1
|
Szlendak M, Kapała A. Does the ratio of eicosapentaenoic acid to docosahexaenoic acid matter in cancer treatment? A systematic review of their effects on cachexia-related inflammation. Nutrition 2024; 124:112466. [PMID: 38759339 DOI: 10.1016/j.nut.2024.112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 05/19/2024]
Abstract
Chronic inflammation is a hallmark of cancer cachexia. Polyunsaturated fatty acids (ω-3 PUFAs): eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are known to contribute to the reduction of inflammation, preservation of lean body mass and total body weight, and reduction of cancer-related symptoms, such as anorexia or neuropathy. This systematic review aimed to assess whether the ratio of EPA to DHA used in supplementation in cancer patients matters in the context of the resolution of inflammation and reduction of the risk of cachexia. The analysis included 20 randomized clinical trials with acceptable quality identified from the Pubmed/MEDLINE database. The significant results concerning the resolution of inflammation or improvement in nutritional status were the highest in the case of a low EPA/DHA ratio, i.e., 67%, and decreased, reaching 50% and 36% for the moderate and high ratios, respectively. Most results concerning body weight from high and moderate EPA/DHA ratios showed no benefit or were insignificant. A significant benefit in reducing any reported inflammatory markers was seen in the low EPA/DHA ratio subgroup at 63%, in the moderate at 29%, and in the high ratio subgroup at 11%. The greatest benefit in CRP reduction was obtained by patients during chemotherapy. The review questions the anticachectic and anti-inflammatory effect of ω-3 PUFAs supplementation with doses of EPA higher than DHA. A population that particularly benefits from ω-3 PUFAs supplementation are patients undergoing chemotherapy for advanced cancer.
Collapse
Affiliation(s)
| | - Aleksandra Kapała
- Department of Clinical Nutrition, Department of Oncology Diagnostics, Cardio-Oncology and Palliative Medicine, The Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
2
|
Hart NR. Paradoxes: Cholesterol and Hypoxia in Preeclampsia. Biomolecules 2024; 14:691. [PMID: 38927094 PMCID: PMC11201883 DOI: 10.3390/biom14060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Preeclampsia, a hypertensive disease of pregnancy of unknown etiology, is intensely studied as a model of cardiovascular disease (CVD) not only due to multiple shared pathologic elements but also because changes that develop over decades in CVD appear and resolve within days in preeclampsia. Those affected by preeclampsia and their offspring experience increased lifetime risks of CVD. At the systemic level, preeclampsia is characterized by increased cellular, membrane, and blood levels of cholesterol; however, cholesterol-dependent signaling, such as canonical Wnt/βcatenin, Hedgehog, and endothelial nitric oxide synthase, is downregulated indicating a cholesterol deficit with the upregulation of cholesterol synthesis and efflux. Hypoxia-related signaling in preeclampsia also appears to be paradoxical with increased Hypoxia-Inducible Factors in the placenta but measurably increased oxygen in maternal blood in placental villous spaces. This review addresses the molecular mechanisms by which excessive systemic cholesterol and deficient cholesterol-dependent signaling may arise from the effects of dietary lipid variance and environmental membrane modifiers causing the cellular hypoxia that characterizes preeclampsia.
Collapse
Affiliation(s)
- Nancy R Hart
- PeaceHealth St. Joseph Medical Center, Bellingham, WA 98225, USA
| |
Collapse
|
3
|
Bettle G, Bell DP, Bakewell SJ. A Novel Comprehensive Therapeutic Approach to the Challenges of Chronic Wounds: A Brief Review and Clinical Experience Report. Adv Ther 2024; 41:492-508. [PMID: 38104037 PMCID: PMC10838851 DOI: 10.1007/s12325-023-02742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Following the clinical perspective and concept that a healthy body will not develop chronic wounds, the central approach for the treatment described here is based on an understanding of how the body transforms the wound microenvironment from a non-healing to a healing state. As part of a comprehensive treatment regimen that includes OCM™ (complete matrix), wound preparation, and skin protectant formulations, the OCM contains components for complete wound healing by attending to the individual needs required to promote the closure of each unique chronic wound. During application of the comprehensive treatment regimen in independent investigator-led trials, the total wound percentage average reduction over the first 4 weeks of treatment was 60% across multiple wound types; median time to total wound closure was 6.9 weeks. Safety testing of the OCM formulation shows no potential allergenicity, no potential sensitization, and no known product-related adverse events. Clinical trials evaluating the OCM formulation as part of the comprehensive treatment regimen of multiple wound types are underway. Results of clinical trials and real-world experiences will expand current knowledge of the wound-healing potential of this novel product.
Collapse
Affiliation(s)
- Griscom Bettle
- Department of Clinical Research and Development, Omeza, LLC, 1610 Northgate Boulevard, Sarasota, FL, 34234, USA
| | - Desmond P Bell
- Department of Clinical Research and Development, Omeza, LLC, 1610 Northgate Boulevard, Sarasota, FL, 34234, USA
| | - Suzanne J Bakewell
- Department of Clinical Research and Development, Omeza, LLC, 1610 Northgate Boulevard, Sarasota, FL, 34234, USA.
| |
Collapse
|
4
|
Balakrishnan M, Kenworthy AK. Lipid Peroxidation Drives Liquid-Liquid Phase Separation and Disrupts Raft Protein Partitioning in Biological Membranes. J Am Chem Soc 2024; 146:1374-1387. [PMID: 38171000 PMCID: PMC10797634 DOI: 10.1021/jacs.3c10132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
The peroxidation of membrane lipids by free radicals contributes to aging, numerous diseases, and ferroptosis, an iron-dependent form of cell death. Peroxidation changes the structure and physicochemical properties of lipids, leading to bilayer thinning, altered fluidity, and increased permeability of membranes in model systems. Whether and how lipid peroxidation impacts the lateral organization of proteins and lipids in biological membranes, however, remains poorly understood. Here, we employ cell-derived giant plasma membrane vesicles (GPMVs) as a model to investigate the impact of lipid peroxidation on ordered membrane domains, often termed membrane rafts. We show that lipid peroxidation induced by the Fenton reaction dramatically enhances the phase separation propensity of GPMVs into coexisting liquid-ordered (Lo) and liquid-disordered (Ld) domains and increases the relative abundance of the disordered phase. Peroxidation also leads to preferential accumulation of peroxidized lipids and 4-hydroxynonenal (4-HNE) adducts in the disordered phase, decreased lipid packing in both Lo and Ld domains, and translocation of multiple classes of raft proteins out of ordered domains. These findings indicate that the peroxidation of plasma membrane lipids disturbs many aspects of membrane rafts, including their stability, abundance, packing, and protein and lipid composition. We propose that these disruptions contribute to the pathological consequences of lipid peroxidation during aging and disease and thus serve as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Muthuraj Balakrishnan
- Center
for Membrane and Cell Physiology, University
of Virginia, Charlottesville, Virginia 22903, United States
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| | - Anne K. Kenworthy
- Center
for Membrane and Cell Physiology, University
of Virginia, Charlottesville, Virginia 22903, United States
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| |
Collapse
|
5
|
Adele BO, Idama C, Ige AO, Odetola AO, Emediong IE, Adewoye EO. Alterations in plasma and erythrocyte membrane fatty acid composition following exposure to toxic copper level affect membrane deformability and fluidity in female wistar rats. J Trace Elem Med Biol 2023; 80:127316. [PMID: 37862897 DOI: 10.1016/j.jtemb.2023.127316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Deformability and fluidity function of the red blood cell membrane are properties defined by the lipid composition. Toxic copper level induces membrane lipid peroxidation which could cause membrane instability. This study therefore investigated the effect of exposure to toxic copper level for 30 days on red blood cell membrane deformability and fluidity in female Wistar rats. METHODS Twelve (12) female Wistar rats (160 ± 10 g) were randomly grouped (n = 6) into control (given 0.1 ml distilled water p.o.) and copper-toxic (100 mg/kg Copper Sulphate, p.o.), and treated for 30 days. Plasma obtained and RBC membrane prepared from blood collected over EDTA post-treatment were assayed for total cholesterol (TC), phospholipids and fatty acid profile using spectrophotometry and Gas chromatography while heparinized blood was subjected to fragility test. Data were analyzed using student T-test for statistical significance at p < 0.05. RESULTS AND CONCLUSION Plasma TC increased by 4.33% while RBC membrane TC decreased by 20.32% in copper-toxic group compared to control. Compared to control, excess copper significantly increased membrane phospholipids level (0.72 ± 0.01 vs 0.59 ± 0.04 mg/dL) but reduced membrane cholesterol/phospholipid ratio (46.61 ± 4.72 vs 72.66 ± 6.47) and stability (by 23.53%). Number of cis- and saturated fatty acids increased in copper-treated plasma and RBC membrane compared to control. Exposure to toxic copper level alters erythrocyte membrane fluidity and deformability by disrupting membrane lipid composition, saturation, bond configuration in phospholipids and permeability.
Collapse
Affiliation(s)
- Bernard Omokheshi Adele
- Applied and Environmental Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Chidimma Idama
- Applied and Environmental Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| | - Abayomi O Ige
- Applied and Environmental Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| | - Anthony Olusoji Odetola
- Applied and Environmental Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria; Department of Human Physiology, Faculty of Health Sciences, Nnamdi Azikwe University, Anambra State, Nigeria
| | - Idara Emmanuel Emediong
- Applied and Environmental Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| | - Elsie Olufunke Adewoye
- Applied and Environmental Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| |
Collapse
|
6
|
de Oliveira AS, Convento MB, Razvickas CV, Castino B, Leme AM, da Silva Luiz R, da Silva WH, da Glória MA, Guirão TP, Bondan E, Schor N, Borges FT. The Nephroprotective Effects of the Allogeneic Transplantation with Mesenchymal Stromal Cells Were Potentiated by ω3 Stimulating Up-Regulation of the PPAR-γ. Pharmaceuticals (Basel) 2023; 16:1484. [PMID: 37895955 PMCID: PMC10610511 DOI: 10.3390/ph16101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) obtained from bone marrow are a promising tool for regenerative medicine, including kidney diseases. A step forward in MSCs studies is cellular conditioning through specific minerals and vitamins. The Omega-3 fatty acids (ω3) are essential in regulating MSCs self-renewal, cell cycle, and survival. The ω3 could act as a ligand for peroxisome proliferator-activated receptor gamma (PPAR-γ). This study aimed to demonstrate that ω3 supplementation in rats could lead to the up-regulation of PPAR-γ in the MSCs. The next step was to compare the effects of these MSCs through allogeneic transplantation in rats subjected to unilateral ureteral obstruction (UUO). Independent of ω3 supplementation in the diet of the rats, the MSCs in vitro conserved differentiation capability and phenotypic characteristics. Nevertheless, MSCs obtained from the rats supplemented with ω3 stimulated an increase in the expression of PPAR-γ. After allogeneic transplantation in rats subjected to UUO, the ω3 supplementation in the rats enhanced some nephroprotective effects of the MSCs through a higher expression of antioxidant enzyme (SOD-1), anti-inflammatory marker (IL-10), and lower expression of the inflammatory marker (IL-6), and proteinuria.
Collapse
Affiliation(s)
- Andreia Silva de Oliveira
- Translational Medicine Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil;
| | - Márcia Bastos Convento
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Clara Versolato Razvickas
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Bianca Castino
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil;
| | - Ala Moana Leme
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Rafael da Silva Luiz
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Wesley Henrique da Silva
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Maria Aparecida da Glória
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Tatiana Pinotti Guirão
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Eduardo Bondan
- Graduate Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, Brazil;
| | - Nestor Schor
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Fernanda Teixeira Borges
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil;
| |
Collapse
|
7
|
Balakrishnan M, Kenworthy AK. Lipid peroxidation drives liquid-liquid phase separation and disrupts raft protein partitioning in biological membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557355. [PMID: 37745342 PMCID: PMC10515805 DOI: 10.1101/2023.09.12.557355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The peroxidation of membrane lipids by free radicals contributes to aging, numerous diseases, and ferroptosis, an iron-dependent form of cell death. Peroxidation changes the structure, conformation and physicochemical properties of lipids, leading to major membrane alterations including bilayer thinning, altered fluidity, and increased permeability. Whether and how lipid peroxidation impacts the lateral organization of proteins and lipids in biological membranes, however, remains poorly understood. Here, we employ cell-derived giant plasma membrane vesicles (GPMVs) as a model to investigate the impact of lipid peroxidation on ordered membrane domains, often termed membrane rafts. We show that lipid peroxidation induced by the Fenton reaction dramatically enhances phase separation propensity of GPMVs into co-existing liquid ordered (raft) and liquid disordered (non-raft) domains and increases the relative abundance of the disordered, non-raft phase. Peroxidation also leads to preferential accumulation of peroxidized lipids and 4-hydroxynonenal (4-HNE) adducts in the disordered phase, decreased lipid packing in both raft and non-raft domains, and translocation of multiple classes of proteins out of rafts. These findings indicate that peroxidation of plasma membrane lipids disturbs many aspects of membrane rafts, including their stability, abundance, packing, and protein and lipid composition. We propose that these disruptions contribute to the pathological consequences of lipid peroxidation during aging and disease, and thus serve as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Muthuraj Balakrishnan
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anne K. Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
8
|
Osouli‐Tabrizi S, Mehdizadeh A, Naghdi M, Sanaat Z, Vahed N, Farshbaf‐Khalili A. The effectiveness of omega-3 fatty acids on health outcomes in women with breast cancer: A systematic review. Food Sci Nutr 2023; 11:4355-4371. [PMID: 37576056 PMCID: PMC10420771 DOI: 10.1002/fsn3.3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 08/15/2023] Open
Abstract
This study aimed to systematically evaluate the impact of omega-3 fatty acids on the health outcomes of women with breast cancer in electronic databases (PubMed, Scopus, ProQuest, Web of Science, and Cochrane Library) for interventional studies. The risk of bias and the quality of the included articles were assessed by Cochrane Collaboration Handbook guidance. The statistical analyses were not conducted because of the heterogeneity of the included studies. Of 3676 identified articles, 11 articles were included in this study. The majority of the included studies were not of high quality. Median progression time and overall survival significantly improved. Additionally, surgical site healing complications and infection rates decreased. There was a significant decrease in perceived stress, sleep disturbance, depression, pain, joint stiffness, and fatigue throughout the intervention. Moreover, omega-3 fatty acids consumption significantly increased the total serum omega-3, EPA, and DHA, and decreased the omega-6: omega-3 ratio, total leukocytes, lymphocytes, leptin, and CRP, accordingly. Mild gastrointestinal symptoms were reported in only two studies without clinically relevant adverse events. Omega-3 fatty acids may cause improvement in physical, mental, and some inflammatory and metabolic indices during treatment or posttreatment course of breast cancer patients. Due to the possibility of free radical formation, omega-3 FAs supplementation and consumption must be done very carefully.
Collapse
Affiliation(s)
- Shirin Osouli‐Tabrizi
- Department of Midwifery, Faculty of Nursing and MidwiferyTabriz University of Medical SciencesTabrizIran
| | - Amir Mehdizadeh
- Hematology and Oncology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mina Naghdi
- Student Research Committee, Department of Midwifery, Faculty of Nursing and MidwiferyTabriz University of Medical SciencesTabrizIran
| | - Zohreh Sanaat
- Hematology and Oncology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Nafiseh Vahed
- Research Center for Evidence‐based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of ExcellenceTabriz University of Medical SciencesTabrizIran
| | - Azizeh Farshbaf‐Khalili
- Physical Medicine and Rehabilitation Research Center, Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
9
|
Fei W, Yan J, Wu X, Yang S, Zhang X, Wang R, Chen Y, Xu J, Zheng C. Perturbing plasma membrane lipid: a new paradigm for tumor nanotherapeutics. Theranostics 2023; 13:2471-2491. [PMID: 37215569 PMCID: PMC10196822 DOI: 10.7150/thno.82189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer is generally considered a result of genetic mutations that cause epigenetic changes, leading to anomalous cellular behavior. Since 1970s, an increasing understanding of the plasma membrane and specifically the lipid alterations in tumor cells have provided novel insights for cancer therapy. Moreover, the advances in nanotechnology offer a potential opportunity to target the tumor plasma membrane while minimizing side effects on normal cells. To further develop membrane lipid perturbing tumor therapy, the first section of this review demonstrates the association between plasma membrane physicochemical properties and tumor signaling, metastasis, and drug resistance. The second section highlights existing nanotherapeutic strategies for membrane disruption, including lipid peroxide accumulation, cholesterol regulation, membrane structure disruption, lipid raft immobilization, and energy-mediated plasma membrane perturbation. Finally, the third section evaluates the prospects and challenges of plasma membrane lipid perturbing therapy as a therapeutic strategy for cancers. The reviewed membrane lipid perturbing tumor therapy strategies are expected to bring about necessary changes in tumor therapy in the coming decades.
Collapse
Affiliation(s)
- Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jingjing Yan
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shan Yang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Rong Wang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Junjun Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| |
Collapse
|
10
|
Sveiven SN, Anesko K, Morgan J, Nair MG, Nordgren TM. Lipid-Sensing Receptor FFAR4 Modulates Pulmonary Epithelial Homeostasis following Immunogenic Exposures Independently of the FFAR4 Ligand Docosahexaenoic Acid (DHA). Int J Mol Sci 2023; 24:ijms24087072. [PMID: 37108233 PMCID: PMC10138935 DOI: 10.3390/ijms24087072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The role of pulmonary free fatty acid receptor 4 (FFAR4) is not fully elucidated and we aimed to clarify the impact of FFAR4 on the pulmonary immune response and return to homeostasis. We employed a known high-risk human pulmonary immunogenic exposure to extracts of dust from swine confinement facilities (DE). WT and Ffar4-null mice were repetitively exposed to DE via intranasal instillation and supplemented with docosahexaenoic acid (DHA) by oral gavage. We sought to understand if previous findings of DHA-mediated attenuation of the DE-induced inflammatory response are FFAR4-dependent. We identified that DHA mediates anti-inflammatory effects independent of FFAR4 expression, and that DE-exposed mice lacking FFAR4 had reduced immune cells in the airways, epithelial dysplasia, and impaired pulmonary barrier integrity. Analysis of transcripts using an immunology gene expression panel revealed a role for FFAR4 in lungs related to innate immune initiation of inflammation, cytoprotection, and immune cell migration. Ultimately, the presence of FFAR4 in the lung may regulate cell survival and repair following immune injury, suggestive of potential therapeutic directions for pulmonary disease.
Collapse
Affiliation(s)
- Stefanie N Sveiven
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA 92521, USA
| | - Kyle Anesko
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA 92521, USA
| | - Joshua Morgan
- Department of Bioengineering, Bourns College of Engineering, University of California-Riverside, Riverside, CA 92521, USA
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA 92521, USA
| | - Tara M Nordgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
11
|
Crovella S, Ouhtit A, Rahman SM, Rahman MM. Docosahexaenoic Acid, a Key Compound for Enhancing Sensitization to Drug in Doxorubicin-Resistant MCF-7 Cell Line. Nutrients 2023; 15:nu15071658. [PMID: 37049499 PMCID: PMC10097357 DOI: 10.3390/nu15071658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Drug resistance is a well-known and significant obstacle in the battle against cancer, rendering chemotherapy treatments often ineffective. To improve the effectiveness of chemotherapy, researchers are exploring the use of natural molecules that can enhance its ability to kill cancer cells and limit their spread. Docosahexaenoic acid (DHA), a lipid found in marine fish, has been shown to enhance the cytotoxicity of various anti-cancer drugs in vitro and in vivo. While the combined use of chemotherapeutic drugs with DHA demonstrated promising preliminary results in clinical trials, there is still a significant amount of information to be discovered regarding the precise mechanism of action of DHA. As the biological pathways involved in the chemosensitization of already chemoresistant MCF-7 cells are still not entirely unraveled, in this study, we aimed to investigate whether DHA co-treatment could enhance the ability of the chemotherapy drug doxorubicin to inhibit the growth and invasion of MCF-7 breast cancer cells (MCF-7/Dox) that had become resistant to the drug. Upon treating MCF-7/Dox cells with DHA or DHA-doxorubicin, it was observed that the DHA-doxorubicin combination effectively enhanced cancer cell death by impeding in vitro propagation and invasive ability. In addition, it led to an increase in doxorubicin accumulation and triggered apoptosis by arresting the cell cycle at the G2/M phase. Other observed effects included a decrease in the multi-drug resistance (MDR) carrier P-glycoprotein (P-gp) and TG2, a tumor survival factor. Augmented quantities of molecules promoting apoptosis such as Bak1 and caspase-3 and enhanced lipid peroxidation were also detected. Our findings in the cell model suggest that DHA can be further investigated as a natural compound to be used alongside doxorubicin in the treatment of breast cancer that is unresponsive to chemotherapy.
Collapse
Affiliation(s)
- Sergio Crovella
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Allal Ouhtit
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Shaikh Mizanoor Rahman
- Obesity and Cancer Biology Lab, Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Md Mizanur Rahman
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
12
|
Cambiaggi L, Chakravarty A, Noureddine N, Hersberger M. The Role of α-Linolenic Acid and Its Oxylipins in Human Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24076110. [PMID: 37047085 PMCID: PMC10093787 DOI: 10.3390/ijms24076110] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
α-linolenic acid (ALA) is an essential C-18 n-3 polyunsaturated fatty acid (PUFA), which can be elongated to longer n-3 PUFAs, such as eicosapentaenoic acid (EPA). These long-chain n-3 PUFAs have anti-inflammatory and pro-resolution effects either directly or through their oxylipin metabolites. However, there is evidence that the conversion of ALA to the long-chain PUFAs is limited. On the other hand, there is evidence in humans that supplementation of ALA in the diet is associated with an improved lipid profile, a reduction in the inflammatory biomarker C-reactive protein (CRP) and a reduction in cardiovascular diseases (CVDs) and all-cause mortality. Studies investigating the cellular mechanism for these beneficial effects showed that ALA is metabolized to oxylipins through the Lipoxygenase (LOX), the Cyclooxygenase (COX) and the Cytochrome P450 (CYP450) pathways, leading to hydroperoxy-, epoxy-, mono- and dihydroxylated oxylipins. In several mouse and cell models, it has been shown that ALA and some of its oxylipins, including 9- and 13-hydroxy-octadecatrienoic acids (9-HOTrE and 13-HOTrE), have immunomodulating effects. Taken together, the current literature suggests a beneficial role for diets rich in ALA in human CVDs, however, it is not always clear whether the described effects are attributable to ALA, its oxylipins or other substances present in the supplemented diets.
Collapse
Affiliation(s)
- Lucia Cambiaggi
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8032 Zurich, Switzerland
| | - Akash Chakravarty
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8032 Zurich, Switzerland
| | - Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8032 Zurich, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
13
|
Venter C, Smith PK, Fleischer DM. Food allergy prevention: Where are we in 2023? Asia Pac Allergy 2023; 13:15-27. [PMID: 37389093 PMCID: PMC10166243 DOI: 10.5415/apallergy.0000000000000001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 07/01/2023] Open
Abstract
Food allergy prevention involves recommendations to the maternal diet during pregnancy and breast feeding, early life feeding and introduction of solid foods. Pregnant and breastfeeding women are not recommended to exclude any food allergens from their diet, but data are lacking to support active consumption of food allergens for prevention of food allergy. Breastfeeding is recommended for the many health benefits to the mother and child but has not shown any association with reduction in childhood food allergies. There is currently no recommendation regarding the use of any infant formula for allergy prevention, including the use of partially or extensively hydrolyzed formulas. Once the introduction of solid food commences, based on randomized controlled trials, it is advised to actively introduce peanuts and egg early into the infant diet and continue with consumption of these. Although there are limited data with respect to other major food allergens and whether early introduction may prevent allergy development, there is no need to delay the introduction of these allergens into the infant diet. Interpreting food allergen consumption in the context of cultural food practices has not been studied, but it makes sense to introduce the infant to family foods by 1 year of age. Consumption of foods typical of the Western diet and foods high in advanced glycation end products may be associated with an increase in food allergies. Similarly, intake of micronutrients, such as vitamin D and omega-3 fatty acids in both the maternal and infant diet, needs further clarification in the context of food allergy prevention.
Collapse
Affiliation(s)
- Carina Venter
- Section of Allergy and Immunology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Peter K. Smith
- Qld Allergy Services, Southport, QLD, Australia
- Department of Clinical Medicine, Griffith University, Southport, QLD, Australia
| | - David M. Fleischer
- Section of Allergy and Immunology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
14
|
The Modulatory Effects of Fatty Acids on Cancer Progression. Biomedicines 2023; 11:biomedicines11020280. [PMID: 36830818 PMCID: PMC9953116 DOI: 10.3390/biomedicines11020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Cancer is the second leading cause of death worldwide and the global cancer burden rises rapidly. The risk factors for cancer development can often be attributed to lifestyle factors, of which an unhealthy diet is a major contributor. Dietary fat is an important macronutrient and therefore a crucial part of a well-balanced and healthy diet, but it is still unclear which specific fatty acids contribute to a healthy and well-balanced diet in the context of cancer risk and prognosis. In this review, we describe epidemiological evidence on the associations between the intake of different classes of fatty acids and the risk of developing cancer, and we provide preclinical evidence on how specific fatty acids can act on tumor cells, thereby modulating tumor progression and metastasis. Moreover, the pro- and anti-inflammatory effects of each of the different groups of fatty acids will be discussed specifically in the context of inflammation-induced cancer progression and we will highlight challenges as well as opportunities for successful application of fatty acid tailored nutritional interventions in the clinic.
Collapse
|
15
|
Senik SV, Manzhieva BS, Maloshenok LG, Serebryakov EB, Bruskin SA, Kotlova ER. Heterogeneous Distribution of Phospholipid Molecular Species in the Surface Culture of Flammulina velutipes: New Facts about Lipids Containing α-Linolenic Fatty Acid. J Fungi (Basel) 2023; 9:102. [PMID: 36675923 PMCID: PMC9865325 DOI: 10.3390/jof9010102] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Mycelial fungi grow as colonies consisting of polar growing hyphae, developing radially from spore or inoculum. Over time, the colony develops, hyphae are subject to various exogenous or endogenous stimuli, and mycelium becomes heterogeneous in growth, gene expression, biosynthesis, and secretion of proteins and metabolites. Although the biochemical and molecular mechanisms of mycelium heterogeneity have been the subject of many studies, the role of lipids in colony development and zonality is still not understood. This work was undertaken to extend our knowledge of mycelium heterogeneity and to answer the question of how different lipid molecular species are distributed in the surface colony of the basidial fungus Flammulina velutipes and how this distribution correlates with its morphology. The heterogeneity in the lipid metabolism and lipid composition of the fungal mycelium was demonstrated. According to the real-time PCR and LC-MS/MS results, the expression of genes of PC metabolism, accumulation of phospholipid classes, and degree of unsaturation of PC and PE increased in the direction from the center to the periphery of the colony. The peripheral zone of the colony was characterized by a higher value of the PC/PE ratio and a higher level of phospholipids esterified by linolenic acid. Considering that the synthesis of phospholipids in fungi occurs in different ways, we also conducted experiments with deuterium-labeled phospholipid precursors and found out that the Kennedy pathway is the predominant route for PC biosynthesis in F. velutipes. The zonal differences in gene expression and lipid composition can be explained by the participation of membrane lipids in polar growth maintenance and regulation.
Collapse
Affiliation(s)
- Svetlana V. Senik
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Bairta S. Manzhieva
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Liliya G. Maloshenok
- Vavilov Institute of General Genetics of the Russian Academy of Sciences, 117971 Moscow, Russia
| | - Evgeny B. Serebryakov
- Chemical Analysis and Materials Research Center, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Sergey A. Bruskin
- Vavilov Institute of General Genetics of the Russian Academy of Sciences, 117971 Moscow, Russia
| | - Ekaterina R. Kotlova
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| |
Collapse
|
16
|
Davinelli S, Medoro A, Intrieri M, Saso L, Scapagnini G, Kang JX. Targeting NRF2-KEAP1 axis by Omega-3 fatty acids and their derivatives: Emerging opportunities against aging and diseases. Free Radic Biol Med 2022; 193:736-750. [PMID: 36402440 DOI: 10.1016/j.freeradbiomed.2022.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
The transcription factor NRF2 and its endogenous inhibitor KEAP1 play a crucial role in the maintenance of cellular redox homeostasis by regulating the gene expression of diverse networks of antioxidant, anti-inflammatory, and detoxification enzymes. Therefore, activation of NRF2 provides cytoprotection against numerous pathologies, including age-related diseases. An age-associated loss of NRF2 function may be a key driving force behind the aging phenotype. Recently, numerous NRF2 inducers have been identified and some of them are promising candidates to restore NRF2 transcriptional activity during aging. Emerging evidence indicates that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) and their electrophilic derivatives may trigger a protective response via NRF2 activation, rescuing or maintaining cellular redox homeostasis. In this review, we provide an overview of the NRF2-KEAP1 system and its dysregulation in aging cells. We also summarize current studies on the modulatory role of n-3 PUFAs as potential agents to prevent multiple chronic diseases and restore the age-related impairment of NRF2 function.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Maja M, Tyteca D. Alteration of cholesterol distribution at the plasma membrane of cancer cells: From evidence to pathophysiological implication and promising therapy strategy. Front Physiol 2022; 13:999883. [PMID: 36439249 PMCID: PMC9682260 DOI: 10.3389/fphys.2022.999883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Cholesterol-enriched domains are nowadays proposed to contribute to cancer cell proliferation, survival, death and invasion, with important implications in tumor progression. They could therefore represent promising targets for new anticancer treatment. However, although diverse strategies have been developed over the years from directly targeting cholesterol membrane content/distribution to adjusting sterol intake, all approaches present more or less substantial limitations. Those data emphasize the need to optimize current strategies, to develop new specific cholesterol-targeting anticancer drugs and/or to combine them with additional strategies targeting other lipids than cholesterol. Those objectives can only be achieved if we first decipher (i) the mechanisms that govern the formation and deformation of the different types of cholesterol-enriched domains and their interplay in healthy cells; (ii) the mechanisms behind domain deregulation in cancer; (iii) the potential generalization of observations in different types of cancer; and (iv) the specificity of some alterations in cancer vs. non-cancer cells as promising strategy for anticancer therapy. In this review, we will discuss the current knowledge on the homeostasis, roles and membrane distribution of cholesterol in non-tumorigenic cells. We will then integrate documented alterations of cholesterol distribution in domains at the surface of cancer cells and the mechanisms behind their contribution in cancer processes. We shall finally provide an overview on the potential strategies developed to target those cholesterol-enriched domains in cancer therapy.
Collapse
|
18
|
Dietary fatty acids applied to pig production and their relation to the biological processes: A review. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Cui MY, Yi X, Cao ZZ, Zhu DX, Wu J. Targeting Strategies for Aberrant Lipid Metabolism Reprogramming and the Immune Microenvironment in Esophageal Cancer: A Review. JOURNAL OF ONCOLOGY 2022; 2022:4257359. [PMID: 36106333 PMCID: PMC9467784 DOI: 10.1155/2022/4257359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022]
Abstract
Esophageal cancer is of high importance to occurrence, development, and treatment resistance. As evidenced by recent studies, pathways (e.g., Wnt/β-catenin, AMPK, and Hippo) are critical to the proliferation, differentiation, and self-renewal of esophageal cancer. In addition, the above pathways play a certain role in regulating esophageal cancer and act as potential therapeutic targets. Over the past few years, the function of lipid metabolism in controlling tumor cells and immune cells has aroused extensive attention. It has been reported that there are intricate interactions between lipid metabolism reprogramming between immune and esophageal cancer cells, whereas molecular mechanisms should be studied in depth. Immune cells have been commonly recognized as a vital player in the esophageal cancer microenvironment, having complex crosstalk with cancer cells. It is increasingly evidenced that the function of immune cells in the tumor microenvironment (TME) is significantly correlated with abnormal lipid metabolism. In this review, the latest findings in lipid metabolism reprogramming in TME are summarized, and the above findings are linked to esophageal cancer progression. Aberrant lipid metabolism and associated signaling pathways are likely to serve as a novel strategy to treat esophageal cancer through lipid metabolism reprogramming.
Collapse
Affiliation(s)
- Meng-Ying Cui
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xing Yi
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Zhen-Zhen Cao
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Dan-Xia Zhu
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jun Wu
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
20
|
Wang L, Wiedmann TS, Kandimalla KK. Modulating insulin signaling and trafficking at the blood-brain barrier endothelium using lipid based nanoemulsions. Int J Pharm 2022; 622:121823. [PMID: 35605891 PMCID: PMC9881744 DOI: 10.1016/j.ijpharm.2022.121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/01/2022] [Accepted: 05/08/2022] [Indexed: 01/31/2023]
Abstract
The compositionally distinct lipid rafts present in the plasma membrane regulate the restrictive trafficking and signal transduction in the blood-brain barrier (BBB) endothelium. Several metabolic and neurodegenerative diseases are associated with lipid homeostasis disruption within the BBB endothelium. Here, we hypothesized that the delivery of lipid triglyceride based nanoemulsions containing unsaturated fatty acids (UFAs) provides a novel non-pharmacological approach to modulate lipid raft integrity and rectify the aberrant trafficking and signal transduction. The current study has shown that soybean oil nanoemulsions (SNEs) altered the morphology of lipid rafts that are stained by Alex Fluor 647 labelled cholera toxin (AF647-CTX) in polarized human cerebral microvascular endothelial (hCMEC/D3) cell monolayers. Moreover, western blot and flow cytometry analysis showed that SNEs containing polyunsaturated fatty acids (PUFAs) increased phospo-AKT (p-AKT) expression, a marker for the stimulation of metabolic arm of insulin signaling, and insulin uptake in hCMEC/D3 monolayers. However, olive oil nanoemulsions (ONEs) containing monounsaturated fatty acids (MUFAs) had no detectable impact on lipid raft integrity, AKT phosphorylation, or insulin uptake. These findings provided direct evidence that SNEs containing PUFAs can upregulate insulin-pAKT pathway, facilitate insulin trafficking at the BBB, and potentially address cerebrovascular dysfunction in metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lushan Wang
- Department of Pharmaceutics, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, United States,Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, United States
| | - Timothy S. Wiedmann
- Department of Pharmaceutics, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, United States
| | - Karunya K. Kandimalla
- Department of Pharmaceutics, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, United States,Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, United States,Corresponding author. (K.K. Kandimalla)
| |
Collapse
|
21
|
Molendijk J, Kolka CM, Cairns H, Brosda S, Mohamed A, Shah AK, Brown I, Hodson MP, Hennessy T, Liu G, Stoll T, Richards RS, Gartside M, Patel K, Clemons NJ, Phillips WA, Barbour A, Westerhuis JA, Hill MM. Elevation of fatty acid desaturase 2 in esophageal adenocarcinoma increases polyunsaturated lipids and may exacerbate bile acid-induced DNA damage. Clin Transl Med 2022; 12:e810. [PMID: 35560527 PMCID: PMC9099135 DOI: 10.1002/ctm2.810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 12/04/2022] Open
Abstract
Background The risk of esophageal adenocarcinoma (EAC) is associated with gastro‐esophageal reflux disease (GERD) and obesity. Lipid metabolism‐targeted therapies decrease the risk of progressing from Barrett's esophagus (BE) to EAC, but the precise lipid metabolic changes and their roles in genotoxicity during EAC development are yet to be established. Methods Esophageal biopsies from the normal epithelium (NE), BE, and EAC, were analyzed using concurrent lipidomics and proteomics (n = 30) followed by orthogonal validation on independent samples using RNAseq transcriptomics (n = 22) and immunohistochemistry (IHC, n = 80). The EAC cell line FLO‐1 was treated with FADS2 selective inhibitor SC26196, and/or bile acid cocktail, followed by immunofluorescence staining for γH2AX. Results Metabolism‐focused Reactome analysis of the proteomics data revealed enrichment of fatty acid metabolism, ketone body metabolism, and biosynthesis of specialized pro‐resolving mediators in EAC pathogenesis. Lipidomics revealed progressive alterations (NE‐BE‐EAC) in glycerophospholipid synthesis with decreasing triglycerides and increasing phosphatidylcholine and phosphatidylethanolamine, and sphingolipid synthesis with decreasing dihydroceramide and increasing ceramides. Furthermore, a progressive increase in lipids with C20 fatty acids and polyunsaturated lipids with ≥4 double bonds were also observed. Integration with transcriptome data identified candidate enzymes for IHC validation: Δ4‐Desaturase, Sphingolipid 1 (DEGS1) which desaturates dihydroceramide to ceramide, and Δ5 and Δ6‐Desaturases (fatty acid desaturases, FADS1 and FADS2), responsible for polyunsaturation. All three enzymes showed significant increases from BE through dysplasia to EAC, but transcript levels of DEGS1 were decreased suggesting post‐translational regulation. Finally, the FADS2 selective inhibitor SC26196 significantly reduced polyunsaturated lipids with three and four double bonds and reduced bile acid‐induced DNA double‐strand breaks in FLO‐1 cells in vitro. Conclusions Integrated multiomics revealed sphingolipid and phospholipid metabolism rewiring during EAC development. FADS2 inhibition and reduction of the high polyunsaturated lipids effectively protected EAC cells from bile acid‐induced DNA damage in vitro, potentially through reduced lipid peroxidation.
Collapse
Affiliation(s)
- Jeffrey Molendijk
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia.,Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Cathryn M Kolka
- Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Henry Cairns
- Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Sandra Brosda
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia
| | - Ahmed Mohamed
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia.,Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Alok K Shah
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia.,Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | | | - Mark P Hodson
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia
| | - Thomas Hennessy
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia.,Agilent Technologies, Mulgrave, Australia
| | - Guanghao Liu
- Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Thomas Stoll
- Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Renee S Richards
- Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Michael Gartside
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia
| | - Kalpana Patel
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia
| | - Nicholas J Clemons
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Wayne A Phillips
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Andrew Barbour
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia
| | - Johan A Westerhuis
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Michelle M Hill
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia.,Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| |
Collapse
|
22
|
Parnova RG. Critical Role of Endothelial Lysophosphatidylcholine Transporter Mfsd2a in Maintaining Blood–Brain Barrier Integrity and Delivering Omega 3 PUFA to the Brain. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Newell M, Goruk S, Schueler J, Mazurak V, Postovit LM, Field CJ. Docosahexaenoic acid enrichment of tumor phospholipid membranes increases tumor necroptosis in mice bearing triple negative breast cancer patient-derived xenografts. J Nutr Biochem 2022; 107:109018. [PMID: 35489658 DOI: 10.1016/j.jnutbio.2022.109018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 10/04/2021] [Accepted: 03/18/2022] [Indexed: 11/24/2022]
Abstract
Docosahexaenoic acid (DHA) reduces breast cancer tumor growth in preclinical models. To better understand how DHA amplifies the actions of docetaxel (TXT) chemotherapy, we examined the effects of two doses of dietary DHA on tumor size, membrane DHA content and necroptosis using a drug resistant triple negative breast cancer (TNBC) patient derived xenograft (PDX) model. Female NSG mice bearing TNBC PDXs were randomized to one of three nutritionally complete diets (20% w/w fat): control (0% DHA), high DHA (3.8% HDHA), or low DHA (1.6% LDHA) with or without intraperitoneal injections of 5 mg/kg TXT, twice weekly for 6 weeks (n=8 per group). Tumors from mice fed either HDHA+TXT or LDHA+TXT were similar in size to each other, but were 36% and 32% smaller than tumors from mice fed control+TXT, respectively (P<0.05). A dose effect of DHA incorporation was observed in plasma total phospholipids and in phosphatidylethanolamine and phosphatidylinositol. Both doses of DHA resulted in similarly increased necrotic tissue and decreased NFκB protein expression compared to control tumors, however only the HDHA+TXT had increased expression of necroptosis related proteins: RIPK1, RIPK3 and MLKL (P<0.05). Increased MLKL was observed in the lipid raft portion of HDHA+TXT tumor extracts. This work confirms the efficacy of a combination therapy consisting of DHA supplementation and TXT chemotherapy using two doses of DHA as indicated by reduced tumor growth in a TNBC PDX model. Moreover, the results suggest that decreased growth may occur through increased DHA incorporation into tumor phospholipid membranes and necroptosis.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Julia Schueler
- Charles River Discovery Research Services Germany, Freiburg, Germany
| | - Vera Mazurak
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R7; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1.
| |
Collapse
|
24
|
Amorim MDSDN, Batista JA, Junior FM, Fontes A, Santos-Oliveira R, Rebelo Alencar LM. New Insights into Hemolytic Anemias: Ultrastructural and Nanomechanical Investigation of Red Blood Cells Showed Early Morphological Changes. J Biomed Nanotechnol 2022; 18:405-421. [PMID: 35484760 DOI: 10.1166/jbn.2022.3267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several diseases are characterized by changes in the mechanical properties of erythrocytes. Hemolytic anemias are an example of these diseases. Among the hemolytic anemias, Sickle Cell Disease and Thalassemia are the most common, characterized by alterations in the structure of their hemoglobin. Sickle cell disease has a pathological origin in synthesizing abnormal hemoglobin, HbS. In contrast, thalassemia results in extinction or decreased synthesis of α and β hemoglobin chains. This work presents a detailed study of biophysical and ultrastructural early erythrocytes membrane alterations at the nanoscale using Atomic Force Microscopy (AFM). Cells from individuals with sickle cell anemia and thalassemia mutations were studied. The analysis methodology in the AFM was given by blood smear and exposure of the inner membrane for ghost analysis. A robust statistic was used with 65,536 force curves for each map, ten cells of each type, with three individuals for each sample group. The results showed significant differences in cell rigidity, adhesion, volume, and roughness at early morphological alterations, bringing new perspectives for understanding pathogenesis. The sickle cell trait (HbAS) results stand out. Significant alterations were observed in the membrane properties, bringing new perspectives for the knowledge of this mutation. This work presents ultrastructural and biomechanical signatures of sickle cell anemia and thalassemia genotypes, which may help determine a more accurate biophysical description and clinical prognosis for these diseases.
Collapse
Affiliation(s)
- Maria do Socorro do N Amorim
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Jerias A Batista
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Francisco Maia Junior
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoró, 59625-900, Rio Grande do Norte, Brazil
| | - Adriana Fontes
- Department of Biophysics and Radiobiology, Center for Biosciences, Federal University of Pernambuco, Recife, 52171-011, Brazil
| | - Ralph Santos-Oliveira
- Zona Oeste State University, Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, Rio de Janeiro, 23070200, Brazil
| | - Luciana M Rebelo Alencar
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| |
Collapse
|
25
|
Costa A, Rani B, Bastiaanssen TFS, Bonfiglio F, Gunnigle E, Provensi G, Rossitto M, Boehme M, Strain C, Martínez CS, Blandina P, Cryan JF, Layé S, Corradetti R, Passani MB. Diet Prevents Social Stress-Induced Maladaptive Neurobehavioural and Gut Microbiota Changes in a Histamine-Dependent Manner. Int J Mol Sci 2022; 23:862. [PMID: 35055048 PMCID: PMC8775792 DOI: 10.3390/ijms23020862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Exposure to repeated social stress may cause maladaptive emotional reactions that can be reduced by healthy nutritional supplementation. Histaminergic neurotransmission has a central role in orchestrating specific behavioural responses depending on the homeostatic state of a subject, but it remains to be established if it participates in the protective effects against the insults of chronic stress afforded by a healthy diet. By using C57BL/6J male mice that do not synthesize histamine (Hdc-/-) and their wild type (Hdc+/+) congeners we evaluated if the histaminergic system participates in the protective action of a diet enriched with polyunsaturated fatty acids and vitamin A on the deleterious effect of chronic stress. Behavioural tests across domains relevant to cognition and anxiety were performed. Hippocampal synaptic plasticity, cytokine expression, hippocampal fatty acids, oxylipins and microbiota composition were also assessed. Chronic stress induced social avoidance, poor recognition memory, affected hippocampal long-term potentiation, changed the microbiota profile, brain cytokines, fatty acid and oxylipins composition of both Hdc-/- and Hdc+/+ mice. Dietary enrichment counteracted stress-induced deficits only in Hdc+/+ mice as histamine deficiency prevented almost all the diet-related beneficial effects. Interpretation: Our results reveal a previously unexplored and novel role for brain histamine as a mediator of many favorable effects of the enriched diet. These data present long-reaching perspectives in the field of nutritional neuropsychopharmacology.
Collapse
Affiliation(s)
- Alessia Costa
- Dipartimento di Scienze della Salute, Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy; (A.C.); (B.R.)
| | - Barbara Rani
- Dipartimento di Scienze della Salute, Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy; (A.C.); (B.R.)
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (T.F.S.B.); (E.G.); (M.B.); (C.S.); (C.S.M.); (J.F.C.)
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20 Cork, Ireland
| | - Francesco Bonfiglio
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy; (F.B.); (G.P.); (P.B.)
| | - Eoin Gunnigle
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (T.F.S.B.); (E.G.); (M.B.); (C.S.); (C.S.M.); (J.F.C.)
| | - Gustavo Provensi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy; (F.B.); (G.P.); (P.B.)
| | - Moira Rossitto
- Laboratoire NutriNeuro, UMR INRAE, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.R.); (S.L.)
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (T.F.S.B.); (E.G.); (M.B.); (C.S.); (C.S.M.); (J.F.C.)
| | - Conall Strain
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (T.F.S.B.); (E.G.); (M.B.); (C.S.); (C.S.M.); (J.F.C.)
| | - Clara S. Martínez
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (T.F.S.B.); (E.G.); (M.B.); (C.S.); (C.S.M.); (J.F.C.)
| | - Patrizio Blandina
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy; (F.B.); (G.P.); (P.B.)
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (T.F.S.B.); (E.G.); (M.B.); (C.S.); (C.S.M.); (J.F.C.)
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20 Cork, Ireland
| | - Sophie Layé
- Laboratoire NutriNeuro, UMR INRAE, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.R.); (S.L.)
| | - Renato Corradetti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy; (F.B.); (G.P.); (P.B.)
| | - Maria Beatrice Passani
- Dipartimento di Scienze della Salute, Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy; (A.C.); (B.R.)
| |
Collapse
|
26
|
Canner SW, Feller SE, Wassall SR. Molecular Organization of a Raft-like Domain in a Polyunsaturated Phospholipid Bilayer: A Supervised Machine Learning Analysis of Molecular Dynamics Simulations. J Phys Chem B 2021; 125:13158-13167. [PMID: 34812629 DOI: 10.1021/acs.jpcb.1c06511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Numerous health benefits are associated with omega-3 polyunsaturated fatty acids (n-3 PUFA) consumed in fish oils. An understanding of the mechanism remains elusive. The plasma membrane as a site of action is the focus in this study. With large-scale all-atom MD simulations run on a model membrane (1050 lipid molecules), we observed the evolution over time (6 μs) of a circular (raft-like) domain composed of N-palmitoylsphingomyelin (PSM) and cholesterol embedded into a surrounding (non-raft) patch composed of polyunsaturated 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) (1:1:1 mol). A supervised machine learning algorithm was developed to characterize the migration of each lipid based on molecular conformation and the local environment. PDPC molecules were seen to infiltrate the ordered raft-like domain in a small amount, while a small concentration of PSM and cholesterol molecules was seen to migrate into the disordered non-raft region. Enclosing the raft-like domain, a narrow (∼2 nm in width) interfacial zone composed of PDPC, PSM, and cholesterol that buffers the substantial difference in order (ΔSCD ≈ 0.12) between raft-like and non-raft environments was seen to form. Our results suggest that n-3 PUFA regulate the architecture of lipid rafts enriched in sphingolipids and cholesterol with a minimal effect on order within their interior in membranes.
Collapse
Affiliation(s)
- Samuel W Canner
- Department of Physics, IUPUI, Indianapolis, Indiana 46202-3273, United States.,Department of Computer and Information Science, IUPUI, Indianapolis, Indiana 46202-5132, United States
| | - Scott E Feller
- Department of Chemistry, Wabash College, Crawfordsville, Indiana 47933, United States
| | - Stephen R Wassall
- Department of Physics, IUPUI, Indianapolis, Indiana 46202-3273, United States
| |
Collapse
|
27
|
Bhullar AS, Rivas-Serna IM, Anoveros-Barrera A, Dunichand-Hoedl A, Bigam D, Khadaroo RG, McMullen T, Bathe O, Putman CT, Baracos V, Clandinin MT, Mazurak VC. Depletion of essential fatty acids in muscle is associated with shorter survival of cancer patients undergoing surgery-preliminary report. Sci Rep 2021; 11:23006. [PMID: 34836998 PMCID: PMC8626431 DOI: 10.1038/s41598-021-02269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Emerging studies are reporting associations between skeletal muscle abnormalities and survival in cancer patients. Cancer prognosis is associated with depletion of essential fatty acids in erythrocytes and plasma in humans. However the relationship between skeletal muscle membrane fatty acid composition and survival is unknown. This study investigates the relationship between fatty acid content of phospholipids in skeletal muscle and survival in cancer patients. Rectus abdominis biopsies were collected during cancer surgery from 35 patients diagnosed with cancer. Thin-layer and gas chromatography were used for quantification of phospholipid fatty acids. Cutpoints for survival were defined using optimal stratification. Median survival was between 450 and 500 days when patients had arachidonic acid (AA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in muscle phospholipid below the cut-point compared to 720-800 days for patients above. Cox regression analysis revealed that low amounts of AA, EPA and DHA are risk factors for death. The risk of death remained significant for AA [HR 3.5 (1.11-10.87), p = 0.03], EPA [HR 3.92 (1.1-14.0), p = 0.04] and DHA [HR 4.08 (1.1-14.6), p = 0.03] when adjusted for sex. Lower amounts of essential fatty acids in skeletal muscle membrane is a predictor of survival in cancer patients. These results warrant investigation to restore bioactive fatty acids in people with cancer.
Collapse
Affiliation(s)
- Amritpal S Bhullar
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada
| | - Irma Magaly Rivas-Serna
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada
| | - Ana Anoveros-Barrera
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada
| | - Abha Dunichand-Hoedl
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada
| | - David Bigam
- Department of Surgery, University of Alberta, Edmonton, Canada
| | | | - Todd McMullen
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Oliver Bathe
- Departments of Surgery and Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Canada
| | - Charles T Putman
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Vickie Baracos
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Michael T Clandinin
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Vera C Mazurak
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada.
| |
Collapse
|
28
|
Fletcher P, Hamilton RF, Rhoderick JF, Postma B, Buford M, Pestka JJ, Holian A. Dietary Docosahexaenoic Acid as a Potential Treatment for Semi-acute and Chronic Particle-Induced Pulmonary Inflammation in Balb/c Mice. Inflammation 2021; 45:677-694. [PMID: 34655011 DOI: 10.1007/s10753-021-01576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Acute and chronic inflammation are vital contributing factors to pulmonary diseases which can be triggered by exposure to occupational and man-made particles; however, there are no established treatments. One potential treatment shown to have anti-inflammatory capabilities is the dietary supplement docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid found in fish oil. DHA's anti-inflammatory mechanisms are unclear for particle-induced inflammation; therefore, this study evaluated DHA as a prophylactic treatment for semi-acute and chronic particle-induced inflammation in vivo. Balb/c mice were fed a control or 1% DHA diet and exposed to dispersion media, an inflammatory multi-walled carbon nanotube (MWCNT), or crystalline silica (SiO2) either once (semi-acute) or once a week for 4 weeks (chronic). The hypothesis was that DHA will decrease pulmonary inflammatory markers in response to particle-induced inflammation. Results indicated that DHA had a trending anti-inflammatory effect in mice exposed to MWCNT. There was a general decrease in inflammatory signals within the lung lavage fluid and upregulation of M2c macrophage gene expression in the spleen tissue. In contrast, mice exposed to SiO2 while on the DHA diet significantly increased most inflammatory markers. However, DHA stabilized the phagolysosomal membrane upon prolonged treatment. This indicated that DHA treatment may depend upon certain inflammatory particle exposures as well as the length of the exposure.
Collapse
Affiliation(s)
- Paige Fletcher
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA.
| | - Raymond F Hamilton
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Joseph F Rhoderick
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Britten Postma
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Mary Buford
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - James J Pestka
- Department of Food Science and Human Nutrition, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
29
|
Fabian CJ, Befort CA, Phillips TA, Nydegger JL, Kreutzjans AL, Powers KR, Metheny T, Klemp JR, Carlson SE, Sullivan DK, Zalles CM, Giles ED, Hursting SD, Hu J, Kimler BF. Change in Blood and Benign Breast Biomarkers in Women Undergoing a Weight-Loss Intervention Randomized to High-Dose ω-3 Fatty Acids versus Placebo. Cancer Prev Res (Phila) 2021; 14:893-904. [PMID: 34244155 DOI: 10.1158/1940-6207.capr-20-0656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/04/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
The inflammation-resolving and insulin-sensitizing properties of eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids have potential to augment effects of weight loss on breast cancer risk. In a feasibility study, 46 peri/postmenopausal women at increased risk for breast cancer with a body mass index (BMI) of 28 kg/m2 or greater were randomized to 3.25 g/day combined EPA and DHA (ω-3-FA) or placebo concomitantly with initiation of a weight-loss intervention. Forty-five women started the intervention. Study discontinuation for women randomized to ω-3-FA and initiating the weight-loss intervention was 9% at 6 months and thus satisfied our main endpoint, which was feasibility. Between baseline and 6 months significant change (P < 0.05) was observed in 12 of 25 serum metabolic markers associated with breast cancer risk for women randomized to ω-3-FA, but only four for those randomized to placebo. Weight loss (median of 10% for trial initiators and 12% for the 42 completing 6 months) had a significant impact on biomarker modulation. Median loss was similar for placebo (-11%) and ω-3-FA (-13%). No significant change between ω-3-FA and placebo was observed for individual biomarkers, likely due to sample size and effect of weight loss. Women randomized to ω-3-FA exhibiting more than 10% weight loss at 6 months showed greatest biomarker improvement including 6- and 12-month serum adiponectin, insulin, omentin, and C-reactive protein (CRP), and 12-month tissue adiponectin. Given the importance of a favorable adipokine profile in countering the prooncogenic effects of obesity, further evaluation of high-dose ω-3-FA during a weight-loss intervention in obese high-risk women should be considered. PREVENTION RELEVANCE: This study examines biomarkers of response that may be modulated by omega-3 fatty acids when combined with a weight-loss intervention. While focused on obese, postmenopausal women at high risk for development of breast cancer, the findings are applicable to other cancers studied in clinical prevention trials.
Collapse
Affiliation(s)
- Carol J Fabian
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.
| | - Christie A Befort
- Department of Population Health, University of Kansas Medical Center, Kansas City, Kansas
| | - Teresa A Phillips
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jennifer L Nydegger
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Amy L Kreutzjans
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Kandy R Powers
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Trina Metheny
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jennifer R Klemp
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas
| | - Debra K Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas
| | - Carola M Zalles
- Department of Pathology, Boca Raton Regional Hospital, Boca Raton, Florida
| | - Erin D Giles
- Department of Nutrition, Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - Stephen D Hursting
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jinxiang Hu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
30
|
Mukerjee S, Saeedan AS, Ansari MN, Singh M. Polyunsaturated Fatty Acids Mediated Regulation of Membrane Biochemistry and Tumor Cell Membrane Integrity. MEMBRANES 2021; 11:479. [PMID: 34203433 PMCID: PMC8304949 DOI: 10.3390/membranes11070479] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Particular dramatic macromolecule proteins are responsible for various cellular events in our body system. Lipids have recently recognized a lot more attention of scientists for understanding the relationship between lipid and cellular function and human health However, a biological membrane is formed with a lipid bilayer, which is called a P-L-P design. Our body system is balanced through various communicative signaling pathways derived from biological membrane proteins and lipids. In the case of any fatal disease such as cancer, the biological membrane compositions are altered. To repair the biological membrane composition and prevent cancer, dietary fatty acids, such as omega-3 polyunsaturated fatty acids, are essential in human health but are not directly synthesized in our body system. In this review, we will discuss the alteration of the biological membrane composition in breast cancer. We will highlight the role of dietary fatty acids in altering cellular composition in the P-L-P bilayer. We will also address the importance of omega-3 polyunsaturated fatty acids to regulate the membrane fluidity of cancer cells.
Collapse
Affiliation(s)
- Souvik Mukerjee
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India;
| | - Abdulaziz S. Saeedan
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohd. Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
31
|
Mongan D, Healy C, Jones HJ, Zammit S, Cannon M, Cotter DR. Plasma polyunsaturated fatty acids and mental disorders in adolescence and early adulthood: cross-sectional and longitudinal associations in a general population cohort. Transl Psychiatry 2021; 11:321. [PMID: 34059620 PMCID: PMC8167090 DOI: 10.1038/s41398-021-01425-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) may be pertinent to the development of mental disorders, for example via modulation of inflammation and synaptogenesis. We wished to examine cross-sectional and longitudinal associations between PUFAs and mental disorders in a large cohort of young people. Participants in the Avon Longitudinal Study of Parents and Children were interviewed and provided blood samples at two sampling periods when approximately 17 and 24 years old. Plasma PUFA measures (total omega-6 [n-6], total omega-3 [n-3], n-6:n-3 ratio and docosahexaenoic acid [DHA] percentage of total fatty acids) were assessed using nuclear magnetic resonance spectroscopy. Cross-sectional and longitudinal associations between standardised PUFA measures and three mental disorders (psychotic disorder, moderate/severe depressive disorder and generalised anxiety disorder [GAD]) were measured by logistic regression, adjusting for age, sex, body mass index and cigarette smoking. There was little evidence of cross-sectional associations between PUFA measures and mental disorders at age 17. At age 24, the n-6:n-3 ratio was positively associated with psychotic disorder, depressive disorder and GAD, while DHA was inversely associated with psychotic disorder. In longitudinal analyses, there was evidence of an inverse association between DHA at age 17 and incident psychotic disorder at age 24 (adjusted odds ratio 0.44, 95% confidence interval 0.22-0.87) with little such evidence for depressive disorder or GAD. There was little evidence for associations between change in PUFA measures from 17 to 24 years and incident mental disorders at 24 years. These findings provide support for associations between PUFAs and mental disorders in early adulthood, and in particular, for DHA in adolescence in relation to prevention of psychosis.
Collapse
Affiliation(s)
- David Mongan
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Colm Healy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hannah J Jones
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Stan Zammit
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, University of Bristol, Bristol, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
32
|
Fletcher P, Hamilton RF, Rhoderick JF, Postma B, Buford M, Pestka JJ, Holian A. Therapeutic treatment of dietary docosahexaenoic acid for particle-induced pulmonary inflammation in Balb/c mice. Inflamm Res 2021; 70:359-373. [PMID: 33566171 PMCID: PMC8127607 DOI: 10.1007/s00011-021-01443-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE AND DESIGN The omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has been reported to suppress inflammation. Pulmonary inflammation can be directly linked to exposure of various occupational and man-made particles leading to pulmonary diseases. Therapeutic treatments are lacking for particle-induced pulmonary inflammation. These studies evaluated DHA as a therapeutic treatment for semi-acute and chronic particle-induced pulmonary inflammation. METHODS Balb/c mice were oropharyngeal instilled with hydrophobic multi-walled carbon nanotube (MWCNT) or hydrophilic crystalline silica (SiO2) either as one instillation (semi-acute) or once a week for 4 weeks (chronic). One week later, the mice were placed on either a control or 1% DHA-containing diet for 3 weeks (semi-acute) or 12 weeks (chronic). Mice were assessed for inflammatory signaling within the lung lavage fluid, impact on phagolysosomal membrane permeability, shifts of macrophage phenotype gene expression (M1, M2a, M2b, and M2c), and pulmonary histopathology. RESULTS DHA increased pulmonary inflammatory markers and lung pathology when mice were exposed to SiO2. There were trending decreases of inflammatory markers for MWCNT-exposed mice with DHA treatment, however, mostly not statistically significant. CONCLUSION The anti-inflammatory benefits of DHA treatment depend upon the type of inflammatory particle, magnitude of inflammation, and duration of treatment.
Collapse
Affiliation(s)
- Paige Fletcher
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA.
| | - Raymond F Hamilton
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Joseph F Rhoderick
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Britten Postma
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Mary Buford
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - James J Pestka
- Department of Food Science and Human Nutrition, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| |
Collapse
|
33
|
Lipoxygenase catalyzed metabolites derived from docosahexaenoic acid are promising antitumor agents against breast cancer. Sci Rep 2021; 11:410. [PMID: 33431978 PMCID: PMC7801725 DOI: 10.1038/s41598-020-79716-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022] Open
Abstract
Docosahexaenoic acid (DHA) is known to inhibit breast cancer in the rat. Here we investigated whether DHA itself or select metabolites can account for its antitumor action. We focused on metabolites derived from the lipoxygenase (LOX) pathway since we previously showed that they were superior anti-proliferating agents compared to DHA; 4-OXO-DHA was the most potent. A lipidomics approach detected several LOX-metabolites in plasma and the mammary gland in rats fed DHA; we also identified for the first time, 4-OXO-DHA in rat plasma. In a reporter assay, 4-OXO-DHA and 4-HDHA were more effective activators of PPARɣ than DHA. In breast cancer cell lines, 4-OXO-DHA induced PPARɣ and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) but inhibited the activity of NF-κB and suppressed PI3K and mTOR signaling. Because of the structural characteristics of 4-OXO-DHA (Michael acceptor), not shared by any of the other hydroxylated-DHA, we used MS and showed that it can covalently modify the cysteine residue of NF-κB. We have also shown that the chemopreventive effect of DHA is associated with significant reduction of PGE2 levels, in both rat mammary tumors induced by MNU and non-involved mammary tissues. Collectively, our results indicate that 4-OXO-DHA is the metabolite of choice in future chemoprevention studies.
Collapse
|
34
|
Jayathilake AG, Veale MF, Luwor RB, Nurgali K, Su XQ. Krill oil extract inhibits the migration of human colorectal cancer cells and down-regulates EGFR signalling and PD-L1 expression. BMC Complement Med Ther 2020; 20:372. [PMID: 33287803 PMCID: PMC7720407 DOI: 10.1186/s12906-020-03160-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The currently available treatments for colorectal cancer (CRC) are often associated with serious side-effects. Therefore, the development of a novel nutraceutical agent may provide an alternative complementary therapy for CRC. Overexpression of the epidermal growth factor receptor (EGFR) associates with a range of cancers while downregulation of EGFR signalling can inhibit cancer growth. Our previous studies have shown that the free fatty acid extract (FFAE) of krill oil exhibits anti-proliferative and pro-apoptotic properties. This study determines the effects of krill oil extract on the migration of human CRC cells, and its potential role in modulating EGFR signalling pathway and the expression of programmed death ligand 1 (PD-L1). METHODS Human CRC cells, DLD-1 and HT-29 were treated with FFAE of KO at 0.03 and 0.12 μL/100 μL for 8 or 24 h. Cell migration was determined by Boyden chamber migration assay. The expression of EGFR, phosphorylated EGFR (pEGFR), protein kinase B (AKT), phosphorylated AKT (pAKT), extracellular signal regulated kinase (ERK1/2), phosphorylated ERK1/2 (pERK1/2) as well as PD-L1 were assessed by western blotting and immunohistochemistry. RESULTS The FFAE of krill oil significantly inhibited cell migration compared to ethanol-treated (vehicle control) cells (P < 0.01 to P < 0.001). At the molecular level, krill oil extract reduced the expression of EGFR, pEGFR (P < 0.001 for both) and their downstream signalling, pERK1/2 and pAKT (P < 0.01 to P < 0.001) without altering total ERK 1/2 and AKT levels. In addition, the expression of PD-L1 was reduced by 67 to 72% (P < 0.001) following the treatment with krill oil extract. CONCLUSION This study has demonstrated that krill oil may be a potential therapeutic/adjunctive agent for CRC attributed to its anti-migratory effects.. The potential anti-cancer properties of krill oil are likely to be associated with the downregulation of EGFR, pEGFR and their downstream pERK/ERK1/2 and pAKT/AKT signalling pathways along with the downregulation of PD-L1.
Collapse
Affiliation(s)
- Abilasha G. Jayathilake
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, Vic 8001 Australia
| | - Margaret F. Veale
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, Vic 8001 Australia
| | - Rodney Brain Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, Vic 8001 Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Muscular Skeletal Science (AIMSS), Melbourne, Australia
| | - Xiao Q. Su
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, Vic 8001 Australia
| |
Collapse
|
35
|
Jalili M, Hekmatdoost A. Dietary ω-3 fatty acids and their influence on inflammation via Toll-like receptor pathways. Nutrition 2020; 85:111070. [PMID: 33545546 DOI: 10.1016/j.nut.2020.111070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022]
Abstract
Dietary intake of long-chain, highly unsaturated ω-3 fatty acids (FAs) is considered indispensable for humans. The ω-3 FAs have been known to be anti-inflammatory and immunomodulatory dietary factors; however, the modes of action on pathogen recognition receptors (PRRs) and downstream signaling pathways have not been fully elucidated. Dietary sources contain various amounts of ω-3 long-chain fatty acids (LCFAs) of different lengths and the association between intake of these polyunsaturated fatty acids (PUFAs) with underlying mechanisms of various immune-related disorders can be of great interest. The potential anti-inflammatory role for ω-3 LCFAs can be explained by modification of lipid rafts, modulation of inflammatory mediators such as cytokines and PRRs. Toll-like receptors (TLRs) are a group of PRRs that play an important role in the recognition of bacterial infections and ω-3 FAs have been implicated in the modulation of downstream signaling of TLR-4, an important receptor for recognition of gram-negative bacteria. The ω-3 FAs docosahexaenoic acid and eicosapentaenoic acid have been investigated in vivo and in vitro for their effects on the nuclear factor-κB activation pathway. Identification of the effects of ω-3 FAs on other key molecular factors like prostaglandins and leukotrienes and their signals may help the recognition and development of medicines to suppress the main mediators and turn on the expression of anti-inflammatory cytokines and nuclear receptors.
Collapse
Affiliation(s)
- Mahsa Jalili
- Cell, Molecular Biology Group, Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Azita Hekmatdoost
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, National Nutrition and Food Technology Research Institute, Tehran, Iran
| |
Collapse
|
36
|
Modulatory role of dietary polyunsaturated fatty acids in Nrf2-mediated redox homeostasis. Prog Lipid Res 2020; 80:101066. [DOI: 10.1016/j.plipres.2020.101066] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
|
37
|
Kinnun JJ, Bolmatov D, Lavrentovich MO, Katsaras J. Lateral heterogeneity and domain formation in cellular membranes. Chem Phys Lipids 2020; 232:104976. [PMID: 32946808 PMCID: PMC7491465 DOI: 10.1016/j.chemphyslip.2020.104976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
As early as the development of the fluid mosaic model for cellular membranes, researchers began observing the telltale signs of lateral heterogeneity. Over the decades this has led to the development of the lipid raft hypothesis and the ensuing controversy that has unfolded, as a result. Here, we review the physical concepts behind domain formation in lipid membranes, both of their structural and dynamic origins. This, then leads into a discussion of coarse-grained, phenomenological approaches that describe the wide range of phases associated with lipid lateral heterogeneity. We use these physical concepts to describe the interaction between raft-lipid species, such as long-chain saturated lipids, sphingomyelin, and cholesterol, and non-raft forming lipids, such as those with short acyl chains or unsaturated fatty acids. While debate has persisted on the biological relevance of lipid domains, recent research, described here, continues to identify biological roles for rafts and new experimental approaches have revealed the existence of lipid domains in living systems. Given the recent progress on both the biological and structural aspects of raft formation, the research area of membrane lateral heterogeneity will not only expand, but will continue to produce exciting results.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| | - Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - Maxim O Lavrentovich
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States; Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
38
|
Preta G. New Insights Into Targeting Membrane Lipids for Cancer Therapy. Front Cell Dev Biol 2020; 8:571237. [PMID: 32984352 PMCID: PMC7492565 DOI: 10.3389/fcell.2020.571237] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Modulation of membrane lipid composition and organization is currently developing as an effective therapeutic strategy against a wide range of diseases, including cancer. This field, known as membrane-lipid therapy, has risen from new discoveries on the complex organization of lipids and between lipids and proteins in the plasma membranes. Membrane microdomains present in the membrane of all eukaryotic cells, known as lipid rafts, have been recognized as an important concentrating platform for protein receptors involved in the regulation of intracellular signaling, apoptosis, redox balance and immune response. The difference in lipid composition between the cellular membranes of healthy cells and tumor cells allows for the development of novel therapies based on targeting membrane lipids in cancer cells to increase sensitivity to chemotherapeutic agents and consequently defeat multidrug resistance. In the current manuscript strategies based on influencing cholesterol/sphingolipids content will be presented together with innovative ones, more focused in changing biophysical properties of the membrane bilayer without affecting the composition of its constituents.
Collapse
Affiliation(s)
- Giulio Preta
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
39
|
Wawrzyniak P, Noureddine N, Wawrzyniak M, Lucchinetti E, Krämer SD, Rogler G, Zaugg M, Hersberger M. Nutritional Lipids and Mucosal Inflammation. Mol Nutr Food Res 2020; 65:e1901269. [PMID: 32780927 DOI: 10.1002/mnfr.201901269] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/24/2020] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammation in the intestine. Given their role in regulation of inflammation, long-chain n-3 polyunsaturated fatty acids (PUFAs) represent a potential supplementary therapeutic approach to current drug regimens used for IBD. Mechanistically, there is ample evidence for an anti-inflammatory and pro-resolution effect of long-chain n-3 PUFAs after they incorporate into cell membrane phospholipids. They disrupt membrane rafts and when released from the membrane suppress inflammatory signaling by activating PPAR-γ and free fatty acid receptor 4; furthermore, they shift the lipid mediator profile from pro-inflammatory eicosanoids to specialized pro-resolving mediators. The allocation of long-chain n-3 PUFAs also leads to a higher microbiome diversity in the gut, increases short-chain fatty acid-producing bacteria, and improves intestinal barrier function by sealing epithelial tight junctions. In line with these mechanistic studies, most epidemiological studies support a beneficial effect of long-chain n-3 PUFAs intake on reducing the incidence of IBD. However, the results from intervention trials on the prevention of relapse in IBD patients show no or only a marginal effect of long-chain n-3 PUFAs supplementation. In light of the current literature, international recommendations are supported that adequate diet-derived n-3 PUFAs might be beneficial in maintaining remission in IBD patients.
Collapse
Affiliation(s)
- Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, 8032, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, 8032, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, 8032, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, 8057, Switzerland
| | - Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, 8091, Switzerland
| | - Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, 8091, Switzerland
| | - Michael Zaugg
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, T6G 2R3, Canada.,Department of Pharmacology, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, 8032, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, 8032, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, 8057, Switzerland
| |
Collapse
|
40
|
McGee EE, Kim CH, Wang M, Spiegelman D, Stover DG, Heng YJ, Collins LC, Baker GM, Farvid MS, Schedin P, Jindal S, Tamimi RM, Eliassen AH. Erythrocyte membrane fatty acids and breast cancer risk by tumor tissue expression of immuno-inflammatory markers and fatty acid synthase: a nested case-control study. Breast Cancer Res 2020; 22:78. [PMID: 32698885 PMCID: PMC7374956 DOI: 10.1186/s13058-020-01316-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/08/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Previous studies of fatty acids and breast cancer risk have shown mixed results, which may be due in part to tumor heterogeneity. Prior research has also illustrated an important role of specific fatty acids in immune regulation, T cell function, and inflammation, indicating that the effects of specific fatty acids on breast cancer risk may vary by tumor expression of immuno-inflammatory markers. We therefore aimed to evaluate the relationships between prediagnostic erythrocyte membrane fatty acids and breast cancer risk by tumor tissue expression of immuno-inflammatory markers (CD4, CD8, CD20, CD163, COX-2) and fatty acid synthase (FAS). METHODS We conducted a matched case-control study nested within the Nurses' Health Study II (n = 235 cases and 235 controls). Blood samples were collected from 1996 to 1999. Tumor tissue blocks were collected for cases diagnosed after blood collection and through 2006. Unconditional nominal polytomous logistic regression adjusted for matching factors and potential confounders was used to assess whether associations between fatty acids and breast cancer risk varied by tumor expression subtype, ascertained via immunohistochemistry. Odds ratios (OR) and 95% confidence intervals (CI) were estimated separately by tumor expression subtype using unconditional logistic regression. RESULTS Associations between fatty acids and breast cancer risk did not vary substantially by tumor CD4, CD20, CD163, or COX-2. However, n-3 polyunsaturated fatty acids (PUFAs) were inversely associated with CD8low but not CD8high cancers (CD8low ORT3 vs T1 = 0.45, 95% CI 0.23-0.87, Ptrend = 0.02; CD8high ORT3 vs T1 = 1.19, 95% CI 0.62-2.26, Ptrend = 0.62; Phet = 0.04). n-6 PUFAs were suggestively inversely associated with CD8high but not CD8low cancers (CD8high ORT3 vs T1 = 0.61, 95% CI 0.32-1.14, Ptrend = 0.11; CD8low ORT3 vs T1 = 1.63, 95% CI 0.87-3.04, Ptrend = 0.12; Phet = 0.02). Trans fatty acids were positively associated with FAShigh but not FASlow tumors (FAShigh ORT3 vs T1 = 2.94, 95% CI 1.46-5.91, Ptrend = 0.002; FASlow ORT3 vs T1 = 0.99, 95% CI 0.52-1.92, Ptrend = 0.97; Phet = 0.01). CONCLUSION Results indicate that the effects of n-3 PUFAs, n-6 PUFAs, and trans fatty acids on breast cancer risk may vary by tumor tissue expression subtypes. Findings suggest potential immuno-modulatory and FAS-mediated mechanisms.
Collapse
Affiliation(s)
- Emma E McGee
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Claire H Kim
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Molin Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Donna Spiegelman
- Center on Methods for Implementation and Prevention Science (CMIPS), Yale School of Public Health, New Haven, CT, USA.,Department of Statistics and Data Science, Yale University, New Haven, CT, USA
| | - Daniel G Stover
- Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Laura C Collins
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Gabrielle M Baker
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Maryam S Farvid
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pepper Schedin
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Sonali Jindal
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Division of Epidemiology, Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
41
|
Ediriweera MK, Moon JY, Nguyen YTK, Cho SK. 10-Gingerol Targets Lipid Rafts Associated PI3K/Akt Signaling in Radio-Resistant Triple Negative Breast Cancer Cells. Molecules 2020; 25:E3164. [PMID: 32664351 PMCID: PMC7397170 DOI: 10.3390/molecules25143164] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
10-gingerol is a major phenolic lipid found in the rhizomes of ginger (Zingiber officinale). Being amphiphilic in nature, phenolic lipids have the ability to incorporate into cell membranes and modulate membrane properties. The purpose of the present study was to evaluate the effects of 10-gingerol on lipid raft/membrane raft modulation in radio-resistant triple negative breast cancer (MDA-MB-231/IR) cells. The effects of 10-gingerol on MDA-MB-231/IR cells' proliferation, clonogenic growth, migration, and invasion were assayed using MTT, colony formation, cell migration, and invasion assays, respectively. Sucrose density gradient centrifugation was used to extract lipid rafts. Western blotting and immunofluorescence were employed to assess the effects of 10-gingerol on lipid raft/membrane raft modulation and lipid rafts-associated PI3K/Akt signaling. Cholesterol measurements were carried out using a commercially available kit. 10-gingerol suppressed the proliferation, migration, invasion, and induced apoptosis through targeting the PI3K/Akt signaling pathway in MDA-MB-231/IR cells. Moreover, 10-gingerol was found to modulate the lipid rafts of MDA-MB-231/IR cells and attenuate the key PI3K/Akt signaling components in lipid rafts. The cholesterol content of the lipid rafts and rafts-resident Akt signaling were also affected by exposure to 10-gingerol. The results of the present study highlight rafts-associated PI3K/Akt signaling as a new target of 10-gingerol in MDA-MB-231/IR cells, thus rationalizing a new rafts-mediated treatment approach for radio-resistant triple negative breast cancer cells.
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Subtropical/tropical organism gene bank, Jeju National University, Jeju 63243, Korea or (M.K.E.); (J.Y.M.)
| | - Jeong Yong Moon
- Subtropical/tropical organism gene bank, Jeju National University, Jeju 63243, Korea or (M.K.E.); (J.Y.M.)
| | - Yen Thi-Kim Nguyen
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea;
| | - Somi Kim Cho
- Subtropical/tropical organism gene bank, Jeju National University, Jeju 63243, Korea or (M.K.E.); (J.Y.M.)
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea;
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
42
|
Hsu MC, Huang YS, Ouyang WC. Beneficial effects of omega-3 fatty acid supplementation in schizophrenia: possible mechanisms. Lipids Health Dis 2020; 19:159. [PMID: 32620164 PMCID: PMC7333328 DOI: 10.1186/s12944-020-01337-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Schizophrenia is a serious long-term psychotic disorder marked by positive and negative symptoms, severe behavioral problems and cognitive function deficits. The cause of this disorder is not completely clear, but is suggested to be multifactorial, involving both inherited and environmental factors. Since human brain regulates all behaviour, studies have focused on identifying changes in neurobiology and biochemistry of brain in schizophrenia. Brain is the most lipid rich organ (approximately 50% of brain dry weight). Total brain lipids is constituted of more than 60% of phospholipids, in which docosahexaenoic acid (DHA, 22:6n-3) is the most abundant (more than 40%) polyunsaturated fatty acid (PUFA) in brain membrane phospholipids. Results from numerous studies have shown significant decreases of PUFAs, in particular, DHA in peripheral blood (plasma and erythrocyte membranes) as well as brain of schizophrenia patients at different developmental phases of the disorder. PUFA deficiency has been associated to psychotic symptoms and cognitive deficits in schizophrenia. These findings have led to a number of clinical trials examining whether dietary omega-3 fatty acid supplementation could improve the course of illness in patients with schizophrenia. Results are inconsistent. Some report beneficial whereas others show not effective. The discrepancy can be attributed to the heterogeneity of patient population. METHODS In this review, results from recent experimental and clinical studies, which focus on illustrating the role of PUFAs in the development of schizophrenia were examined. The rationale why omega-3 supplementation was beneficial on symptoms (presented by subscales of the positive and negative symptom scale (PANSS), and cognitive functions in certain patients but not others was reviewed. The potential mechanisms underlying the beneficial effects were discussed. RESULTS Omega-3 fatty acid supplementation reduced the conversion rate to psychosis and improved both positive and negative symptoms and global functions in adolescents at ultra-high risk for psychosis. Omega-3 fatty acid supplementation could also improve negative symptoms and global functions in the first-episode patients with schizophrenia, but improve mainly total or general PANSS subscales in chronic patients. Patients with low PUFA (particularly DHA) baseline in blood were more responsive to the omega-3 fatty acid intervention. CONCLUSION Omega-3 supplementation is more effective in reducing psychotic symptom severity in young adults or adolescents in the prodromal phase of schizophrenia who have low omega-3 baseline. Omega-3 supplementation was more effective in patients with low PUFA baseline. It suggests that patients with predefined lipid levels might benefit from lipid treatments, but more controlled clinical trials are warranted.
Collapse
Affiliation(s)
- Mei-Chi Hsu
- Department of Nursing, I-Shou University, No.8, Yida Road, Jiaosu Village Yanchao District, Kaohsiung, 82445 Taiwan
| | - Yung-Sheng Huang
- College of Medicine, I-Shou University, No.8, Yida Road, Jiaosu Village Yanchao District, Kaohsiung, 82445 Taiwan
| | - Wen-Chen Ouyang
- Department of Geriatric Psychiatry, Jianan Psychiatric Center, Ministry of Health and Welfare, No.539, Yuzhong Rd., Rende Dist., Tainan City, 71742 Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, No.452, Huanqiu Rd. Luzhu Dist, Kaohsiung, 82144 Taiwan
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708 Taiwan
| |
Collapse
|
43
|
Yan M, Cai WB, Hua T, Cheng Q, Ai D, Jiang HF, Zhang X. Lipidomics reveals the dynamics of lipid profile altered by omega-3 polyunsaturated fatty acid supplementation in healthy people. Clin Exp Pharmacol Physiol 2020; 47:1134-1144. [PMID: 32068900 DOI: 10.1111/1440-1681.13285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 11/27/2022]
Abstract
Glycerophospholipids (GPs) and sphingolipids (SPs) are important lipid components in the body and play biological functions. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are important nutrients, and their supplements are commonly used for preventing some diseases. However, the effect of n-3 PUFAs on the human glycerophospholipidome and sphingolipidome is unclear. We used targeted lipidomics to study the GP and SP profile of healthy individuals after supplementation with n-3 PUFAs for 3, 7, 14 and 21 days. Fuzzy c-means clustering was used to cluster the lipid species into six classes reflecting different changed-content patterns after n-3 PUFA supplementation. Among the species with significantly changed content, lysophospholipids were the most sensitive; their content started to increase on day 3. The content of phosphatidylserines increased at a later stage. The content of most of the phosphatidylcholines and alkylphosphatidylcholines decreased on day 21. A correlation network analysis of lipid species suggested that some enzymes involved in the metabolism of lysophospholipids and phosphatidylserines were regulated by n-3 PUFAs. Levels of creatine kinase-MB (CK-MB), urea, glucose, triglycerides and total bilirubin were altered by n-3 PUFA at 21 days. Correlation analysis revealed that the level of CK-MB was negatively correlated with those of species in lysophosphatidic acid, lysophosphatidylcholine, lysophosphatidylethanolamine and phosphatidylserine classes, which were increased by n-3 PUFA supplementation. With the analysis in this work, we demonstrated the regular pattern of n-3 PUFAs on GP and SP metabolism, which provides a pharmacological basis for n-3 PUFAs for clinical application.
Collapse
Affiliation(s)
- Meng Yan
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin, China
| | - Wen-Bin Cai
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin, China
| | - Tong Hua
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin, China
| | - Qian Cheng
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin, China
| | - Ding Ai
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin, China
| | - Hong-Feng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
44
|
Newell M, Patel D, Goruk S, Field CJ. Docosahexaenoic Acid Incorporation Is Not Affected by Doxorubicin Chemotherapy in either Whole Cell or Lipid Raft Phospholipids of Breast Cancer Cells in vitro and Tumor Phospholipids in vivo. Lipids 2020; 55:549-565. [PMID: 32588470 DOI: 10.1002/lipd.12252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/07/2022]
Abstract
To better understand how docosahexaenoic acid (DHA) improves the effects of doxorubicin (DOX), we examined DHA ± DOX on changes in whole cell and lipid raft phospholipids (PL) of MDA-MB-231 and MCF-7 breast cancer cells. We sought to confirm whether the relative changes in PL DHA content of MDA-MB-231 cells could be extended to PL from MDA-MB-231 tumors grown in mice fed a DHA supplemented diet ±DOX. Treatment with DHA did not change PL composition yet DOX increased the proportion of phosphatidylserine in MCF-7 cell lipid rafts by two-fold (p < 0.001). Regardless of DOX, the relative percent incorporation of DHA was higher in MDA-MB-231 cells compared to MCF-7 cells in phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine (whole cell and lipid rafts); and higher in phosphatidylethanolamine vs. phosphatidylcholine (4.4-fold in MCF-7 and 6-fold in MDA-MB-231 cells respectively). DHA treatment increased eicosapentaenoic acid and docosapentaenoic acid in MDA-MB-231 cells but not MCF-7 cells. Increased DHA content in MDA-MB-231 cells, MCF-7 cells, and MDA-MB-231 tumors in all PL moieties (except sphingomyelin) corresponded with reduced arachidonic acid (p < 0.05). Feeding mice 2.8% (w/w of fat) DHA ± DOX increased tumor necrotic regions (p < 0.05). This study established differential incorporation of DHA into whole cell and lipid rafts between human breast cancer cell lines. However, within each cell line, this incorporation was not altered by DOX confirming that DOX does not change membrane lipid composition. Furthermore, our findings indicate that membrane changes observed in vitro are translatable to in vivo changes and that DHA + DOX could contribute to the anticancer effects through increased necrosis.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Dhruvesh Patel
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
45
|
Omega-3 PUFA Responders and Non-Responders and the Prevention of Lipid Dysmetabolism and Related Diseases. Nutrients 2020; 12:nu12051363. [PMID: 32397619 PMCID: PMC7284582 DOI: 10.3390/nu12051363] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
The long-chain omega-3 polyunsaturated fatty acids (LC-omega-3 PUFAs) eicosapentaenoic acid and docosahexaenoic acid are the most popular dietary supplements recommended for the prevention/management of lipid dysmetabolisms and related diseases. However, remarkable inconsistencies exist among the outcomes of the human intervention studies in this field, which contrast with the impressive homogeneity of positive results of most of the preclinical studies. In the present review, we will firstly examine a series of factors-such as background diet composition, gut microbiota and genetic/epigenetic variants, which may lie beneath these inconsistencies. Moreover, we will discuss the recent advance in the knowledge of possible specific biomarkers (genetic-, epigenetic- and microbiota-related) that are being investigated with the goal to apply them in a personalized supplementation with omega-3 PUFAs. We will also consider the possibility of using already available parameters (Omega-3 index, Omega-6 PUFA/Omega-3 PUFA ratio) able to predict the individual responsiveness to these fatty acids and will discuss the optimal timing for their use. Finally, we will critically examine the results of those human studies that have already adopted the distinction of the subjects into omega-3 PUFA responders and non-responders and will discuss the advantage of using such an approach.
Collapse
|
46
|
Abstract
Excess adiposity is a risk factor for several cancer types. This is likely due to complex mechanisms including alterations in the lipid milieu that plays a pivotal role in multiple aspects of carcinogenesis. Here we consider the direct role of lipids in regulating well-known hallmarks of cancer. Furthermore, we suggest that obesity-associated remodelling of membranes and organelles drives cancer cell proliferation and invasion. Identification of cancer-related lipid-mediated mechanisms amongst the broad metabolic disturbances due to excess adiposity is central to the identification of novel and more efficacious prevention and intervention strategies.
Collapse
Affiliation(s)
- J Molendijk
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, 4006, Australia.
| | | | | | | |
Collapse
|
47
|
Fan R, Kim J, You M, Giraud D, Toney AM, Shin SH, Kim SY, Borkowski K, Newman JW, Chung S. α-Linolenic acid-enriched butter attenuated high fat diet-induced insulin resistance and inflammation by promoting bioconversion of n-3 PUFA and subsequent oxylipin formation. J Nutr Biochem 2020; 76:108285. [PMID: 31760228 PMCID: PMC6995772 DOI: 10.1016/j.jnutbio.2019.108285] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/01/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Abstract
α-Linolenic acid (ALA) is an essential fatty acid and the precursor for long-chain n-3 PUFA. However, biosynthesis of n-3 PUFA is limited in a Western diet likely due to an overabundance of n-6 PUFA. We hypothesized that dietary reduction of n-6/n-3 PUFA ratio is sufficient to promote the biosynthesis of long-chain n-3 PUFA, leading to an attenuation of high fat (HF) diet-induced obesity and inflammation. C57BL/6 J mice were fed a HF diet from ALA-enriched butter (n3Bu, n-6/n-3=1) in comparison with isocaloric HF diets from either conventional butter lacking both ALA and LA (Bu, n-6/n-3=6), or margarine containing a similar amount of ALA and abundant LA (Ma, n-6/n-3=6). Targeted lipidomic analyses revealed that n3Bu feeding promoted the bioconversion of long-chain n-3 PUFA and their oxygenated metabolites (oxylipins) derived from ALA and EPA. The n3Bu supplementation attenuated hepatic TG accumulation and adipose tissue inflammation, resulting in improved insulin sensitivity. Decreased inflammation by n3Bu feeding was attributed to the suppression of NF-κB activation and M1 macrophage polarization. Collectively, our work suggests that dietary reduction of the n-6/n-3 PUFA ratio, as well as total n-3 PUFA consumed, is a crucial determinant that facilitates n-3 PUFA biosynthesis and subsequent lipidomic modifications, thereby conferring metabolic benefits against obesity-induced inflammation and insulin resistance.
Collapse
Affiliation(s)
- Rong Fan
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE
| | - Judy Kim
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE
| | - Mikyoung You
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE
| | - David Giraud
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE
| | - Ashley M Toney
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE
| | - Seung-Ho Shin
- Sunseo Omega Inc, University of Nebraska Innovation Campus, Lincoln, NE
| | - So-Youn Kim
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA
| | - John W Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA; Obesity and Metabolism Research Unit, USDA-ARS-WHNRC, Davis, CA
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE.
| |
Collapse
|
48
|
Abstract
The effect of dietary fats on cardiometabolic diseases, including cardiovascular diseases and type 2 diabetes mellitus, has generated tremendous interest. Many earlier investigations focused on total fat and conventional fat classes (such as saturated and unsaturated fats) and their influence on a limited number of risk factors. However, dietary fats comprise heterogeneous molecules with diverse structures, and growing research in the past two decades supports correspondingly complex health effects of individual dietary fats. Moreover, health effects of dietary fats might be modified by additional factors, such as accompanying nutrients and food-processing methods, emphasizing the importance of the food sources. Accordingly, the rapidly increasing scientific findings on dietary fats and cardiometabolic diseases have generated debate among scientists, caused confusion for the general public and present challenges for translation into dietary advice and policies. This Review summarizes the evidence on the effects of different dietary fats and their food sources on cell function and on risk factors and clinical events of cardiometabolic diseases. The aim is not to provide an exhaustive review but rather to focus on the most important evidence from randomized controlled trials and prospective cohort studies and to highlight current areas of controversy and the most relevant future research directions for understanding how to improve the prevention and management of cardiometabolic diseases through optimization of dietary fat intake.
Collapse
|
49
|
Song M, Lee IM, Manson JE, Buring JE, Dushkes R, Gordon D, Walter J, Wu K, Chan AT, Ogino S, Fuchs CS, Meyerhardt JA, Giovannucci EL. Effect of Supplementation With Marine ω-3 Fatty Acid on Risk of Colorectal Adenomas and Serrated Polyps in the US General Population: A Prespecified Ancillary Study of a Randomized Clinical Trial. JAMA Oncol 2020; 6:108-115. [PMID: 31750855 DOI: 10.1001/jamaoncol.2019.4587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Importance Marine ω-3 fatty acid has been suggested to protect against colorectal cancer. Objective To assess the effect of daily marine ω-3 fatty acid supplementation on the risk of colorectal cancer precursors, including conventional adenomas and serrated polyps. Design, Setting, and Participants This study was a prespecified ancillary study of the placebo-controlled randomized clinical trial VITAL (Vitamin D and Omega-3 Trial). An intention-to-treat analysis was used to examine the effect of daily marine ω-3 supplements among 25 871 adults in the US general population (including 5106 African American persons) free of cancer and cardiovascular disease at enrollment. Randomization was from November 2011 to March 2014, and intervention ended as planned on December 31, 2017. Interventions Marine ω-3 fatty acid, 1 g daily (which included eicosapentaenoic acid, 460 mg, and docosahexaenoic acid, 380 mg) and vitamin D3 (2000 IU daily) supplements. Main Outcomes and Measures Risk of conventional adenomas (including tubular adenoma, tubulovillous adenoma, villous adenoma, and adenoma with high-grade dysplasia) or serrated polyps (including hyperplastic polyp, traditional serrated adenoma, and sessile serrated polyp). In a subset of participants who reported receiving a diagnosis of polyp on follow-up questionnaires, endoscopic and pathologic records were obtained to confirm the diagnosis. Odds ratios (ORs) and 95% CIs were calculated using logistic regression, after adjusting for age, sex, vitamin D treatment assignment, and use of endoscopy. Secondary analyses were performed according to polyp features and participants' characteristics. Results The demographic characteristics of participants at randomization were well balanced between the treatment and placebo groups; for example, 50.6% vs 50.5% were women, and 19.7% vs 19.8% were African American persons were included in each group. The mean (SD) age was 67.1 (7.1) years in the placebo group and 67.2 (7.1) in the ω-3 treatment group. During a median follow-up of 5.3 years (range, 3.8-6.1 years), 294 cases of conventional adenomas were documented in the ω-3 group and 301 in the control group (multivariable OR, 0.98; 95% CI, 0.83-1.15) (1:1 ratio between number of cases and number of participants). In addition, 174 cases of serrated polyps were documented in the ω-3 group and 167 in the control group (OR, 1.05; 95% CI, 0.84-1.29). Null associations were found for polyp subgroups according to size, location, multiplicity, or histology. In secondary analyses, marine ω-3 treatment appeared to be associated with lower risk of conventional adenomas among individuals with low plasma levels of ω-3 index at baseline (OR, 0.76; 95% CI, 0.57-1.02; P = .03 for interaction by ω-3 index). A beneficial association of supplementation was also noted in the African American population (OR, 0.59; 95% CI, 0.35-1.00) but not in other racial/ethnic groups (P = .11 for interaction). Conclusions and Relevance Supplementation with marine ω-3 fatty acids, 1 g per day, was not associated with reduced risk of colorectal cancer precursors. A potential benefit of this supplementation for individuals with low baseline ω-3 levels or for African American persons requires further confirmation. Trial Registration ClinicalTrials.gov identifier: NCT01169259.
Collapse
Affiliation(s)
- Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston.,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - I-Min Lee
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie E Buring
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Rimma Dushkes
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - David Gordon
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Joseph Walter
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kana Wu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston.,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, Connecticut.,Department of Medicine, Yale School of Medicine, New Haven, Connecticut.,Smilow Cancer Hospital, New Haven, Connecticut
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
50
|
Pérez-Ruiz I, Meijide S, Ferrando M, Larreategui Z, Ruiz-Larrea MB, Ruiz-Sanz JI. Ovarian stimulated cycles reduce protection of follicular fluid against free radicals. Free Radic Biol Med 2019; 145:330-335. [PMID: 31604116 DOI: 10.1016/j.freeradbiomed.2019.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022]
Abstract
Controlled ovarian hyperstimulation cycle with exogenous gonadotropins (COH) is associated with clinical complications. The aim of this work was to determine whether COH alters the physiological antioxidant status of follicular fluid in women with no reproductive dysfunction, compared to the natural cycle (NC). In this longitudinal study, forty-one women (oocyte donors) consecutively underwent NC and COH. Follicular fluid was collected at oocyte retrieval and different redox biomarkers were determined: total antioxidant activity (TAA), oxygen radical absorbance capacity (ORAC), nitric oxide, α- and γ-tocopherol, the fatty acid composition, activities of superoxide dismutase, catalase, total and Se-dependent glutathione peroxidases, and the antioxidant paraoxonase (PON) family. Results showed that TAA (1.70 ± 0.03 mM versus 1.86 ± 0.03 mM, p < 0.05), α-tocopherol (4.37 ± 0.26 μM versus 5.74 ± 0.30 μM, p < 0.05), PON1 paraoxonase (245 ± 24 nmol/min/ml versus 272 ± 27 nmol/min/ml, p < 0.05), PON1 arylesterase (87.2 ± 4.6 μmol/min/ml versus 99.3 ± 4.8 μmol/min/ml, p < 0.05), and PON3 simvastatinase (13.48 ± 0.52 nmol/min/ml versus 16.29 ± 0.72 nmol/min/ml, p < 0.001) were significantly lower in COH versus NC. Fatty acids from COH were more saturated, increasing palmitate and decreasing the n-6 and total polyunsaturated fatty acids (PUFAs). Docosahexaenoic acid also increased (p < 0.05). Results suggest that COH could lead to premature ovarian aging and provide new insights into the possible prevention of the adverse effects of ovarian hyperstimulation by directing therapeutic applications to the maintenance of the redox balance and fatty acid status, with special attention to paraoxonase proteins and docosahexaenoic acid.
Collapse
Affiliation(s)
- Irantzu Pérez-Ruiz
- Free Radicals and Oxidative Stress (FROS) Research Group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903, Barakaldo, Bizkaia, Spain
| | - Susana Meijide
- Free Radicals and Oxidative Stress (FROS) Research Group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Marcos Ferrando
- Valencian Institute of Infertility (IVI-RMA)-Bilbao, 48940, Leioa, Bizkaia, Spain
| | - Zaloa Larreategui
- Valencian Institute of Infertility (IVI-RMA)-Bilbao, 48940, Leioa, Bizkaia, Spain
| | - María-Begoña Ruiz-Larrea
- Free Radicals and Oxidative Stress (FROS) Research Group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903, Barakaldo, Bizkaia, Spain.
| | - José-Ignacio Ruiz-Sanz
- Free Radicals and Oxidative Stress (FROS) Research Group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903, Barakaldo, Bizkaia, Spain
| |
Collapse
|