1
|
Aizaz M, Lubna, Jan R, Asaf S, Bilal S, Kim KM, Al-Harrasi A. Regulatory Dynamics of Plant Hormones and Transcription Factors under Salt Stress. BIOLOGY 2024; 13:673. [PMID: 39336100 PMCID: PMC11429359 DOI: 10.3390/biology13090673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
The negative impacts of soil salinization on ion homeostasis provide a significant global barrier to agricultural production and development. Plant physiology and biochemistry are severely affected by primary and secondary NaCl stress impacts, which damage cellular integrity, impair water uptake, and trigger physiological drought. Determining how transcriptional factors (TFs) and hormone networks are regulated in plants in response to salt stress is necessary for developing crops that tolerate salt. This study investigates the complex mechanisms of several significant TF families that influence plant responses to salt stress, involving AP2/ERF, bZIP, NAC, MYB, and WRKY. It demonstrates how these transcription factors (TFs) help plants respond to the detrimental effects of salinity by modulating gene expression through mechanisms including hormone signaling, osmotic stress pathway activation, and ion homeostasis. Additionally, it explores the hormonal imbalances triggered by salt stress, which entail complex interactions among phytohormones like jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA) within the hormonal regulatory networks. This review highlights the regulatory role of key transcription factors in salt-stress response, and their interaction with plant hormones is crucial for developing genome-edited crops that can enhance agricultural sustainability and address global food security challenges.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
2
|
Ping X, Ye Q, Yan M, Wang J, Zhang T, Chen S, Siddique KHM, Cowling WA, Li J, Liu L. Overexpression of BnaA10.WRKY75 Decreases Cadmium and Salt Tolerance via Increasing ROS Accumulation in Arabidopsis and Brassica napus L. Int J Mol Sci 2024; 25:8002. [PMID: 39063244 PMCID: PMC11276826 DOI: 10.3390/ijms25148002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Soil is indispensable for agricultural production but has been seriously polluted by cadmium and salt in recent years. Many crops are suffering from this, including rapeseed, the third largest global oilseed crop. However, genes simultaneously related to both cadmium and salt stress have not been extensively reported yet. In this study, BnaA10.WRKY75 was screened from previous RNA-seq data related to cadmium and salt stress and further analyses including sequence comparison, GUS staining, transformation and qRT-PCR were conducted to confirm its function. GUS staining and qRT-PCR results indicated BnaA10.WRKY75 was induced by CdCl2 and NaCl treatment. Sequence analysis suggested BnaA10.WRKY75 belongs to Group IIc of the WRKY gene family and transient expression assay showed it was a nuclear localized transcription factor. BnaA10.WRKY75-overexpressing Arabidopsis and rapeseed plants accumulated more H2O2 and O2- and were more sensitive to CdCl2 and NaCl treatment compared with untransformed plants, which may be caused by the downregulation of BnaC03.CAT2. Our study reported that BnaA10.WRKY75 increases sensitivity to cadmium and salt stress by disrupting the balance of reactive oxygen species both in Arabidopsis and rapeseed. The results support the further understanding of the mechanisms underlying cadmium and salt tolerance and provide BnaA10.WRKY75 as a valuable gene for rapeseed abiotic stress breeding.
Collapse
Affiliation(s)
- Xiaoke Ping
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Qianjun Ye
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Mei Yan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jia Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Taiyuan Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Sheng Chen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Wallace A. Cowling
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Zhu Z, Chao E, Jiang A, Chen X, Ning K, Xu H, Chen M. The WRKY gene family in the halophyte Limonium bicolor: identification, expression analysis, and regulation of salt stress tolerance. PLANT CELL REPORTS 2024; 43:167. [PMID: 38865016 DOI: 10.1007/s00299-024-03258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
KEY MESSAGE 63 L. bicolor WRKY genes were identified and their informatics was analyzed. The results suggested that the LbWRKY genes involved in the development and salt secretion of salt glands in L. bicolor. Salt stress, as a universal abiotic stress, severely inhibits the growth and development of plants. WRKY transcription factors play a vital role in plant growth and development, as well as in response to various stresses. Nevertheless, little is known of systematic genome-wide analysis of the WRKY genes in Limonium bicolor, a model recretohalophyte. In this study, 63 L. bicolor WRKY genes were identified (LbWRKY1-63), which were unevenly distributed across seven chromosomes and one scaffold. Based on the structural and phylogenetic characteristics, 63 LbWRKYs are divided into three main groups. Cis-elements in the LbWRKY promoters were related to growth and development, phytohormone responses, and stress responses. Colinearity analysis showed strong colinearity between LbWRKYs and GmWRKYs from soybean (Glycine max). Therefore, LbWRKY genes maybe have similar functions to GmWRKY genes. Expression analysis showed that 28 LbWRKY genes are highly expressed in roots, 9 in stems, 26 in leaves, and 12 in flowers and most LbWRKY genes responded to NaCl, ABA, and PEG6000. Silencing LbWRKY10 reduced salt gland density and salt secretion ability of leaves, and the salt tolerance of the species. Consistent with this, genes associated with salt gland development were markedly down-regulated in the LbWRKY10-silenced lines. Our findings suggested that the LbWRKY genes involved in the development and salt secretion of salt glands in L. bicolor. Our research provides new insights into the functions of the WRKY family in halophytes.
Collapse
Affiliation(s)
- Zhihui Zhu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
- Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China
| | - Erkun Chao
- DongYing Academy of Agricultural Sciences, No. 383 Jiaozhou Road, Dongying, 257000, Shandong, China
| | - Aijuan Jiang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
- Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China
| | - Xiaofang Chen
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China
| | - Kai Ning
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China
| | - Hualing Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China.
- Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China.
| |
Collapse
|
4
|
Wang Y, Ye H, Ren F, Ren X, Zhu Y, Xiao Y, He J, Wang B. Comparative Transcriptome Analysis Revealed Candidate Gene Modules Involved in Salt Stress Response in Sweet Basil and Overexpression of ObWRKY16 and ObPAL2 Enhanced Salt Tolerance of Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1487. [PMID: 38891295 PMCID: PMC11174604 DOI: 10.3390/plants13111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Sweet basil (Ocimum basilicum L.) is an important aromatic plant with high edibility and economic value, widely distributed in many regions of the tropics including the south of China. In recent years, environmental problems, especially soil salinization, have seriously restricted the planting and spread of sweet basil. However, the molecular mechanism of the salt stress response in sweet basil is still largely unknown. In this study, seed germination, seedling growth, and chlorophyll synthesis in sweet basil were inhibited under salt stress conditions. Through comparative transcriptome analysis, the gene modules involved in the metabolic processes, oxidative response, phytohormone signaling, cytoskeleton, and photosynthesis were screened out. In addition, the landscape of transcription factors during salt treatment in sweet basil was displayed as well. Moreover, the overexpression of the WRKY transcription factor-encoding gene, ObWRKY16, and the phenylalanine ammonia-lyase-encoding gene, ObPAL2, enhanced the seed germination, seedling growth, and survival rate, respectively, of transgenic Arabidopsis, suggesting that they might be important candidates for the creation of salt-tolerant sweet basil cultivars. Our data enrich the study on salt responses in sweet basil and provide essential gene resources for genetic improvements in sweet basil in the future.
Collapse
Affiliation(s)
- Yukun Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Hong Ye
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Fei Ren
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Xiaoqiang Ren
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Yunna Zhu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Yanhui Xiao
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Jinming He
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; (Y.W.); (Y.Z.); (Y.X.)
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (H.Y.); (F.R.); (X.R.)
- Engineering and Technology Research Center of Shaoguan Horticulture in Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
5
|
Li G, Guo X, Sun Y, Gangurde SS, Zhang K, Weng F, Wang G, Zhang H, Li A, Wang X, Zhao C. Physiological and biochemical mechanisms underlying the role of anthocyanin in acquired tolerance to salt stress in peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1368260. [PMID: 38529061 PMCID: PMC10961369 DOI: 10.3389/fpls.2024.1368260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
Anthocyanin is an important pigment that prevents oxidative stress and mediates adaptation of plants to salt stress. Peanuts with dark red and black testa are rich in anthocyanin. However, correlation between salt tolerance and anthocyanin content in black and dark red testa peanuts is unknown. In this study, three peanut cultivars namely YZ9102 (pink testa), JHR1 (red testa) and JHB1 (black testa) were subjected to sodium chloride (NaCl) stress. The plant growth, ion uptake, anthocyanin accumulation, oxidation resistance and photosynthetic traits were comparatively analyzed. We observed that the plant height, leaf area and biomass under salt stress was highly inhibited in pink color testa (YZ9102) as compare to black color testa (JHB1). JHB1, a black testa colored peanut was identified as the most salt-tolerance cultivar, followed by red (JHR1) and pink(YZ9102). During salt stress, JHB1 exhibited significantly higher levels of anthocyanin and flavonoid accumulation compared to JHR1 and YZ9102, along with increased relative activities of antioxidant protection and photosynthetic efficiency. However, the K+/Na+ and Ca2+/Na+ were consistently decreased among three cultivars under salt stress, suggesting that the salt tolerance of black testa peanut may not be related to ion absorption. Therefore, we predicted that salt tolerance of JHB1 may be attributed to the accumulation of the anthocyanin and flavonoids, which activated antioxidant protection against the oxidative damage to maintain the higher photosynthetic efficiency and plant growth. These findings will be useful for improving salt tolerance of peanuts.
Collapse
Affiliation(s)
- Guanghui Li
- Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xin Guo
- Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanbin Sun
- Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan, China
| | - Sunil S. Gangurde
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Kun Zhang
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Fubin Weng
- Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guanghao Wang
- Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan, China
| | - Huan Zhang
- Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Aiqin Li
- Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xingjun Wang
- Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chuanzhi Zhao
- Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
6
|
Mahiwal S, Pahuja S, Pandey GK. Review: Structural-functional relationship of WRKY transcription factors: Unfolding the role of WRKY in plants. Int J Biol Macromol 2024; 257:128769. [PMID: 38096937 DOI: 10.1016/j.ijbiomac.2023.128769] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/18/2023]
Abstract
WRKY as the name suggests, are the transcription factors (TFs) that contain the signature WRKY domains, hence named after it. Since their discovery in 1994, they have been well studied in plants with exploration of approximately 74 WRKY genes in the model plant, Arabidopsis alone. However, the study of these transcription factors (TFs) is not just limited to model plant now. They have been studied widely in crop plants as well, because of their tremendous contribution in stress as well as in growth and development. Here, in this review, we describe the story of WRKY TFs from their identification to their origin, the binding mechanisms, structure and their contribution in regulating plant development and stress physiology. High throughput transcriptomics-based data also opened a doorway to understand the comprehensive and detailed functioning of WRKY TFs in plants. Indeed, the detailed functional role of each and every WRKY member in regulating the gene expression is required to pave the path to develop holistic understanding of their role in stress physiology and developmental processes in plants.
Collapse
Affiliation(s)
- Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Sonam Pahuja
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|
7
|
Chu W, Zhu X, Jiang T, Wang S, Ni W. Genome-wide identification of peanut IGT family genes and their potential roles in the development of plant architecture. Sci Rep 2023; 13:20400. [PMID: 37990054 PMCID: PMC10663514 DOI: 10.1038/s41598-023-47722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
IGT family genes play essential roles in shaping plant architecture. However, limited amount of information is available about IGT family genes in peanuts (Arachis hypogaea). In the current study, 13 AhIGT genes were identified and classified into three groups based on their phylogenetic relationship. Gene structure, conserved domain analyses indicated all AhIGTs were observed to share a similar exon-intron distribution pattern. AhIGTs within the same subfamily maintained a consistent motif composition. Chromosomal localization and synteny analyses showed that AhIGTs were unevenly localized on 9 chromosomes and that segmental duplication and purifying selection may have played important roles in the evolution of AhIGT genes. The analysis of conserved motifs, GO annotation, and transcript profile suggested that AhLAZY1-3 may play roles in gravity sensing and shaping peanut plant architecture. Transcript profile analysis suggested that AhTAC1 could potentially be involved gynophore ('peg') penetration into the soil. The cis-element analysis revealed that the light-responsive elements accounted for most of all cis-acting elements. Furthermore, qRT-PCR analysis showed that the expression of several AhIGT genes, like AhTAC1-2/4, was light-dependent, indicating that these genes may regulate plant architecture in response to light signals. This study may facilitate functional studies of the IGT genes in peanut.
Collapse
Affiliation(s)
- Wen Chu
- Crops Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xiaofeng Zhu
- Crops Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Tao Jiang
- Crops Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Song Wang
- Crops Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Wanli Ni
- Crops Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
8
|
Chen Y, Zhang X, Fan Y, Sui D, Jiang J, Wang L. The role of WRKY transcription factors in exogenous potassium (K +) response to NaCl stress in Tamarix ramosissima. Front Genet 2023; 14:1274288. [PMID: 38054027 PMCID: PMC10694239 DOI: 10.3389/fgene.2023.1274288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction: Soil salinization poses a significant challenge to plant growth and vitality. Plants like Tamarix ramosissima Ledeb (T. ramosissima), which are halophytes, are often integrated into planting schemes tailored for saline environments. Yet, the role of WRKY transcription factors in T. ramosissima, especially under sodium chloride (NaCl) stress mitigated by exogenous K+ application, is not well-understood. This research endeavors to bridge this knowledge gap. Methods: Using Pfam protein domain prediction and physicochemical property analysis, we delved into the WRKY genes in T. ramosissima roots that are implicated in counteracting NaCl stress when aided by exogenous K+ applications. By observing shifts in the expression levels of WRKY genes annotated to the KEGG pathway under NaCl stress at 0, 48, and 168 h, we aimed to identify potential key WRKY genes. Results: We found that the expression of 56 WRKY genes in T. ramosissima roots responded to exogenous K+ application during NaCl stress at the indicated time points. Particularly, the expression levels of these genes were primarily upregulated within 168 h. From these, 10 WRKY genes were found to be relevant in the KEGG pathways. Moreover, six genes, namely Unigene0024962, Unigene0024963, Unigene0010090, Unigene0007135, Unigene0070215, and Unigene0077293, were annotated to the Plant-pathogen interaction pathway or the MAPK signaling pathway in plants. These genes exhibited dynamic expression regulation at 48 h with the application of exogenous K+ under NaCl stress. Discussion: Our research highlights that WRKY transcription factors can modulate the activation or inhibition of related genes during NaCl stress with the application of exogenous K+. This regulation enhances the plant's adaptability to saline environments and mitigates the damage induced by NaCl. These findings provide valuable gene resources for future salt-tolerant Tamarix breeding and expand our understanding of the molecular mechanisms of WRKY transcription factors in alleviating NaCl toxicity.
Collapse
Affiliation(s)
- Yahui Chen
- Jiangsu Academy of Forestry, Nanjing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Xuanyi Zhang
- Jiangsu Academy of Forestry, Nanjing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Yunlong Fan
- Faculty of Science Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| | - Dezong Sui
- Jiangsu Academy of Forestry, Nanjing, China
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Lei Wang
- Jiangsu Academy of Forestry, Nanjing, China
| |
Collapse
|
9
|
Song H, Guo Z, Duan Z, Li M, Zhang J. WRKY transcription factors in Arachis hypogaea and its donors: From identification to function prediction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108131. [PMID: 37897893 DOI: 10.1016/j.plaphy.2023.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
WRKY transcription factors (TFs) play important roles in plant growth and development and responses to abiotic and biotic stresses. Since the initial isolation of a WRKY TF in Ipomoea batatas in 1994, WRKY TFs have been identified in plants, protozoa, and fungi. Peanut (Arachis hypogaea) is a key oil and protein crop for humans and a forage source for animal consumption. Several Arachis genomes have been sequenced and genome-wide WRKY TFs have been identified. In this review, we summarized WRKY TFs and their functions in A. hypogaea and its donors. We also standardized the nomenclature for Arachis WRKY TFs to ensure uniformity. We determined the evolutionary relationships between Arachis and Arabidopsis thaliana WRKY (AtWRKY) TFs using a phylogenetic analysis. Biological functions and regulatory networks of Arachis WRKY TFs were predicted using AtWRKY TFs. Thus, this review paves the way for studies of Arachis WRKY TFs.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zhonglong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenquan Duan
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Meiran Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | | |
Collapse
|
10
|
Li Y, Tian M, Feng Z, Zhang J, Lu J, Fu X, Ma L, Wei H, Wang H. GhDof1.7, a Dof Transcription Factor, Plays Positive Regulatory Role under Salinity Stress in Upland Cotton. PLANTS (BASEL, SWITZERLAND) 2023; 12:3740. [PMID: 37960096 PMCID: PMC10649836 DOI: 10.3390/plants12213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Salt stress is a major abiotic stressor that can severely limit plant growth, distribution, and crop yield. DNA-binding with one finger (Dof) is a plant-specific transcription factor that plays a crucial role in plant growth, development, and stress response. In this study, the function of a Dof transcription factor, GhDof1.7, was investigated in upland cotton. The GhDof1.7 gene has a coding sequence length of 759 base pairs, encoding 252 amino acids, and is mainly expressed in roots, stems, leaves, and inflorescences. Salt and abscisic acid (ABA) treatments significantly induced the expression of GhDof1.7. The presence of GhDof1.7 in Arabidopsis may have resulted in potential improvements in salt tolerance, as suggested by a decrease in H2O2 content and an increase in catalase (CAT) and superoxide dismutase (SOD) activities. The GhDof1.7 protein was found to interact with GhCAR4 (C2-domain ABA-related 4), and the silencing of either GhDof1.7 or GhCAR4 resulted in reduced salt tolerance in cotton plants. These findings demonstrate that GhDof1.7 plays a crucial role in improving the salt tolerance of upland cotton and provide insight into the regulation of abiotic stress response by Dof transcription factors.
Collapse
Affiliation(s)
- Yi Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Miaomiao Tian
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Zhen Feng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Jingjing Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Jianhua Lu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Xiaokang Fu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Liang Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Hengling Wei
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Hantao Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
11
|
Kumar D, Kirti PB. The genus Arachis: an excellent resource for studies on differential gene expression for stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1275854. [PMID: 38023864 PMCID: PMC10646159 DOI: 10.3389/fpls.2023.1275854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Peanut Arachis hypogaea is a segmental allotetraploid in the section Arachis of the genus Arachis along with the Section Rhizomataceae. Section Arachis has several diploid species along with Arachis hypogaea and A. monticola. The section Rhizomataceae comprises polyploid species. Several species in the genus are highly tolerant to biotic and abiotic stresses and provide excellent sets of genotypes for studies on differential gene expression. Though there were several studies in this direction, more studies are needed to identify more and more gene combinations. Next generation RNA-seq based differential gene expression study is a powerful tool to identify the genes and regulatory pathways involved in stress tolerance. Transcriptomic and proteomic study of peanut plants under biotic stresses reveals a number of differentially expressed genes such as R genes (NBS-LRR, LRR-RLK, protein kinases, MAP kinases), pathogenesis related proteins (PR1, PR2, PR5, PR10) and defense related genes (defensin, F-box, glutathione S-transferase) that are the most consistently expressed genes throughout the studies reported so far. In most of the studies on biotic stress induction, the differentially expressed genes involved in the process with enriched pathways showed plant-pathogen interactions, phenylpropanoid biosynthesis, defense and signal transduction. Differential gene expression studies in response to abiotic stresses, reported the most commonly expressed genes are transcription factors (MYB, WRKY, NAC, bZIP, bHLH, AP2/ERF), LEA proteins, chitinase, aquaporins, F-box, cytochrome p450 and ROS scavenging enzymes. These differentially expressed genes are in enriched pathways of transcription regulation, starch and sucrose metabolism, signal transduction and biosynthesis of unsaturated fatty acids. These identified differentially expressed genes provide a better understanding of the resistance/tolerance mechanism, and the genes for manipulating biotic and abiotic stress tolerance in peanut and other crop plants. There are a number of differentially expressed genes during biotic and abiotic stresses were successfully characterized in peanut or model plants (tobacco or Arabidopsis) by genetic manipulation to develop stress tolerance plants, which have been detailed out in this review and more concerted studies are needed to identify more and more gene/gene combinations.
Collapse
Affiliation(s)
- Dilip Kumar
- Department of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pulugurtha Bharadwaja Kirti
- Agri Biotech Foundation, Professor Jayashankar Telangana State (PJTS) Agricultural University, Hyderabad, Telangana, India
| |
Collapse
|
12
|
Rai GK, Mishra S, Chouhan R, Mushtaq M, Chowdhary AA, Rai PK, Kumar RR, Kumar P, Perez-Alfocea F, Colla G, Cardarelli M, Srivastava V, Gandhi SG. Plant salinity stress, sensing, and its mitigation through WRKY. FRONTIERS IN PLANT SCIENCE 2023; 14:1238507. [PMID: 37860245 PMCID: PMC10582725 DOI: 10.3389/fpls.2023.1238507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
Salinity or salt stress has deleterious effects on plant growth and development. It imposes osmotic, ionic, and secondary stresses, including oxidative stress on the plants and is responsible for the reduction of overall crop productivity and therefore challenges global food security. Plants respond to salinity, by triggering homoeostatic mechanisms that counter salt-triggered disturbances in the physiology and biochemistry of plants. This involves the activation of many signaling components such as SOS pathway, ABA pathway, and ROS and osmotic stress signaling. These biochemical responses are accompanied by transcriptional modulation of stress-responsive genes, which is mostly mediated by salt-induced transcription factor (TF) activity. Among the TFs, the multifaceted significance of WRKY proteins has been realized in many diverse avenues of plants' life including regulation of plant stress response. Therefore, in this review, we aimed to highlight the significance of salinity in a global perspective, the mechanism of salt sensing in plants, and the contribution of WRKYs in the modulation of plants' response to salinity stress. This review will be a substantial tool to investigate this problem in different perspectives, targeting WRKY and offering directions to better manage salinity stress in the field to ensure food security.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Sonal Mishra
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Rekha Chouhan
- Infectious Diseases Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| | - Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Aksar Ali Chowdhary
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Pradeep K. Rai
- Advance Center for Horticulture Research, Udheywala, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu & Kashmir, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Council of Agricultural Research (ICAR), Indian Agricultural Research Institute, New Delhi, India
| | - Pradeep Kumar
- Division of Integrated Farming System, Central Arid Zone Research Institute, Indian Council of Agricultural Research (ICAR), Jodhpur, India
| | - Francisco Perez-Alfocea
- Department of Nutrition, Centre for Applied Soil Science and Biology of the Segura (CEBAS), of the Spanish National Research Council (CSIC), Murcia, Spain
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | | | - Vikas Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Sumit G. Gandhi
- Infectious Diseases Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| |
Collapse
|
13
|
Zhang Q, Ye Z, Wang Y, Zhang X, Kong W. Haplotype-Resolution Transcriptome Analysis Reveals Important Responsive Gene Modules and Allele-Specific Expression Contributions under Continuous Salt and Drought in Camellia sinensis. Genes (Basel) 2023; 14:1417. [PMID: 37510320 PMCID: PMC10379978 DOI: 10.3390/genes14071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The tea plant, Camellia sinensis (L.) O. Kuntze, is one of the most important beverage crops with significant economic and cultural value. Global climate change and population growth have led to increased salt and drought stress, negatively affecting tea yield and quality. The response mechanism of tea plants to these stresses remains poorly understood due to the lack of reference genome-based transcriptional descriptions. This study presents a high-quality genome-based transcriptome dynamic analysis of C. sinensis' response to salt and drought stress. A total of 2244 upregulated and 2164 downregulated genes were identified under salt and drought stress compared to the control sample. Most of the differentially expression genes (DEGs) were found to involve divergent regulation processes at different time points under stress. Some shared up- and downregulated DEGs related to secondary metabolic and photosynthetic processes, respectively. Weighted gene co-expression network analysis (WGCNA) revealed six co-expression modules significantly positively correlated with C. sinensis' response to salt or drought stress. The MEpurple module indicated crosstalk between the two stresses related to ubiquitination and the phenylpropanoid metabolic regulation process. We identified 1969 salt-responsive and 1887 drought-responsive allele-specific expression (ASE) genes in C. sinensis. Further comparison between these ASE genes and tea plant heterosis-related genes suggests that heterosis likely contributes to the adversity and stress resistance of C. sinensis. This work offers new insight into the underlying mechanisms of C. sinensis' response to salt and drought stress and supports the improved breeding of tea plants with enhanced salt and drought tolerance.
Collapse
Affiliation(s)
- Qing Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ziqi Ye
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yinghao Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
14
|
Liu Q, Wang S, Wen J, Chen J, Sun Y, Dong S. Genome-wide identification and analysis of the WRKY gene family and low-temperature stress response in Prunus sibirica. BMC Genomics 2023; 24:358. [PMID: 37370033 DOI: 10.1186/s12864-023-09469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND WRKY transcription factors are a prominent gene family in plants, playing a crucial role in various biological processes including development, metabolism, defense, differentiation, and stress response. Although the WRKY gene family has been extensively studied and analysed in numerous plant species, research on Prunus sibirica's WRKY genes (PsWRKY) remains lacking. RESULTS This study analysed the basic physicochemical properties, phylogeny, gene structure, cis-acting elements, and Gene ontology (GO) annotation of PsWRKY gene family members using bioinformatics methods based on the whole-genome data of P. sibirica. In total, 55 WRKYs were identified in P. sibirica and were heterogeneously distributed on eight chromosomes. Based on the phylogenetic analysis, these WRKYs were classified into three major groups: Group I, Group II (II-a, II-b, II-c, II-d, II-e), and Group III. Members of different subfamilies have different cis-acting elements, conserved motifs, and intron-exon structures, indicating functional heterogeneity of the WRKY family. Prediction of subcellular localisation indicated that PsWRKYs were mainly located in the nucleus. Twenty pairs of duplicated genes were identified, and segmental duplication events may play an important role in PsWRKY gene family expansion. Analysis of the Ka/Ks ratio showed that the PsWRKY family's homologous genes were primarily purified by selection. Additionally, GO annotation analysis showed that the WRKY gene family was mainly involved in responses to stimuli, immune system processes, and reproductive processes. Furthermore, quantitative real-time PCR (qRT-PCR) analysis showed that 23 PsWRKYs were highly expressed in one or more tissues (pistils and roots) and PsWRKYs showed specific expression patterns under different low-temperature stress conditions. CONCLUSIONS Our results provide a scientific basis for the further exploration and functional validation of WRKYs in P. sibirica.
Collapse
Affiliation(s)
- Quangang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Shipeng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jiaxing Wen
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jianhua Chen
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yongqiang Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Shengjun Dong
- College of Forestry, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
15
|
Liu Y, Zhang Y, Liu Y, Lin L, Xiong X, Zhang D, Li S, Yu X, Li Y. Genome-Wide Identification and Characterization of WRKY Transcription Factors and Their Expression Profile in Loropetalum chinense var. rubrum. PLANTS (BASEL, SWITZERLAND) 2023; 12:2131. [PMID: 37299110 PMCID: PMC10255886 DOI: 10.3390/plants12112131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The WRKY gene family plays important roles in plant growth and development, as well as in the responses to biotic and abiotic stresses. Loropetalum chinense var. rubrum has high ornamental and medicinal value. However, few WRKY genes have been reported in this plant, and their functions remain unknown. To explore the roles that the WRKY genes play in L. chinense var. rubrum, we identified and characterized 79 LcWRKYs through BLAST homology analysis and renamed them (as LcWRKY1-79) based on their distribution on the chromosomes of L. chinense var. rubrum. In this way, according to their structural characteristics and phylogenetic analysis, they were divided into three groups containing 16 (Group I), 52 (Group II), and 11 (Group III) WRKYs, respectively. LcWRKYs in the same group have similar motifs and gene structures; for instance, Motifs 1, 2, 3, 4, and 10 constitute the WRKY domain and zinc-finger structure. The LcWRKY promoter region contains light response elements (ACE, G-box), stress response elements (TC-rich repeats), hormone response elements (TATC-box, TCA-element), and MYB binding sites (MBS, MBSI). Synteny analysis of LcWRKYs allowed us to establish orthologous relationships among the WRKY gene families of Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum L., Vitis vinifera L., Oryza sativa L., and Zea mays L.; furthermore, analysis of the transcriptomes of mature leaves and flowers from different cultivars demonstrated the cultivar-specific LcWRKY gene expression. The expression levels of certain LcWRKY genes also presented responsive changes from young to mature leaves, based on an analysis of the transcriptome in leaves at different developmental stages. White light treatment led to a significant decrease in the expression of LcWRKY6, 18, 24, 34, 36, 44, 48, 61, 62, and 77 and a significant increase in the expression of LcWRKY41, blue light treatment led to a significant decrease in the expression of LcWRKY18, 34, 50, and 77 and a significant increase in the expression of LcWRKY36 and 48. These results enable a better understanding of LcWRKYs, facilitating the further exploration of their genetic functions and the molecular breeding of L. chinense var. rubrum.
Collapse
Affiliation(s)
- Yang Liu
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
| | - Yifan Zhang
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
| | - Yang Liu
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
| | - Ling Lin
- School of Economics, Hunan Agricultural University, Changsha 410128, China;
| | - Xingyao Xiong
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Kunpeng Institute of Modern Agriculture, Foshan 528225, China
| | - Donglin Zhang
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Sha Li
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou311300, China;
| | - Xiaoying Yu
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
| | - Yanlin Li
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (Y.Z.); (Y.L.); (X.X.); (D.Z.)
- Kunpeng Institute of Modern Agriculture, Foshan 528225, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
16
|
Shen QQ, Wang TJ, Wang JG, He LL, Zhao TT, Zhao XT, Xie LY, Qian ZF, Wang XH, Liu LF, Chen SY, Zhang SZ, Li FS. The SsWRKY1 transcription factor of Saccharum spontaneum enhances drought tolerance in transgenic Arabidopsis thaliana and interacts with 21 potential proteins to regulate drought tolerance in S. spontaneum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107706. [PMID: 37119548 DOI: 10.1016/j.plaphy.2023.107706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
In this study, we characterized a WRKY family member gene, SsWRKY1, which is located in the nucleus and contains multiple stress-related cis-acting elements. In addition, constructed SsWRKY1-overexpressing Arabidopsis thaliana had higher antioxidant enzyme activity and proline content under drought stress conditions, with lower malondialdehyde content and reactive oxygen species (ROS) accumulation, and the expression levels of six stress-related genes were significantly upregulated. This indicates that the overexpression of SsWRKY1 in Arabidopsis thaliana improves resistance to drought stress. SsWRKY1 does not have transcriptional autoactivation activity in yeast cells. The yeast two-hybrid (Y2H) system and the S. spontaneum cDNA library were used to screen 21 potential proteins that interact with SsWRKY1, and the interaction between SsWRKY1 and ATAF2 was verified by GST pull-down assay. In summary, our results indicate that SsWRKY1 plays an important role in the response to drought stress and provide initial insights into the molecular mechanism of SsWRKY1 in response to drought stress.
Collapse
Affiliation(s)
- Qing-Qing Shen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Tian-Ju Wang
- Institute for Bio-resources Research and Development of Central Yunnan Plateau, Chuxiong Normal University, Chuxiong, Yunnan, 675000, People's Republic of China
| | - Jun-Gang Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China
| | - Li-Lian He
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Ting-Ting Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China
| | - Xue-Ting Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Lin-Yan Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Zhen-Feng Qian
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Xian-Hong Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Lu-Feng Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Shu-Ying Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Shu-Zhen Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China.
| | - Fu-Sheng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China; Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China.
| |
Collapse
|
17
|
Wu X, Chen L, Lin X, Chen X, Han C, Tian F, Wan X, Liu Q, He F, Chen L, Zhong Y, Yang H, Zhang F. Integrating physiological and transcriptome analyses clarified the molecular regulation mechanism of PyWRKY48 in poplar under cadmium stress. Int J Biol Macromol 2023; 238:124072. [PMID: 36934813 DOI: 10.1016/j.ijbiomac.2023.124072] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
WRKY transcription factors (TFs) play an important role in regulating plant growth and responses to environmental stress. However, the molecular mechanism of WRKY to cadmium (Cd) stress is unclear, which prevents phytoremediation of Cd-contaminated soil from widely application. To determine the underlying mechanism, PyWRKY48-overexpressing poplars were obtained (OE-32 and OE-67) to study the Cd tolerance and accumulation in poplars. Results showed that the Cd content in the aboveground part of the two transgenic poplar lines were 1.57 and 1.99 times higher than that of wild type (WT), and lateral roots, GSH, PCs content and GST activity increased significantly. RNA-seq. data about transgenic and WT poplars revealed that 2074 differentially expressed genes (DEGs) in roots, 4325 in leaves, and 499 in both tissues. And these DEGs were mainly concentrated in ABC transport protein (PaABC), heavy-metal binding protein (PaHIPP), and transportation and loading of xylem (PaNPF, PaBSP) proteins, and they enhanced Cd accumulation. Meanwhile, PyWRKY48 increased the Cd tolerance of transgenic poplars by up-regulating the expression of PaGRP, PaPER and PaPHOS, which encode cell wall proteins, antioxidant enzyme, and heavy metal-associated proteins, respectively. In addition, overexpression PyWRKY48 promoted poplar growth by increasing the chlorophyll and carotenoid content. ENVIRONMENTAL IMPLICATION: This study generated PyWRKY48-overexpressing poplars and functionally verified them in Cd-contaminated soil, to analyze the effects of the gene on poplar growth, Cd tolerance and Cd accumulation. RNA seq. data revealed that several genes are involved in Cd exposure. This may provide a strong molecular basis and new ideas for improving the phytoremediation efficiency of Cd-contaminated soils. Importantly, the transgenic poplars grew better and accumulated more Cd than the wild-type. Therefore, PyWRKY48-overexpressing poplars could be considered useful for mitigating environmental pollution.
Collapse
Affiliation(s)
- Xiaolu Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lulu Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xinyi Lin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoxi Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chengyu Han
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Feifei Tian
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xueqin Wan
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fang He
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianghua Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yu Zhong
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hanbo Yang
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fan Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
18
|
Yu S, He Z, Gao K, Zhou J, Lan X, Zhong C, Xie J. Dioscorea composita WRKY12 is involved in the regulation of salt tolerance by directly activating the promoter of AtRCI2A. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:746-758. [PMID: 36827956 DOI: 10.1016/j.plaphy.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/05/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Dioscorea composita (D. composita) is an important medicinal plant worldwide with high economic value. However, its large-scale cultivation was limited by soil salinization. Identification of genes and their mechanisms of action in response to salt stress are critically important. In the present study, we isolated a classical WRKY transcription factor from D. composita, namely DcWRKY12, and analyzed its function in salt tolerance. Expression pattern analysis showed DcWRKY12 is mainly expressed in roots and significantly induced by NaCl, polyethylene glycol-6000 (PEG-6000), and abscisic acid (ABA). Phenotypic and physiological analyses revealed that heterologous expression of DcWRKY12 enhanced salt and osmotic stress tolerance by increasing antioxidant enzyme activity, osmoregulatory substance content, maintaining relative water content and ion homeostasis, decreasing reactive oxygen species and malondialdehyde content. Correspondingly, the overexpression of DcWRKY12 modulated the expression of salt stress-responsive and ion transport-related genes. Dual luciferase assay and Y1H were further confirmed that DcWRKY12 activates the promoter of AtRCI2A through directly binding to the specific W-box cis-acting elements. These results suggest that DcWRKY12 is a positive regulator of salt tolerance in D. composita and has potential applications in salt stress.
Collapse
Affiliation(s)
- Shangjie Yu
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China
| | - Zhanxin He
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China
| | - Kaixiang Gao
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China
| | - Jianchan Zhou
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China
| | - Xin Lan
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China
| | - Chunmei Zhong
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China.
| | - Jun Xie
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China.
| |
Collapse
|
19
|
Tian Q, Xu M, Wu D, Wang C, Wang X, Che Q, Li Z, Xu X. Integrated transgene and transcriptome reveal the molecular basis of MdWRKY87 positively regulate adventitious rooting in apple rootstock. FRONTIERS IN PLANT SCIENCE 2023; 14:1136616. [PMID: 36778677 PMCID: PMC9909196 DOI: 10.3389/fpls.2023.1136616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
For most fruit and forest species vegetative propagated from elite genotypes, adventitious rooting is essential. The ability to form adventitious roots significantly decreased during the juvenile to adult phase change. Apart from the miR156-SPL pathway, whether there is another regulation mechanism controlling age-dependent adventitious rooting ability remained largely unknown. In the present study, we showed that MdWRKY87 expression level was positively correlation with adventitious rooting ability. In addition, over-expressing of MdWRKY87 in tobacco leads to enhanced adventitious rooting ability, more adventitious root number and accelerated adventitious rooting process. Comparative transcriptome profiling indicated that MdWRKY87 overexpression can activate the expression of adventitious rooting-induced genes, such as WOX11 and AIL. In addition, MdWRKY87 overexpression can inhibit the transcription of adventitious rooting-repressed genes, such as AUX/IAAs and type-B cytokinin RRs. Collectively, here we demonstrated that higher expression level of MdWRKY87 contributes to age-dependent adventitious rooting-competent in juvenile apple rootstock.
Collapse
Affiliation(s)
- Qiuye Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Mengli Xu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China
| | - Dongchen Wu
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, China
| | - Chaoping Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xianlin Wang
- Weihai Yingjuval Nursery Limited Company, Weihai International Port Economic and Technological Develepment District, Weihai, Shandong, China
| | - Qinqin Che
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Zhengnan Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaozhao Xu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
20
|
Wang N, Song G, Zhang F, Shu X, Cheng G, Zhuang W, Wang T, Li Y, Wang Z. Characterization of the WRKY Gene Family Related to Anthocyanin Biosynthesis and the Regulation Mechanism under Drought Stress and Methyl Jasmonate Treatment in Lycoris radiata. Int J Mol Sci 2023; 24:ijms24032423. [PMID: 36768747 PMCID: PMC9917153 DOI: 10.3390/ijms24032423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Lycoris radiata, belonging to the Amaryllidaceae family, is a well-known Chinese traditional medicinal plant and susceptible to many stresses. WRKY proteins are one of the largest families of transcription factors (TFs) in plants and play significant functions in regulating physiological metabolisms and abiotic stress responses. The WRKY TF family has been identified and investigated in many medicinal plants, but its members and functions are not identified in L. radiata. In this study, a total of 31 L. radiata WRKY (LrWRKY) genes were identified based on the transcriptome-sequencing data. Next, the LrWRKYs were divided into three major clades (Group I-III) based on the WRKY domains. A motif analysis showed the members within same group shared a similar motif component, indicating a conservational function. Furthermore, subcellular localization analysis exhibited that most LrWRKYs were localized in the nucleus. The expression pattern of the LrWRKY genes differed across tissues and might be important for Lycoris growth and flower development. There were large differences among the LrWRKYs based on the transcriptional levels under drought stress and MeJA treatments. Moreover, a total of 18 anthocyanin components were characterized using an ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) analysis and pelargonidin-3-O-glucoside-5-O-arabinoside as well as cyanidin-3-O-sambubioside were identified as the major anthocyanin aglycones responsible for the coloration of the red petals in L. radiata. We further established a gene-to-metabolite correlation network and identified LrWRKY3 and LrWRKY27 significant association with the accumulation of pelargonidin-3-O-glucoside-5-O-arabinoside in the Lycoris red petals. These results provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in anthocyanin biosynthesis and in response to drought stress and MeJA treatment.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Guowei Song
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiaochun Shu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Guanghao Cheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Weibing Zhuang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Tao Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yuhang Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Zhong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
21
|
Hu D, Li R, Dong S, Zhang J, Zhao B, Ren B, Ren H, Yao H, Wang Z, Liu P. Maize (Zea mays L.) responses to salt stress in terms of root anatomy, respiration and antioxidative enzyme activity. BMC PLANT BIOLOGY 2022; 22:602. [PMID: 36539687 PMCID: PMC9764725 DOI: 10.1186/s12870-022-03972-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Soil salt stress is a problem in the world, which turns into one of the main limiting factors hindering maize production. Salinity significantly affects root physiological processes in maize plants. There are few studies, however, that analyses the response of maize to salt stress in terms of the development of root anatomy and respiration. RESULTS We found that the leaf relative water content, photosynthetic characteristics, and catalase activity exhibited a significantly decrease of salt stress treatments. However, salt stress treatments caused the superoxide dismutase activity, peroxidase activity, malondialdehyde content, Na+ uptake and translocation rate to be higher than that of control treatments. The detrimental effect of salt stress on YY7 variety was more pronounced than that of JNY658. Under salt stress, the number of root cortical aerenchyma in salt-tolerant JNY658 plants was significantly higher than that of control, as well as a larger cortical cell size and a lower root cortical cell file number, all of which help to maintain higher biomass. The total respiration rate of two varieties exposed to salt stress was lower than that of control treatment, while the alternate oxidative respiration rate was higher, and the root response of JNY658 plants was significant. Under salt stress, the roots net Na+ and K+ efflux rates of two varieties were higher than those of the control treatment, where the strength of net Na+ efflux rate from the roots of JNY658 plants and the net K+ efflux rate from roots of YY7 plants was remarkable. The increase in efflux rates reduced the Na+ toxicity of the root and helped to maintain its ion balance. CONCLUSION These results demonstrated that salt-tolerant maize varieties incur a relatively low metabolic cost required to establish a higher root cortical aerenchyma, larger cortical cell size and lower root cortical cell file number, significantly reduced the total respiration rate, and that it also increased the alternate oxidative respiration rate, thereby counteracting the detrimental effect of oxidative damage on root respiration of root growth. In addition, Na+ uptake on the root surface decreased, the translocation of Na+ to the rest of the plant was constrained and the level of Na+ accumulation in leaves significantly reduced under salt stress, thus preempting salt-stress induced impediments to the formation of shoot biomass.
Collapse
Affiliation(s)
- Dandan Hu
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Rongfa Li
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Shuting Dong
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Jiwang Zhang
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Bin Zhao
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Baizhao Ren
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Hao Ren
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Haiyan Yao
- Agricultural Technology Extension Center of Wudi, Binzhou, Shandong, 251900, People's Republic of China
| | - Ziqiang Wang
- Binzhou Academy of Agricultural Science, Binzhou, Shandong, 256603, People's Republic of China
| | - Peng Liu
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
22
|
Liu Y, Shen Y, Liang M, Zhang X, Xu J, Shen Y, Chen Z. Identification of Peanut AhMYB44 Transcription Factors and Their Multiple Roles in Drought Stress Responses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3522. [PMID: 36559634 PMCID: PMC9788490 DOI: 10.3390/plants11243522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
MYB transcription factors (TFs) comprise a large gene family that plays an important role in plant growth, development, stress responses, and defense regulation. However, their functions in peanut remain to be further elucidated. Here, we identified six AhMYB44 genes (AhMYB44-01/11, AhMYB44-05/15, and AhMYB44-06/16) in cultivated peanut. They are typical R2R3-MYB TFs and have many similarities but different expression patterns in response to drought stress, suggesting different functions under drought stress. Homologous genes with higher expression in each pair were selected for further study. All of them were nuclear proteins and had no self-transactivation activity. In addition, we compared the performances of different lines at germination, seedling, and adult stages under drought stress. After drought treatment, the overexpression of AhMYB44-11 transgenic plants resulted in the longest root length at the seedling stage. Levels of proline, soluble sugar and chlorophyll, and expression levels of stress-related genes, including P5CS1, RD29A, CBF1, and COR15A, were higher than those of the wild type (WT) at the adult stage. While the overexpression of AhMYB44-16 significantly increased the drought sensitivity of plants at all stages, with differential ABA content, the expression levels of the ABA-related genes PP2CA and ABI1 were significantly upregulated and those of ABA1 and ABA2 were significantly downregulated compared with the WT. AhMYB44-05 showed similar downregulated expression as AhMYB44-16 under drought stress, but its overexpression in Arabidopsis did not significantly affect the drought resistance of transgenic plants. Based on the results, we propose that AhMYB44-11 plays a role as a positive factor in drought tolerance by increasing the transcription abundance of stress-related genes and the accumulation of osmolytes, while AhMYB44-16 negatively regulates drought tolerance through its involvement in ABA-dependent stress response pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi Shen
- Correspondence: (Y.S.); (Z.C.)
| | | |
Collapse
|
23
|
Overexpression of DoBAM1 from Yam ( Dioscorea opposita Thunb.) Enhances Cold Tolerance in Transgenic Tobacco. Genes (Basel) 2022; 13:genes13122296. [PMID: 36553563 PMCID: PMC9777697 DOI: 10.3390/genes13122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
β-amylase (BAM) plays an important role in plant development and response to abiotic stresses. In this study, 5 DoBAM members were identified in yam (Dioscorea opposita Thunb.). A novel β-amylase gene BAM1, (named DoBAM1), was isolated from yam varieties Bikeqi and Dahechangyu. The open reading frame (ORF) of DoBAM1 is 2806 bp and encodes 543 amino acids. Subcellular localization analysis indicates that DoBAM1 localizes to the cell membrane and cytoplasm. In the yam variety Dahechangyu, the starch content, β-amylase activity, and expression of DoBAM1 were characterized and found to all be higher than in Bikeqi. DoBAM1 overexpression in tobacco is shown to promote the accumulation of soluble sugar and chlorophyll content and to increase the activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and β-amylase. Under cold treatment, we observed the induced upregulation of DoBAM1 and lower starch content and malondialdehyde (MDA) accumulation than in WT plants. In conclusion, these results demonstrate that DoBAM1 overexpression plays an advanced role in cold tolerance, at least in part by raising the levels of soluble sugars that are capable of acting as osmolytes or antioxidants.
Collapse
|
24
|
Khoso MA, Hussain A, Ritonga FN, Ali Q, Channa MM, Alshegaihi RM, Meng Q, Ali M, Zaman W, Brohi RD, Liu F, Manghwar H. WRKY transcription factors (TFs): Molecular switches to regulate drought, temperature, and salinity stresses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1039329. [PMID: 36426143 PMCID: PMC9679293 DOI: 10.3389/fpls.2022.1039329] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 06/01/2023]
Abstract
The WRKY transcription factor (TF) belongs to one of the major plant protein superfamilies. The WRKY TF gene family plays an important role in the regulation of transcriptional reprogramming associated with plant stress responses. Change in the expression patterns of WRKY genes or the modifications in their action; participate in the elaboration of numerous signaling pathways and regulatory networks. WRKY proteins contribute to plant growth, for example, gamete formation, seed germination, post-germination growth, stem elongation, root hair growth, leaf senescence, flowering time, and plant height. Moreover, they play a key role in many types of environmental signals, including drought, temperature, salinity, cold, and biotic stresses. This review summarizes the current progress made in unraveling the functions of numerous WRKY TFs under drought, salinity, temperature, and cold stresses as well as their role in plant growth and development.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- Department of Life Science, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Amjad Hussain
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | | | - Rana M. Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Qinglin Meng
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
| | - Musrat Ali
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad Pakistan, Islamabad, Pakistan
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Rahim Dad Brohi
- Department of Animal Reproduction/Theriogenology, Faculty of Veterinary Science, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Fen Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| |
Collapse
|
25
|
Wan Z, Li X, Cheng H, Zhang J, Chen Y, Xu Y, Jin S. Comprehensive Genomic Survey, Structural Classification, and Expression Analysis of WRKY Transcription Factor Family in Rhododendron simsii. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212967. [PMID: 36365420 PMCID: PMC9654210 DOI: 10.3390/plants11212967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 06/01/2023]
Abstract
(1) Rhododendron is one of the top ten traditional flowers in China, with both high ornamental and economic values. However, with the change of the environment, Rhododendron suffers from various biological stresses. The WRKY transcription factor is a member of the most crucial transcription factor families, which plays an essential regulatory role in a variety of physiological processes and developmental stresses. (2) In this study, 57 RsWRKYs were identified using genome data and found to be randomly distributed on 13 chromosomes. Based on gene structure and phylogenetic relationships, 57 proteins were divided into three groups: I, II, and III. Multiple alignments of RsWRKYs with Arabidopsis thaliana homologous genes revealed that WRKY domains in different groups had different conserved sites. RsWRKYs have a highly conserved domain, WRKYGQK, with three variants, WRKYGKK, WRKYGEK, and WRKYGRK. Furthermore, cis-acting elements analysis revealed that all of the RsWRKYs had stress and plant hormone cis-elements, with figures varying by group. Finally, the expression patterns of nine WRKY genes treated with gibberellin acid (GA), methyl jasmonate (MeJA), heat, and drought in Rhododendron were also measured using quantitative real-time PCR (qRT-PCR). The results showed that the expression levels of the majority of RsWRKY genes changed in response to multiple phytohormones and abiotic stressors. (3) This current study establishes a theoretical basis for future studies on the response of RsWRKY transcription factors to various hormone and abiotic stresses as well as a significant foundation for the breeding of new stress-tolerant Rhododendron varieties.
Collapse
Affiliation(s)
- Ziyun Wan
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Xueqin Li
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Hefeng Cheng
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Jing Zhang
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Yujia Chen
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Yanxia Xu
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
- School of Life Science and Health, Huzhou College, Huzhou 313000, China
| |
Collapse
|
26
|
Liu W, Liang X, Cai W, Wang H, Liu X, Cheng L, Song P, Luo G, Han D. Isolation and Functional Analysis of VvWRKY28, a Vitis vinifera WRKY Transcription Factor Gene, with Functions in Tolerance to Cold and Salt Stress in Transgenic Arabidopsis thaliana. Int J Mol Sci 2022; 23:13418. [PMID: 36362205 PMCID: PMC9658438 DOI: 10.3390/ijms232113418] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 08/06/2023] Open
Abstract
The grape (Vitis vinifera L.) not only has a long history of cultivation, but also has rich nutritional value and high economic value. However, grapes often face many threats in the growth process. For example, low temperature and salt stress restrict the growth status, yield, and geographical distribution of grapes. WRKY, as one of the largest transcription factor (TF) families in plants, participates in the response of plants to stress. VvWRKY28, a new zinc finger type transcriptional regulator gene, was isolated from Beichun (V. vinifera × V.amurensis) in this study. From the subcellular localization results, it can be concluded that VvWRKY28 was localized in the nucleus. The expression of VvWRKY28 was enriched in leaves (young and mature leaves), and cold and high salt conditions can induce high expression of VvWRKY28. After being transferred into Arabidopsis, VvWRKY28 greatly improved the tolerance of Arabidopsis to low temperature and high salt and also changed many physiological and biochemical indicators of transgenic Arabidopsis to cope with cold and high salt stimulation. The content of malondialdehyde (MDA) was decreased, but for chlorophyll and proline, their content increased, and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were improved. In addition, under cold stress, binding with cis-acting elements promotes the expression of downstream genes related to cold stress (RAB18, COR15A, ERD10, PIF4, COR47, and ICS1). Moreover, it also plays an active role in regulating the expression of genes related to salt stress (NCED3, SnRK2.4, CAT2, SOD1, SOS2, and P5CS1) under salt stress. Therefore, these results provide evidence that VvWRKY28 may play a role in the process of plant cold and salt stress tolerance.
Collapse
Affiliation(s)
- Wei Liu
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Xiaoqi Liang
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Weijia Cai
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Hao Wang
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Xu Liu
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Longfei Cheng
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Penghui Song
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Guijie Luo
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Deguo Han
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
27
|
Liu P, Wu X, Gong B, Lü G, Li J, Gao H. Review of the Mechanisms by Which Transcription Factors and Exogenous Substances Regulate ROS Metabolism under Abiotic Stress. Antioxidants (Basel) 2022; 11:2106. [PMID: 36358478 PMCID: PMC9686556 DOI: 10.3390/antiox11112106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 10/03/2023] Open
Abstract
Reactive oxygen species (ROS) are signaling molecules that regulate many biological processes in plants. However, excess ROS induced by biotic and abiotic stresses can destroy biological macromolecules and cause oxidative damage to plants. As the global environment continues to deteriorate, plants inevitably experience abiotic stress. Therefore, in-depth exploration of ROS metabolism and an improved understanding of its regulatory mechanisms are of great importance for regulating cultivated plant growth and developing cultivars that are resilient to abiotic stresses. This review presents current research on the generation and scavenging of ROS in plants and summarizes recent progress in elucidating transcription factor-mediated regulation of ROS metabolism. Most importantly, the effects of applying exogenous substances on ROS metabolism and the potential regulatory mechanisms at play under abiotic stress are summarized. Given the important role of ROS in plants and other organisms, our findings provide insights for optimizing cultivation patterns and for improving plant stress tolerance and growth regulation.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
- Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaolei Wu
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Binbin Gong
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Guiyun Lü
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jingrui Li
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Hongbo Gao
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
28
|
Yue M, Jiang L, Zhang N, Zhang L, Liu Y, Wang Y, Li M, Lin Y, Zhang Y, Zhang Y, Luo Y, Wang X, Chen Q, Tang H. Importance of FaWRKY71 in Strawberry (Fragaria × ananassa) Fruit Ripening. Int J Mol Sci 2022; 23:ijms232012483. [PMID: 36293343 PMCID: PMC9604163 DOI: 10.3390/ijms232012483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022] Open
Abstract
WRKY transcription factors play a nonnegligible role in plant growth and development, but little is known about the involvement of WRKY transcription factors in the regulation of fruit ripening. In this study, FaWRKY71 was identified to be closely related to fruit maturation in octoploid strawberry. FaWRKY71 protein localized in the nucleus and responded to cold, salt, low phosphate, ABA, and light quality in strawberry seedlings. The temporal and spatial pattern expression analysis indicated that FaWRKY71 was expressed in all the detected tissues, especially in the full red fruits. In addition, FaWRKY71 gave rise to the accumulation of anthocyanin content by promoting the expression of structural genes FaF3’H, FaLAR, FaANR, and transport factors FaTT19 and FaTT12 in the flavonoid pathway, and softening the texture of strawberry via up-regulating the abundance of FaPG19 and FaPG21. Furthermore, FaWRKY71 was a positive regulator that mediated resistance against reactive oxygen species by enhancing the enzyme activities of SOD, POD, and CAT, reducing the amount of MDA. Altogether, this study provides new and comprehensive insight into the regulatory mechanisms facilitating fruit ripening in strawberry.
Collapse
Affiliation(s)
- Maolan Yue
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Leiyu Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Nating Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianxi Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongqiang Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (Q.C.); (H.T.); Tel.: +86-158-9268-5193 (Q.C.); +86-136-0826-4028 (H.T.)
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (Q.C.); (H.T.); Tel.: +86-158-9268-5193 (Q.C.); +86-136-0826-4028 (H.T.)
| |
Collapse
|
29
|
Zhang S, Yu Y, Song T, Zhang M, Li N, Yu M, Zhou H, Yang Y, Guo S, Xu C, Tu Y, Xiang J, Zhang X. Genome-wide identification of foxtail millet's TRX family and a functional analysis of SiNRX1 in response to drought and salt stresses in transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:946037. [PMID: 36226299 PMCID: PMC9549295 DOI: 10.3389/fpls.2022.946037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/02/2022] [Indexed: 06/01/2023]
Abstract
Thioredoxins (TRXs) are small-molecule proteins with redox activity that play very important roles in the growth, development, and stress resistance of plants. Foxtail millet (Setaria italica) gradually became a model crop for stress resistance research because of its advantages such as its resistance to sterility and its small genome. To date, the thioredoxin (TRX) family has been identified in Arabidopsis thaliana, rice and wheat. However, studies of the TRX family in foxtail millet have not been reported, and the biological function of this family remains unclear. In this study, 35 SiTRX genes were identified in the whole genome of foxtail millet through bioinformatic analysis. According to phylogenetic analysis, 35 SiTRXs can be divided into 13 types. The chromosome distribution, gene structure, cis-elements and conserved protein motifs of 35 SiTRXs were characterized. Three nucleoredoxin (NRX) members were further identified by a structural analysis of TRX family members. The expression patterns of foxtail millet's SiNRX members under abiotic stresses showed that they have different stress-response patterns. In addition, subcellular localization revealed that SiNRXs were localized to the nucleus, cytoplasm and membrane. Further studies demonstrated that the overexpression of SiNRX1 enhanced Arabidopsis' tolerance to drought and salt stresses, resulting in a higher survival rate and better growth performance. Moreover, the expression levels of several known stress-related genes were generally higher in overexpressed lines than in the wild-type. Thus, this study provides a general picture of the TRX family in foxtail millet and lay a foundation for further research on the mechanism of the action of TRX proteins on abiotic stresses.
Collapse
Affiliation(s)
| | - Yang Yu
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Tianqi Song
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Mingfei Zhang
- Academy of Agricultural Sciences, Key Laboratory of Agro-Ecological Protection and Exploitation and Utilization of Animal and Plant Resources in Eastern Inner Mongolia, Chifeng University, Chifeng, China
| | - Nan Li
- Academy of Agricultural Sciences, Key Laboratory of Agro-Ecological Protection and Exploitation and Utilization of Animal and Plant Resources in Eastern Inner Mongolia, Chifeng University, Chifeng, China
| | - Ming Yu
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Hongwei Zhou
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yanning Yang
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Sihai Guo
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Chunhong Xu
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yongle Tu
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Jishan Xiang
- Academy of Agricultural Sciences, Key Laboratory of Agro-Ecological Protection and Exploitation and Utilization of Animal and Plant Resources in Eastern Inner Mongolia, Chifeng University, Chifeng, China
| | - Xiaoke Zhang
- College of Agronomy, Northwest A&F University, Xianyang, China
| |
Collapse
|
30
|
Phour M, Sindhu SS. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. PLANTA 2022; 256:85. [PMID: 36125564 DOI: 10.1007/s00425-022-03997-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The responses of plants to different abiotic stresses and mechanisms involved in their mitigation are discussed. Production of osmoprotectants, antioxidants, enzymes and other metabolites by beneficial microorganisms and their bioengineering ameliorates environmental stresses to improve food production. Progressive intensification of global agriculture, injudicious use of agrochemicals and change in climate conditions have deteriorated soil health, diminished the microbial biodiversity and resulted in environment pollution along with increase in biotic and abiotic stresses. Extreme weather conditions and erratic rains have further imposed additional stress for the growth and development of plants. Dominant abiotic stresses comprise drought, temperature, increased salinity, acidity, metal toxicity and nutrient starvation in soil, which severely limit crop production. For promoting sustainable crop production in environmentally challenging environments, use of beneficial microbes has emerged as a safer and sustainable means for mitigation of abiotic stresses resulting in improved crop productivity. These stress-tolerant microorganisms play an effective role against abiotic stresses by enhancing the antioxidant potential, improving nutrient acquisition, regulating the production of plant hormones, ACC deaminase, siderophore and exopolysaccharides and accumulating osmoprotectants and, thus, stimulating plant biomass and crop yield. In addition, bioengineering of beneficial microorganisms provides an innovative approach to enhance stress tolerance in plants. The use of genetically engineered stress-tolerant microbes as inoculants of crop plants may facilitate their use for enhanced nutrient cycling along with amelioration of abiotic stresses to improve food production for the ever-increasing population. In this chapter, an overview is provided about the current understanding of plant-bacterial interactions that help in alleviating abiotic stress in different crop systems in the face of climate change. This review largely focuses on the importance and need of sustainable and environmentally friendly approaches using beneficial microbes for ameliorating the environmental stresses in our agricultural systems.
Collapse
Affiliation(s)
- Manisha Phour
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India.
| |
Collapse
|
31
|
Price L, Han Y, Angessa T, Li C. Molecular Pathways of WRKY Genes in Regulating Plant Salinity Tolerance. Int J Mol Sci 2022; 23:10947. [PMID: 36142857 PMCID: PMC9502527 DOI: 10.3390/ijms231810947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Salinity is a natural and anthropogenic process that plants overcome using various responses. Salinity imposes a two-phase effect, simplified into the initial osmotic challenges and subsequent salinity-specific ion toxicities from continual exposure to sodium and chloride ions. Plant responses to salinity encompass a complex gene network involving osmotic balance, ion transport, antioxidant response, and hormone signaling pathways typically mediated by transcription factors. One particular transcription factor mega family, WRKY, is a principal regulator of salinity responses. Here, we categorize a collection of known salinity-responding WRKYs and summarize their molecular pathways. WRKYs collectively play a part in regulating osmotic balance, ion transport response, antioxidant response, and hormone signaling pathways in plants. Particular attention is given to the hormone signaling pathway to illuminate the relationship between WRKYs and abscisic acid signaling. Observed trends among WRKYs are highlighted, including group II WRKYs as major regulators of the salinity response. We recommend renaming existing WRKYs and adopting a naming system to a standardized format based on protein structure.
Collapse
Affiliation(s)
- Lewis Price
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Yong Han
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
- Department of Primary Industries and Regional Development, Perth, WA 6151, Australia
| | - Tefera Angessa
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
32
|
Raza A, Sharif Y, Chen K, Wang L, Fu H, Zhuang Y, Chitikineni A, Chen H, Zhang C, Varshney RK, Zhuang W. Genome-Wide Characterization of Ascorbate Peroxidase Gene Family in Peanut ( Arachis hypogea L.) Revealed Their Crucial Role in Growth and Multiple Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:962182. [PMID: 36186077 PMCID: PMC9524023 DOI: 10.3389/fpls.2022.962182] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 06/16/2023]
Abstract
Ascorbate peroxidase (APX), an important antioxidant enzyme, plays a significant role in ROS scavenging by catalyzing the decrease of hydrogen peroxide under various environmental stresses. Nevertheless, information about the APX gene family and their evolutionary and functional attributes in peanut (Arachis hypogea L.) was not reported. Therefore, a comprehensive genome-wide study was performed to discover the APX genes in cultivated peanut genome. This study identified 166 AhAPX genes in the peanut genome, classified into 11 main groups. The gene duplication analysis showed that AhAPX genes had experienced segmental duplications and purifying selection pressure. Gene structure and motif investigation indicated that most of the AhAPX genes exhibited a comparatively well-preserved exon-intron pattern and motif configuration contained by the identical group. We discovered five phytohormones-, six abiotic stress-, and five growth and development-related cis-elements in the promoter regions of AhAPX. Fourteen putative ah-miRNAs from 12 families were identified, targeting 33 AhAPX genes. Furthermore, we identified 3,257 transcription factors from 38 families (including AP2, ARF, B3, bHLH, bZIP, ERF, MYB, NAC, WRKY, etc.) in 162 AhAPX genes. Gene ontology and KEGG enrichment analysis confirm the role of AhAPX genes in oxidoreductase activity, catalytic activity, cell junction, cellular response to stimulus and detoxification, biosynthesis of metabolites, and phenylpropanoid metabolism. Based on transcriptome datasets, some genes such as AhAPX4/7/17/77/82/86/130/133 and AhAPX160 showed significantly higher expression in diverse tissues/organs, i.e., flower, leaf, stem, roots, peg, testa, and cotyledon. Likewise, only a few genes, including AhAPX4/17/19/55/59/82/101/102/137 and AhAPX140, were significantly upregulated under abiotic (drought and cold), and phytohormones (ethylene, abscisic acid, paclobutrazol, brassinolide, and salicylic acid) treatments. qRT-PCR-based expression profiling presented the parallel expression trends as generated from transcriptome datasets. Our discoveries gave new visions into the evolution of APX genes and provided a base for further functional examinations of the AhAPX genes in peanut breeding programs.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Kun Chen
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Lihui Wang
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Huiwen Fu
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Annapurna Chitikineni
- Murdoch’s Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Murdoch’s Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| |
Collapse
|
33
|
Sun S, Chen H, Yang Z, Lu J, Wu D, Luo Q, Jia J, Tan J. Identification of WRKY transcription factor family genes in Pinus massoniana Lamb. and their expression patterns and functions in response to drought stress. BMC PLANT BIOLOGY 2022; 22:424. [PMID: 36050649 PMCID: PMC9434871 DOI: 10.1186/s12870-022-03802-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/18/2022] [Indexed: 05/17/2023]
Abstract
BACKGROUND Pinus massoniana Lamb. is the timber species with the widest distribution and the largest afforestation area in China, providing a large amount of timber, turpentine and ecological products. Seasonal drought caused by climate warming severely constrains the quality and growth of P. massoniana forests. WRKY transcription factors play an important role in plant responses to abiotic stress. In this study, the molecular mechanisms by which P. massoniana responds to drought stress were analysed based on the P. massoniana WRKY (PmWRKY) family of genes. RESULTS Forty-three PmWRKYs are divided into three major families, 7 sub-families, and the conserved motifs are essentially the same. Among these 43 PmWRKYs express under drought stress but with different expression patterns in response to stress. PmWRKYs respond to drought stress induced by exogenous hormones of SA, ABA, and MeJA. The expression of PmWRKY6, PmWRKY10, and PmWRKY30 up-regulate in different families and tissues under drought stress, while PmWRKY22 down-regulate. Transgenetic tobaccos of PmWRKY31 are with lower malondialdehyde (MDA) content and higher proline (Pro) content than wild type (WT) tobaccos. In transgenic tobaccos of PmWRKY31, expression levels of related genes significantly improve, and drought tolerance enhance. CONCLUSIONS This study analysed the molecular biological characteristics of PmWRKYs and investigated the expression patterns and functions of PmWRKYs in response to drought stress in P. massoniana. The results of this study provide a basis for in-depth research of the molecular functions of PmWRKYs in response to drought stress.
Collapse
Affiliation(s)
- Shuang Sun
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, 530002, PR China
| | - Hu Chen
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, 530002, PR China
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Nanning, 530002, PR China
- Engineering Technology Research Center of Masson Pine of National Forestry and Grassland Administration, Nanning, 530002, PR China
| | - Zhangqi Yang
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, 530002, PR China.
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Nanning, 530002, PR China.
- Engineering Technology Research Center of Masson Pine of National Forestry and Grassland Administration, Nanning, 530002, PR China.
| | - Jingyu Lu
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, 530002, PR China
| | - Dongshan Wu
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, 530002, PR China
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Nanning, 530002, PR China
| | - Qunfeng Luo
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, 530002, PR China
- Engineering Technology Research Center of Masson Pine of National Forestry and Grassland Administration, Nanning, 530002, PR China
| | - Jie Jia
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, 530002, PR China
| | - Jianhui Tan
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, 530002, PR China
| |
Collapse
|
34
|
Liu L, Pu Y, Niu Z, Wu J, Fang Y, Xu J, Xu F, Yue J, Ma L, Li X, Sun W. Transcriptomic Insights Into Root Development and Overwintering Transcriptional Memory of Brassica rapa L. Grown in the Field. FRONTIERS IN PLANT SCIENCE 2022; 13:900708. [PMID: 35937315 PMCID: PMC9355659 DOI: 10.3389/fpls.2022.900708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
As the only overwintering oil crop in the north area of China, living through winter is the primary feature of winter rapeseed. Roots are the only survival organ during prolonged cold exposure during winter to guarantee flowering in spring. However, little is known about its root development and overwintering memory mechanism. In this study, root collar tissues (including the shoot apical meristem) of three winter rapeseed varieties with different cold resistance, i.e., Longyou-7 (strong cold tolerance), Tianyou-4 (middle cold tolerance), and Lenox (cold-sensitive), were sampled in the pre-winter period (S1), overwintering periods (S2-S5), and re-greening stage (S6), and were used to identify the root development and overwintering memory mechanisms and seek candidate overwintering memory genes by measuring root collar diameter and RNA sequencing. The results showed that the S1-S2 stages were the significant developmental stages of the roots as root collar diameter increased slowly in the S3-S5 stages, and the roots developed fast in the strong cold resistance variety than in the weak cold resistance variety. Subsequently, the RNA-seq analysis revealed that a total of 37,905, 45,102, and 39,276 differentially expressed genes (DEGs), compared to the S1 stage, were identified in Longyou-7, Tianyou-4, and Lenox, respectively. The function enrichment analysis showed that most of the DEGs are significantly involved in phenylpropanoid biosynthesis, plant hormone signal transduction, MAPK signaling pathway, starch and sucrose metabolism, photosynthesis, amino sugar and nucleotide sugar metabolism, and spliceosome, ribosome, proteasome, and protein processing in endoplasmic reticulum pathways. Furthermore, the phenylpropanoid biosynthesis and plant hormone signal transduction pathways were related to the difference in root development of the three varieties, DEGs involved in photosynthesis and carbohydrate metabolism processes may participate in overwintering memory of Longyou-7 and Tianyou-4, and the spliceosome pathway may contribute to the super winter resistance of Longyou-7. The transcription factor enrichment analysis showed that the WRKY family made up the majority in different stages and may play an important regulatory role in root development and overwintering memory. These results provide a comprehensive insight into winter rapeseed's complex overwintering memory mechanisms. The identified candidate overwintering memory genes may also serve as important genetic resources for breeding to further improve the cold resistance of winter rapeseed.
Collapse
Affiliation(s)
- Lijun Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Yuanyuan Pu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zaoxia Niu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Junyan Wu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Jun Xu
- Shanghai OE Biotech Co., Ltd.,Shanghai, China
| | - Fang Xu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jinli Yue
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Li Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Xuecai Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
35
|
Genome-Wide Analysis of the WRKY Gene Family in Malus domestica and the Role of MdWRKY70L in Response to Drought and Salt Stresses. Genes (Basel) 2022; 13:genes13061068. [PMID: 35741830 PMCID: PMC9222762 DOI: 10.3390/genes13061068] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
The WRKY transcription factors are unique regulatory proteins in plants, which are important in the stress responses of plants. In this study, 113 WRKY genes were identified from the apple genome GDDH13 and a comprehensive analysis was performed, including chromosome mapping, and phylogenetic, motif and collinearity analysis. MdWRKYs are expressed in different tissues, such as seeds, flowers, stems and leaves. We analyzed seven WRKY proteins in different groups and found that all of them were localized in the nucleus. Among the 113 MdWRKYs, MdWRKY70L was induced by both drought and salt stresses. Overexpression of it in transgenic tobacco plants conferred enhanced stress tolerance to drought and salt. The malondialdehyde content and relative electrolyte leakage values were lower, while the chlorophyll content was higher in transgenic plants than in the wild-type under stressed conditions. In conclusion, this study identified the WRKY members in the apple genome GDDH13, and revealed the function of MdWRKY70L in the response to drought and salt stresses.
Collapse
|
36
|
Fei J, Wang YS, Cheng H, Su YB, Zhong YJ, Zheng L. The Kandelia obovata transcription factor KoWRKY40 enhances cold tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2022; 22:274. [PMID: 35659253 PMCID: PMC9166612 DOI: 10.1186/s12870-022-03661-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 05/27/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND WRKY transcription factors play key roles in plant development processes and stress response. Kandelia obovata is the most cold-resistant species of mangrove plants, which are the important contributors to coastal marine environment. However, there is little known about the WRKY genes in K. obovata. RESULTS In this study, a WRKY transcription factor gene, named KoWRKY40, was identified from mangrove plant K. obovata. The full-length cDNA of KoWRKY40 gene was 1420 nucleotide bases, which encoded 318 amino acids. The KoWRKY40 protein contained a typical WRKY domain and a C2H2 zinc-finger motif, which were common signatures to group II of WRKY family. The three-dimensional (3D) model of KoWRKY40 was formed by one α-helix and five β-strands. Evolutionary analysis revealed that KoWRKY40 has the closest homology with a WRKY protein from another mangrove plant Bruguiera gymnorhiza. The KoWRKY40 protein was verified to be exclusively located in nucleus of tobacco epidermis cells. Gene expression analysis demonstrated that KoWRKY40 was induced highly in the roots and leaves, but lowly in stems in K. obovata under cold stress. Overexpression of KoWRKY40 in Arabidopsis significantly enhanced the fresh weight, root length, and lateral root number of the transgenic lines under cold stress. KoWRKY40 transgenic Arabidopsis exhibited higher proline content, SOD, POD, and CAT activities, and lower MDA content, and H2O2 content than wild-type Arabidopsis under cold stress condition. Cold stress affected the expression of genes related to proline biosynthesis, antioxidant system, and the ICE-CBF-COR signaling pathway, including AtP5CS1, AtPRODH1, AtMnSOD, AtPOD, AtCAT1, AtCBF1, AtCBF2, AtICE1, AtCOR47 in KoWRKY40 transgenic Arabidopsis plants. CONCLUSION These results demonstrated that KoWRKY40 conferred cold tolerance in transgenic Arabidopsis by regulating plant growth, osmotic balance, the antioxidant system, and ICE-CBF-COR signaling pathway. The study indicates that KoWRKY40 is an important regulator involved in the cold stress response in plants.
Collapse
Affiliation(s)
- Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Yu-Bin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Yong-Jia Zhong
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lei Zheng
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
37
|
Wang G, Wang X, Ma H, Fan H, Lin F, Chen J, Chai T, Wang H. PcWRKY11, an II-d WRKY Transcription Factor from Polygonum cuspidatum, Enhances Salt Tolerance in Transgenic Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23084357. [PMID: 35457178 PMCID: PMC9025145 DOI: 10.3390/ijms23084357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Being an invasive plant, Polygonum cuspidatum is highly resilient and can survive in unfavorable environments for long periods; however, its molecular mechanisms associated with such environmental resistance are largely unknown. In this study, a WRKY transcription factor (TF) gene, PcWRKY11, was identified from P. cuspidatum by analyzing methyl jasmonate (MeJA)-treated transcriptome data. It showed a high degree of homology with WRKY11 from Arabidopsis thaliana, containing a WRKY domain and a zinc finger structure and II-d WRKY characteristic domains of HARF, a calmodulin-binding domain (C-motif), and a putative nuclear localization signal (NLS) through sequence alignment and functional element mining. qPCR analysis showed that the expression of PcWRKY11 can be induced by NaCl, osmotic stress, and UV-C. In this study, we also found that overexpression of PcWRKY11 in A. thaliana could significantly increase salt tolerance. To explore its possible molecular mechanism, further investigations showed that compared with the wild type (WT), under salt stress, the transgenic plants showed a lower malondialdehyde (MDA) content, higher expression of ascorbate peroxidase (APX) and superoxide dismutase (SOD), and higher enzyme activity of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). Moreover, the transgenic plants also showed higher expression of Δ1-pyrroline-5-carboxylate synthase (AtP5CS), and higher contents of proline and soluble sugar. Taken together, these results indicate that PcWRKY11 may have a positive role in plants’ adaptation to salinity conditions by reducing reactive oxygen species (ROS) levels and increasing osmosis substance synthesis.
Collapse
Affiliation(s)
- Guowei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China; (G.W.); (X.W.); (H.M.); (H.F.); (F.L.); (J.C.)
| | - Xiaowei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China; (G.W.); (X.W.); (H.M.); (H.F.); (F.L.); (J.C.)
| | - Hongping Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China; (G.W.); (X.W.); (H.M.); (H.F.); (F.L.); (J.C.)
| | - Haili Fan
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China; (G.W.); (X.W.); (H.M.); (H.F.); (F.L.); (J.C.)
| | - Fan Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China; (G.W.); (X.W.); (H.M.); (H.F.); (F.L.); (J.C.)
| | - Jianhui Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China; (G.W.); (X.W.); (H.M.); (H.F.); (F.L.); (J.C.)
| | - Tuanyao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China; (G.W.); (X.W.); (H.M.); (H.F.); (F.L.); (J.C.)
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beichen West Road, Beijing 100101, China
- Correspondence: (T.C.); (H.W.); Tel.: +86-1069672628 (H.W.)
| | - Hong Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China; (G.W.); (X.W.); (H.M.); (H.F.); (F.L.); (J.C.)
- Correspondence: (T.C.); (H.W.); Tel.: +86-1069672628 (H.W.)
| |
Collapse
|
38
|
Zhang T, Xu Y, Ding Y, Yu W, Wang J, Lai H, Zhou Y. Identification and Expression Analysis of WRKY Gene Family in Response to Abiotic Stress in Dendrobium catenatum. Front Genet 2022; 13:800019. [PMID: 35186030 PMCID: PMC8850645 DOI: 10.3389/fgene.2022.800019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Dendrobium catenatum has become a rare and endangered medicinal plant due to habitat loss in China. As one of the most important and largest transcription factors, WRKY plays a critical role in response to abiotic stresses in plants. However, little is known regarding the functions of the WRKY family in D. catenatum. In this study, a total of 62 WRKY genes were identified from the D. catenatum genome. Phylogenetic analysis revealed that DcWRKY proteins could be divided into three groups, a division supported by the conserved motif compositions and intron/exon structures. DcWRKY gene expression and specific responses under drought, heat, cold and salt stresses were analyzed through RNA-seq data and RT-qPCR assay. The results showed that these genes had tissue-specificity and displayed different expression patterns in response to abiotic stresses. The expression levels of DcWRKY22, DcWRKY36 and DcWRKY45 were up-regulated by drought stress. Meanwhile, DcWRKY22 was highly induced by heat in roots, and DcWRKY45 was significantly induced by cold stress in leaves. Furthermore, DcWRKY27 in roots and DcWRKY58 in leaves were extremely induced under salt treatment. Finally, we found that all the five genes may function in ABA- and SA-dependent manners. This study identified candidate WRKY genes with possible roles in abiotic stress and these findings not only contribute to our understanding of WRKY family genes, but also provide valuable information for stress resistance development in D. catenatum.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Ying Xu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Yadan Ding
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Wengang Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Jian Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Hanggui Lai
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops, School of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Yang Zhou, ; Hanggui Lai,
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- *Correspondence: Yang Zhou, ; Hanggui Lai,
| |
Collapse
|
39
|
Yan L, Jin H, Raza A, Huang Y, Gu D, Zou X. WRKY genes provide novel insights into their role against Ralstonia solanacearum infection in cultivated peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2022; 13:986673. [PMID: 36204053 PMCID: PMC9531958 DOI: 10.3389/fpls.2022.986673] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/16/2022] [Indexed: 05/11/2023]
Abstract
As one of the most important and largest transcription factors, WRKY plays a critical role in plant disease resistance. However, little is known regarding the functions of the WRKY family in cultivated peanuts (Arachis hypogaea L.). In this study, a total of 174 WRKY genes (AhWRKY) were identified from the genome of cultivated peanuts. Phylogenetic analysis revealed that AhWRKY proteins could be divided into four groups, including 35 (20.12%) in group I, 107 (61.49%) in group II, 31 (17.82%) in group III, and 1 (0.57%) in group IV. This division is further supported by the conserved motif compositions and intron/exon structures. All AhWRKY genes were unevenly located on all 20 chromosomes, among which 132 pairs of fragment duplication and seven pairs of tandem duplications existed. Eighteen miRNAs were found to be targeting 50 AhWRKY genes. Most AhWRKY genes from some groups showed tissue-specific expression. AhWRKY46, AhWRKY94, AhWRKY156, AhWRKY68, AhWRKY41, AhWRKY128, AhWRKY104, AhWRKY19, AhWRKY62, AhWRKY155, AhWRKY170, AhWRKY78, AhWRKY34, AhWRKY12, AhWRKY95, and AhWRKY76 were upregulated in ganhua18 and kainong313 genotypes after Ralstonia solanacearum infection. Ten AhWRKY genes (AhWRKY34, AhWRKY76, AhWRKY78, AhWRKY120, AhWRKY153, AhWRKY155, AhWRKY159, AhWRKY160, AhWRKY161, and AhWRKY162) from group III displayed different expression patterns in R. solanacearum sensitive and resistant peanut genotypes infected with the R. solanacearum. Two AhWRKY genes (AhWRKY76 and AhWRKY77) from group III obtained the LRR domain. AhWRKY77 downregulated in both genotypes; AhWRKY76 showed lower-higher expression in ganhua18 and higher expression in kainong313. Both AhWRKY76 and AhWRKY77 are targeted by ahy-miR3512, which may have an important function in peanut disease resistance. This study identified candidate WRKY genes with possible roles in peanut resistance against R. solanacearum infection. These findings not only contribute to our understanding of the novel role of WRKY family genes but also provide valuable information for disease resistance in A. hypogaea.
Collapse
Affiliation(s)
- Lei Yan
- Institute of Crops, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Haotian Jin
- Institute of Crops, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Huang
- Institute of Crops, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Deping Gu
- Institute of Crops, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Deping Gu
| | - Xiaoyun Zou
- Institute of Crops, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- *Correspondence: Xiaoyun Zou
| |
Collapse
|
40
|
Genome-Wide Identification and Analysis of the WRKY Gene Family and Cold Stress Response in Acer truncatum. Genes (Basel) 2021; 12:genes12121867. [PMID: 34946815 PMCID: PMC8701280 DOI: 10.3390/genes12121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
WRKY transcription factors constitute one of the largest gene families in plants and are involved in many biological processes, including growth and development, physiological metabolism, and the stress response. In earlier studies, the WRKY gene family of proteins has been extensively studied and analyzed in many plant species. However, information on WRKY transcription factors in Acer truncatum has not been reported. In this study, we conducted genome-wide identification and analysis of the WRKY gene family in A. truncatum, 54 WRKY genes were unevenly located on all 13 chromosomes of A. truncatum, the highest number was found in chromosomes 5. Phylogenetic relationships, gene structure, and conserved motif identification were constructed, and the results affirmed 54 AtruWRKY genes were divided into nine subgroup groups. Tissue species analysis of AtruWRKY genes revealed which were differently exhibited upregulation in flower, leaf, root, seed and stem, and the upregulation number were 23, 14, 34, 18, and 8, respectively. In addition, the WRKY genes expression in leaf under cold stress showed that more genes were significantly expressed under 0, 6 and 12 h cold stress. The results of this study provide a new insight the regulatory function of WRKY genes under abiotic and biotic stresses.
Collapse
|
41
|
Zhu H, Yang X, Wang X, Li Q, Guo J, Ma T, Zhao C, Tang Y, Qiao L, Wang J, Sui J. The sweetpotato β-amylase gene IbBAM1.1 enhances drought and salt stress resistance by regulating ROS homeostasis and osmotic balance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:167-176. [PMID: 34634642 DOI: 10.1016/j.plaphy.2021.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Abiotic stressors, such as drought and high salinity, seriously affect plant growth, productivity, and quality. Maintaining reactive oxygen species (ROS) homeostasis and osmotic balance plays a crucial role in abiotic stress tolerance. β-amylase (BAM) hydrolyzes α-1,4-glycosidic bonds by releasing maltose from starch in the regulation of soluble sugars. However, the function and mechanism of BAMs related to abiotic stress resistance remain unclear in sweetpotato (Ipomoea batatas (L.) Lam.). In this study, we isolated a novel β-amylase gene IbBAM1.1, which was strongly induced by PEG6000, NaCl, and maltose treatments in sweetpotato variety Yanshu25. Overexpression of IbBAM1.1 conferred enhanced tolerance to the drought and high salinity stressors in Arabidopsis thaliana. The activity of β-amylase and the degradation of starch were promoted under drought or salt stress. Accordingly, the contents of osmoprotectants, including maltose and proline were significantly higher in the transgenic lines than those in wild type (WT) plants. Less ROS, such as H2O2 and O2-, accumulated in the overexpressing lines than in WT plants. Superoxide dismutase activity was strongly enhanced and the level of malondialdehyde was lower under the drought or salt treatment in transgenic plants. Taken together, these results demonstrate that IbBAM1.1 acted as a positive regulator, at least in part, by regulating the level of osmoprotectants to balance the osmotic pressure and activate the scavenging system to maintain ROS homeostasis in the plants.
Collapse
Affiliation(s)
- Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xia Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiyan Li
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiayu Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tao Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chunmei Zhao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanyan Tang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lixian Qiao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jingshan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiongming Sui
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|