1
|
Ni X, Zhang Z, Deng Z, Li J. Optimizing ARA and DHA in infant formula: A systematic review of global trends, regional disparities, and considerations for precision nutrition. Food Res Int 2024; 182:114049. [PMID: 38519198 DOI: 10.1016/j.foodres.2024.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/24/2024]
Abstract
In the context of precision nutrition, the addition of ARA and DHA in infant formula needs to consider more factors. This study conducted a comprehensive literature review, including 112 relevant Chinese and English articles, to summarize and analyze the global levels of ARA, DHA, and the ARA/DHA ratio in breast milk. The data were correlated with local aquatic products intake and children's IQ. The results indicated that the average level of DHA in breast milk across regions is lower than that of ARA. Variations in DHA content were identified as a primary factor influencing ARA/DHA ratio fluctuations. Breast milk ARA and DHA levels decrease with prolonged lactation periods but increase over the past 22 years. Correlation analysis revealed a significant positive relationship between aquatic products intake and breast milk DHA levels (r = 0.64, p < 0.05). Breast milk DHA levels also showed a significant positive correlation with children's IQ (r = 0.67, p < 0.01). Stable breast milk ARA content did not exhibit significant correlations with aquatic products intake or children's IQ (r = 0, p > 0.05). Among 22 infant formula products available in China, only 5 had ARA levels within the range of breast milk. Most formula products had higher ARA levels than DHA, resulting in ARA/DHA ratios generally exceeding 1. The temporal and spatial variability in breast milk ARA and DHA levels may lead to diverse health outcomes in infants. Therefore, the addition of ARA and DHA in infant formula should consider this variability, including the molecular forms and positional isomerism of the added ARA and DHA. Additionally, considering the impact of different cognitive development tests and infant's gene expression on formula assessment results, there is a need to establish a more comprehensive infant health assessment system to guide the addition of ARA and DHA in formula.
Collapse
Affiliation(s)
- Xinggang Ni
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Zhiyi Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
2
|
Rheims S, Herbillon V, Gaillard S, Mercier C, Villeuve N, Villéga F, Cances C, Castelnau P, Napuri S, de Saint‐Martin A, Auvin S, Nguyen The Tich S, Berquin P, de Bellecize J, Milh M, Roy P, Arzimanoglou A, Bodennec J, Bezin L, Kassai B. Phosphatidylserine enriched with polyunsaturated n-3 fatty acid supplementation for attention-deficit hyperactivity disorder in children and adolescents with epilepsy: A randomized placebo-controlled trial. Epilepsia Open 2024; 9:582-591. [PMID: 38173190 PMCID: PMC10984292 DOI: 10.1002/epi4.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/24/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Attention-deficit hyperactivity disorder (ADHD) is a frequent comorbidity in children with epilepsy, which management mostly relies on the usual treatments of ADHD, especially methylphenidate. Supplementation with polyunsaturated n-3 Fatty Acid (PUFA) has been proposed as an alternative therapeutic approach in ADHD without epilepsy but has never been evaluated in epilepsy-associated ADHD. METHODS A multicenter double blind randomized placebo-controlled trial evaluating supplementation with PUFA, in eicosapentaenoic- and docosahexaenoic-acid form, conjugated to a phospholipid vector (PS-Omega3) in children aged >6 and <16-years old, and suffering from any type of epilepsy and ADHD (inattentive or combined type) according to DSM-V. After a 4-week baseline period, patients were allocated (1:1) either to placebo group or to PS-Omega 3 group and entered a 12 week-double-blind treatment period which was followed by a 12 week-open-label treatment period. The primary outcome was the reduction of the ADHD-rating scale IV attention-deficit subscore after 12 weeks of treatment. RESULTS The study was stopped early because of lack of eligible participants and the expected sample size was not reached. Seventy-four patients were randomized, 44 in PS-Omega3, and 30 in the placebo group. The reduction after 12 weeks of treatment in the inattention subscore of the ADHD-IV scale was -1.57 in the PS-Omega3 group, and -2.90 in the placebo group (p = 0.33, α = 5%). Results were similar after 24 weeks of treatment and for all other ADHD-related secondary outcomes, with no difference between placebo and PS-Omega3. CONCLUSION Our study remaining underpowered, no formal conclusion about the effect of Ps-Omega3 could be drawn. However, our data strongly suggested that the PS-Omega 3 formulation used in the current study did not improve ADHD symptoms in children with epilepsy. PLAIN LANGUAGE SUMMARY Supplementation with polyunsaturated n-3 Fatty Acid (PUFA) has been proposed in ADHD but has never been evaluated in patients with both epilepsy and ADHD. To address this issue, we conducted a multicenter double blind randomized placebo-controlled trial evaluating supplementation with PUFA in children with epilepsy and ADHD. The study was stopped early because of lack of eligible participants, hampering formal conclusion. However, the evolution of the ADHD symptoms at 12 and 24 weeks did not differ between placebo and PUFA supplementation, strongly suggesting that PUFA did not improve ADHD symptoms in children with epilepsy.
Collapse
Affiliation(s)
- Sylvain Rheims
- Department of Functional Neurology and EpileptologyHospices Civils de Lyon and Lyon 1 UniversityLyonFrance
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292Lyon 1 UniversityLyonFrance
- Epilepsy InstituteLyonFrance
| | - Vania Herbillon
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292Lyon 1 UniversityLyonFrance
- Epilepsy, Sleep and Paediatric Neurophysiology DepartmentHospices Civils de LyonLyonFrance
| | - Ségolène Gaillard
- Clinical Investigation Centre 1407, Hospices Civils de Lyon‐InsermHôpital Louis PradelBronFrance
| | | | | | | | | | | | | | | | - Stéphane Auvin
- Pediatric Neurology Department, AP‐HP, Robert‐Debré University HospitalCRMR Épilepsies Rares, EpiCARE MemberParisFrance
- INSERM NeuroDiderotUniversité Paris CitéParisFrance
- Institut Universitaire de France (IUF)ParisFrance
| | | | | | - Julitta de Bellecize
- Epilepsy, Sleep and Paediatric Neurophysiology DepartmentHospices Civils de LyonLyonFrance
| | - Mathieu Milh
- Department of Pediatric NeurologyAPHMMarseilleFrance
| | - Pascal Roy
- Department of BiostatisticsHospices Civils de LyonLyonFrance
| | - Alexis Arzimanoglou
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292Lyon 1 UniversityLyonFrance
- Epilepsy, Sleep and Paediatric Neurophysiology DepartmentHospices Civils de LyonLyonFrance
| | - Jacques Bodennec
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292Lyon 1 UniversityLyonFrance
- Epilepsy InstituteLyonFrance
| | - Laurent Bezin
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292Lyon 1 UniversityLyonFrance
- Epilepsy InstituteLyonFrance
| | - Behrouz Kassai
- Clinical Investigation Centre 1407, Hospices Civils de Lyon‐InsermHôpital Louis PradelBronFrance
- Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique‐Santé, CNRS, UMR 5558Lyon 1 UniversityVilleurbanneFrance
| | | |
Collapse
|
3
|
Lindqvist H, Dominguez T, Dragøy R, Ding Y, Burri L. Comparison of Fish, Krill and Flaxseed as Omega-3 Sources to Increase the Omega-3 Index in Dogs. Vet Sci 2023; 10:vetsci10020162. [PMID: 36851466 PMCID: PMC9961762 DOI: 10.3390/vetsci10020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
(1) Background: it is only the longer chain omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (20:5n-3, EPA), and docosahexaenoic acid (22:6n-3, DHA) and not the shorter chain α-linolenic acid (ALA, 18:3n-3) that have been linked to health benefits. (2) Methods: 45 dogs divided into three groups were first given premium dry food for 38 days (baseline). The O3I was then used as a diagnostic tool to provide a measure of the sum of EPA + DHA in red blood cell membranes given as a percentage of all fatty acids. The dogs were subsequently fed with either krill meal (krill), fishmeal/oil (fish) or flaxseed cake (flax) included in raw food providing daily 416 mg EPA + DHA (971 mg ALA), 513 mg EPA + DHA (1027 mg ALA) and 1465 mg ALA (122 mg EPA + DHA), respectively. (3) Results: the average baseline O3I level of all dogs was low (1.36%), warranting n-3 supplementation. After four weeks, O3I levels were significantly increased in the krill (from 1.36 ± 0.44 to 2.36 ± 0.39%) and fish (from 1.35 ± 0.22 to 1.9 ± 0.35%) groups (p < 0.001). No significant modification of the O3I was detected in the flax animals. (4) Conclusions: only marine n-3 PUFAs resulted in a significantly increased O3I, with dietary krill meal providing the highest increase.
Collapse
Affiliation(s)
- Hanna Lindqvist
- Department of Animal Environment and Health, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, 532 23 Skara, Sweden
| | | | | | - Yunpeng Ding
- Aker BioMarine Antarctic AS, 1366 Lysaker, Norway
| | - Lena Burri
- Aker BioMarine Antarctic AS, 1366 Lysaker, Norway
- Correspondence:
| |
Collapse
|
4
|
Heath RJ, Wood TR. Why Have the Benefits of DHA Not Been Borne Out in the Treatment and Prevention of Alzheimer's Disease? A Narrative Review Focused on DHA Metabolism and Adipose Tissue. Int J Mol Sci 2021; 22:11826. [PMID: 34769257 PMCID: PMC8584218 DOI: 10.3390/ijms222111826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 02/04/2023] Open
Abstract
Docosahexaenoic acid (DHA), an omega-3 fatty acid rich in seafood, is linked to Alzheimer's Disease via strong epidemiological and pre-clinical evidence, yet fish oil or other DHA supplementation has not consistently shown benefit to the prevention or treatment of Alzheimer's Disease. Furthermore, autopsy studies of Alzheimer's Disease brain show variable DHA status, demonstrating that the relationship between DHA and neurodegeneration is complex and not fully understood. Recently, it has been suggested that the forms of DHA in the diet and plasma have specific metabolic fates that may affect brain uptake; however, the effect of DHA form on brain uptake is less pronounced in studies of longer duration. One major confounder of studies relating dietary DHA and Alzheimer's Disease may be that adipose tissue acts as a long-term depot of DHA for the brain, but this is poorly understood in the context of neurodegeneration. Future work is required to develop biomarkers of brain DHA and better understand DHA-based therapies in the setting of altered brain DHA uptake to help determine whether brain DHA should remain an important target in the prevention of Alzheimer's Disease.
Collapse
Affiliation(s)
- Rory J. Heath
- Emergency Medicine Department, Derriford Hospital, University Hospitals Plymouth, Plymouth PL6 8DH, UK;
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
- Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
| |
Collapse
|
5
|
Li J, Pora BLR, Dong K, Hasjim J. Health benefits of docosahexaenoic acid and its bioavailability: A review. Food Sci Nutr 2021; 9:5229-5243. [PMID: 34532031 PMCID: PMC8441440 DOI: 10.1002/fsn3.2299] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/12/2021] [Accepted: 04/04/2021] [Indexed: 01/08/2023] Open
Abstract
Docosahexaenoic acid (DHA) is the predominant omega-3 long-chain polyunsaturated fatty acid found in human brain and eyes. There are a number of studies in the literature showing the health benefits of DHA. It is critical throughout all life stages from the need for fetal development, the prevention of preterm birth, and the prevention of cardiovascular disease to the improvements in the cognitive function and the eye health of adults and elderly. These benefits might be related to the modulation of gut microbiota by DHA. In addition, there are some discrepancies in the literature regarding certain health benefits of DHA, and this review is intended to explore and understand these discrepancies. Besides the variations in the DHA contents of different supplement sources, bioavailability is crucial for the efficacy of DHA supplements, which depends on several factors. For example, DHA in phospholipid and triglyceride forms are more readily to be absorbed by the body than that in ethyl ester form. In addition, dietary lipids in meals and emulsification of DHA oil can increase the bioavailability of DHA. Estrogens stimulated the biosynthesis of DHA, whereas testosterone stimulus induced a decrease in DHA. The roles of DHA through human lifespan, the sources, and its recommended daily intake in different countries are also discussed to provide a better understanding of the importance of this review.
Collapse
Affiliation(s)
- Jia Li
- Roquette Management (Shanghai) Co., Ltd.R&D ChinaShanghaiChina
| | | | - Ke Dong
- Roquette Management (Shanghai) Co., Ltd.R&D ChinaShanghaiChina
| | - Jovin Hasjim
- Roquette Management (Shanghai) Co., Ltd.R&D ChinaShanghaiChina
| |
Collapse
|
6
|
Pham TL, Bazan HEP. Docosanoid signaling modulates corneal nerve regeneration: effect on tear secretion, wound healing, and neuropathic pain. J Lipid Res 2021; 62:100033. [PMID: 32788291 PMCID: PMC7933495 DOI: 10.1194/jlr.tr120000954] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Indexed: 12/30/2022] Open
Abstract
The cornea is densely innervated, mainly by sensory nerves of the ophthalmic branch of the trigeminal ganglia (TG). These nerves are important to maintain corneal homeostasis, and nerve damage can lead to a decrease in wound healing, an increase in corneal ulceration and dry eye disease (DED), and neuropathic pain. Pathologies, such as diabetes, aging, viral and bacterial infection, as well as prolonged use of contact lenses and surgeries to correct vision can produce nerve damage. There are no effective therapies to alleviate DED (a multifunctional disease) and several clinical trials using ω-3 supplementation show unclear and sometimes negative results. Using animal models of corneal nerve damage, we show that treating corneas with pigment epithelium-derived factor plus DHA increases nerve regeneration, wound healing, and tear secretion. The mechanism involves the activation of a calcium-independent phospholipase A2 that releases the incorporated DHA from phospholipids and enhances the synthesis of the docosanoids, neuroprotectin D1 (NPD1) and a new resolvin stereoisomer, resolvin D6i (RvD6i). NPD1 stimulates the synthesis of brain-derived neurotrophic factor, nerve growth factor, and semaphorin 7A. RvD6i treatment of injured corneas modulates gene expression in the TG resulting in enhanced neurogenesis, decreased neuropathic pain, and increased sensitivity. Taken together, these results represent a promising therapeutic option to reestablish the homeostasis of the cornea.
Collapse
Affiliation(s)
- Thang L Pham
- Neuroscience Center of Excellence and Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Haydee E P Bazan
- Neuroscience Center of Excellence and Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA.
| |
Collapse
|
7
|
Wen M, Zhao Y, Shi H, Wang C, Zhang T, Wang Y, Xue C. Short-term supplementation of DHA as phospholipids rather than triglycerides improve cognitive deficits induced by maternal omega-3 PUFA deficiency during the late postnatal stage. Food Funct 2021; 12:564-572. [PMID: 33325958 DOI: 10.1039/d0fo02552f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cognitive deficiencies, which are caused by maternal omega-3 PUFA deficiency (O-3 Def), are likely to be more rapidly and easily reversed at younger ages with quicker DHA reversal. This study aims to compare the efficiency of short-term supplementation of DHA in the form of phospholipids (PL) and triglycerides (TG) and improve cognitive deficiency in the O-3 Def model during different periods of brain development (3-week and 7-week old). The animal's spatial task performance, brain PUFA concentration, histopathology, and expression of synapse-associated proteins in the hippocampus were then analyzed. We demonstrate here that DHA-PL shows improved efficiency in improving cognitive deficiency compared to DHA-TG, particularly for adult O-3 Def offspring. The superiority of DHA-PL also correlates with the specific elevation of synapse-associated proteins, including BDNF, DCX, GAP-43, Syn, and PSD95, except to higher brain DHA accretion. This work highlights the DHA-PL as a better DHA supplement for inferior brain development caused by maternal O-3 Def, especially regarding those who missed the optimal time window of neurodevelopment.
Collapse
Affiliation(s)
- Min Wen
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | | | | | | | | | | | | |
Collapse
|
8
|
Nagao T, Takahashi S, Kurihara H, Takahashi K. Health Beneficial Food Emulsifier Produced from Fishery Byproducts. J Oleo Sci 2020; 69:1231-1240. [PMID: 33028752 DOI: 10.5650/jos.ess20145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The bioavailability of DHA-bound phospholipids, especially the DHA-bound lysophospholipid (DHA-LPL) could be considered the most effective DHA chemical forms for DHA accretion in the brain. Such a DHA-LPL should also have very high emulsifying stability performance based on its analogy with conventional soy LPL. Therefore, in this study, we describe two fishery byproducts, rich in DHA-bound phospholipids, to derive DHA-LPL via sn-1 positional specific lipase partial hydrolysis of the phospholipids. Through this reaction, the DHA composition increased to 43.8 % from 29.1 % in the salmon head phospholipid-derived DHA-LPL, and to 84.0 % from 47.4 % in the squid meal phospholipid-derived DHA-LPL. In fact, these obtained DHA-LPLs exhibited far higher emulsifying stability than the conventional food emulsifiers in the market. For example, the prepared high-purity squid meal phospholipid-derived LPL sustained an emulsion form for a week even under 80°C. Thus, food emulsifiers produced from fishery byproducts are considered to exhibit very high values of both in a sense of outstandingly high health benefits and sustaining emulsions even under very high temperatures.
Collapse
Affiliation(s)
- Toshihiro Nagao
- Osaka Research Institute of Industrial Science and Technology
| | | | | | | |
Collapse
|
9
|
Zhang Y, Wu G, Zhang Y, Wang X, Jin Q, Zhang H. Advances in exogenous docosahexaenoic acid-containing phospholipids: Sources, positional isomerism, biological activities, and advantages. Compr Rev Food Sci Food Saf 2020; 19:1420-1448. [PMID: 33337094 DOI: 10.1111/1541-4337.12543] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/05/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
In recent years, docosahexaenoic acid-containing phospholipids (DHA-PLs) have attracted much attention because of theirs unique health benefits. Compared with other forms of docosahexaenoic acid (DHA), DHA-PLs possess superior biological effects (e.g., anticancer, lipid metabolism regulation, visual development, and brain and nervous system biochemical reactions), more intricate metabolism mechanisms, and a stronger attraction to consumer. The production of DHA-PLs is hampered by several challenges associated with the limited content of DHA-PLs in natural sources, incomplete utilization of by-products, few microorganisms for DHA-PLs production, high cost, and complex process of artificial preparation of DHA-PLs. In this article, the sources, biological activities, and commercial applications of DHA-PLs were summarized, with intensive discussions on advantages of DHA-PLs over DHA, isomerism of DHA in phospholipids (PLs), and brain health. The excellent biological characteristics of DHA-PLs are primarily concerned with DHA and PLs. The metabolic fate of different DHA-PLs varies from the position of DHA in PLs to polar groups in DHA-PLs. Overall, well understanding of DHA-PLs about their sources and characteristics is critical to accelerate the production of DHA-PLs, economically enhance the value of DHA-PLs, and improve the applicability of DHA-PLs and the acceptance of consumers.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yanjie Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xingguo Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Sehl A, Couëdelo L, Vaysse C, Cansell M. Intestinal bioavailability of n-3 long-chain polyunsaturated fatty acids influenced by the supramolecular form of phospholipids. Food Funct 2020; 11:1721-1728. [DOI: 10.1039/c9fo02953b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work aims at studying the bioavailability of n-3 long-chain polyunsaturated fatty acids carried by marine phospholipids, formulated in different supramolecular forms,i.e.oil-in-water emulsion and liposomes.
Collapse
Affiliation(s)
- Anthony Sehl
- ITERG
- Nutrition Health and Lipid Biochemistry Department
- 33610 Canéjan
- France
- Univ. Bordeaux
| | - Leslie Couëdelo
- ITERG
- Nutrition Health and Lipid Biochemistry Department
- 33610 Canéjan
- France
| | - Carole Vaysse
- ITERG
- Nutrition Health and Lipid Biochemistry Department
- 33610 Canéjan
- France
| | | |
Collapse
|
11
|
Downie LE, Ng SM, Lindsley KB, Akpek EK. Omega-3 and omega-6 polyunsaturated fatty acids for dry eye disease. Cochrane Database Syst Rev 2019; 12:CD011016. [PMID: 31847055 PMCID: PMC6917524 DOI: 10.1002/14651858.cd011016.pub2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Polyunsaturated fatty acid (PUFA) supplements, involving omega-3 and/or omega-6 components, have been proposed as a therapy for dry eye. Omega-3 PUFAs exist in both short- (alpha-linolenic acid [ALA]) and long-chain (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) forms, which largely derive from certain plant- and marine-based foods respectively. Omega-6 PUFAs are present in some vegetable oils, meats, and other animal products. OBJECTIVES To assess the effects of omega-3 and omega-6 polyunsaturated fatty acid (PUFA) supplements on dry eye signs and symptoms. SEARCH METHODS CENTRAL, Medline, Embase, two other databases and three trial registries were searched in February 2018, together with reference checking. A top-up search was conducted in October 2019, but the results have not yet been incorporated. SELECTION CRITERIA We included randomized controlled trials (RCTs) involving dry eye participants, in which omega-3 and/or omega-6 supplements were compared with a placebo/control supplement, artificial tears, or no treatment. We included head-to-head trials comparing different forms or doses of PUFAs. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methods and assessed the certainty of the evidence using GRADE. MAIN RESULTS We included 34 RCTs, involving 4314 adult participants from 13 countries with dry eye of variable severity and etiology. Follow-up ranged from one to 12 months. Nine (26.5%) studies had published protocols and/or were registered. Over half of studies had high risk of bias in one or more domains. Long-chain omega-3 (EPA and DHA) versus placebo or no treatment (10 RCTs) We found low certainty evidence that there may be little to no reduction in dry eye symptoms with long-chain omega-3 versus placebo (four studies, 677 participants; mean difference [MD] -2.47, 95% confidence interval [CI] -5.14 to 0.19 units). We found moderate certainty evidence for a probable benefit of long-chain omega-3 supplements in increasing aqueous tear production relative to placebo (six studies, 1704 participants; MD 0.68, 95% CI 0.26 to 1.09 mm/5 min using the Schirmer test), although we did not judge this difference to be clinically meaningful. We found low certainty evidence for a possible reduction in tear osmolarity (one study, 54 participants; MD -17.71, 95% CI -28.07 to -7.35 mOsmol/L). Heterogeneity was too substantial to pool data on tear break-up time (TBUT) and adverse effects. Combined omega-3 and omega-6 versus placebo (four RCTs) For symptoms (low certainty) and ocular surface staining (moderate certainty), data from the four included trials could not be meta-analyzed, and thus effects on these outcomes were unclear. For the Schirmer test, we found moderate certainty evidence that there was no intergroup difference (four studies, 455 participants; MD: 0.66, 95% CI -0.45 to 1.77 mm/5 min). There was moderate certainty for a probable improvement in TBUT with the PUFA intervention relative to placebo (four studies, 455 participants; MD 0.55, 95% CI 0.04 to 1.07 seconds). Effects on tear osmolarity and adverse events were unclear, with data only available from a single small study for each outcome. Omega-3 plus conventional therapy versus conventional therapy alone (two RCTs) For omega-3 plus conventional therapy versus conventional therapy alone, we found low certainty evidence suggesting an intergroup difference in symptoms favoring the omega-3 group (two studies, 70 participants; MD -7.16, 95% CI -13.97 to -0.34 OSDI units). Data could not be combined for all other outcomes. Long-chain omega-3 (EPA and DHA) versus omega-6 (five RCTs) For long-chain omega-3 versus omega-6 supplementation, we found moderate certainty evidence for a probable improvement in dry eye symptoms (two studies, 130 participants; MD -11.88, 95% CI -18.85 to -4.92 OSDI units). Meta-analysis was not possible for outcomes relating to ocular surface staining, Schirmer test or TBUT. We found low certainty evidence for a potential improvement in tear osmolarity (one study, 105 participants; MD -11.10, 95% CI -12.15 to -10.05 mOsmol/L). There was low level certainty regarding any potential effect on gastrointestinal side effects (two studies, 91 participants; RR 2.34, 95% CI 0.35 to 15.54). AUTHORS' CONCLUSIONS Overall, the findings in this review suggest a possible role for long-chain omega-3 supplementation in managing dry eye disease, although the evidence is uncertain and inconsistent. A core outcome set would work toward improving the consistency of reporting and the capacity to synthesize evidence.
Collapse
Affiliation(s)
- Laura E Downie
- The University of MelbourneDepartment of Optometry and Vision SciencesLevel 4, Alice Hoy BuildingMelbourneVictoriaAustralia3010
| | - Sueko M Ng
- Johns Hopkins Bloomberg School of Public HealthDepartment of Epidemiology615 N. Wolfe Street, W5010c/o Cochrane Eyes and Vision GroupBaltimoreMarylandUSA21205
| | | | - Esen K Akpek
- Johns Hopkins University School of MedicineWilmer Eye Institute600 N. Wolfe Street, Maumenee #317BaltimoreMarylandUSA21287
| | | |
Collapse
|
12
|
In vitrolipolysis and lymphatic absorption ofn-3 long-chain PUFA in the rat: influence of the molecular lipid species as carrier. Br J Nutr 2019; 122:639-647. [DOI: 10.1017/s0007114519001491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe aim of this work was to study the bioavailability of fatty acids (FA), focusing onn-3 long-chain (LC) PUFA, carried by different molecular lipid species, that is, phospholipids (PL) or TAG, with three formulations based on fish oils or marine PL, providing a similarn-3 LC PUFA amount. The digestive lipolysis was first assessed using anin vitroenzymatic model. Then, intestinal absorption and enterocyte metabolism were investigatedin vivo, on male Wistar rats through lymph lipid analysis. Thein vitroresults showed that the release ofn-3 LC PUFA from lipolysis was increased by 48 % when FA were provided as PL rather than TAG. Thein vivoresults demonstrated that EPA and DHA from both TAG and PL were similarly absorbed and incorporated into lymph lipids. However, DHA was mainly distributed at thesn-1/3 positions of lymph TAG when provided as marine PL, whereas it was equally distributed at the three positions with marine TAG. On the whole, even if the molecular lipid species ofn-3 LC PUFA did not greatly modify thein vivodigestion and absorption steps, it modulated the rearrangement of DHA on the glyceride positions of the lymph TAG, which may further impact the DHA metabolic fate and tissue accretion. Consequently, the present study has provided data which may be used to formulate lipid diets rich in DHA in the context of an insufficient consumption ofn-3 PUFA in Western countries.
Collapse
|
13
|
Yalagala PCR, Sugasini D, Dasarathi S, Pahan K, Subbaiah PV. Dietary lysophosphatidylcholine-EPA enriches both EPA and DHA in the brain: potential treatment for depression. J Lipid Res 2019; 60:566-578. [PMID: 30530735 PMCID: PMC6399499 DOI: 10.1194/jlr.m090464] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/07/2018] [Indexed: 12/21/2022] Open
Abstract
EPA and DHA protect against multiple metabolic and neurologic disorders. Although DHA appears more effective for neuroinflammatory conditions, EPA is more beneficial for depression. However, the brain contains negligible amounts of EPA, and dietary supplements fail to increase it appreciably. We tested the hypothesis that this failure is due to absorption of EPA as triacylglycerol, whereas the transporter at the blood-brain barrier requires EPA as lysophosphatidylcholine (LPC). We compared tissue uptake in normal mice gavaged with equal amounts (3.3 μmol/day) of either LPC-EPA or free EPA (surrogate for current supplements) for 15 days and also measured target gene expression. Compared with the no-EPA control, LPC-EPA increased brain EPA >100-fold (from 0.03 to 4 μmol/g); free EPA had little effect. Furthermore, LPC-EPA, but not free EPA, increased brain DHA 2-fold. Free EPA increased EPA in adipose tissue, and both supplements increased EPA and DHA in the liver and heart. Only LPC-EPA increased EPA and DHA in the retina, and expression of brain-derived neurotrophic factor, cyclic AMP response element binding protein, and 5-hydroxy tryptamine (serotonin) receptor 1A in the brain. These novel results show that brain EPA can be increased through diet. Because LPC-EPA increased both EPA and DHA in the brain, it may help in the treatment of depression as well as neuroinflammatory diseases, such as Alzheimer's disease.
Collapse
|
14
|
Chouinard‐Watkins R, Lacombe RJS, Metherel AH, Masoodi M, Bazinet RP. DHA Esterified to Phosphatidylserine or Phosphatidylcholine is More Efficient at Targeting the Brain than DHA Esterified to Triacylglycerol. Mol Nutr Food Res 2019; 63:e1801224. [DOI: 10.1002/mnfr.201801224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/06/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Raphaël Chouinard‐Watkins
- Department of Nutritional SciencesFaculty of MedicineUniversity of Toronto Toronto ON M5S 1A8 Canada
| | - R. J. Scott Lacombe
- Department of Nutritional SciencesFaculty of MedicineUniversity of Toronto Toronto ON M5S 1A8 Canada
| | - Adam H. Metherel
- Department of Nutritional SciencesFaculty of MedicineUniversity of Toronto Toronto ON M5S 1A8 Canada
| | - Mojgan Masoodi
- Department of Nutritional SciencesFaculty of MedicineUniversity of Toronto Toronto ON M5S 1A8 Canada
- Lipid BiologyNestlé Research EPFL Innovation Park 1015 Lausanne Switzerland
| | - Richard P. Bazinet
- Department of Nutritional SciencesFaculty of MedicineUniversity of Toronto Toronto ON M5S 1A8 Canada
| |
Collapse
|
15
|
Adkins Y, Laugero KD, Mackey B, Kelley DS. Accretion of Dietary Docosahexaenoic Acid in Mouse Tissues Did Not Differ between Its Purified Phospholipid and Triacylglycerol Forms. Lipids 2019; 54:25-37. [DOI: 10.1002/lipd.12115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Yuriko Adkins
- Western Human Nutrition Research Center, ARS, USDA and Department of Nutrition University of California Davis 430 West Health Sciences Drive, Davis CA 95616 USA
| | - Kevin D. Laugero
- Western Human Nutrition Research Center, ARS, USDA and Department of Nutrition University of California Davis 430 West Health Sciences Drive, Davis CA 95616 USA
| | - Bruce Mackey
- Western Regional Research Center, ARS USDA Albany CA 94710 USA
| | - Darshan S. Kelley
- Western Human Nutrition Research Center, ARS, USDA and Department of Nutrition University of California Davis 430 West Health Sciences Drive, Davis CA 95616 USA
| |
Collapse
|
16
|
The effect of APOE genotype on Alzheimer's disease risk is influenced by sex and docosahexaenoic acid status. Neurobiol Aging 2018; 69:209-220. [DOI: 10.1016/j.neurobiolaging.2018.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 01/21/2023]
|
17
|
Lindblom A, Ericsson C, Hagstedt T, Kjellstedt A, Oscarsson J, Oakes ND. Uptake and tissue accretion of orally administered free carboxylic acid as compared to ethyl ester form of docosahexaenoic acid (DHA) in the rat. PLoS One 2018; 13:e0201367. [PMID: 30071037 PMCID: PMC6072001 DOI: 10.1371/journal.pone.0201367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 07/13/2018] [Indexed: 12/31/2022] Open
Abstract
Aim The aim of this study was to compare the plasma exposure and tissue accretion of docosahexaenoic acid (DHA) in response to oral dosing of free carboxylic acid (OM3CA) and ethyl ester (OM3EE) forms. Materials and methods Sixteen adult male Wistar rats, fed a low-fat, carbohydrate-rich, standard chow diet, were chronically catheterized and gavaged for 5 consecutive days with either OM3CA (n = 9) or OM3EE (n = 7), the last day fasted overnight and spiked respectively with either 14C-DHA or 14C-DHA-ethyl ester (14C-DHA-EE) tracers. Appearance of 14C-labelled plasma polar and neutral lipids over 4 h and retention of 14C-activity (R) in the tissues at 4 h were measured. Results Compared to OM3EE, OM3CA resulted in 2- and 3-fold higher areas under the plasma 14C-labelled polar and neutral lipid curves (exposures), respectively, as well as, higher R in all tissues examined. For both OM3CA and OM3EE, R varied in a tissue specific manner; highest in liver, followed by red skeletal muscle, adipose tissue, brain and white skeletal muscle. Multiple linear regression analysis revealed that R in each tissue (except liver) was dependent on polar lipid exposure alone (r2>0.87 and P<0.001), but not neutral lipid exposure, and furthermore this dependence was indistinguishable for OM3CA and OM3EE. In the liver, R was found to be dependent on both polar and neutral lipid exposures (r2 = 0.97, P<0.001), with relative contributions of 85±2% and 15±2%, respectively. As for the other tissues, these dependencies were indistinguishable for OM3CA and OM3EE. Conclusion The present results, in fasted low-fat diet fed rats, are consistent with higher oral bioavailability of OM3CA versus OM3EE forms of DHA. Once DHA has entered the circulation, the tissue distribution is independent of the dosed form and uptake in the skeletal muscle, fat and brain is driven by the polar pools of DHA in plasma, while DHA accretion in liver is supplied by both polar and neutral plasma lipids.
Collapse
Affiliation(s)
- Anna Lindblom
- Innovative Medicines Early Development, Cardiovascular Renal & Metabolism, Bioscience, AstraZeneca R&D Gothenburg, Mölndal, Sweden
- * E-mail:
| | - Cecilia Ericsson
- Early Clinical Development, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Therese Hagstedt
- Innovative Medicines Early Development, Cardiovascular Renal & Metabolism, Bioscience, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Ann Kjellstedt
- Innovative Medicines Early Development, Cardiovascular Renal & Metabolism, Bioscience, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Jan Oscarsson
- Global Medicines Early Development, Cardiovascular Renal & Metabolism, Metabolism, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Nicholas D. Oakes
- Innovative Medicines Early Development, Cardiovascular Renal & Metabolism, Bioscience, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| |
Collapse
|
18
|
Tyrtyshnaia AA, Manzhulo IV. The Effect of Omega-3 Polyunsaturated Fatty Acids on Neuroinflammation in the Hippocampus. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418020125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Zhou X, Zhou DY, Lu T, Liu ZY, Zhao Q, Liu YX, Hu XP, Zhang JH, Shahidi F. Characterization of lipids in three species of sea urchin. Food Chem 2018; 241:97-103. [DOI: 10.1016/j.foodchem.2017.08.076] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/17/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
|
20
|
Wu F, Wang DD, Wen M, Che HX, Xue CH, Yanagita T, Zhang TT, Wang YM. Comparative analyses of DHA-Phosphatidylcholine and recombination of DHA-Triglyceride with Egg-Phosphatidylcholine or Glycerylphosphorylcholine on DHA repletion in n-3 deficient mice. Lipids Health Dis 2017; 16:234. [PMID: 29216887 PMCID: PMC5721541 DOI: 10.1186/s12944-017-0623-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background Docosahexaenoic acid (DHA) is important for optimal neurodevelopment and brain function during the childhood when the brain is still under development. Methods The effects of DHA-Phosphatidylcholine (DHA-PC) and the recombination of DHA-Triglyceride with egg PC (DHA-TG + PC) or α-Glycerylphosphorylcholine (DHA-TG + α-GPC) were comparatively analyzed on DHA recovery and the DHA accumulation kinetics in tissues including cerebral cortex, erythrocyte, liver, and testis were evaluated in the weaning n-3 deficient mice. Results The concentration of DHA in weaning n-3 deficient mice could be recovered rapidly by dietary DHA supplementation, in which DHA-PC exhibited the better efficacy than the recombination of DHA-Triglyceride with egg PC or α-GPC. Interestingly, DHA-TG + α-GPC exhibited the greater effect on DHA accumulation than DHA-TG + PC in cerebral cortex and erythrocyte (p < 0.05), which was similar to DHA-PC. Meanwhile, DHA-TG + PC showed a similar effect to DHA-PC on DHA repletion in testis, which was better than that of DHA-TG + α-GPC (p < 0.05). Conclusion We concluded that different forms of DHA supplements could be applied targetedly based on the DHA recovery in different tissues, although the supplemental effects of the recombination of DHA-Triglyceride with egg PC or α-GPC were not completely equivalent to that of DHA-PC, which could provide some references to develop functional foods to support brain development and function.
Collapse
Affiliation(s)
- Fang Wu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Dan-Dan Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Min Wen
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
| | - Hong-Xia Che
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China.,Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological Products, Qingdao, Shandong Province, 266237, China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga, 840-8502, Japan
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China.
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China. .,Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological Products, Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
21
|
Lopes PA, Bandarra NM, Martins SV, Martinho J, Alfaia CM, Madeira MS, Cardoso C, Afonso C, Paulo MC, Pinto RMA, Guil-Guerrero JL, Prates JAM. Markers of neuroprotection of combined EPA and DHA provided by fish oil are higher than those of EPA ( Nannochloropsis) and DHA ( Schizochytrium) from microalgae oils in Wistar rats. Nutr Metab (Lond) 2017; 14:62. [PMID: 29026429 PMCID: PMC5622583 DOI: 10.1186/s12986-017-0218-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/22/2017] [Indexed: 01/08/2023] Open
Abstract
Background To overcome the current overexploitation of fish rich in n-3 long chain polyunsaturated fatty acids (LCPUFA), microalgae have become a promising marine lipid source. The purpose of this study was to assess eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), isolated or combined from distinct marine origins, on the promotion of neuroprotective effects. Methods The experiment lasted for 10 weeks and involved 32 Wistar rats, divided into 4 diets (n = 8): a diet rich in milk fat was taken as control (Milk Fat) and compared to n-3 LCPUFA enriched diets, either in EPA + DHA form through fish oil (Fish Oil), or EPA through Nannochloropsis oil (Nanno), or DHA through Schizochytrium oil (Schyzo), while maintaining Milk Fat incorporation. Results Plasma lipid profile and dopamine levels were more beneficial in Fish Oil diet. In addition, n-3 LCPUFA incorporation was found increased in liver and erythrocytes from Fish Oil fed rats, suggesting that fish oil is a better dietary source for fatty acids deposition in the organism than microalgae. The Forced Swimming Test revealed a positive behavioural action of EPA + DHA, in opposition to Milk Fat and Nanno diets, which had higher immobile times. mRNA levels of serotonin receptors, HT1A and HT2A along with CREB, the transmission factor for learning and memory, were higher in the hippocampus of rats fed n-3 LCPUFA diets comparative to Milk Fat. Conclusion Taken together, the combination of EPA and DHA from fish oil can counteract the undesirable health effects of saturated fat based diets and benefit, in the long run, neurological function.
Collapse
Affiliation(s)
- Paula A Lopes
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Narcisa M Bandarra
- DIVAV, Instituto Português do Mar e da Atmosfera (IPMA), Av. Brasília, 1449-006 Lisbon, Portugal.,CIIMAR, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Susana V Martins
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Joana Martinho
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Cristina M Alfaia
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Marta S Madeira
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Carlos Cardoso
- DIVAV, Instituto Português do Mar e da Atmosfera (IPMA), Av. Brasília, 1449-006 Lisbon, Portugal.,CIIMAR, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Cláudia Afonso
- DIVAV, Instituto Português do Mar e da Atmosfera (IPMA), Av. Brasília, 1449-006 Lisbon, Portugal.,CIIMAR, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Maria C Paulo
- Depsiextracta - Tecnologias Biológicas, Lda., Quinta do Monte Novo-Taipadas, 2985-064 Canha, Portugal
| | - Rui M A Pinto
- iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal.,Joaquim Chaves Saúde. Dr. Joaquim Chaves, Laboratório de Análises Clínicas, 1495-148 Miraflores, Algés, Portugal
| | - José L Guil-Guerrero
- Departamento de Tecnología de Alimentos, Universidad de Almería, 04120 Almería, Spain
| | - José A M Prates
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| |
Collapse
|
22
|
Laugero KD, Adkins Y, Mackey BE, Kelley DS. Emotion-Based Cognition in Mice Is Differentially Influenced by Dose and Chemical Form of Dietary Docosahexaenoic Acid. Nutrients 2017; 9:nu9090993. [PMID: 28885568 PMCID: PMC5622753 DOI: 10.3390/nu9090993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 01/02/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a major constituent, and primary omega-3 fatty acid, in the brain. Evidence suggests that DHA consumption may promote cognitive functioning and prevent cognitive decline, and these effects may be particularly relevant in the context of fear or stress. However, the potency and efficacy of dietary DHA may depend on the form of DHA (e.g., phospholipid; PL vs. triglyceride; TG). In this study, we compared in mice the effects of consuming PL and TG forms of DHA on associative, avoidance (fear) based learning and memory. Diets consisted of either no DHA or 1%, 2%, and 4% PL- or TG-DHA. After 4 weeks on the test diets (n = 12/group), we used the 3-day passive avoidance (PA) and elevated plus maze (EPM) to examine fear and fear-associated learning and memory. We found a significant (p < 0.05) diet by time interaction in the PA and EPM. Compared to the control and the 1% TG-DHA group, mice consuming the diet supplemented with 1% PL-DHA displayed a significantly greater latency by test day 2 in the 3-day PA. No differences in latency between any of the groups were observed during trials 1 and 3. Mice consuming the 2% PL-DHA diet spent significantly more time frequenting the open arms during the first minute, but not the last 4 min, of the test. Compared to all other groups, mice fed the 4% TG-DHA diet had increased spleen, liver, and visceral fat weight. Consumption of the lower dose PL-DHA may confer enhanced efficacy, particularly on fear-based learning behavior.
Collapse
Affiliation(s)
- Kevin D Laugero
- US Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA.
| | - Yuriko Adkins
- US Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA.
| | - Bruce E Mackey
- US Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| | - Darshan S Kelley
- US Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA.
| |
Collapse
|
23
|
Deinema LA, Vingrys AJ, Wong CY, Jackson DC, Chinnery HR, Downie LE. A Randomized, Double-Masked, Placebo-Controlled Clinical Trial of Two Forms of Omega-3 Supplements for Treating Dry Eye Disease. Ophthalmology 2017; 124:43-52. [DOI: 10.1016/j.ophtha.2016.09.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022] Open
|
24
|
Wang D, Zhang L, Wen M, Du L, Gao X, Xue C, Xu J, Wang Y. Enhanced neuroprotective effect of DHA and EPA-enriched phospholipids against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced oxidative stress in mice brain. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Dietary Crude Lecithin Increases Systemic Availability of Dietary Docosahexaenoic Acid with Combined Intake in Rats. Lipids 2016; 51:833-46. [PMID: 27038174 PMCID: PMC4903106 DOI: 10.1007/s11745-016-4139-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/29/2016] [Indexed: 01/15/2023]
Abstract
Crude lecithin, a mixture of mainly phospholipids, potentially helps to increase the systemic availability of dietary omega-3 polyunsaturated fatty acids (n-3 PUFA), such as docosahexaenoic acid (DHA). Nevertheless, no clear data exist on the effects of prolonged combined dietary supplementation of DHA and lecithin on RBC and plasma PUFA levels. In the current experiments, levels of DHA and choline, two dietary ingredients that enhance neuronal membrane formation and function, were determined in plasma and red blood cells (RBC) from rats after dietary supplementation of DHA-containing oils with and without concomitant dietary supplementation of crude lecithin for 2–3 weeks. The aim was to provide experimental evidence for the hypothesized additive effects of dietary lecithin (not containing any DHA) on top of dietary DHA on PUFA levels in plasma and RBC. Dietary supplementation of DHA-containing oils, either as vegetable algae oil or as fish oil, increased DHA, eicosapentaenoic acid (EPA), and total n-3 PUFA, and decreased total omega-6 PUFA levels in plasma and RBC, while dietary lecithin supplementation alone did not affect these levels. However, combined dietary supplementation of DHA and lecithin increased the changes induced by DHA supplementation alone. Animals receiving a lecithin-containing diet also had a higher plasma free choline concentration as compared to controls. In conclusion, dietary DHA-containing oils and crude lecithin have synergistic effects on increasing plasma and RBC n-3 PUFA levels, including DHA and EPA. By increasing the systemic availability of dietary DHA, dietary lecithin may increase the efficacy of DHA supplementation when their intake is combined.
Collapse
|
26
|
Kitson AP, Metherel AH, Chen CT, Domenichiello AF, Trépanier MO, Berger A, Bazinet RP. Effect of dietary docosahexaenoic acid (DHA) in phospholipids or triglycerides on brain DHA uptake and accretion. J Nutr Biochem 2016; 33:91-102. [PMID: 27135386 DOI: 10.1016/j.jnutbio.2016.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/27/2016] [Accepted: 02/11/2016] [Indexed: 11/28/2022]
Abstract
Tracer studies suggest that phospholipid DHA (PL-DHA) more effectively targets the brain than triglyceride DHA (TAG-DHA), although the mechanism and whether this translates into higher brain DHA concentrations are not clear. Rats were gavaged with [U-(3)H]PL-DHA and [U-(3)H]TAG-DHA and blood sampled over 6h prior to collection of brain regions and other tissues. In another experiment, rats were supplemented for 4weeks with TAG-DHA (fish oil), PL-DHA (roe PL) or a mixture of both for comparison to a low-omega-3 diet. Brain regions and other tissues were collected, and blood was sampled weekly. DHA accretion rates were estimated using the balance method. [U-(3)H]PL-DHA rats had higher radioactivity in cerebellum, hippocampus and remainder of brain, with no differences in other tissues despite higher serum lipid radioactivity in [U-(3)H]TAG-DHA rats. TAG-DHA, PL-DHA or a mixture were equally effective at increasing brain DHA. There were no differences between DHA-supplemented groups in brain region, whole-body, or tissue DHA accretion rates except heart and serum TAG where the PL-DHA/TAG-DHA blend was higher than TAG-DHA. Apparent DHA β-oxidation was not different between DHA-supplemented groups. This indicates that more labeled DHA enters the brain when consumed as PL; however, this may not translate into higher brain DHA concentrations.
Collapse
Affiliation(s)
- Alex P Kitson
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, M5S3E2, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, M5S3E2, Canada
| | - Chuck T Chen
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, M5S3E2, Canada
| | | | - Marc-Olivier Trépanier
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, M5S3E2, Canada
| | - Alvin Berger
- Arctic Nutrition AS, NO-6155, Ørsta, Norway; Department of Food Science & Nutrition, University of Minnesota, St. Paul, MN, 55108-1038, USA
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, M5S3E2, Canada.
| |
Collapse
|
27
|
Ramprasath VR, Eyal I, Zchut S, Shafat I, Jones PJH. Supplementation of krill oil with high phospholipid content increases sum of EPA and DHA in erythrocytes compared with low phospholipid krill oil. Lipids Health Dis 2015; 14:142. [PMID: 26537218 PMCID: PMC4632328 DOI: 10.1186/s12944-015-0142-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 10/22/2015] [Indexed: 01/22/2023] Open
Abstract
Background Bioavailability of krill oil has been suggested to be higher than fish oil as much of the EPA and DHA in krill oil are bound to phospholipids (PL). Hence, PL content in krill oil might play an important role in incorporation of n-3 PUFA into the RBC, conferring properties that render it effective in reducing cardiovascular disease (CVD) risk. The objective of the present trial was to test the effect of different amounts of PL in krill oil on the bioavailability of EPA and DHA, assessed as the rate of increase of n-3 PUFA in plasma and RBC, in healthy volunteers. Methods and design In a semi randomized crossover single blind design study, 20 healthy participants consumed various oils consisting of 1.5 g/day of low PL krill oil (LPL), 3 g/day of high PL krill oil (HPL) or 3 g/day of a placebo, corn oil, for 4 weeks each separated by 8 week washout periods. Both LPL and HPL delivered 600 mg of total n-3 PUFA/day along with 600 and 1200 mg/day of PL, respectively. Results Changes in plasma EPA, DPA, DHA, total n-3 PUFA, n-6:n-3 ratio and EPA + DHA concentrations between LPL and HPL krill oil supplementations were observed to be similar. Intake of both forms of krill oils increased the RBC level of EPA (p < 0.001) along with reduced n-6 PUFA (LPL: p < 0.001: HPL: p = 0.007) compared to control. HPL consumption increased (p < 0.001) RBC concentrations of EPA, DPA, total and n-3 PUFA compared with LPL. Furthermore, although LPL did not alter RBC n-6:n-3 ratio or the sum of EPA and DHA compared to control, HPL intake decreased (p < 0.001) n-6:n-3 ratio relative to control with elevated (p < 0.001) sum of EPA and DHA compared to control as well as to LPL krill oil consumption. HPL krill oil intake elevated (p < 0.005) plasma total and LDL cholesterol concentrations compared to control, while LPL krill oil did not alter total and LDL cholesterol, relative to control. Conclusions The results indicate that krill oil with higher PL levels could lead to enhanced bioavailability of n-3 PUFA compared to krill oil with lower PL levels. Trial registration Clinicaltrials.gov# NCT01323036.
Collapse
Affiliation(s)
- V R Ramprasath
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, 196 Innovation Drive, Winnipeg, MB, R3T 2N2, Canada. .,Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada.
| | - I Eyal
- Enzymotec Ltd. P.O.B 6, Migdal HaEmeq, Israel.
| | - S Zchut
- Enzymotec Ltd. P.O.B 6, Migdal HaEmeq, Israel.
| | - I Shafat
- Enzymotec Ltd. P.O.B 6, Migdal HaEmeq, Israel.
| | - P J H Jones
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, 196 Innovation Drive, Winnipeg, MB, R3T 2N2, Canada. .,Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
28
|
Metabolic fate (absorption, β-oxidation and deposition) of long-chain n-3 fatty acids is affected by sex and by the oil source (krill oil or fish oil) in the rat. Br J Nutr 2015; 114:684-92. [DOI: 10.1017/s0007114515002457] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of krill oil as an alternative source of n-3 long-chain PUFA have been investigated recently. There are conflicting results from the few available studies comparing fish oil and krill oil. The aim of this study was to compare the bioavailability and metabolic fate (absorption, β-oxidation and tissue deposition) of n-3 fatty acids originating from krill oil (phospholipid-rich) or fish oil (TAG-rich) in rats of both sexes using the whole-body fatty acid balance method. Sprague–Dawley rats (thirty-six male, thirty-six female) were randomly assigned to be fed either a krill oil diet (EPA+DHA+DPA=1·38 mg/g of diet) or a fish oil diet (EPA+DHA+DPA=1·61 mg/g of diet) to constant ration for 6 weeks. The faeces, whole body and individual tissues were analysed for fatty acid content. Absorption of fatty acids was significantly greater in female rats and was only minimally affected by the oil type. It was estimated that most of EPA (>90 %) and more than half of DHA (>60 %) were β-oxidised in both diet groups. Most of the DPA was β-oxidised (57 and 67 % for female and male rats, respectively) in the fish oil group; however, for the krill oil group, the majority of DPA was deposited (82–83 %). There was a significantly greater deposition of DPA and DHA in rats fed krill oil compared with those fed fish oil, not due to a difference in bioavailability (absorption) but rather due to a difference in metabolic fate (anabolism v. catabolism).
Collapse
|
29
|
Burri L, Johnsen L. Krill products: an overview of animal studies. Nutrients 2015; 7:3300-21. [PMID: 25961320 PMCID: PMC4446753 DOI: 10.3390/nu7053300] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 12/18/2022] Open
Abstract
Many animal studies have been performed with krill oil (KO) and this review aims to summarize their findings and give insight into the mechanism of action of KO. Animal models that have been used in studies with KO include obesity, depression, myocardial infarction, chronic low-grade and ulcerative inflammation and are described in detail. Moreover, studies with KO in the form of krill powder (KP) and krill protein concentrate (KPC) as a mix of lipids and proteins are mentioned and compared to the effects of KO. In addition, differences in tissue uptake of the long-chain omega-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), when delivered in either phospholipid or triglyceride form, are addressed and the differential impact the delivery form has on gene expression profiles is explained. In our outlook, we try to highlight the potential of KO and KP supplementation in clinical settings and discuss health segments that have a high potential of showing krill product specific health benefits and warrant further clinical investigations.
Collapse
Affiliation(s)
- Lena Burri
- Aker BioMarine Antarctic AS, Fjordalléen 16, NO-0115 Oslo, Norway.
| | - Line Johnsen
- Aker BioMarine Antarctic AS, Fjordalléen 16, NO-0115 Oslo, Norway.
| |
Collapse
|
30
|
Berge K, Robertson B, Burri L. Safety assessment of Superba™ krill powder: Subchronic toxicity study in rats. Toxicol Rep 2014; 2:144-151. [PMID: 28962346 PMCID: PMC5598319 DOI: 10.1016/j.toxrep.2014.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/04/2014] [Accepted: 11/11/2014] [Indexed: 11/21/2022] Open
Abstract
The safety of krill powder was assessed in a subchronic 13-week toxicity study where rats were fed krill powder or control diets. The krill powder inclusion in the test diet was 9.67% (w/w). There were no differences noted in body weight or food consumption in either gender. Differences in clinical chemistry values were noted in the krill powder-treated animals, but these findings were of no toxicological significance. A significant decrease in absolute heart weight, but not relative heart weight, was observed in both sexes given krill powder, although no corresponding histological changes were observed. Hepatocyte vacuolation was noted histologically in males fed krill powder. This finding was not associated with other indications of hepatic dysfunction. The no observed adverse effect level (NOAEL) for the conditions of this study was considered to be 9.67% krill powder.
Collapse
Affiliation(s)
- Kjetil Berge
- Aker BioMarine Antarctic AS, Fjordalléen 16, PO Box 1423 Vika, NO-0115 Oslo, Norway
| | | | - Lena Burri
- Aker BioMarine Antarctic AS, Fjordalléen 16, PO Box 1423 Vika, NO-0115 Oslo, Norway
| |
Collapse
|
31
|
Ghasemifard S, Turchini GM, Sinclair AJ. Omega-3 long chain fatty acid “bioavailability”: A review of evidence and methodological considerations. Prog Lipid Res 2014; 56:92-108. [DOI: 10.1016/j.plipres.2014.09.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 09/02/2014] [Indexed: 01/06/2023]
|
32
|
EPA and DHA Status of South Asian and White Canadians Living in the National Capital Region of Canada. Lipids 2014; 49:1057-69. [DOI: 10.1007/s11745-014-3942-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 08/12/2014] [Indexed: 11/25/2022]
|
33
|
Berge K, Musa-Veloso K, Harwood M, Hoem N, Burri L. Krill oil supplementation lowers serum triglycerides without increasing low-density lipoprotein cholesterol in adults with borderline high or high triglyceride levels. Nutr Res 2014; 34:126-33. [DOI: 10.1016/j.nutres.2013.12.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 11/25/2022]
|
34
|
Liu L, Bartke N, Van Daele H, Lawrence P, Qin X, Park HG, Kothapalli K, Windust A, Bindels J, Wang Z, Brenna JT. Higher efficacy of dietary DHA provided as a phospholipid than as a triglyceride for brain DHA accretion in neonatal piglets. J Lipid Res 2014; 55:531-9. [PMID: 24470588 DOI: 10.1194/jlr.m045930] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-chain PUFAs (LCPUFAs) occur in foods primarily in the natural lipid classes, triacylglycerols (TAGs) or phospholipids (PLs). We studied the relative efficacy of the neural omega-3 DHA provided in formula to growing piglets as a dose of (13)C-DHA bound to either TAG or phosphatidylcholine (PC). Piglets were assigned to identical formula-based diets from early life and provided with TAG-(13)C-DHA or PC-(13)C-DHA orally at 16 days. Days later, piglet organs were analyzed for (13)C-DHA and other FA metabolites. PC-(13)C-DHA was 1.9-fold more efficacious for brain gray matter DHA accretion than TAG-(13)C-DHA, and was similarly more efficacious in gray matter synaptosomes, retina, liver, and red blood cells (RBCs). Liver labeling was greatest, implying initial processing in that organ followed by export to other organs, and suggesting that transfer from gut to bloodstream to liver in part drove the difference in relative efficacy for tissue accretion. Apparent retroconversion to 22:5n-3 was more than double for PC-(13)C-DHA and was more prominent in neural tissue than in liver or RBCs. These data directly support greater efficacy for PC as a carrier for LCPUFAs compared with TAG, consistent with previous studies of arachidonic acid and DHA measured in other species.
Collapse
Affiliation(s)
- Lei Liu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ramprasath VR, Eyal I, Zchut S, Jones PJH. Enhanced increase of omega-3 index in healthy individuals with response to 4-week n-3 fatty acid supplementation from krill oil versus fish oil. Lipids Health Dis 2013; 12:178. [PMID: 24304605 PMCID: PMC4235028 DOI: 10.1186/1476-511x-12-178] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to structural differences, bioavailability of krill oil, a phospholipid based oil, could be higher than fish oil, a triglyceride-based oil, conferring properties that render it more effective than fish oil in increasing omega-3 index and thereby, reducing cardiovascular disease (CVD) risk. OBJECTIVE The objective was to assess the effects of krill oil compared with fish oil or a placebo control on plasma and red blood cell (RBC) fatty acid profile in healthy volunteers. PARTICIPANTS AND METHODS Twenty four healthy volunteers were recruited for a double blinded, randomized, placebo-controlled, crossover trial. The study consisted of three treatment phases including krill or fish oil each providing 600 mg of n-3 polyunsaturated fatty acids (PUFA) or placebo control, corn oil in capsule form. Each treatment lasted 4 wk and was separated by 8 wk washout phases. RESULTS Krill oil consumption increased plasma (p = 0.0043) and RBC (p = 0.0011) n-3 PUFA concentrations, including EPA and DHA, and reduced n-6:n-3 PUFA ratios (plasma: p = 0.0043, RBC: p = 0.0143) compared with fish oil consumption. Sum of EPA and DHA concentrations in RBC, the omega-3 index, was increased following krill oil supplementation compared with fish oil (p = 0.0143) and control (p < 0.0001). Serum triglycerides and HDL cholesterol concentrations did not change with any of the treatments. However, total and LDL cholesterol concentrations were increased following krill (TC: p = 0.0067, LDL: p = 0.0143) and fish oil supplementation (TC: p = 0.0028, LDL: p = 0.0143) compared with control. CONCLUSIONS Consumption of krill oil was well tolerated with no adverse events. Results indicate that krill oil could be more effective than fish oil in increasing n-3 PUFA, reducing n-6:n-3 PUFA ratio, and improving the omega-3 index. TRIAL REGISTRATION ClinicalTrials.gov, NCT01323036.
Collapse
Affiliation(s)
| | | | | | - Peter J H Jones
- Richardson Centre for Functional Foods and Nutraceuticals, Winnipeg, Canada.
| |
Collapse
|
36
|
Abstract
The biological activities of omega-3 fatty acids (n-3 FAs) have been under extensive study for several decades. However, not much attention has been paid to differences of dietary forms, such as triglycerides (TGs) versus ethyl esters or phospholipids (PLs). New innovative marine raw materials, like krill and fish by-products, present n-3 FAs mainly in the PL form. With their increasing availability, new evidence has emerged on n-3 PL biological activities and differences to n-3 TGs. In this review, we describe the recently discovered nutritional properties of n-3 PLs on different parameters of metabolic syndrome and highlight their different metabolic bioavailability in comparison to other dietary forms of n-3 FAs.
Collapse
Affiliation(s)
- Lena Burri
- Aker BioMarine ASA, Fjordalléen 16, NO-0115 Oslo, Norway; E-Mails: (L.B.); (N.H.)
| | - Nils Hoem
- Aker BioMarine ASA, Fjordalléen 16, NO-0115 Oslo, Norway; E-Mails: (L.B.); (N.H.)
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; E-Mail:
| | - Kjetil Berge
- Aker BioMarine ASA, Fjordalléen 16, NO-0115 Oslo, Norway; E-Mails: (L.B.); (N.H.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +47-24-13-00-00; Fax: +47-24-13-01-10
| |
Collapse
|
37
|
Bjørndal B, Vik R, Brattelid T, Vigerust NF, Burri L, Bohov P, Nygård O, Skorve J, Berge RK. Krill powder increases liver lipid catabolism and reduces glucose mobilization in tumor necrosis factor-alpha transgenic mice fed a high-fat diet. Metabolism 2012; 61:1461-72. [PMID: 22538117 DOI: 10.1016/j.metabol.2012.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/20/2012] [Accepted: 03/20/2012] [Indexed: 12/29/2022]
Abstract
A promising approach to ameliorate obesity and obesity-associated diseases is the identification of new sources of dietary ingredients. The present study investigated the hepatic regulation of energy metabolism after feeding a powder isolated from Antarctic krill (Euphausia superba) in a transgenic mouse model of chronic inflammation (human tumor necrosis factor-alpha (hTNFα) mice) known to display unfavorable effects on lipid metabolism. Male hTNFα mice were fed high-fat diets (23.6%, w/w) with or without krill powder (6.4% lipids, 4.3% protein, w/w) for 6 weeks. Blood, liver lipid, and fatty acid composition, as well as hepatic enzyme activities and gene expressions, were determined. Krill powder fed mice displayed lowered hepatic and plasma triacylglycerol levels compared to mice on a high-fat casein diet. This was accompanied by down-regulated hepatic expression of genes involved in lipogenesis and glycerolipid synthesis, and increased β-oxidation activity. In addition, the krill powder diet lowered plasma levels of cholesterol, as well as hepatic gene expression of sterol regulatory element binding transcription factor 2 (SREBP2) and enzymes involved in cholesterol synthesis. Notably, genes involved in glycolysis and gluconeogenesis were significantly reduced in liver by the krill powder diet, while genes involved in oxidative phosphorylation and uncoupling were not affected. Krill powder also reduced endogenous TNFα in liver, indicating an anti-inflammatory effect. In a high-fat mouse model with disturbed lipid metabolism due to persistent hTNFα expression, krill powder showed significant effects on hepatic glucose- and lipid metabolism, resulting in an improved lipid status in liver and plasma.
Collapse
Affiliation(s)
- Bodil Bjørndal
- Institute of Medicine, University of Bergen, 5021 Bergen, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen S, Belikova NA, Subbaiah PV. Structural elucidation of molecular species of pacific oyster ether amino phospholipids by normal-phase liquid chromatography/negative-ion electrospray ionization and quadrupole/multiple-stage linear ion-trap mass spectrometry. Anal Chim Acta 2012; 735:76-89. [PMID: 22713920 PMCID: PMC3566561 DOI: 10.1016/j.aca.2012.05.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/14/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
Although marine oysters contain abundant amounts of ether-linked aminophospholipids, the structural identification of the various molecular species has not been reported. We developed a normal-phase silica liquid chromatography/negative-ion electrospray ionization/quadrupole multiple-stage linear ion-trap mass spectrometric (NPLC-NI-ESI/Q-TRAP-MS(3)) method for the structural elucidation of ether molecular species of serine and ethanolamine phospholipids from marine oysters. The major advantages of the approach are (i) to avoid incorrect selection of isobaric precursor ions derived from different phospholipid classes in a lipid mixture, and to generate informative and clear MS(n) product ion mass spectra of the species for the identification of the sn-1 plasmanyl or plasmenyl linkages, and (ii) to increase precursor ion intensities by "concentrating" lipid molecules of each phospholipid class for further structural determination of minor molecular species. Employing a combination of NPLC-NI-ESI/MS(3) and NPLC-NI-ESI/MS(2), we elucidated, for the first time, the chemical structures of docosahexaenoyl and eicosapentaenoyl plasmenyl phosphatidylserine (PS) species and differentiated up to six isobaric species of diacyl/alkylacyl/alkenylacyl phosphatidylethanolamine (PE) in the US pacific oysters. The presence of a high content of both omega-3 plasmenyl PS/plasmenyl PE species and multiple isobaric molecular species isomers is the noteworthy characteristic of the marine oyster. The simple and robust NPLC-NI-ESI/MS(n)-based methodology should be particularly valuable in the detailed characterization of marine lipid dietary supplements with respect to omega-3 aminophospholipids.
Collapse
Affiliation(s)
- Su Chen
- CHAINON Neurotrophin Biotechnology Inc., San Antonio, TX 78230, USA.
| | | | | |
Collapse
|
39
|
Ferramosca A, Conte A, Burri L, Berge K, De Nuccio F, Giudetti AM, Zara V. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats. PLoS One 2012; 7:e38797. [PMID: 22685607 PMCID: PMC3369862 DOI: 10.1371/journal.pone.0038797] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/14/2012] [Indexed: 12/14/2022] Open
Abstract
Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.
Collapse
Affiliation(s)
- Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Annalea Conte
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | | | - Francesco De Nuccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
40
|
Abstract
Previous studies have revealed that C20 PUFA are significantly less oxidised to CO₂ in whole-body studies compared with SFA, MUFA and C18 PUFA. The present study determined the extent to which three long-chain PUFA, namely 20:5n-3 EPA, 22:5n-3 docosapentaenoic acid (DPA) and 22:6n-3 DHA, were catabolised to CO₂ or, conversely, incorporated into tissue lipids. Rats were administered a single oral dose of 2·5 μCi [1-¹⁴C]DPA, [1-¹⁴C]EPA, [1-¹⁴C]DHA or [1-¹⁴C]oleic acid (18:1n-9; OA), and were placed in a metabolism chamber for 6 h where exhaled ¹⁴CO₂ was trapped and counted for radioactivity. Rats were euthanised after 24 h and tissues were removed for analysis of radioactivity in tissue lipids. The results showed that DPA and DHA were catabolised to CO₂ significantly less compared with EPA and OA (P<0·05). The phospholipid (PL) fraction was the most labelled for all three n-3 PUFA compared with OA in all tissues, and there was no difference between C20 and C22 n-3 PUFA in the proportion of label in the PL fraction. The DHA and DPA groups showed significantly more label than the EPA group in both skeletal muscle and heart. In the brain and heart tissue, there was significantly less label in the cholesterol fraction from the C22 n-3 PUFA group compared with the C20 n-3 PUFA group. The higher incorporation of DHA and DPA into the heart and skeletal muscle, compared with EPA, suggests that these C22 n-3 PUFA might play an important role in these tissues.
Collapse
|
41
|
Burri L, Berge K, Wibrand K, Berge RK, Barger JL. Differential effects of krill oil and fish oil on the hepatic transcriptome in mice. Front Genet 2011; 2:45. [PMID: 22303341 PMCID: PMC3268598 DOI: 10.3389/fgene.2011.00045] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/25/2011] [Indexed: 12/14/2022] Open
Abstract
Dietary supplementation with ω-3 polyunsaturated fatty acids (ω-3 PUFAs), specifically the fatty acids docosahexaenoic acid (DHA; 22:6 ω-3) and eicosapentaenoic acid (EPA; 20:5 ω-3), is known to have beneficial health effects including improvements in glucose and lipid homeostasis and modulation of inflammation. To evaluate the efficacy of two different sources of ω-3 PUFAs, we performed gene expression profiling in the liver of mice fed diets supplemented with either fish oil (FO) or krill oil (KO). We found that ω-3 PUFA supplements derived from a phospholipid krill fraction (KO) downregulated the activity of pathways involved in hepatic glucose production as well as lipid and cholesterol synthesis. The data also suggested that KO-supplementation increases the activity of the mitochondrial respiratory chain. Surprisingly, an equimolar dose of EPA and DHA derived from FO modulated fewer pathways than a KO-supplemented diet and did not modulate key metabolic pathways regulated by KO, including glucose metabolism, lipid metabolism and the mitochondrial respiratory chain. Moreover, FO upregulated the cholesterol synthesis pathway, which was the opposite effect of krill-supplementation. Neither diet elicited changes in plasma levels of lipids, glucose, or insulin, probably because the mice used in this study were young and were fed a low-fat diet. Further studies of KO-supplementation using animal models of metabolic disorders and/or diets with a higher level of fat may be required to observe these effects.
Collapse
|