1
|
Sun S, Jia PF, Wang W, Chen L, Gong X, Lin H, Wu R, Yang WC, Li HJ, Zuo J, Guo H. S-Sulfenylation-mediated inhibition of the GSNOR1 activity regulates ovule development in Arabidopsis. J Genet Genomics 2025:S1673-8527(25)00022-0. [PMID: 39826707 DOI: 10.1016/j.jgg.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Reactive oxygen species (ROS) and nitric oxide (NO) are two critical classes of signaling molecules that regulate plant development and stress responses. The intracellular level of S-nitrosoglutathione (GSNO), a major bioactive NO species, is regulated by the highly conserved GSNO reductase (GSNOR). However, the molecular mechanisms underlying ROS-mediated regulation of GSNOR remain largely unclear. Here, we show that H2O2 negatively regulates the activity of GSNOR1 during ovule development in Arabidopsis. S-sulfenylation of GSNOR1 at Cys-284 inhibits its enzymatic activity. A GSNOR1C284S mutation causes a reduction of the total SNO level in pistils, thereby disrupting NO homeostasis and eventually leading to defective ovule development. These findings illustrate a unique mechanism by which ROS regulates ovule development through S-sulfenylation-mediated inhibition of the GSNOR activity, thereby establishing a molecular link between ROS and NO signaling pathways in reproductive development.
Collapse
Affiliation(s)
- Shina Sun
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Fei Jia
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan Wang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lichao Chen
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinru Gong
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifang Lin
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Wu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Cai Yang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Ju Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianru Zuo
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Guo
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Luo L, Cui Y, Ouyang N, Huang S, Gong X, Wei L, Zou B, Hua J, Lu S. Tolerance to multiple abiotic stresses is mediated by interacting CNGC proteins that regulate Ca 2+ influx and stomatal movement in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39776199 DOI: 10.1111/jipb.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Members of the cyclic nucleotide-gated channel (CNGC) proteins are reportedly involved in a variety of biotic and abiotic responses and stomatal movement. However, it is unknown if and how a single member could regulate multiple responses. Here we characterized three closely related CNGC genes in rice, OsCNGC14, OsCNGC15 and OsCNGC16, to determine whether they function in multiple abiotic stresses. The loss-of-function mutants of each of these three genes had reduced calcium ion (Ca2+) influx and slower stomatal closure in response to heat, chilling, drought and the stress hormone abscisic acid (ABA). These mutants also had reduced tolerance to heat, chilling and drought compared with the wild-type. Conversely, overexpression of OsCNGC16 led to a more rapid stomatal closure response to stresses and enhanced tolerance to heat, chilling and drought. The tight association of stomatal closure and stress tolerance strongly suggests that tolerance to multiple abiotic stresses conferred by these OsCNGC genes results at least partially from their regulation of stomatal movement. In addition, physical interactions were observed among the three OsCNGC proteins but not with a distantly related CNGC, suggesting the formation of hetero-oligomers among themselves. This study unveils the crucial role of OsCNGC14, 15 and 16 proteins in stomatal response and tolerance to multiple stresses, suggesting a mechanism of tolerance to multiple stresses that involves calcium influx and stomatal movement regulation.
Collapse
Affiliation(s)
- Lilin Luo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongmei Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Nana Ouyang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuying Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoli Gong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Baohong Zou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, New York, USA
| | - Shan Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Renzetti M, Funck D, Trovato M. Proline and ROS: A Unified Mechanism in Plant Development and Stress Response? PLANTS (BASEL, SWITZERLAND) 2024; 14:2. [PMID: 39795262 PMCID: PMC11723217 DOI: 10.3390/plants14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
The proteinogenic amino acid proline plays crucial roles in both plant development and stress responses, far exceeding its role in protein synthesis. However, the molecular mechanisms and the relative importance of these additional functions of proline remain under study. It is well documented that both stress responses and developmental processes are associated with proline accumulation. Under stress conditions, proline is believed to confer stress tolerance, while under physiological conditions, it assists in developmental processes, particularly during the reproductive phase. Due to proline's properties as a compatible osmolyte and potential reactive oxygen species (ROS) scavenger, most of its beneficial effects have historically been attributed to the physicochemical consequences of its accumulation in plants. However, emerging evidence points to proline metabolism as the primary driver of these beneficial effects. Recent reports have shown that proline metabolism, in addition to supporting reproductive development, can modulate root meristem size by controlling ROS accumulation and distribution in the root meristem. The dynamic interplay between proline and ROS highlights a sophisticated regulatory network essential for plant resilience and survival. This fine-tuning mechanism, enabled by the pro-oxidant and antioxidant properties of compartmentalized proline metabolism, can modulate redox balance and ROS homeostasis, potentially explaining many of the multiple roles attributed to proline. This review uniquely integrates recent findings on the dual role of proline in both ROS scavenging and signaling, provides an updated overview of the most recent research published to date, and proposes a unified mechanism that could account for many of the multiple roles assigned to proline in plant development and stress defense. By focusing on the interplay between proline and ROS, we aim to provide a comprehensive understanding of this proposed mechanism and highlight the potential applications in improving crop resilience to environmental stress. Additionally, we address current gaps in understanding and suggest future research directions to further elucidate the complex roles of proline in plant biology.
Collapse
Affiliation(s)
- Marco Renzetti
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Dietmar Funck
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany;
| | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
4
|
Gallucci A, Giordano D, Facchiano A, Villano C, Carputo D, Aversano R. Transmembrane proteins in grape immunity: current knowledge and methodological advances. FRONTIERS IN PLANT SCIENCE 2024; 15:1515163. [PMID: 39759230 PMCID: PMC11695348 DOI: 10.3389/fpls.2024.1515163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025]
Abstract
Transmembrane proteins (TMPs) are pivotal components of plant defence mechanisms, serving as essential mediators in the response to biotic stresses. These proteins are among the most complex and diverse within plant cells, making their study challenging. In spite of this, relatively few studies have focused on the investigation and characterization of TMPs in plants. This is particularly true for grapevine. This review aims to provide a comprehensive overview of TMP-encoding genes involved in grapevine immunity. These genes include Lysin Motif Receptor-Like Kinases (LysM-RLKs), which are involved in the recognition of pathogens at the apoplastic level, Plant Respiratory Burst Oxidase Homologs (Rbohs), which generate reactive oxygen species (ROS) for host defense, and Sugars Will Eventually be Exported Transporters (SWEETs), which play a role in nutrient allocation and stress responses. Furthermore, the review discusses the methodologies employed to study TMPs, including in vivo, in vitro and in silico approaches, highlighting their strengths and limitations. In vivo studies include the assessment of TMP function in whole plants or plant tissues, while in vitro experiments focus on isolating and characterizing either specific TMPs or their components. In silico analyses utilize computational tools to predict protein structure, function, and interactions. By identifying and characterizing genes encoding TMPs involved in grapevine immunity, researchers can develop strategies to enhance grapevine resilience and lead to more sustainable viticulture.
Collapse
Affiliation(s)
- Alessia Gallucci
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Deborah Giordano
- Institute of Food Science, National Research Council, Avellino, Italy
| | - Angelo Facchiano
- Institute of Food Science, National Research Council, Avellino, Italy
| | - Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
5
|
Wang X, Wang H, Zhang Y, Li Y, Jia Q, Wang Z, Sun J. Allelopathic effects on vegetative propagation, physiological-biochemical characteristic of Alternanthera philoxeroides (Mart.) Griseb from Cinnamomum camphora (L.) Presl. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117403. [PMID: 39657378 DOI: 10.1016/j.ecoenv.2024.117403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Alternanthera philoxeroides (Mart.) Griseb is a well-known invasive plant species worldwide. Cinnamomum camphora (L.) Presl. is a plant species that is rich in allelopathic substances which can impede the growth of many other plants. In this study, the allelopathic effects of C. camphora on the growth and development, and physiological-biochemical characteristics of A. philoxeroides were investigated. The findings revealed that the leaves of C. camphora exhibited the capability to suppress the asexual reproduction of A. philoxeroides. The addition of C. camphora leaves resulted in inhibition of the fresh weight, stem length, and stem node number of A. philoxeroides new stems, with the strength of inhibition increasing in proportion to the quantity of C. camphora leaves added. Furthermore, the inhibitory effect of C. camphora leaves on A. philoxeroides was significantly amplified under high temperatures (≥ 30°C). Two allelochemicals had strong inhibitory effects on the vegetative reproduction of A. philoxeroides. The inhibition intensities were all up to 100 % on stem vegetative propagation, were 90.40 % and 100 % on root vegetative propagation from camphor and linalool, respectively. Physiological-biochemical analyses of roots indicated that the two allelochemicals promoted the accumulation of hydrogen peroxide and MDA, disrupting the balance of antioxidant enzyme systems. The two allelochemicals had a strong inhibitory effect on CAT activity and a strong promoting effect on POD activity. The effect on SOD activity was greatly affected by the type and concentration of allelochemicals. Moreover, the two allelochemicals significantly inhibited the accumulation of osmotic regulating substance. The contents of soluble sugar, soluble protein, and proline were significantly down-regulated. In summary, the allelochemicals from C. camphora induced damage to biological membranes, disrupting antioxidant enzyme systems and inhibiting osmoregulation. This resulted in the retardation of growth, development, and potential mortality of A. philoxeroides. These findings would contribute to the knowledge base for A. philoxeroides prevention and control, and enrich the understanding of C. camphora allelopathic substances.
Collapse
Affiliation(s)
- Xiaxia Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Shandong Key Laboratory for Germplasm Innovation of Saline-alkaline Tolerant Grasses and Trees, Qingdao, Shandong 266109, China
| | - Haixia Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Shandong Key Laboratory for Germplasm Innovation of Saline-alkaline Tolerant Grasses and Trees, Qingdao, Shandong 266109, China
| | - Yanlei Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, Guizhou 550014, China
| | - Qi Jia
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Ziyi Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Juan Sun
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Shandong Key Laboratory for Germplasm Innovation of Saline-alkaline Tolerant Grasses and Trees, Qingdao, Shandong 266109, China.
| |
Collapse
|
6
|
Guo H, Chen A, Yang Z, Yang W, Wang X, Xu L. Identification of osmotic stress resistance mediated by MdKAI2 in apple. FRONTIERS IN PLANT SCIENCE 2024; 15:1467034. [PMID: 39703549 PMCID: PMC11655239 DOI: 10.3389/fpls.2024.1467034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
KAR (Karrikin), a novel plant growth regulator, can be recognized specifically by plants and can activate resistance responses. MdKAI2 is the natural receptor of KARs in apple. Here, we report the identification of osmotic stress resistance in MdKAI2 via the method of genetic transformation. The phenotypic traits, resistance indicators, and transcriptional and metabolic regulation of MdKAI2 were identified. KAR1, a highly active form of KAR, markedly promoted the root growth of Gala cultivar tissue culture‒generated plants, possibly through increases in ABA and TZR contents and decreases in the GA3 content. MdKAI2 was markedly upregulated by PEG stress and significantly promoted the growth of apple calli under nonstress conditions, whereas it was significantly inhibited under 20% PEG stress, as was cell death. MdKAI2 significantly increased the content of total flavonoids, the activity of reactive oxygen species (ROS)‒scavenging enzymes (SOD, POD and CAT), and the content of osmoregulatory substances (soluble protein, soluble sugars and proline). It also inhibited the MDA content and conductivity under osmotic stress. Differentially expressed genes (DEGs), including multiple transcription factors (TFs), such as MYB, bHLH and AP2‒EREBP, are significantly regulated by MdKAI2, and genes involved in the mitogen‒activated protein kinase (MAPK) signaling pathway play crucial roles in the regulation of plant resistance. In addition, pathways such as brassinosteroid (BR) biosynthesis and ABC transporters were downregulated, and the MAPK signaling pathway; plant‒pathogen interaction; cutin, suberin and wax biosynthesis; alpha‒linolenic acid metabolism; and phenylpropanoid biosynthesis were upregulated by MdKAI2. MdKAI2 significantly regulates the levels of lipids, amino acids, terpenoids, benzene, organic acids, carbohydrates, and alkaloids and is involved in the metabolic processes of amino acids, carbohydrates, nucleotides, lipids and secondary metabolites. Furthermore, MdKAI2 positively regulates fatty acids, esters, and terpenoids and negatively regulates metabolites of amino acids, amides and alcohols, and the MAPK signaling pathway may mediate this process. The study has provided a new direction for the industrial application of KAR1 in apples and resistance breeding based on the gene of MdKAI2.
Collapse
Affiliation(s)
| | | | | | | | - Xianpu Wang
- Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - Lili Xu
- Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| |
Collapse
|
7
|
Yang J, Yin J, Wang K, Zhao L, Yang Z, Cai Y, Lou J, Huang C, Shen Q. Advanced technology in fruit preservation: Effects of nanoscale charged water particles on storage quality and reactive oxygen species in blueberries. Food Res Int 2024; 198:115331. [PMID: 39643367 DOI: 10.1016/j.foodres.2024.115331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
During the postharvest period, blueberries with a short shelf life due to microbial activity and an overload of reactive oxygen species (ROS) were still a major unresolved problem. In this study, the effect of nanoscale charged water particles (NCWP) treatment on the postharvest characteristics and ROS metabolism in blueberries (Vaccinium ashei Reade) were investigated. The results showed that NCWP treatment significantly inhibited microbial growth, maintained high firmness and commercial acceptability, and extended the storage period of blueberries. The nutrient of blueberries was retained and elevated after NCWP treatment, especially in the 6 d of NCWP-9 h treatment, the total phenol and anthocyanin content reached the peak at 565.1 mg/L and 5.26 mg/g, which contribute to the total antioxidant capacity of blueberries increased. SEM showed that NCWP-9 h treatment maintained the integrity of the cuticular wax of the blueberry peel, which indirectly decelerated the decline of blueberry firmness. The NCWP treatment significantly enhanced the antioxidant enzyme system of blueberry peel. On days 2, 4 and 6 after NCWP-9 h treatment, the CAT, SOD and APX activities were significantly different from the control group (P < 0. 05), with 585.09 ΔA/min/g, 79.34 U/g and 3.32 umol/min/g, respectively, which effectively scavenged the oxidative stress markers (H2O2, O2-) accumulated in the blueberry peels, and slowed down the aging and deteriorated of the blueberry process. This finding demonstrates that NCWP is an effective postharvest preservation method for blueberries and provides a viable strategy for quality maintenance in the postharvest fruit and vegetable sector.
Collapse
Affiliation(s)
- Jiannan Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jianting Yin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China.
| | - Zhibiao Yang
- Department of Fundamental Technology, Panasonic Appliances, Hangzhou 310000, PR China
| | - Yingting Cai
- Department of Fundamental Technology, Panasonic Appliances, Hangzhou 310000, PR China
| | - Jiefeng Lou
- Department of Fundamental Technology, Panasonic Appliances, Hangzhou 310000, PR China
| | - Chao Huang
- Department of Fundamental Technology, Panasonic Appliances, Hangzhou 310000, PR China
| | - Qi Shen
- Department of Fundamental Technology, Panasonic Appliances, Hangzhou 310000, PR China
| |
Collapse
|
8
|
Marques HM. Electron transfer in biological systems. J Biol Inorg Chem 2024; 29:641-683. [PMID: 39424709 PMCID: PMC11638306 DOI: 10.1007/s00775-024-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
9
|
Saini S, Sharma P, Pooja P, Sharma A. An updated mechanistic overview of nitric oxide in drought tolerance of plants. Nitric Oxide 2024; 153:82-97. [PMID: 39395712 DOI: 10.1016/j.niox.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Drought stress, an inevitable global issue due to climate change, hinders plant growth and yield. Nitric oxide (NO), a tiny gaseous signaling compound is now gaining massive attention from the plant science community due to its unparalleled array of mechanisms for ameliorating various abiotic stresses, including drought. Supplementation of NO has shown its astounding effect in improving drought tolerance by prominently influencing its tendency to modulate stomatal movement and reduce oxidative stress; it can enormously affect the various other physio-biochemical processes such as root structure, photosynthesis, osmolyte cumulation, and seed establishment of plants due to its amalgamation with a wide range of molecules during drought conditions. The production and inhibition of root development majorly depend on NO concentration and/or experimental conditions. As a lipophilic free gasotransmitter, NO readily reacts with free metals and oxygen species and has been shown to enhance or reduce the redox homeostasis of plants, depending on whether acting in a chronic or acute mode. NO can easily alter the enzymes, protein activities, and genomic transcriptional and post-translational modifications that assist functional retrieval from water stress. Although progress is ongoing, much work remains to be done to describe the proper target site and mechanistic approach of this vibrant molecule in plant drought tolerance. This detailed review navigates through the comprehensive and clear picture of the mechanistic potential of NO in drought stress following molecular approaches and suggests effective physiological and biochemical strategies to overcome the negative impacts of drought. We explore its potential to increase crop production, thereby ensuring global food security in drought-prone areas. In an era marked by unrelenting climatic conditions, the implications of NO show a promising approach to sustainable farming, providing a beacon of hope for future crop productivity.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pooja Pooja
- Department of Botany and Physiology, Haryana Agricultural University, Hisar, 125004, Haryana, India.
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
10
|
Zhang S, Wang X, Zeng W, Zhong L, Yuan X, Ouyang Z, Li R. Colletotrichum gloeosporioides Swiftly Manipulates the Transcriptional Regulation in Citrus sinensis During the Early Infection Stage. J Fungi (Basel) 2024; 10:805. [PMID: 39590724 PMCID: PMC11595579 DOI: 10.3390/jof10110805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Citrus spp. represent an economically important fruit tree crop worldwide. However, molecular mechanisms underlying the interaction between citrus and the Colletotrichum gloeosporioides remain largely unexplored. In this study, we analyzed the physiological and transcriptomic changes in Citrus sinensis at different stages of incubation with C. gloeosporioides. The results indicated that C. gloeosporioides infection rapidly triggered necrosis in the epicarp of C. sinensis fruits, decreased the total flavonoid contents, and suppressed the activity of catalase, peroxidase, and superoxide dismutase enzymes. Upon inoculation with C. gloeosporioides, there were 4600 differentially expressed genes (DEGs) with 1754 down-regulated and 2846 up-regulated after six hours, while there were only 580 DEGs with 185 down-regulated and 395 up-regulated between six and twelve-hours post-inoculation. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the DEGs, which exhibited consistent up-regulation, were associated with metabolic processes and stress responses. Through Weighted Gene Co-Expression Network Analysis, 11 key genes have been identified that could potentially play a role in the transcriptional regulation of this process, including the transcription factor bHLH189. Furthermore, the infection of C. gloeosporioides had a notable effect on both the flavonoid metabolism and the metabolic pathways related to reactive oxygen species. Our findings help to understand the interaction between citrus and C. gloeosporioides and unveil how new insights into how C. gloeosporioides circumvents citrus defense mechanisms.
Collapse
Affiliation(s)
- Siyu Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (X.W.); (W.Z.); (L.Z.); (X.Y.)
| | - Xinyou Wang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (X.W.); (W.Z.); (L.Z.); (X.Y.)
| | - Wei Zeng
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (X.W.); (W.Z.); (L.Z.); (X.Y.)
| | - Leijian Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (X.W.); (W.Z.); (L.Z.); (X.Y.)
| | - Xiaoyong Yuan
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (X.W.); (W.Z.); (L.Z.); (X.Y.)
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou 341000, China
| | - Zhigang Ouyang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (X.W.); (W.Z.); (L.Z.); (X.Y.)
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou 341000, China
| | - Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (X.W.); (W.Z.); (L.Z.); (X.Y.)
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou 341000, China
| |
Collapse
|
11
|
Chen X, Song Y, Ling C, Shen Y, Zhan X, Xing B. Fate of emerging antibiotics in soil-plant systems: A case on fluoroquinolones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175487. [PMID: 39153616 DOI: 10.1016/j.scitotenv.2024.175487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Fluoroquinolones (FQs), a class of broad-spectrum antibiotics widely used to treat human and animal diseases globally, have limited adsorption and are often excreted unchanged or as metabolites. These compounds enter the soil environment through feces, urban wastewater, or discharge of biological solids. The fluorine atoms in FQs impart high electronegativity, chemical stability, and resistance to microbial degradation, allowing them to potentially enter food chains. The persistence of FQs in soils raises questions about their impacts on plant growth, an aspect not yet conclusively determined. We reviewed whether, like other organic compounds, FQs are actively absorbed by plants, resulting in bioaccumulation and posing threats to human health. The influx of FQs has led to antibiotic resistance in soil microbes by exerting selective pressure and contributing to multidrug-resistant bacteria. Therefore, the environmental risks of FQs warrant further attention. This work provides a comprehensive review of the fate and behavior of FQs at the plant-environment interface, their migration and transport from the environment into plants, and associated toxicity. Current limitations in research are discussed and prospects for future investigations outlined. Thus, understanding antibiotic behavior in plants and translocation within tissues is not only crucial for ecosystem health (plant health), but also assessing potential human health risks. In addition, it can offer insights into the fate of emerging soil pollutants in plant-soil systems.
Collapse
Affiliation(s)
- Xiaohan Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yixuan Song
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Ling
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yu Shen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
12
|
Jia Z, Zeng T, Gu L, Wang H, Zhu B, Ren M, Du X. TaWRKY17 Interacts With TaWRKY44 to Promote Expression of TaDHN7 for Salt Tolerance in Wheat. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39529360 DOI: 10.1111/pce.15277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Wheat is a crucial food crop, yet its production is continually threatened by abiotic stresses, particularly salt stress. Understanding the molecular mechanisms by which wheat responds to salt stress is essential for developing salt-tolerant varieties. In this study, we investigated the molecular pathway involving the wheat TaDHN7 in response to salt stress. The overexpression of TaDHN7 enhances salt tolerance and reactive oxygen species (ROS) scavenging in wheat, while the knockout of TaDHN7 significantly impairs salt tolerance. Furthermore, we identified that TaWRKY44 promotes the expression of TaDHN7 by binding to the W-box within the TaDHN7 promoter. Additionally, TaWRKY17 interacts with TaWRKY44, and this interaction enhances the protein stability of TaWRKY44 under salt stress, thereby enhancing its transcriptional regulatory capacity on TaDHN7. This study elucidates the TaWRKY17-TaWRKY44-TaDHN7 pathway in response to salt stress in wheat, providing valuable insights for the development of salt-tolerant wheat cultivars.
Collapse
Affiliation(s)
- Zhenzhen Jia
- College of Agriculture, Guizhou University, Guiyang, Guizhou Province, China
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Mingjian Ren
- College of Agriculture, Guizhou University, Guiyang, Guizhou Province, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| |
Collapse
|
13
|
Liu K, Ge Z, Ai D, Ma Z, Huang D, Zhang J. Coupled effects of redox-active substances and microbial communities on reactive oxygen species in rhizosphere sediments of submerged macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175421. [PMID: 39128517 DOI: 10.1016/j.scitotenv.2024.175421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Reactive oxygen species (ROS) play crucial roles in element cycling and pollutant dynamics, but their variations and mechanisms in the rhizosphere of submerged macrophytes are poorly investigated. This study investigated the light-dark cycle fluctuations and periodic variations in ROS, redox-active substances, and microbial communities in the rhizosphere of Vallisneria natans. The results showed sustained production and significant diurnal fluctuations in the O2•- and •OH from 27.6 ± 3.7 to 61.7 ± 3.0 μmol/kg FW and 131.0 ± 6.8 to 195.4 ± 8.7 μmol/kg FW, respectively, which simultaneously fluctuated with the redox-active substances. The ROS contents in the rhizosphere were higher than those observed in non-rhizosphere sediments over the V. natans growth period, exhibiting increasing-decreasing trends. According to the redundancy analysis results, water-soluble phenols, fungi, and bacteria were the main factors influencing ROS production in the rhizosphere, showing contribution rates of 74.0, 17.3, and 4.4 %, respectively. The results of partial least squares path modeling highlighted the coupled effects of redox-active substances and microbial metabolism. Our findings also demonstrated the degradation effect of ROS in rhizosphere sediments of submerged macrophytes. This study provides experimental evidence of ROS-related rhizosphere effects and further insights into submerged macrophytes-based ecological restoration.
Collapse
Affiliation(s)
- Kexuan Liu
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zuhan Ge
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Dan Ai
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zihang Ma
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai 200433, PR China
| | - Jibiao Zhang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China.
| |
Collapse
|
14
|
Ali S, Tyagi A, Park S, Varshney RK, Bae H. A molecular perspective on the role of FERONIA in root growth, nutrient uptake, stress sensing and microbiome assembly. J Adv Res 2024:S2090-1232(24)00494-6. [PMID: 39505145 DOI: 10.1016/j.jare.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Roots perform multifaceted functions in plants such as movement of nutrients and water, sensing stressors, shaping microbiome, and providing structural support. How roots perceive and respond above traits at the molecular level remains largely unknown. Despite the enormous advancements in crop improvement, the majority of recent efforts have concentrated on above-ground traits leaving significant knowledge gaps in root biology. Also, studying root system architecture (RSA) is more difficult due to its intricacy and the difficulties of observing them during plant life cycle which has made it difficult to identify desired root traits for the crop improvement. However, with the aid of high-throughput phenotyping and genotyping tools many developmental and stress-mediated regulation of RSA has emerged in both model and crop plants leading to new insights in root biology. Our current understanding of upstream signaling events (cell wall, apoplast) in roots and how they are interconnected with downstream signaling cascades has largely been constrained by the fact that most research in plant systems concentrate on cytosolic signal transduction pathways while ignoring the early perception by cells' exterior parts. In this regard, we discussed the role of FERONIA (FER) a cell wall receptor-like kinase (RLK) which acts as a sensor and a bridge between apoplast and cytosolic signaling pathways in root biology. AIM OF THE REVIEW The goal of this review is to provide valuable insights into present understanding and future research perspectives on how FER regulates distinct root responses related to growth and stress adaptation. KEY SCIENTIFIC CONCEPTS OF REVIEW In plants, FER is a unique RLK because it can act as a multitasking sensor and regulates diverse growth, and adaptive traits. In this review, we mainly highlighted its role in root biology like how it modulates distinct root responses such as root development, sensing abiotic stressors, mechanical stimuli, nutrient transport, and shaping microbiome. Further, we provided an update on how FER controls root traits by involving Rapid Alkalinization Factor (RALF) peptides, calcium, reactive oxygen species (ROS) and hormonal signaling pathways.. We also highlight number of outstanding questions in FER mediated root responses that warrants future investigation. To sum up, this review provides a comprehsive information on the role of FER in root biology which can be utilized for the development of future climate resilient and high yielding crops based on the modified root system.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea; Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Rajeev K Varshney
- Center of Excellence in Genomics &, Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; Murdoch's Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
15
|
Zhang X, Sun H, Song S, Li Y, Zhang X, Zhang W. Preparation and characterization of polyvinyl alcohol/pullulan/ZnO-Nps composite film and its effect on the postharvest quality of Allium mongolicum Regel. Int J Biol Macromol 2024; 279:135380. [PMID: 39245089 DOI: 10.1016/j.ijbiomac.2024.135380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Allium mongolicum Regel is prone to rapid senescence and quality deterioration during postharvest storage. Herein, polyvinyl alcohol/pullulan/ZnO nanoparticles (PVA/PUL/ZnO-Nps) composite films were prepared via solution casting and studied to analyze the effects of ZnO-Nps on the PVA/PUL film matrix. Results revealed that the incorporation of suitable ZnO-Nps effectively reduced the light transmittance, improved water contact angle, water vapor permeability, and mechanical properties of the composite films, as well as enhanced their antimicrobial activity. The composite films were used for the postharvest preservation of A. mongolicum Regel. Results revealed that the PVA/PUL/ZnO-Nps film effectively reduced malondialdehyde accumulation content, superoxide radical generation rate, hydrogen peroxide content, improve the activity of related enzymes, and extend the storage time compared with that of polyethylene films. Therefore, the PVA/PUL/ZnO-Nps film can be used as a novel packaging material for the postharvest preservation of A. mongolicum Regel.
Collapse
Affiliation(s)
- Xinhua Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Haowen Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Shengzhao Song
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yingying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| |
Collapse
|
16
|
Han M, Chen Z, Sun G, Feng Y, Guo Y, Bai S, Yan X. Nano-Fe 3O 4: Enhancing the tolerance of Elymus nutans to Cd stress through regulating programmed cell death. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124711. [PMID: 39128602 DOI: 10.1016/j.envpol.2024.124711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Cadmium (Cd) poses a significant threat to plant growth and the environment. Nano-Fe3O4 is effective in alleviating Cd stress in plants. Elymus nutans Griseb. is an important fodder crop on the Qinghai-Tibetan Plateau (QTP). However, the potential mechanism by which nano-Fe3O4 alleviates Cd stress in E. nutans is not well understood. E. nutans were subjected to single Cd, single nano-Fe3O4, and co-treatment with nano-Fe3O4 and Cd, and the effects on morphology, Cd uptake, antioxidant enzyme activity, reactive oxygen species (ROS) levels and programmed cell death (PCD) were studied to clarify the regulatory mechanism of nano-Fe3O4. The results showed that Cd stress significantly decreased the germination percentage and biomass of E. nutans. The photosynthetic pigment content decreased significantly under Cd stress. Cd stress also caused oxidative stress and lipid peroxidation, accumulation of excessive ROS, resulting in PCD, but the effect of nano-Fe3O4 was different. Seed germination, seedling growth, and physiological processes were analyzed to elucidate the regulatory role of nano-Fe3O4 nanoparticles in promoting photosynthesis, reducing Cd accumulation, scavenging ROS, and regulating PCD, to promote seed germination and seedling growth in E. nutans. This report provides a scientific basis for improving the tolerance of Elymus to Cd stress by using nano-Fe3O4.
Collapse
Affiliation(s)
- Mengli Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Yuxi Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuxia Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shiqie Bai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
17
|
Singh VP, Tripathi DK, Palma JM, Corpas FJ. Editorial: ROS and phytohormones: Two ancient chemical players in new roles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109149. [PMID: 39406665 DOI: 10.1016/j.plaphy.2024.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Affiliation(s)
- Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad Prayagraj-211002, India.
| | - Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida-201313, India.
| | - José M Palma
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/ Profesor Albareda, 1, E-18008, Granada, Spain.
| | - Francisco J Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/ Profesor Albareda, 1, E-18008, Granada, Spain.
| |
Collapse
|
18
|
Ali S, Tyagi A, Park S, Bae H. Understanding the mechanobiology of phytoacoustics through molecular Lens: Mechanisms and future perspectives. J Adv Res 2024; 65:47-72. [PMID: 38101748 PMCID: PMC11518948 DOI: 10.1016/j.jare.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND How plants emit, perceive, and respond to sound vibrations (SVs) is a long-standing question in the field of plant sensory biology. In recent years, there have been numerous studies on how SVs affect plant morphological, physiological, and biochemical traits related to growth and adaptive responses. For instance, under drought SVs navigate plant roots towards water, activate their defence responses against stressors, and increase nectar sugar in response to pollinator SVs. Also, plants emit SVs during stresses which are informative in terms of ecological and adaptive perspective. However, the molecular mechanisms underlying the SV perception and emission in plants remain largely unknown. Therefore, deciphering the complexity of plant-SV interactions and identifying bonafide receptors and signaling players will be game changers overcoming the roadblocks in phytoacoustics. AIM OF REVIEW The aim of this review is to provide an overview of recent developments in phytoacoustics. We primarily focuss on SV signal perception and transduction with current challenges and future perspectives. KEY SCIENTIFIC CONCEPTS OF REVIEW Timeline breakthroughs in phytoacoustics have constantly shaped our understanding and belief that plants may emit and respond to SVs like other species. However, unlike other plant mechanostimuli, little is known about SV perception and signal transduction. Here, we provide an update on phytoacoustics and its ecological importance. Next, we discuss the role of cell wall receptor-like kinases, mechanosensitive channels, intracellular organelle signaling, and other key players involved in plant-SV receptive pathways that connect them. We also highlight the role of calcium (Ca2+), reactive oxygen species (ROS), hormones, and other emerging signaling molecules in SV signal transduction. Further, we discuss the importance of molecular, biophysical, computational, and live cell imaging tools for decoding the molecular complexity of acoustic signaling in plants. Finally, we summarised the role of SV priming in plants and discuss how SVs could modulate plant defense and growth trade-offs during other stresses.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
19
|
Lin W, Huang D, Li M, Ren Y, Zheng X, Wu B, Miao Y. WHIRLY proteins, multi-layer regulators linking the nucleus and organelles in developmental and stress-induced senescence of plants. ANNALS OF BOTANY 2024; 134:521-536. [PMID: 38845347 PMCID: PMC11523626 DOI: 10.1093/aob/mcae092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/03/2024] [Indexed: 11/01/2024]
Abstract
Plant senescence is an integrated programme of plant development that aims to remobilize nutrients and energy from senescing tissues to developing organs under developmental and stress-induced conditions. Upstream in the regulatory network, a small family of single-stranded DNA/RNA-binding proteins known as WHIRLYs occupy a central node, acting at multiple regulatory levels and via trans-localization between the nucleus and organelles. In this review, we summarize the current progress on the role of WHIRLY members in plant development and stress-induced senescence. WHIRLY proteins can be traced back in evolution to green algae. WHIRLY proteins trade off the balance of plant developmental senescence and stress-induced senescence through maintaining organelle genome stability via R-loop homeostasis, repressing the transcription at a configuration condition, and recruiting RNA to impact organelle RNA editing and splicing, as evidenced in several species. WHIRLY proteins also act as retrograde signal transducers between organelles and the nucleus through protein modification and stromule or vesicle trafficking. In addition, WHIRLY proteins interact with hormones, reactive oxygen species and environmental signals to orchestrate cell fate in an age-dependent manner. Finally, prospects for further research and promotion to improve crop production under environmental constraints are highlighted.
Collapse
Affiliation(s)
- Wenfang Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Dongmei Huang
- Department of Biochemistry and Molecular Biology, Xiamen Medical College, Xiamen 361023, China
| | - Mengsi Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Yujun Ren
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Xiangzi Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Binghua Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| |
Collapse
|
20
|
Zheng K, Lv M, Qian J, Lian Y, Liu R, Huo S, Rehman OU, Lin Q, Zhou Z, Liu X, Cao S. Identification and Characterization of the DOF Gene Family in Phoebe bournei and Its Role in Abiotic Stress-Drought, Heat and Light Stress. Int J Mol Sci 2024; 25:11147. [PMID: 39456929 PMCID: PMC11508201 DOI: 10.3390/ijms252011147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Phoebe bournei is a second-class endangered and protected species unique to China, and it holds significant ecological and economic value. DNA binding one zinc finger (Dof) transcription factors are plant-specific regulators. Numerous studies have demonstrated that Dof genes are involved in plant growth, development and responses to abiotic stress. In this study, we identified and analyzed 34 PbDof gene members at the whole-genome level. The results indicated that the 34 PbDof genes were unevenly distributed across 12 chromosomes. We utilized the Dof genes from Arabidopsis thaliana and P. bournei to construct a phylogenetic tree and categorized these genes into eight subgroups. In the collinearity analysis, there were 16 homologous gene pairs between AtDof and PbDof and nine homologous gene pairs between ZmDof and PbDof. We conducted a cis-acting element analysis and found that cis-acting elements involved in light response were the most abundant in PbDof genes. Through SSR site prediction, we analyzed that the evolution level of Dof genes is low. Additionally, we assessed the expression profiles of eight PbDof genes under high temperature, drought, and light stress using qRT-PCR. In particular, PbDof08 and PbDof16 are significantly upregulated under the three stresses. This study provides foundational information for PbDof genes and offers new insights for further research on the mechanism of Dof transcription factors responding to stress, as well as the adaptation of P. bournei to environmental changes.
Collapse
Affiliation(s)
- Kehui Zheng
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Mengmeng Lv
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (J.Q.); (R.L.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| | - Jiaying Qian
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (J.Q.); (R.L.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| | - Yiran Lian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Q.L.)
| | - Ronglin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (J.Q.); (R.L.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (S.H.); (O.U.R.)
| | - Obaid Ur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (S.H.); (O.U.R.)
| | - Qinmin Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Q.L.)
| | - Zhongyang Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (J.Q.); (R.L.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
21
|
Zubova MY, Goncharuk EA, Nechaeva TL, Aksenova MA, Zaitsev GP, Katanskaya VM, Kazantseva VV, Zagoskina NV. Influence of Primary Light Exposure on the Morphophysiological Characteristics and Phenolic Compounds Accumulation of a Tea Callus Culture ( Camellia sinensis L.). Int J Mol Sci 2024; 25:10420. [PMID: 39408751 PMCID: PMC11477156 DOI: 10.3390/ijms251910420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 10/20/2024] Open
Abstract
Tea plant calli (Camellia sinensis L.) are characterized by the accumulation of various phenolic compounds (PC)-substances with high antioxidant activity. However, there is still no clarity on the response of tea cells to light exposure of varying intensity. The purpose of the research was to study tea callus cultures grown under the influence of primary exposure to different light intensities (50, 75, and 100 µmol·m-2·s-1). The cultures' growth, morphology, content of malondialdehyde and photosynthetic pigments (chlorophyll a and b), accumulation of various PC, including phenylpropanoids and flavanols, and the composition of catechins were analyzed. Primary exposure to different light intensities led to the formation of chloroplasts in tea calli, which was more pronounced at 100 µmol·m-2·s-1. Significant similarity in the growth dynamics of cultures, accumulation of pigments, and content of malondialdehyde and various phenolics in tea calli grown at light intensities of 50 and 75 µmol·m-2·s-1 has been established, which is not typical for calli grown at 100 µmol·m-2·s-1. According to data collected using high-performance liquid chromatography, (+)-catechin, (-)-epicatechin, epigallocatechin, gallocatechin gallate, epicatechin gallate, and epigallocatechin gallate were the main components of the tea callus culture's phenolic complex. Its content changed under the influence of primary exposure to light, reaching the greatest accumulation in the final stages of growth, and depended on the light intensity. The data obtained indicate changes in the morphophysiological and biochemical characteristics of tea callus cultures, including the accumulation of PC and their individual representatives under primary exposure to light exposure of varying intensity, which is most pronounced at its highest values (100 µmol·m-2·s-1).
Collapse
Affiliation(s)
- Maria Y. Zubova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Evgenia A. Goncharuk
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Tatiana L. Nechaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Maria A. Aksenova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Georgiy P. Zaitsev
- All-Russia National Research Institute of Viticulture and Winemaking “Magarach”, Russian Academy of Sciences, 298600 Yalta, Russia;
| | - Vera M. Katanskaya
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Varvara V. Kazantseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Natalia V. Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| |
Collapse
|
22
|
Fan X, Chen Y, Li M, Yuan H, Pan T, Sun H. Functional analysis of LdPMAT1, a positive regulator that promotes drought tolerance in Lilium distic hum nakai. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109162. [PMID: 39489095 DOI: 10.1016/j.plaphy.2024.109162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/24/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024]
Abstract
Abiotic stress has become a major challenge for lily crop growth, development, yield and quality under irregular climate and precipitation trends. Molecular breeding is one of the most effective methods for developing highly stress-resistant cultivars. Previous studies revealed that miR396b and its target gene LdPMAT1 are involved in drought resistance, and in lily silencing miR396b significantly enhances drought resistance and LdPMAT1 expression. However, the function of LdPMAT1 in the lily response to abiotic stress is unclear. In this study, GUS activity tests and dual luciferase reporter gene assays (LUC) confirmed that LdPMAT1 is a novel miR396b target. The LdPMAT1 transcription level was greater in the roots and leaves and increased significantly within 7 days of drought stress. Stable LdPMAT1 overexpression significantly reduced leaf wilting and enhanced cell membrane stability by affecting osmoregulatory substance accumulation, improving plant drought resistance. Additionally, LdPMAT1 overexpression significantly increased the expression levels of LdCAT3 and SOD2, which encode superoxide dismutase (SOD) and catalase (CAT), respectively, as well as SOD and CAT enzyme activities. In contrast, reactive oxygen species (ROS) accumulated at high levels in the leaves and roots of the silenced plants, and the degree of damage was significantly greater than that in the wild type plants. Under conditions of 1% NaCl and 42 °C, plants overexpressing LdPMAT1 exhibited similar characteristic s of high stress resistance, with less wilting and lower ROS accumulation. This study provides a theoretical basis for cultivating new highly resistant lily cultivars and accelerating germplasm innovation to produce high-quality lilies worldwide.
Collapse
Affiliation(s)
- Xinyue Fan
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Chen
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Min Li
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hong Yuan
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tianqi Pan
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, 110866, China.
| |
Collapse
|
23
|
Chen X, Li D, Guo J, Wang Q, Zhang K, Wang X, Shao L, Luo C, Xia Y, Zhang J. Identification and Analysis of the Superoxide Dismutase (SOD) Gene Family and Potential Roles in High-Temperature Stress Response of Herbaceous Peony ( Paeonia lactiflora Pall.). Antioxidants (Basel) 2024; 13:1128. [PMID: 39334787 PMCID: PMC11428480 DOI: 10.3390/antiox13091128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The herbaceous peony (Paeonia lactiflora Pall.) plant is world-renowned for its ornamental, medicinal, edible, and oil values. As global warming intensifies, its growth and development are often affected by high-temperature stress, especially in low-latitude regions. Superoxide dismutase (SOD) is an important enzyme in the plant antioxidant systems and plays vital roles in stress response by maintaining the dynamic balance of reactive oxygen species (ROS) concentrations. To reveal the members of then SOD gene family and their potential roles under high-temperature stress, we performed a comprehensive identification of the SOD gene family in the low-latitude cultivar 'Hang Baishao' and analyzed the expression patterns of SOD family genes (PlSODs) in response to high-temperature stress and exogenous hormones. The present study identified ten potential PlSOD genes, encoding 145-261 amino acids, and their molecular weights varied from 15.319 to 29.973 kDa. Phylogenetic analysis indicated that PlSOD genes were categorized into three sub-families, and members within each sub-family exhibited similar conserved motifs. Gene expression analysis suggested that SOD genes were highly expressed in leaves, stems, and dormancy buds. Moreover, RNA-seq data revealed that PlCSD1-1, PlCSD3, and PlFSD1 may be related to high-temperature stress response. Finally, based on the Quantitative Real-time PCR (qRT-PCR) results, seven SOD genes were significantly upregulated in response to high-temperature stress, and exogenous EBR and ABA treatments can enhance high-temperature tolerance in P. lactiflora. Overall, these discoveries lay the foundation for elucidating the function of PlSOD genes for the thermotolerance of herbaceous peony and facilitating the genetic breeding of herbaceous peony cultivars with strong high-temperature resistance.
Collapse
Affiliation(s)
- Xiaoxuan Chen
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| | - Danqing Li
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Junhong Guo
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| | - Qiyao Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| | - Kaijing Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| | - Xiaobin Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| | - Lingmei Shao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| | - Cheng Luo
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| | - Jiaping Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.C.); (J.G.); (Q.W.); (K.Z.); (X.W.); (L.S.); (C.L.); (Y.X.)
| |
Collapse
|
24
|
Wang Z, Qu L, Fan Z, Hou L, Hu J, Wang L. Dynamic Metabolic Responses of Resistant and Susceptible Poplar Clones Induced by Hyphantria cunea Feeding. BIOLOGY 2024; 13:723. [PMID: 39336150 PMCID: PMC11428749 DOI: 10.3390/biology13090723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Poplar trees are significant for both economic and ecological purposes, and the fall webworm (Hyphantria cunea Drury) poses a major threat to their plantation in China. The preliminary resistance assessment in the previous research indicated that there were differences in resistance to the insect among these varieties, with '2KEN8' being more resistant and 'Nankang' being more susceptible. The present study analyzed the dynamic changes in the defensive enzymes and metabolic profiles of '2KEN8' and 'Nankang' at 24 hours post-infestation (hpi), 48 hpi, and 96 hpi. The results demonstrated that at the same time points, compared to susceptible 'Nankang', the leaf consumption by H. cunea in '2KEN8' was smaller, and the larval weight gain was slower, exhibiting clear resistance to the insect. Biochemical analysis revealed that the increased activity of the defensive enzymes in '2KEN8' triggered by the feeding of H. cunea was significantly higher than that of 'Nankang'. Metabolomics analysis indicated that '2KEN8' initiated an earlier and more intense reprogramming of the metabolic profile post-infestation. In the early stages of infestation, the differential metabolites induced in '2KEN8' primarily included phenolic compounds, flavonoids, and unsaturated fatty acids, which are related to the biosynthesis pathways of phenylpropanoids, flavonoids, unsaturated fatty acids, and jasmonates. The present study is helpful for identifying the metabolic biomarkers for inductive resistance to H. cunea and lays a foundation for the further elucidation of the chemical resistance mechanism of poplar trees against this insect.
Collapse
Affiliation(s)
- Zheshu Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Liangjian Qu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhibin Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Luxuan Hou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
25
|
Yan Y, Chang W, Tian P, Chen J, Jiang J, Dai X, Jiang T, Luo F, Yang C. Exploring native arsenic (As)-resistant bacteria: unveiling multifaceted mechanisms for plant growth promotion under As stress. J Appl Microbiol 2024; 135:lxae228. [PMID: 39227171 DOI: 10.1093/jambio/lxae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
AIMS This study explores the plant growth-promoting effect (PGPE) and potential mechanisms of the arsenic (As)-resistant bacterium Flavobacterium sp. A9 (A9 hereafter). METHODS AND RESULTS The influences of A9 on the growth of Arabidopsis thaliana, lettuce, and Brassica napus under As(V) stress were investigated. Additionally, a metabolome analysis was conducted to unravel the underlying mechanisms that facilitate PGPE. Results revealed that A9 significantly enhanced the fresh weight of Arabidopsis seedlings by 62.6%-135.4% under As(V) stress. A9 significantly increased root length (19.4%), phosphorus (25.28%), chlorophyll content (59%), pod number (24.42%), and weight (18.88%), while decreasing As content (48.33%, P ≤ .05) and oxidative stress of Arabidopsis. It also significantly promoted the growth of lettuce and B. napus under As(V) stress. A9 demonstrated the capability to produce ≥31 beneficial substances contributing to plant growth promotion (e.g. gibberellic acid), stress tolerance (e.g. thiamine), and reduced As accumulation (e.g. siderophores). CONCLUSIONS A9 significantly promoted the plant growth under As stress and decreased As accumulation by decreasing oxidative stress and releasing beneficial compounds.
Collapse
Affiliation(s)
- Yaoyao Yan
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wenying Chang
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Peili Tian
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, China
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jiying Chen
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jiayin Jiang
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xianzhu Dai
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Feng Luo
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Caiyun Yang
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing 400715, China
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|
26
|
Cao Y, Yang W, Ma J, Cheng Z, Zhang X, Liu X, Wu X, Zhang J. An Integrated Framework for Drought Stress in Plants. Int J Mol Sci 2024; 25:9347. [PMID: 39273296 PMCID: PMC11395155 DOI: 10.3390/ijms25179347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
With global warming, drought stress is becoming increasingly severe, causing serious impacts on crop yield and quality. In order to survive under adverse conditions such as drought stress, plants have evolved a certain mechanism to cope. The tolerance to drought stress is mainly improved through the synergistic effect of regulatory pathways, such as transcription factors, phytohormone, stomatal movement, osmotic substances, sRNA, and antioxidant systems. This study summarizes the research progress on plant drought resistance, in order to provide a reference for improving plant drought resistance and cultivating drought-resistant varieties through genetic engineering technology.
Collapse
Affiliation(s)
- Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China
| | - Wenbo Yang
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China
| | - Juan Ma
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China
| | - Zeqiang Cheng
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China
| | - Xuan Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xueman Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
27
|
Yi K, Ren Y, Zhang H, Lin B, Hao P, Hua S. Can Rice Growth Substrate Substitute Rapeseed Growth Substrate in Rapeseed Blanket Seedling Technology? Lesson from Reactive Oxygen Species Production and Scavenging Analysis. Antioxidants (Basel) 2024; 13:1022. [PMID: 39199266 PMCID: PMC11351573 DOI: 10.3390/antiox13081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Rapeseed (Brassica napus L.) seedlings suffering from inappropriate growth substrate stress will present poor seedling quality. However, the regulatory mechanism for the production and scavenging of reactive oxygen species (ROS) caused by this type of stress remains unclear. In the current study, a split plot experiment design was implemented with two crop growth substrates-a rice growth substrate (RIS) and rapeseed growth substrate (RAS)-as the main plot and two genotypes-a hybrid and an open-pollinated variety (Zheyouza 1510 and Zheyou 51, respectively)-as the sub-plot. The seedling quality was assessed, and the ROS production/scavenging capacity was evaluated. Enzymatic and non-enzymatic systems, including ascorbic acid and glutathione metabolism, and RNA-seq data were analyzed under the two growth substrate treatments. The results revealed that rapeseed seedling quality decreased under RIS, with the plant height, maximum leaf length and width, and aboveground dry matter being reduced by 187.7%, 64.6%, 73.2%, and 63.8% on average, respectively, as compared to RAS. The main type of ROS accumulated in rapeseed plants was hydrogen peroxide, which was 47.8% and 14.1% higher under RIS than under RAS in the two genotypes, respectively. The scavenging of hydrogen peroxide in Zheyouza 1510 was the result of a combination of enzymatic systems, with significantly higher peroxidase (POD) and catalase (CAT) activity as well as glutathione metabolism, with significantly higher reduced glutathione (GSH) content, under RAS, while higher oxidized glutathione (GSSH) was observed under RIS. However, the scavenging of hydrogen peroxide in Zheyou 51 was the result of a combination of elevated oxidized ascorbic acid (DHA) under RIS and higher GSH content under RAS. The identified gene expression levels were in accordance with the observed enzyme expression levels. The results suggest that the cost of substituting RAS with RIS is a reduction in rapeseed seedling quality contributing to excessive ROS production and a reduction in ROS scavenging capacity.
Collapse
Affiliation(s)
- Kaige Yi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.); (P.H.)
| | - Yun Ren
- Institute of Crop, Huzhou Academy of Agricultural Sciences, Huzhou 313000, China;
| | - Hui Zhang
- Zhejiang Agri-Tech Extension and Service Center, Hangzhou 310020, China;
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.); (P.H.)
| | - Pengfei Hao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.); (P.H.)
| | - Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.); (P.H.)
| |
Collapse
|
28
|
Feng Z, Admas T, Cheng B, Meng Y, Pan R, Zhang W. UGT gene family identification and functional analysis of HvUGT1 under drought stress in wild barley. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1225-1238. [PMID: 39184559 PMCID: PMC11341513 DOI: 10.1007/s12298-024-01487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 08/27/2024]
Abstract
Drought stress poses a significant threat to global agriculture, highlighting the urgent need to elucidate the molecular mechanisms underlying plant drought tolerance. The UDP-glycosyltransferase (UGT) gene family plays crucial roles in diverse biological processes in plants. In this study, we conducted a comprehensive analysis of the UGT gene family in wild barley EC_S1, focusing on gene characteristics, subcellular localization, phylogenetic relationships, and protein structure. A total of 175 UGT gene family members were identified, exhibiting diverse patterns in protein length, molecular weight, isoelectric point, hydrophilicity, and subcellular localization. Most genes are located at chromosome ends. Phylogenetic analysis grouped the UGT genes into seven clusters, with barley-specific group E. Expression analysis across barley tissues showed upregulation in roots and senescent leaves, implying diverse roles. Under drought stress, expression patterns varied, with drought-tolerant varieties showing fewer changes than sensitive ones. Clustering analysis revealed distinct expression patterns, suggesting regulatory functions in barley's drought response. As a case, the HvUGT1 was cloned. Overexpression of HvUGT1 in Arabidopsis enhanced drought tolerance, with increased water retention, reduced cell damage, and elevated flavonoid levels. Conversely, HvUGT1 silencing in wild barley decreased drought tolerance, accompanied by reduced antioxidant enzyme activity and flavonoid content. These results highlight HvUGT1's importance in enhancing plant drought tolerance, possibly through flavonoid-mediated ROS clearance. The research provides gene resources and valuable insights for the development of drought-resistant crops through targeted genetic manipulation strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01487-w.
Collapse
Affiliation(s)
- Zhenbao Feng
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025 China
| | - Tayachew Admas
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025 China
| | - Bingyun Cheng
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025 China
| | - Yutong Meng
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025 China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025 China
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
29
|
Gong W, Oubounyt M, Baumbach J, Dresselhaus T. Heat-stress-induced ROS in maize silks cause late pollen tube growth arrest and sterility. iScience 2024; 27:110081. [PMID: 38979009 PMCID: PMC11228802 DOI: 10.1016/j.isci.2024.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 07/10/2024] Open
Abstract
The reproductive phase of plants is highly sensitive to ambient temperature stresses. To investigate sensitivity of female reproductive organs in grass crops during the pollination phase, we exposed the elongated stigma (silk) of maize to ambient environment at the silking stage. Moderate heat stress causes cell death of silk hair cells but did not affect early pollen tube growth inside the silk. Late pollen tube growth arrest was observed, leading to sterility. Heat stress causes elevated levels of reactive oxygen species (ROS) in silks, whose levels can be reduced by scavengers partly restoring pollen tube growth and fertility. A number of biological processes including hydrogen peroxide catabolic processes and bHLH transcription factor genes are downregulated by heat stress, while some NAC transcription factor genes are strongly upregulated. In conclusion, this study now provides a basis to select genes for engineering heat-stress-tolerant grass crops during the pollination phase.
Collapse
Affiliation(s)
- Wen Gong
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Mhaned Oubounyt
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 22607 Hamburg, Germany
| | - Jan Baumbach
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 22607 Hamburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
30
|
Jia S, Wang C, Sun W, Yan X, Wang W, Xu B, Guo G, Bi C. OsWRKY12 negatively regulates the drought-stress tolerance and secondary cell wall biosynthesis by targeting different downstream transcription factor genes in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108794. [PMID: 38850730 DOI: 10.1016/j.plaphy.2024.108794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
With the increasing occurrence of global warming, drought is becoming a major constraint for plant growth and crop yield. Plant cell walls experience continuous changes during the growth, development, and in responding to stressful conditions. The plant WRKYs play pivotal roles in regulating the secondary cell wall (SCW) biosynthesis and helping plant defend against abiotic stresses. qRT-PCR evidence showed that OsWRKY12 was affected by drought and ABA treatments. Over-expression of OsWRKY12 decreased the drought tolerance of the rice transgenics at the germination stage and the seedling stage. The transcription levels of drought-stress-associated genes as well as those genes participating in the ABA biosynthesis and signaling were significantly different compared to the wild type (WT). Our results also showed that less lignin and cellulose were deposited in the OsWRKY12-overexpressors, and heterogenous expression of OsWRKY12 in atwrky12 could lower the increased lignin and cellulose contents, as well as the improved PEG-stress tolerance, to a similar level as the WT. qRT-PCR results indicated that the transcription levels of all the genes related to lignin and cellulose biosynthesis were significantly decreased in the rice transgenics than the WT. Further evidence from yeast one-hybrid assay and the dual-luciferase reporter system suggested that OsWRKY12 could bind to promoters of OsABI5 (the critical component of the ABA signaling pathway) and OsSWN3/OsSWN7 (the key positive regulators in the rice SCW thickening), and hence repressing their expression. In conclusion, OsWRKY12 mediates the crosstalk between SCW biosynthesis and plant stress tolerance by binding to the promoters of different downstream genes.
Collapse
Affiliation(s)
- Shuzhen Jia
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Chunyue Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Wanying Sun
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xiaofei Yan
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Weiting Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Bing Xu
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Guangyan Guo
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Caili Bi
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
31
|
Rafiq M, Shahid M, Bibi I, Khalid S, Tariq TZ, Al-Kahtani AA, ALOthman ZA, Murtaza B, Niazi NK. Role of organic and inorganic amendments on physiological attributes of germinating pea seedlings under arsenic stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1243-1252. [PMID: 38265045 DOI: 10.1080/15226514.2024.2305684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
There are scarce data regarding the effects of soil amendments on biophysicochemical responses of plants at the early stages of growth/germination. This study critically compares the effects of ethylene-diamine-tetra-acetic-acid (EDTA) and calcium (Ca) on biophysicochemical responses of germinating pea seedlings under varied arsenic levels (As, 25, 125, 250 µM). Arsenic alone enhanced hydrogen peroxide (H2O2) level in pea roots (176%) and shoot (89%), which significantly reduced seed germination percentage, pigment contents, and growth parameters. Presence of EDTA and Ca in growth culture minimized the toxic effects of As on pea seedlings, EDTA being more pertinent than Ca. Both the amendments decreased H2O2 levels in pea tissues (16% in shoot and 13% in roots by EDTA, and 7% by Ca in shoot), and maintained seed germination, pigment contents, and growth parameters of peas close to those of the control treatment. The effects of all As-treatments were more pronounced in the pea roots than in the shoot. The presence of organic and inorganic amendments can play a useful role in alleviating As toxicity at the early stages of pea growth. The scarcity of data demands comparing plant biophysicochemical responses at different stages of plant growth (germinating vs mature) in future studies.
Collapse
Affiliation(s)
- Marina Rafiq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | | | - Abdullah A Al-Kahtani
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
32
|
Tyagi A, Mir ZA, Ali S. Revisiting the Role of Sensors for Shaping Plant Research: Applications and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2024; 24:3261. [PMID: 38894052 PMCID: PMC11174810 DOI: 10.3390/s24113261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Plant health monitoring is essential for understanding the impact of environmental stressors (biotic and abiotic) on crop production, and for tailoring plant developmental and adaptive responses accordingly. Plants are constantly exposed to different stressors like pathogens and soil pollutants (heavy metals and pesticides) which pose a serious threat to their survival and to human health. Plants have the ability to respond to environmental stressors by undergoing rapid transcriptional, translational, and metabolic reprogramming at different cellular compartments in order to balance growth and adaptive responses. However, plants' exceptional responsiveness to environmental cues is highly complex, which is driven by diverse signaling molecules such as calcium Ca2+, reactive oxygen species (ROS), hormones, small peptides and metabolites. Additionally, other factors like pH also influence these responses. The regulation and occurrence of these plant signaling molecules are often undetectable, necessitating nondestructive, live research approaches to understand their molecular complexity and functional traits during growth and stress conditions. With the advent of sensors, in vivo and in vitro understanding of some of these processes associated with plant physiology, signaling, metabolism, and development has provided a novel platform not only for decoding the biochemical complexity of signaling pathways but also for targeted engineering to improve diverse plant traits. The application of sensors in detecting pathogens and soil pollutants like heavy metal and pesticides plays a key role in protecting plant and human health. In this review, we provide an update on sensors used in plant biology for the detection of diverse signaling molecules and their functional attributes. We also discuss different types of sensors (biosensors and nanosensors) used in agriculture for detecting pesticides, pathogens and pollutants.
Collapse
Affiliation(s)
- Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Zahoor Ahmad Mir
- Department of Plant Science and Agriculture, University of Manitoba, Winnipeg, MB R2M0TB, Canada;
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
33
|
Liu Z, Cao MA, Kuča K, Alqahtani MD, Muthuramalingam P, Wu QS. Cloning of CAT genes in Satsuma mandarin and their expression characteristics in response to environmental stress and arbuscular mycorrhizal fungi. PLANT CELL REPORTS 2024; 43:123. [PMID: 38642148 DOI: 10.1007/s00299-024-03218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
KEY MESSAGE CitCAT1 and CitCAT2 were cloned and highly expressed in mature leaves. High temperatures up-regulated CitCAT1 expression, while low temperatures and Diversispora versiformis up-regulated CitCAT2 expression, maintaining a low oxidative damage. Catalase (CAT), a tetrameric heme-containing enzyme, removes hydrogen peroxide (H2O2) to maintain low oxidative damage in plants exposed to environmental stress. This study aimed to clone CAT genes from Citrus sinensis cv. "Oita 4" and analyze their expression patterns in response to environmental stress, exogenous abscisic acid (ABA), and arbuscular mycorrhizal fungal inoculation. Two CAT genes, CitCAT1 (NCBI accession: PP067858) and CitCAT2 (NCBI accession: PP061394) were cloned, and the open reading frames of their proteins were 1479 bp and 1539 bp, respectively, each encoding 492 and 512 amino acids predicted to be localized in the peroxisome, with CitCAT1 being a stable hydrophilic protein and CitCAT2 being an unstable hydrophilic protein. The similarity of their amino acid sequences reached 83.24%, and the two genes were distantly related. Both genes were expressed in stems, leaves, flowers, and fruits, accompanied by the highest expression in mature leaves. In addition, CitCAT1 expression was mainly up-regulated by high temperatures (37 °C), exogenous ABA, and PEG stress within a short period of time, whereas CitCAT2 expression was up-regulated by exogenous ABA and low-temperature (4 °C) stress. Low temperatures (0 °C) for 12 h just up-regulated CitCAT2 expression in Diversispora versiformis-inoculated plants, and D. versiformis inoculation up-regulated CitCAT2 expression, along with lower hydrogen peroxide and malondialdehyde levels in mycorrhizal plants at low temperatures. It is concluded that CitCAT2 has an important role in resistance to low temperatures as well as mycorrhizal enhancement of host resistance to low temperatures.
Collapse
Affiliation(s)
- Zhen Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Ming-Ao Cao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Kamil Kuča
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725, Republic of Korea
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| |
Collapse
|
34
|
Gao X, Tan J, Yi K, Lin B, Hao P, Jin T, Hua S. Elevated ROS Levels Caused by Reductions in GSH and AsA Contents Lead to Grain Yield Reduction in Qingke under Continuous Cropping. PLANTS (BASEL, SWITZERLAND) 2024; 13:1003. [PMID: 38611531 PMCID: PMC11013709 DOI: 10.3390/plants13071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Continuous spring cropping of Qingke (Hordeum viilgare L. var. nudum Hook. f.) results in a reduction in grain yield in the Xizang autonomous region. However, knowledge on the influence of continuous cropping on grain yield caused by reactive oxygen species (ROS)-induced stress remains scarce. A systematic comparison of the antioxidant defensive profile at seedling, tillering, jointing, flowering, and filling stages (T1 to T5) of Qingke was conducted based on a field experiment including 23-year continuous cropping (23y-CC) and control (the first year planted) treatments. The results reveal that the grain yield and superoxide anion (SOA) level under 23y-CC were significantly decreased (by 38.67% and 36.47%), when compared to the control. The hydrogen peroxide content under 23y-CC was 8.69% higher on average than under the control in the early growth stages. The higher ROS level under 23y-CC resulted in membrane lipid peroxidation (LPO) and accumulation of malondialdehyde (MDA) at later stages, with an average increment of 29.67% and 3.77 times higher than that in control plants. Qingke plants accumulated more hydrogen peroxide at early developmental stages due to the partial conversion of SOA by glutathione (GSH) and superoxide dismutase (SOD) and other production pathways, such as the glucose oxidase (GOD) and polyamine oxidase (PAO) pathways. The reduced regeneration ability due to the high oxidized glutathione (GSSG) to GSH ratio resulted in GSH deficiency while the reduction in L-galactono-1,4-lactone dehydrogenase (GalLDH) activity in the AsA biosynthesis pathway, higher enzymatic activities (including ascorbate peroxidase, APX; and ascorbate oxidase, AAO), and lower activities of monodehydroascorbate reductase (MDHAR) all led to a lower AsA content under continuous cropping. The lower antioxidant capacity due to lower contents of antioxidants such as flavonoids and tannins, detected through both physiological measurement and metabolomics analysis, further deteriorated the growth of Qingke through ROS stress under continuous cropping. Our results provide new insights into the manner in which ROS stress regulates grain yield in the context of continuous Qingke cropping.
Collapse
Affiliation(s)
- Xue Gao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; (X.G.); (J.T.); (P.H.)
| | - Jianxin Tan
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; (X.G.); (J.T.); (P.H.)
| | - Kaige Yi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.)
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.)
| | - Pengfei Hao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; (X.G.); (J.T.); (P.H.)
| | - Tao Jin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; (X.G.); (J.T.); (P.H.)
| | - Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.)
| |
Collapse
|
35
|
Ahammed GJ, Li Z, Chen J, Dong Y, Qu K, Guo T, Wang F, Liu A, Chen S, Li X. Reactive oxygen species signaling in melatonin-mediated plant stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108398. [PMID: 38359555 DOI: 10.1016/j.plaphy.2024.108398] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Reactive oxygen species (ROS) are crucial signaling molecules in plants that play multifarious roles in prompt response to environmental stimuli. Despite the classical thoughts that ROS are toxic when accumulate in excess, recent advances in plant ROS signaling biology reveal that ROS participate in biotic and abiotic stress perception, signal integration, and stress-response network activation, hence contributing to plant defense and stress tolerance. ROS production, scavenging and transport are fine-tuned by plant hormones and stress-response signaling pathways. Crucially, the emerging plant hormone melatonin attenuates excessive ROS accumulation under stress, whereas ROS signaling mediates melatonin-induced plant developmental response and stress tolerance. In particular, RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) proteins responsible for apoplastic ROS generation act downstream of melatonin to mediate stress response. In this review, we discuss promising developments in plant ROS signaling and how ROS might mediate melatonin-induced plant resilience to environmental stress.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Zhe Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Jingying Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Yifan Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Kehao Qu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Tianmeng Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Fenghua Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China.
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China.
| |
Collapse
|
36
|
Jia Y, Gu X, Chai J, Yao X, Cheng S, Liu L, He S, Peng Y, Zhang Q, Zhu Z. Rice OsANN9 Enhances Drought Tolerance through Modulating ROS Scavenging Systems. Int J Mol Sci 2023; 24:17495. [PMID: 38139326 PMCID: PMC10743917 DOI: 10.3390/ijms242417495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Drought is a critical abiotic stress which leads to crop yield and a decrease in quality. Annexins belong to a multi-gene family of calcium- and lipid-binding proteins and play diverse roles in plant growth and development. Herein, we report a rice annexin protein, OsANN9, which in addition to regular annexin repeats and type-II Ca2+ binding sites, also consists of a C2H2-type zinc-finger domain. We found that the expression of OsANN9 was upregulated by polyethylene glycol (PEG) or water-deficient treatment. Moreover, plants that overexpressed OsANN9 had increased survival rates under drought stress, while both OsANN9-RNAi and osann9 mutants showed sensitivity to drought. In addition, the overexpression of OsANN9 increased superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities, which regulate reactive oxygen species homeostasis. Collectively, these findings indicate that OsANN9 may function as a positive regulator in response to drought stress by modulating antioxidant accumulation. Interestingly, the setting rates of osann9 mutant rice plants significantly decreased in comparison to wild-type plants, suggesting that OsANN9 might be involved in other molecular mechanisms in the rice seed development stage.
Collapse
Affiliation(s)
- Yangyang Jia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Xiangyang Gu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Jiaxin Chai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Xiaohong Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Shoutao Cheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Lirui Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Saiya He
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Yizhuo Peng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Qian Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| |
Collapse
|
37
|
Tyagi A, Ali S, Park S, Bae H. Deciphering the role of mechanosensitive channels in plant root biology: perception, signaling, and adaptive responses. PLANTA 2023; 258:105. [PMID: 37878056 DOI: 10.1007/s00425-023-04261-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
MAIN CONCLUSION Mechanosensitive channels are integral membrane proteins that rapidly translate extrinsic or intrinsic mechanical tensions into biological responses. They can serve as potential candidates for developing smart-resilient crops with efficient root systems. Mechanosensitive (MS) calcium channels are molecular switches for mechanoperception and signal transduction in all living organisms. Although tremendous progress has been made in understanding mechanoperception and signal transduction in bacteria and animals, this remains largely unknown in plants. However, identification and validation of MS channels such as Mid1-complementing activity channels (MCAs), mechanosensitive-like channels (MSLs), and Piezo channels (PIEZO) has been the most significant discovery in plant mechanobiology, providing novel insights into plant mechanoperception. This review summarizes recent advances in root mechanobiology, focusing on MS channels and their related signaling players, such as calcium ions (Ca2+), reactive oxygen species (ROS), and phytohormones. Despite significant advances in understanding the role of Ca2+ signaling in root biology, little is known about the involvement of MS channel-driven Ca2+ and ROS signaling. Additionally, the hotspots connecting the upstream and downstream signaling of MS channels remain unclear. In light of this, we discuss the present knowledge of MS channels in root biology and their role in root developmental and adaptive traits. We also provide a model highlighting upstream (cell wall sensors) and downstream signaling players, viz., Ca2+, ROS, and hormones, connected with MS channels. Furthermore, we highlighted the importance of emerging signaling molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), and neurotransmitters (NTs), and their association with root mechanoperception. Finally, we conclude with future directions and knowledge gaps that warrant further research to decipher the complexity of root mechanosensing.
Collapse
Affiliation(s)
- Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea.
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|