 2-AP biosynthesis, as well as on the yield of two fragrant rice cultivars viz, Meixiangzhan2 and Xiangyaxiangzhan. N was additionally applied at the booting stage. The results depicted that the levels of precursor, such as proline, and the activity of enzymes involved in 2-AP biosynthesis, such as Δ1-pyrroline-5-carboxylate synthetase (P5CS) and diamine oxidase (DAO), and P5CS1 gene expression were comparatively higher under N1 than N0 in both fragrant rice cultivars. Moreover, the N2 treatment increased the grain panicle-1, filled grain percentage and grain yield of both rice cultivars, while the grain yield of Meixiangzhan2 and Xiangyaxiangzhan was increased by 15.87% and 12.09%, respectively, under N2 compared to N1 treatment. Hence, 0.43 g per pot of N showed positive performances in yield and aroma accumulation in fragrant rice and should be further employed in the practice and production for better cultivation in the rice market.
Collapse
Affiliation(s)
- Gegen Bao
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Innovative Institute for Modern Seed Industry, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Suihua Huang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Jingxuan Qiao
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Innovative Institute for Modern Seed Industry, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Axiang Zheng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100083, China
| | - Qi Zhou
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Innovative Institute for Modern Seed Industry, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lin Li
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Innovative Institute for Modern Seed Industry, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Innovative Institute for Modern Seed Industry, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
13
|
Xu Q, He H, He B, Li T, Liu Y, Zhu S, Zhang G. Nitrogen Allocation Tradeoffs Within-Leaf between Photosynthesis and High-Temperature Adaptation among Different Varieties of Pecan ( Carya illinoinensis [Wangenh.] K. Koch). PLANTS (BASEL, SWITZERLAND) 2022; 11:2828. [PMID: 36365281 PMCID: PMC9657520 DOI: 10.3390/plants11212828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Interpreting leaf nitrogen (N) allocation is essential to understanding leaf N cycling and the economy of plant adaptation to environmental fluctuations, yet the way these mechanisms shift in various varieties under high temperatures remains unclear. Here, eight varieties of pecan (Carya illinoinensis [Wangenh.] K. Koch), Mahan, YLC10, YLC12, YLC13, YLC29, YLC35, YLJ042, and YLJ5, were compared to investigate the effects of high temperatures on leaf N, photosynthesis, N allocation, osmolytes, and lipid peroxidation and their interrelations. Results showed that YLC35 had a higher maximum net photosynthetic rate (Pmax) and photosynthetic N-use efficiency (PNUE), while YLC29 had higher N content per area (Na) and lower PNUE. YLC35, with lower malondialdehyde (MDA), had the highest proportions of N allocation in rubisco (Pr), bioenergetics (Pb), and photosynthetic apparatus (Pp), while YLC29, with the highest MDA, had the lowest Pr, Pb, and Pp, implying more leaf N allocated to the photosynthetic apparatus for boosting PNUE or to non-photosynthetic apparatus for alleviating damage. Structural equation modeling (SEM) demonstrated that N allocation was affected negatively by leaf N and positively by photosynthesis, and their combination indirectly affected lipid peroxidation through the reverse regulation of N allocation. Our results indicate that different varieties of pecan employ different resource-utilization strategies and growth-defense tradeoffs for homeostatic balance under high temperatures.
Collapse
|
14
|
Tan Y, Chai Q, Li G, Hu F, Yu A, Zhao C, Fan Z, Yin W, Fan H. No-till and nitrogen fertilizer reduction improve nitrogen translocation and productivity of spring wheat ( Triticum aestivum L.) via promotion of plant transpiration. FRONTIERS IN PLANT SCIENCE 2022; 13:988211. [PMID: 36119600 PMCID: PMC9478441 DOI: 10.3389/fpls.2022.988211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Excessive nitrogen (N) fertilizer has threatened the survivability and sustainability of agriculture. Improving N productivity is promising to address the above issue. Therefore, the field experiment, which investigated the effect of no-till and N fertilizer reduction on water use and N productivity of spring wheat (Triticum aestivum L.), was conducted at Wuwei experimental station in northwestern China. There were two tillage practices (conventional tillage, CT; and no-till with previous plastic film mulching, NT) and three N fertilizer rates (135 kg N ha-1, N1; 180 kg N ha-1, N2; and 225 kg N ha-1, N3). The results showed that NT lowered soil evaporation (SE) by 22.4% while increasing the ratio of transpiration to evapotranspiration (T/ET) by 13.6%, compared with CT. In addition, NT improved the total N accumulation by 11.5% and enhanced N translocation (NT) quantity, rate, and contribution by a range of 6.2-23.3%. Ultimately, NT increased grain yield (GY), N partial factor productivity, and N harvest index by 13.4, 13.1, and 26.0%, respectively. Overall, N1 increased SE (13.6%) but decreased T/ET (6.1%) compared with N3. While, N2 enhanced NT quantity, rate, and contribution by a range of 6.0-15.2%. With the integration of NT, N2 achieved the same level of GY and N harvest index as N3 and promoted N partial factor productivity by 11.7%. The significant positive correlation of NT relative to T/ET and GY indicated that improving T/ET was essential for achieving higher NT. Therefore, we concluded that no-till coupled with N fertilizer rate at 180 kg N ha-1 was a preferable management option to boost the N productivity of spring wheat in arid areas.
Collapse
Affiliation(s)
- Yan Tan
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Qiang Chai
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Guang Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Falong Hu
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Aizhong Yu
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Cai Zhao
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Zhilong Fan
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wen Yin
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Hong Fan
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
| |
Collapse
|
15
|
Nasar J, Wang GY, Ahmad S, Muhammad I, Zeeshan M, Gitari H, Adnan M, Fahad S, Khalid MHB, Zhou XB, Abdelsalam NR, Ahmed GA, Hasan ME. Nitrogen fertilization coupled with iron foliar application improves the photosynthetic characteristics, photosynthetic nitrogen use efficiency, and the related enzymes of maize crops under different planting patterns. FRONTIERS IN PLANT SCIENCE 2022; 13:988055. [PMID: 36119633 PMCID: PMC9478416 DOI: 10.3389/fpls.2022.988055] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/05/2022] [Indexed: 06/01/2023]
Abstract
Photosynthetic rate (Pn) and photosynthetic nitrogen use efficiency (PNUE) are the two important factors affecting the photosynthesis and nutrient utilization of plant leaves. However, the effect of N fertilization combined with foliar application of Fe on the Pn and PNUE of the maize crops under different planting patterns (i.e., monocropping and intercropping) is elusive. Therefore, this experiment was conducted to determine the effect of N fertilization combined with foliar application of Fe on the photosynthetic characteristics, PNUE, and the associated enzymes of the maize crops under different planting patterns. The results of this study showed that under intercropping, maize treated with N fertilizer combined with foliar application of Fe had not only significantly (p < 0.05) improved physio-agronomic indices but also higher chlorophyll content, better photosynthetic characteristics, and related leaf traits. In addition, the same crops under such treatments had increased photosynthetic enzyme activity (i.e., rubisco activity) and nitrogen metabolism enzymes activities, such as nitrate reductase (NR activity), nitrite reductase (NiR activity), and glutamate synthase (GOGAT activity). Consequently, intercropping enhanced the PNUE and soluble sugar content of the maize crops, thus increasing its yield compared with monocropping. Thus, these findings suggest that intercropping under optimal N fertilizer application combined with Fe foliation can improve the chlorophyll content and photosynthetic characteristics of maize crops by regulating the associated enzymatic activities. Consequently, this results in enhanced PNUE, which eventually leads to better growth and higher yield in the intercropping system. Thus, practicing intercropping under optimal nutrient management (i.e., N and Fe) could be crucial for better growth and yield, and efficient nitrogen use efficiency of maize crops.
Collapse
Affiliation(s)
- Jamal Nasar
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Gui-Yang Wang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Shakeel Ahmad
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Ihsan Muhammad
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Muhammad Zeeshan
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Harun Gitari
- Department of Agricultural Sciences and Technology, Kenyatta University, Nairobi, Kenya
| | - Muhammad Adnan
- Department of Agriculture, University of Swabi, Swabi, Pakistan
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Haripur, Pakistan
| | | | - Xun-Bo Zhou
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Gamal A. Ahmed
- Plant Pathology Department, Faculty of Agriculture, Moshtohor, Benha University, Benha, Egypt
| | - Mohamed E. Hasan
- Bioinformitics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
16
|
Gong J, Zhang Z, Wang B, Shi J, Zhang W, Dong Q, Song L, Li Y, Liu Y. N addition rebalances the carbon and nitrogen metabolisms of Leymus chinensis through leaf N investment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:221-232. [PMID: 35714430 DOI: 10.1016/j.plaphy.2022.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Intensifying nitrogen (N) deposition disturbs the growth of grassland plants due to an imbalance between their carbon (C) and N metabolism. However, it's unclear how plant physiological strategies restore balance. We investigated the effects of multiple N addition levels (0-25 g N m-2 yr-1) on the coordination of C and N metabolism in a dominant grass (Leymus chinensis) in a semiarid grassland in northern China. To do so, we evaluated photosynthetic parameters, leaf N allocation, C- and N-based metabolites, and metabolic enzymes. We found that a moderate N level (10 g N m-2 yr-1) promoted carboxylation and electron transport by allocating more N to the photosynthetic apparatus and increasing ribulose bisphosphate carboxylase/oxygenase activity, thereby increasing photosynthetic capacity. The highest N level (25 g N m-2 yr-1) promoted N investment in nonphotosynthetic pathways and increased the free amino acids in the leaves. N addition stimulated the accumulation of C and N compounds across organs by activating sucrose phosphate synthase, nitrate reductase, and glutamine synthetase. This enhancement triggered a transformation of primary metabolites (nonstructural carbohydrates, proteins, amino acids) to secondary metabolites (flavonoids, phenols, and alkaloids) for temporary storage or as defense compounds. Citric acid, as the C skeleton for enhanced N metabolism, decreased significantly, and malic acid increased by catalysis of phosphoenolpyruvate carboxylase. Our findings show the adaptability of L. chinensis to different N-addition levels by adjusting its allocations of C and N metabolic compounds and confirm the roles of C and N coordination by grassland plants in these adaptations.
Collapse
Affiliation(s)
- Jirui Gong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Zihe Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Biao Wang
- College of Materials Science and Engineering, College of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Jiayu Shi
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Weiyuan Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Qi Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Liangyuan Song
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Ying Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Yingying Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| |
Collapse
|
17
|
Yang C, Gao X. Impact of microplastics from polyethylene and biodegradable mulch films on rice (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154579. [PMID: 35302020 DOI: 10.1016/j.scitotenv.2022.154579] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Extensive use of plastic film mulch has resulted in accumulation of a large amount of residual plastic, which will eventually fragment into microplastics in agricultural soils. However, it is unclear how microplastics from plastic mulch film affect crops. To address this issue, rice plants exposed to microplastics derived from poly(butyleneadipate-co-terephthalate) (PBAT)-based biodegradable mulch film (BM) and polyethylene (PE) mulch film (PM) were investigated for plant growth, physio-biochemical processes, and gene expressions. Both types of microplastics significantly reduced the height and dry weight of rice plant. Oxidative stress was induced by microplastics in rice shoot and root, with levels of ROS relatively higher under treatment PM than that under treatment BM. Transcriptomic data showed that more genes were down-regulated by treatment PM than that by treatment BM. Genes encoding ammonium and nitrate transporters were down-regulated by both types of microplastics in rice roots at vegetative stage, whereas up-regulated at reproductive stage, as compared to their respective treatment with no microplastics (CK). Similar results regarding phenylpropanoid biosynthesis pathway and lignin content were also observed in rice roots. Net photosynthetic rate and SPAD value were significantly inhibited by treatments BM and PM in rice shoot, and the expression of genes involved in light reaction was reduced at vegetative stage, whereas there were no differences of them at reproductive stage, as compared to their respective treatment CK. Our study suggests that microplastics from BM and PM both affect the growth of rice plants via nitrogen metabolism and photosynthesis. The negative effects imposed by both types of microplastics on rice plant can be mitigated with the growth of plants, and the negative effects of microplastics from PE mulch film on rice plant are relatively stronger than that from the PBAT-based biodegradable film.
Collapse
Affiliation(s)
- Chong Yang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Biomaterials Engineering Technology Research Center, Guangzhou 510316, China.
| | - Xuhua Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Biomaterials Engineering Technology Research Center, Guangzhou 510316, China
| |
Collapse
|
18
|
Yuan T, Zhu C, Li G, Liu Y, Yang K, Li Z, Song X, Gao Z. An Integrated Regulatory Network of mRNAs, microRNAs, and lncRNAs Involved in Nitrogen Metabolism of Moso Bamboo. Front Genet 2022; 13:854346. [PMID: 35651936 PMCID: PMC9149284 DOI: 10.3389/fgene.2022.854346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Nitrogen is a key macronutrient essential for plant growth and development, and its availability has a strong influence on biological processes. Nitrogen fertilizer has been widely applied in bamboo forests in recent decades; however, the mechanism of nitrogen metabolism in bamboo is not fully elucidated. Here, we characterized the morphological, physiological, and transcriptome changes of moso bamboo in response to different schemes for nitrogen addition to illuminate the regulation mechanism of nitrogen metabolism. The appropriate addition of nitrogen improved the chlorophyll content and Pn (net photosynthetic rate) of leaves, the nitrogen and ammonium contents of the seedling roots, the biomass of the whole seedling, the number of lateral roots, and the activity of enzymes involved in nitrogen metabolism in the roots. Based on the whole transcriptome data of the roots, a total of 8,632 differentially expressed mRNAs (DEGs) were identified under different nitrogen additions, such as 52 nitrate transporter genes, 6 nitrate reductase genes, 2 nitrite reductase genes, 2 glutamine synthase genes, 2 glutamate synthase genes (GOGAT), 3 glutamate dehydrogenase genes, and 431 TFs belonging to 23 families. Meanwhile, 123 differentially expressed miRNAs (DEMs) and 396 differentially expressed lncRNAs (DELs) were characterized as nitrogen responsive, respectively. Furthermore, 94 DEM-DEG pairs and 23 DEL-DEG pairs involved in nitrogen metabolism were identified. Finally, a predicted regulatory network of nitrogen metabolism was initially constructed, which included 17 nitrogen metabolic pathway genes, 15 TFs, 4 miRNAs, and 10 lncRNAs by conjoint analysis of DEGs, DEMs, and DELs and their regulatory relationships, which was supported by RNA-seq data and qPCR results. The lncRNA-miRNA-mRNA network provides new insights into the regulation mechanism of nitrogen metabolism in bamboo, which facilitates further genetic improvement for bamboo to adapt to the fluctuating nitrogen environment.
Collapse
Affiliation(s)
- Tingting Yuan
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Chenglei Zhu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Guangzhu Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Yan Liu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Kebin Yang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Zhen Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| |
Collapse
|
19
|
Wei X, Yang Y, Yao J, Han J, Yan M, Zhang J, Shi Y, Wang J, Mu C. Improved Utilization of Nitrate Nitrogen Through Within-Leaf Nitrogen Allocation Trade-Offs in Leymus chinensis. FRONTIERS IN PLANT SCIENCE 2022; 13:870681. [PMID: 35574094 PMCID: PMC9096725 DOI: 10.3389/fpls.2022.870681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
The Sharply increasing atmospheric nitrogen (N) deposition may substantially impact the N availability and photosynthetic capacity of terrestrial plants. Determining the trade-off relationship between within-leaf N sources and allocation is therefore critical for understanding the photosynthetic response to nitrogen deposition in grassland ecosystems. We conducted field experiments to examine the effects of inorganic nitrogen addition (sole NH4 +, sole NO3 - and mixed NH4 +/NO3 -: 50%/50%) on N assimilation and allocation by Leymus chinensis. The leaf N allocated to the photosynthetic apparatus (NPSN) and chlorophyll content per unit area (Chlarea) were significantly positively correlated with the photosynthetic N-use efficiency (PNUE). The sole NO3 - treatment significantly increased the plant leaf PNUE and biomass by increasing the photosynthetic N allocation and Chlarea. Under the NO3 treatment, L. chinensis plants devoted more N to their bioenergetics and light-harvesting systems to increase electron transfer. Plants reduced the cell wall N allocation or increased their soluble protein concentrations to balance growth and defense under the NO3 treatment. In the sole NH4 + treatment, however, plants decreased their N allocation to photosynthetic components, but increased their N allocation to the cell wall and elsewhere. Our findings demonstrated that within-leaf N allocation optimization is a key adaptive mechanism by which plants maximize their PNUE and biomass under predicted future global changes.
Collapse
Affiliation(s)
- Xiaowei Wei
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Yuheng Yang
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Jialiang Yao
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Jiayu Han
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Ming Yan
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Jinwei Zhang
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yujie Shi
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Junfeng Wang
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Chunsheng Mu
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
20
|
Liu M, Liu X, Zhao Y, Korpelainen H, Li C. Sex-specific nitrogen allocation tradeoffs in the leaves of Populus cathayana cuttings under salt and drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:101-110. [PMID: 35051894 DOI: 10.1016/j.plaphy.2022.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) partitioning within a leaf affects leaf photosynthesis and adaptation to environmental fluctuations. However, how plant sex influences leaf N allocation and its tradeoffs in acclimation to drought, excess salt and their combination remains unknown. Here, leaf N allocation between the photosynthetic and non-photosynthetic apparatus and among the components of the photosynthesis in Populus cathayana Rehder females and males were investigated under drought, salt and their combination to clarify the underlying mechanism. We found that males with a lower leaf N allocation (NL) into non-protein N (Nnp), showed a greater leaf N allocation into photosynthetic apparatus, especially into the carboxylation component under all treatments, and a greater leaf N allocation into cell wall under drought and salt stress alone, consequently causing higher photosynthetic N use efficiency (PNUE) and tolerance to stresses. Conversely, females had a greater leaf N allocation into Nnp under all treatments than males and a lower leaf photosynthetic N (NP) allocation. There was a tradeoff in leaf N allocation among photosynthetic apparatus (NP/NL), cell wall (NCW/NL) and Nnp, which explained plant responses to drought, salt and their combination. Moreover, the leaf N allocation into the carboxylation component could explain the intersexual difference in responses to all treatments, while leaf cell wall N (NCW) and Nnp reflected intrasexual differences among treatments in both sexes. These findings indicate sex-specific strategies in coping with drought, salt and their combination that relate to leaf N allocation, which may contribute to sex-specific photosynthesis and niche segregation.
Collapse
Affiliation(s)
- Miao Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiucheng Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yang Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014, Finland
| | - Chunyang Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
21
|
Zhong C, Jian SF, Chen DL, Huang XJ, Miao JH. Organic nitrogen sources promote andrographolide biosynthesis by reducing nitrogen metabolism and increasing carbon accumulation in Andrographis paniculata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:82-91. [PMID: 33975147 DOI: 10.1016/j.plaphy.2021.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/19/2021] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) form affects secondary metabolites of medicinal plants, but the physiological and molecular mechanisms remain largely unknown. To fully understand the response of andrographolide biosynthesis to different N forms in Andrographis paniculata, the plants were fed with nutritional solution containing sole N source of nitrate (NO3-), ammonium (NH4+), urea or glycine (Gly), and the growth, carbon (C) and N metabolisms and andrographolide biosynthesis were analyzed. We found that plants grown in urea and Gly performed greater photosynthetic rate and photosynthetic N use efficiency (PNUE) than those grown in NO3- and NH4+. Organic N sources reduced the activities of enzymes involving in C and N metabolisms such as glutamine synthase (GS), glutamate synthase (GOGAT) and NADH-dependent glutamate dehydrogenase (NADH-GDH), invertase (INV), isocitrate dehydrogenase (ICDH) and glycolate oxidase (GO), resulting in reduced depletion of carbohydrates and increased starch accumulation. However, they enhanced andrographolide content by up-regulating the key genes in its biosynthetic pathway including HMGR, DXS, GGPS and ApCPS. Besides, NH4+ decreased leaf SPAD value, contents of soluble protein and amino acids and GO activity, but increased photosynthetic rate and contents of soluble sugar and starch in comparison to NO3-. Andrographolide biosynthesis was also up-regulated. The results revealed that increasing accumulation of carbohydrates, especially starch, was beneficial to the biosynthesis of andrographolide; organic N sources decreased carbohydrate depletion by reducing N metabolism, and promoted plant growth and andrographolide biosynthesis synergistically.
Collapse
Affiliation(s)
- Chu Zhong
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Shao-Fen Jian
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Dong-Liang Chen
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Xue-Jing Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Jian-Hua Miao
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| |
Collapse
|
22
|
Cun Z, Zhang JY, Wu HM, Zhang L, Chen JW. High nitrogen inhibits photosynthetic performance in a shade-tolerant and N-sensitive species Panax notoginseng. PHOTOSYNTHESIS RESEARCH 2021; 147:283-300. [PMID: 33587246 DOI: 10.1007/s11120-021-00823-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/18/2021] [Indexed: 05/27/2023]
Abstract
Nitrogen (N) is a primary factor limiting leaf photosynthesis. However, the mechanism of high-N-driven inhibition on photosynthetic efficiency and photoprotection is still unclear in the shade-tolerant and N-sensitive species such as Panax notoginseng. Leaf chlorophyll (Chl) content, Ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) activity and content, N allocation in the photosynthetic apparatus, photosynthetic performance and Chl fluorescence were comparatively analyzed in a shade-tolerant and N-sensitive species P. notoginseng grown under the levels of moderate nitrogen (MN) and high nitrogen (HN). The results showed that Rubisco content, Chl content and specific leaf nitrogen (SLN) were greater in the HN individuals. Rubisco activity, net photosynthetic rate (Anet), photosynthetic N use efficiency (PNUE), maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax) were lower when plants were exposed to HN as compared with ones to MN. A large proportion of leaf N was allocated to the carboxylation component under the levels of MN. More N was only served as a form of N storage and not contributed to photosynthesis in HN individuals. Compared with the MN plants, the maximum quantum yield of photosystem II (Fv/Fm), non-photochemical quenching of PSII (NPQ), effective quantum yield and electron transport rate were obviously reduced in the HN plants. Cycle electron flow (CEF) was considerably enhanced in the MN individuals. There was not a significant difference in maximum photo-oxidation P700+ (Pm) between the HN and MN individuals. Most importantly, the HN individuals showed higher K phase in the fast chlorophyll fluorescence induction kinetic curve (OJIP kinetic curve) than the MN ones. The results obtained suggest that photosynthetic capacity might be primarily inhibited by the inactivated Rubisco in the HN individuals, and HN-induced depression of photoprotection might be caused by the photodamage to the donor side of PSII oxygen-evolving complex.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Min Wu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Ling Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
23
|
Mu X, Chen Y. The physiological response of photosynthesis to nitrogen deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:76-82. [PMID: 33296848 DOI: 10.1016/j.plaphy.2020.11.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/15/2020] [Indexed: 05/19/2023]
Abstract
Nitrogen (N), as a macro-element, plays a vital role in plant growth and development. N deficiency affects plant productivity by decreasing photosynthesis, leaf area and longevity of green leaf. To date, many studies have reported that the relationship between photosynthesis and N supply. Here, we summarized the physiological response of photosynthesis to N deficiency in leaf structure and N allocation within the leaf. In serious N stress, photosynthetic rate decreases for almost all plants. The reasons as follows:(1) reducing stomatal conductance of mesophyll cell (gs) and bundle sheath cells (gbs) which influences intercellular CO2 concentration; (2) reducing the content of bioenergetics and light-harvesting protein which inhibits electron transport rate and increase the light energy dissipated as heat; (3) reducing the content and/or activity of photosynthetic enzymes which reduces carboxylation rate. During reproductive stage, N stress induces plant senescence and N components degradation, especially photosynthetic enzymes and thylakoid N, and thus reduces photosynthesis. To keep high grain yield in low N deficiency, we should choose the genotype with higher N allocation within bioenergetics and lower degradation of photosynthetic enzymes. This review provides a generalized N allocation in response to N stress and gives a new prospect for breeding N-efficient genotypes.
Collapse
Affiliation(s)
- Xiaohuan Mu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Yanling Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong, 266109, PR China.
| |
Collapse
|
24
|
Liu F, Mo X, Zhang S, Chen F, Li D. Gas exchange characteristics and their influencing factors for halophytic plant communities on west coast of Bohai Sea. PLoS One 2020; 15:e0229047. [PMID: 32049992 PMCID: PMC7015410 DOI: 10.1371/journal.pone.0229047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/28/2020] [Indexed: 11/29/2022] Open
Abstract
Water-salt stress and nutrient limitation may affect leaf economic spectrum of halophytes and confuse our understanding on plant physiological principles in a changing world. In this study, three halophytic plant communities of Phragmites australis, Suaeda salsa, and Tamarix chinensis, were selected in two sites (sites 1 and 2) on the west coast of Bohai Sea. The net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), leaf vapor pressure deficit (VPDleaf) and their influencing factors were studied to test the possible carbon assimilation strategies of the halophytes. P. australis had higher Pn, Tr, and Gs than S. salsa and T. chinensis in both sites. Similar trends were found for leaf P and photosynthetic N and P efficiency (PNUE and PPUE, respectively) in one or both sites. By contrast, the leaf dry mass per area (LMA) increased in the order of P. australis < S. salsa < T. chinensis in both sites. For identical species in different sites, Pn, leaf P, and PNUE were lower but Tr, VPDleaf, leaf N, leaf N:P, and PPUE were higher in site 1 than in site 2 for one or more halophytes. Although soil physicochemical properties in different sites explained several variations among the halophytes, two-way ANOVA indicated that the species can explain most of the leaf traits compared with the site. LMA also had significant nonlinear relationships with Pn, Tr, Gs, and VPDleaf. PNUE and PPUE showed positive correlation with Pn in both sites, but they decreased in the power-law function with increasing LMA. Overall, the redundancy analysis showed that the gas exchange capacity of the halophytic plant communities was significantly affected by PPUE (60.0% of explanation), PNUE (57.1%), LMA (35.0%), leaf P (22.0%), and soil N (15.8%).
Collapse
Affiliation(s)
- Fude Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, P. R. China
| | - Xue Mo
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, P. R. China
| | - Sen Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, P. R. China
| | - Feijie Chen
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, P. R. China
| | - Desheng Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, P. R. China
| |
Collapse
|
25
|
Shen H, Dong S, Li S, Xiao J, Han Y, Yang M, Zhang J, Gao X, Xu Y, Li Y, Zhi Y, Liu S, Dong Q, Zhou H, Yeomans JC. Effects of simulated N deposition on photosynthesis and productivity of key plants from different functional groups of alpine meadow on Qinghai-Tibetan plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:731-737. [PMID: 31112927 DOI: 10.1016/j.envpol.2019.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 05/25/2023]
Abstract
Nitrogen (N) deposition may alter physiological process of plants in grassland ecosystem. However, little is known about the response mechanism of individual plants in alpine regions to N deposition. We conducted a field experiment, and three treatments including 0 kg Nha-1year-1 (CK), 8 kgNha-1year-1 (Low N), and 72 kg N ha-1 year-1 (High N) were established to simulate N deposition in alpine meadow of Qinghai-Tibetan plateau. Our objectives were to determine the influence of N deposition on photosynthesis of different functional types of herbage species in alpine meadow, and finally characterize the links of plant productivity and photosynthesis with soil nutrients. The results showed that responses of alpine plants were species-specific under N deposition. Compared with grass species Agropyron cristatum and forb species Thalictrum aquilegifolium, the sedge species Carex melanantha was much more sensitive to N deposition; a lower N load (8 kgNha-1year-1) can cause a negative effect on its photosynthesis and productivity. Additionally, N deposition can promote plant N uptake and significantly decreased the C (carbon)/N (nitrogen) ratio. Compared with CK and low N deposition, high N deposition inhibited the photosynthesis and growth of the forb species Thalictrum aquilegifolium and sedge species Carex melanantha. In all three functional types of herbage species, the grass species A. cristatum tended to show a much higher photosynthetic capacity and better growth potential; thus, suggesting that grass species A. cristatum will be a more adaptative alpine plants under N deposition. Our findings suggested that plant photosynthetic responses to N deposition were species-specific, low N deposition was not beneficial for all the herbage species, and N deposition may change plant composition by the differential photosynthetic responses among species in alpine grassland. Plant composition shift to grass-dorminant in alpine regions might be attributed to a much higher photosynthetic potential and N use efficiency of grass species.
Collapse
Affiliation(s)
- Hao Shen
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Shikui Dong
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China.
| | - Shuai Li
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Jiannan Xiao
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Yuhui Han
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Mingyue Yang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Jing Zhang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Xiaoxia Gao
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Yudan Xu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Yu Li
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Yangliu Zhi
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Shiliang Liu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Quanming Dong
- Qinghai Academy of Animal Husbandry and Veterinary Science, Qinghai University, Xining, 810003, China
| | - Huakun Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Key Laboratory of Restoration Ecology of Cold Are in Qinghai Province, Xining, 810008, China
| | | |
Collapse
|
26
|
Abstract
Dozens of studies have assessed the practical value of plant cystatins as ectopic inhibitors of Cys proteases in biological systems. The potential of these proteins in crop protection to control herbivorous pests and pathogens has been documented extensively over the past 25 years. Their usefulness to regulate endogenous Cys proteases in planta has also been considered recently, notably to implement novel traits of agronomic relevance in crops or to generate protease activity-depleted environments in plants or plant cells used as bioreactors for recombinant proteins. After a brief update on the basic structural characteristics of plant cystatins, we summarize recent advances on the use of these proteins in plant biotechnology. Attention is also paid to the molecular improvement of their structural properties for the improvement of their protease inhibitory effects or the fine-tuning of their biological target range.
Collapse
|
27
|
Elansary HO, Zin El-Abedin TK. Omeprazole alleviates water stress in peppermint and modulates the expression of menthol biosynthesis genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:578-586. [PMID: 31030025 DOI: 10.1016/j.plaphy.2019.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 05/02/2023]
Abstract
Water stress is a worldwide agricultural challenge that limits crop growth and quality. Chemical compounds that promote tolerance to water stress, such as omeprazole showed recently promising results. The present study investigates the effect of weekly drenching applications of 0, 10, 50, 100, or 200 μM omeprazole on Mentha piperita (peppermint) subjected to water stress by watering at 100%, 70%, and 50% of container substrate capacity for 7 weeks in an experiment that spanned two seasons. Peppermint that received higher doses of omeprazole showed increased plant height, leaf number, leaf area, and dry weight under normal and water stress conditions. The amounts of chlorophyll and proline in the leaves as well as gas exchange increased in omeprazole-treated plants relative to the control plants. Omeprazole treatment also resulted in increased activity of the enzymes catalase and ascorbate peroxidase, reduced accumulation of the reactive oxygen species hydrogen peroxide, increase in the essential oil ratio, and improvement in essential oil composition. Omeprazole-treated plants showed higher ratios of menthol and menthone composition relative to the control plants. The changes in essential oil composition were associated with increased expression of genes associated with the menthol biosynthesis pathway. These findings indicate that omeprazole can ameliorate water stress in peppermint by increasing vegetative and root growth; increasing chlorophyll amount, photosynthetic rate, and gas exchange; reducing water loss by boosting leaf water potential and relative water content; increasing proline content; and modulating the gene expression of secondary metabolites.
Collapse
Affiliation(s)
- Hosam O Elansary
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; Floriculture, Ornamental Horticulture and Garden Design Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt; Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, APK Campus, 2006, South Africa.
| | - Tarek K Zin El-Abedin
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|