1
|
Zhang L, Zhou Y, Yang Z, Jiang L, Yan X, Zhu W, Shen Y, Wang B, Li J, Song J. Lipid droplets in central nervous system and functional profiles of brain cells containing lipid droplets in various diseases. J Neuroinflammation 2025; 22:7. [PMID: 39806503 PMCID: PMC11730833 DOI: 10.1186/s12974-025-03334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders. Additionally, we also emphasize the paradoxical role of LDs in post-cerebral ischemia inflammation and explore potential underlying mechanisms, aiming to identify novel therapeutic targets for this disease.
Collapse
Affiliation(s)
- Longxiao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yunfei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zhongbo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liangchao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyang Yan
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wenkai Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yi Shen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bolong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jiaxi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Jinning Song
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Pocock J, Vasilopoulou F, Svensson E, Cosker K. Microglia and TREM2. Neuropharmacology 2024; 257:110020. [PMID: 38821351 DOI: 10.1016/j.neuropharm.2024.110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
TREM2 is a membrane receptor solely expressed on microglia in normal brain. In this review we outline recent advances in TREM2 biology and its implications for microglial function, with particular emphasis on findings from iPSC-derived microglia (iMG) expressing TREM2 loss-of-function mutations. Alterations in receptor proximal and distal signalling underlie TREM2 risk variants linked to neurodegenerative disease, principally NH-linked FTD, and late-onset AD, but emerging data suggest roles for TREM2 in PD, MS and ALS. TREM2 downstream functions include phagocytosis of myelin debris, amyloid beta peptides, and phosphatidylserine-expressing cells (resulting from damage or stress). Microglial survival, migration, DAMP signalling, inflammasome activation, and intercellular signalling including tau spreading via exosomes, as well as roles for sTREM2 in protection and as a biomarker are discussed. The role of TREM2 in metabolic homeostasis, and immunometabolic switching are discussed regarding microglial responses to damage and protection. The use of iPSC models to investigate the role of TREM2 in AD, PD, MS, ALS, and other neurodegenerative diseases could prove invaluable due to their ability to recapitulate human pathology, allowing a full understanding of TREM2 and microglial involvement in the underlying disease mechanisms and progression. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Jennifer Pocock
- Department of Neuroinflammation, And Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N1PJ, UK.
| | - Foteini Vasilopoulou
- Department of Neuroinflammation, And Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N1PJ, UK
| | - Elina Svensson
- Department of Neuroinflammation, And Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N1PJ, UK
| | - Katharina Cosker
- Department of Neuroinflammation, And Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N1PJ, UK
| |
Collapse
|
3
|
Cutugno G, Kyriakidou E, Nadjar A. Rethinking the role of microglia in obesity. Neuropharmacology 2024; 253:109951. [PMID: 38615749 DOI: 10.1016/j.neuropharm.2024.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Microglia are the macrophages of the central nervous system (CNS), implying their role in maintaining brain homeostasis. To achieve this, these cells are sensitive to a plethora of endogenous and exogenous signals, such as neuronal activity, cellular debris, hormones, and pathological patterns, among many others. More recent research suggests that microglia are highly responsive to nutrients and dietary variations. In this context, numerous studies have demonstrated their significant role in the development of obesity under calorie surfeit. Because many reviews already exist on this topic, we have chosen to present the state of our reflections on various concepts put forth in the literature, bringing a new perspective whenever possible. Our literature review focuses on studies conducted in the arcuate nucleus of the hypothalamus, a key structure in the control of food intake. Specifically, we present the recent data available on the modifications of microglial energy metabolism following the consumption of an obesogenic diet and their consequences on hypothalamic neuron activity. We also highlight the studies unraveling the mechanisms underlying obesity-related sexual dimorphism. The review concludes with a list of questions that remain to be addressed in the field to achieve a comprehensive understanding of the role of microglia in the regulation of body energy metabolism. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- G Cutugno
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - E Kyriakidou
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - A Nadjar
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
4
|
Larey AM, Spoerer TM, Daga KR, Morfin MG, Hynds HM, Carpenter J, Hines KM, Marklein RA. High throughput screening of mesenchymal stromal cell morphological response to inflammatory signals for bioreactor-based manufacturing of extracellular vesicles that modulate microglia. Bioact Mater 2024; 37:153-171. [PMID: 38549769 PMCID: PMC10972802 DOI: 10.1016/j.bioactmat.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Due to their immunomodulatory function, mesenchymal stromal cells (MSCs) are a promising therapeutic with the potential to treat neuroinflammation associated with neurodegenerative diseases. This function is mediated by secreted extracellular vesicles (MSC-EVs). Despite established safety, MSC clinical translation has been unsuccessful due to inconsistent clinical outcomes resulting from functional heterogeneity. Current approaches to mitigate functional heterogeneity include 'priming' MSCs with inflammatory signals to enhance function. However, comprehensive evaluation of priming and its effects on MSC-EV function has not been performed. Furthermore, clinical translation of MSC-EV therapies requires significant manufacturing scale-up, yet few studies have investigated the effects of priming in bioreactors. As MSC morphology has been shown to predict their immunomodulatory function, we screened MSC morphological response to an array of priming signals and evaluated MSC-EV identity and potency in response to priming in flasks and bioreactors. We identified unique priming conditions corresponding to distinct morphologies. These conditions demonstrated a range of MSC-EV preparation quality and lipidome, allowing us to discover a novel MSC-EV manufacturing condition, as well as gain insight into potential mechanisms of MSC-EV microglia modulation. Our novel screening approach and application of priming to MSC-EV bioreactor manufacturing informs refinement of larger-scale manufacturing and enhancement of MSC-EV function.
Collapse
Affiliation(s)
- Andrew M. Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Thomas M. Spoerer
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Kanupriya R. Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G. Morfin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Hannah M. Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Jana Carpenter
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Ross A. Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
Chinnathambi S, Desale SE. The crosstalk between extracellular matrix proteins and Tau. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:447-466. [PMID: 38960482 DOI: 10.1016/bs.apcsb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Alzheimer's disease is progressive neurodegenerative disease characterize by the presence of extracellular accumulation of amyloid-β plaques and intracellular deposits of neurofibrillary tangles of Tau. Apart from axonal depositions pathological aggregated Tau protein is known to secrete into extracellular spaces and propagate through seeding mechanism. Microglia, the immune cells of the brain display modest ability to internalize the extracellular Tau and degrade it through endolysosomal pathway. However, the excessive burden of pathoproteins weakens the phagocytic ability of microglia. Extracellular supplementation of omega-3 fatty acids (n-3) may regulate the phagocytosis of microglia as they mediate the anti-inflammatory polarization of microglia through membrane lipid compositions changes. The internalization of extracellular Tau in the microglia is regulated by cortical membrane-associated actin remodeling driven by interplay of actin-binding proteins. On the other hand, Tau display capability bind and interact with various actin-binding protein owing to the presence of proline-rich domain in the structure and regulate their activation. In this study, we hypothesize that internalization of Tau in the presence of omega-3 fatty acids would propagate the Tau-mediated activation of actin-binding proteins as well as extracellular matrix and in turn modulate cortical actin remodeling for phagocytosis.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Smita Eknath Desale
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| |
Collapse
|
6
|
Delpech JC, Valdearcos M, Nadjar A. Stress and Microglia: A Double-edged Relationship. ADVANCES IN NEUROBIOLOGY 2024; 37:333-342. [PMID: 39207700 DOI: 10.1007/978-3-031-55529-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are highly dynamic cells and acquire different activation states to modulate their multiple functions, which are tightly regulated by the central nervous system microenvironment in which they reside. In response to stress, that is to the appearance of non-physiological signals in their vicinity, microglia will adapt their function in order to promote a return to brain homeostasis. However, when these stress signals are chronically present, microglial response may not be adapted and lead to the establishment of a pathological state. The aim of this book chapter is to examine the substantial literature around the ability of acute and chronic stressors to affect microglial structure and function, with a special focus on psychosocial and nutritional stresses. We also discuss the molecular mechanisms known to date that explain the link between exposure to stressors and microglial activation.
Collapse
Affiliation(s)
| | - Martin Valdearcos
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Agnès Nadjar
- Neurocentre Magendie, U1215, INSERM-Université de Bordeaux, Bordeaux, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
7
|
Garcia-Segura ME, Pluchino S, Peruzzotti-Jametti L. Metabolic Control of Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:607-622. [PMID: 39207716 DOI: 10.1007/978-3-031-55529-9_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia, immune sentinels of the central nervous system (CNS), play a critical role in maintaining its health and integrity. This chapter delves into the concept of immunometabolism, exploring how microglial metabolism shapes their diverse immune functions. It examines the impact of cell metabolism on microglia during various CNS states, including homeostasis, development, aging, and inflammation. Particularly in CNS inflammation, the chapter discusses how metabolic rewiring in microglia can initiate, resolve, or perpetuate inflammatory responses. The potential of targeting microglial metabolism as a therapeutic strategy for chronic CNS disorders with prominent innate immune cell activation is also explored.
Collapse
Affiliation(s)
- Monica Emili Garcia-Segura
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
8
|
Gong L, Liang J, Xie L, Zhang Z, Mei Z, Zhang W. Metabolic Reprogramming in Gliocyte Post-cerebral Ischemia/ Reperfusion: From Pathophysiology to Therapeutic Potential. Curr Neuropharmacol 2024; 22:1672-1696. [PMID: 38362904 PMCID: PMC11284719 DOI: 10.2174/1570159x22666240131121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 02/17/2024] Open
Abstract
Ischemic stroke is a leading cause of disability and death worldwide. However, the clinical efficacy of recanalization therapy as a preferred option is significantly hindered by reperfusion injury. The transformation between different phenotypes of gliocytes is closely associated with cerebral ischemia/ reperfusion injury (CI/RI). Moreover, gliocyte polarization induces metabolic reprogramming, which refers to the shift in gliocyte phenotype and the overall transformation of the metabolic network to compensate for energy demand and building block requirements during CI/RI caused by hypoxia, energy deficiency, and oxidative stress. Within microglia, the pro-inflammatory phenotype exhibits upregulated glycolysis, pentose phosphate pathway, fatty acid synthesis, and glutamine synthesis, whereas the anti-inflammatory phenotype demonstrates enhanced mitochondrial oxidative phosphorylation and fatty acid oxidation. Reactive astrocytes display increased glycolysis but impaired glycogenolysis and reduced glutamate uptake after CI/RI. There is mounting evidence suggesting that manipulation of energy metabolism homeostasis can induce microglial cells and astrocytes to switch from neurotoxic to neuroprotective phenotypes. A comprehensive understanding of underlying mechanisms and manipulation strategies targeting metabolic pathways could potentially enable gliocytes to be reprogrammed toward beneficial functions while opening new therapeutic avenues for CI/RI treatment. This review provides an overview of current insights into metabolic reprogramming mechanisms in microglia and astrocytes within the pathophysiological context of CI/RI, along with potential pharmacological targets. Herein, we emphasize the potential of metabolic reprogramming of gliocytes as a therapeutic target for CI/RI and aim to offer a novel perspective in the treatment of CI/RI.
Collapse
Affiliation(s)
- Lipeng Gong
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Junjie Liang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhanwei Zhang
- Department of Neurosurgery, First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410007, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
9
|
Tawbeh A, Raas Q, Tahri-Joutey M, Keime C, Kaiser R, Trompier D, Nasser B, Bellanger E, Dessard M, Hamon Y, Benani A, Di Cara F, Cunha Alves T, Berger J, Weinhofer I, Mandard S, Cherkaoui-Malki M, Andreoletti P, Gondcaille C, Savary S. Immune response of BV-2 microglial cells is impacted by peroxisomal beta-oxidation. Front Mol Neurosci 2023; 16:1299314. [PMID: 38164407 PMCID: PMC10757945 DOI: 10.3389/fnmol.2023.1299314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Microglia are crucial for brain homeostasis, and dysfunction of these cells is a key driver in most neurodegenerative diseases, including peroxisomal leukodystrophies. In X-linked adrenoleukodystrophy (X-ALD), a neuroinflammatory disorder, very long-chain fatty acid (VLCFA) accumulation due to impaired degradation within peroxisomes results in microglial defects, but the underlying mechanisms remain unclear. Using CRISPR/Cas9 gene editing of key genes in peroxisomal VLCFA breakdown (Abcd1, Abcd2, and Acox1), we recently established easily accessible microglial BV-2 cell models to study the impact of dysfunctional peroxisomal β-oxidation and revealed a disease-associated microglial-like signature in these cell lines. Transcriptomic analysis suggested consequences on the immune response. To clarify how impaired lipid degradation impacts the immune function of microglia, we here used RNA-sequencing and functional assays related to the immune response to compare wild-type and mutant BV-2 cell lines under basal conditions and upon pro-inflammatory lipopolysaccharide (LPS) activation. A majority of genes encoding proinflammatory cytokines, as well as genes involved in phagocytosis, antigen presentation, and co-stimulation of T lymphocytes, were found differentially overexpressed. The transcriptomic alterations were reflected by altered phagocytic capacity, inflammasome activation, increased release of inflammatory cytokines, including TNF, and upregulated response of T lymphocytes primed by mutant BV-2 cells presenting peptides. Together, the present study shows that peroxisomal β-oxidation defects resulting in lipid alterations, including VLCFA accumulation, directly reprogram the main cellular functions of microglia. The elucidation of this link between lipid metabolism and the immune response of microglia will help to better understand the pathogenesis of peroxisomal leukodystrophies.
Collapse
Affiliation(s)
- Ali Tawbeh
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Quentin Raas
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Mounia Tahri-Joutey
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | - Céline Keime
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Romain Kaiser
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Doriane Trompier
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | - Emma Bellanger
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Marie Dessard
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Yannick Hamon
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, IWK Health Centre, Halifax, NS, Canada
| | - Tânia Cunha Alves
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Stéphane Mandard
- LipSTIC LabEx, University of Bourgogne, INSERM LNC UMR1231, Dijon, France
| | | | | | | | - Stéphane Savary
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| |
Collapse
|
10
|
Xin W, Pan Y, Wei W, Gerner ST, Huber S, Juenemann M, Butz M, Bähr M, Huttner HB, Doeppner TR. TGF-β1 Decreases Microglia-Mediated Neuroinflammation and Lipid Droplet Accumulation in an In Vitro Stroke Model. Int J Mol Sci 2023; 24:17329. [PMID: 38139158 PMCID: PMC10743979 DOI: 10.3390/ijms242417329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Hypoxia triggers reactive microglial inflammation and lipid droplet (LD) accumulation under stroke conditions, although the mutual interactions between these two processes are insufficiently understood. Hence, the involvement of transforming growth factor (TGF)-β1 in inflammation and LD accumulation in cultured microglia exposed to hypoxia were analyzed herein. Primary microglia were exposed to oxygen-glucose deprivation (OGD) injury and lipopolysaccharide (LPS) stimulation. For analyzing the role of TGF-β1 patterns under such conditions, a TGF-β1 siRNA and an exogenous recombinant TGF-β1 protein were employed. Further studies applied Triacsin C, an inhibitor of LD formation, in order to directly assess the impact of LD formation on the modulation of inflammation. To assess mutual microglia-to-neuron interactions, a co-culture model of these cells was established. Upon OGD exposure, microglial TGF-β1 levels were significantly increased, whereas LPS stimulation yielded decreased levels. Elevating TGF-β1 expression proved highly effective in suppressing inflammation and reducing LD accumulation in microglia exposed to LPS. Conversely, inhibition of TGF-β1 led to the promotion of microglial cell inflammation and an increase in LD accumulation in microglia exposed to OGD. Employing the LD formation inhibitor Triacsin C, in turn, polarized microglia towards an anti-inflammatory phenotype. Such modulation of both microglial TGF-β1 and LD levels significantly affected the resistance of co-cultured neurons. This study provides novel insights by demonstrating that TGF-β1 plays a protective role against microglia-mediated neuroinflammation through the suppression of LD accumulation. These findings offer a fresh perspective on stroke treatment, suggesting the potential of targeting this pathway for therapeutic interventions.
Collapse
Affiliation(s)
- Wenqiang Xin
- Department of Neurology, University of Göttingen Medical School, 37075 Goettingen, Germany; (W.X.); (Y.P.); (W.W.); (M.B.)
| | - Yongli Pan
- Department of Neurology, University of Göttingen Medical School, 37075 Goettingen, Germany; (W.X.); (Y.P.); (W.W.); (M.B.)
| | - Wei Wei
- Department of Neurology, University of Göttingen Medical School, 37075 Goettingen, Germany; (W.X.); (Y.P.); (W.W.); (M.B.)
| | - Stefan T. Gerner
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, 35032 Giessen, Germany
| | - Sabine Huber
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
| | - Martin Juenemann
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
| | - Marius Butz
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
- Heart and Brain Research Group, Kerckhoff Heart and Thorax Center, 61231 Bad Nauheim, Germany
| | - Mathias Bähr
- Department of Neurology, University of Göttingen Medical School, 37075 Goettingen, Germany; (W.X.); (Y.P.); (W.W.); (M.B.)
| | - Hagen B. Huttner
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
| | - Thorsten R. Doeppner
- Department of Neurology, University of Göttingen Medical School, 37075 Goettingen, Germany; (W.X.); (Y.P.); (W.W.); (M.B.)
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, 35032 Giessen, Germany
- Department of Anatomy and Cell Biology, Medical University of Varna, 9238 Varna, Bulgaria
- Research Institute for Health Sciences and Technologies (SABITA), Medipol University, 100098 Istanbul, Turkey
| |
Collapse
|
11
|
Chen H, Guo Z, Sun Y, Dai X. The immunometabolic reprogramming of microglia in Alzheimer's disease. Neurochem Int 2023; 171:105614. [PMID: 37748710 DOI: 10.1016/j.neuint.2023.105614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder (NDD). In the central nervous system (CNS), immune cells like microglia could reprogram intracellular metabolism to alter or exert cellular immune functions in response to environmental stimuli. In AD, microglia could be activated and differentiated into pro-inflammatory or anti-inflammatory phenotypes, and these differences in cellular phenotypes resulted in variance in cellular energy metabolism. Considering the enormous energy requirement of microglia for immune functions, the changes in mitochondria-centered energy metabolism and substrates of microglia are crucial for the cellular regulation of immune responses. Here we reviewed the mechanisms of microglial metabolic reprogramming by analyzing their flexible metabolic patterns and changes that occurred in their metabolism during the development of AD. Further, we summarized the role of drugs in modulating immunometabolic reprogramming to prevent neuroinflammation, which may shed light on a new research direction for AD treatment.
Collapse
Affiliation(s)
- Hongli Chen
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Zichen Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Yaxuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| |
Collapse
|
12
|
Larey AM, Spoerer TM, Daga KR, Morfin MG, Hynds HM, Carpenter J, Hines KM, Marklein RA. High throughput screening of mesenchymal stromal cell morphological response to inflammatory signals for bioreactor-based manufacturing of extracellular vesicles that modulate microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567730. [PMID: 38014258 PMCID: PMC10680807 DOI: 10.1101/2023.11.19.567730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Due to their immunomodulatory function, mesenchymal stromal cells (MSCs) are a promising therapeutic with the potential to treat neuroinflammation associated with neurodegenerative diseases. This function can be mediated by secreted extracellular vesicles (MSC-EVs). Despite established safety, MSC clinical translation has been unsuccessful due to inconsistent clinical outcomes resulting from functional heterogeneity. Current approaches to mitigate functional heterogeneity include 'priming' MSCs with inflammatory signals to enhance function. However, comprehensive evaluation of priming and its effects on MSC-EV function has not been performed. Clinical translation of MSC-EV therapies requires significant manufacturing scale-up, yet few studies have investigated the effects of priming in bioreactors. As MSC morphology has been shown to predict their immunomodulatory function, we screened MSC morphological response to an array of priming signals and evaluated MSC-EV identity and potency in response to priming in flasks and bioreactors. We identified unique priming conditions corresponding to distinct morphologies. These conditions demonstrated a range of MSC-EV preparation quality and lipidome, allowing us to discover a novel MSC-EV manufacturing condition, as well as gain insight into potential mechanisms of MSC-EV microglia modulation. Our novel screening approach and application of priming to MSC-EV bioreactor manufacturing informs refinement of larger-scale manufacturing and enhancement of MSC-EV function.
Collapse
Affiliation(s)
- Andrew M. Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Thomas M. Spoerer
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Kanupriya R. Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G. Morfin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Hannah M. Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Jana Carpenter
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Ross A. Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
13
|
Lepiarz-Raba I, Gbadamosi I, Florea R, Paolicelli RC, Jawaid A. Metabolic regulation of microglial phagocytosis: Implications for Alzheimer's disease therapeutics. Transl Neurodegener 2023; 12:48. [PMID: 37908010 PMCID: PMC10617244 DOI: 10.1186/s40035-023-00382-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Microglia, the resident immune cells of the brain, are increasingly implicated in the regulation of brain health and disease. Microglia perform multiple functions in the central nervous system, including surveillance, phagocytosis and release of a variety of soluble factors. Importantly, a majority of their functions are closely related to changes in their metabolism. This natural inter-dependency between core microglial properties and metabolism offers a unique opportunity to modulate microglial activities via nutritional or metabolic interventions. In this review, we examine the existing scientific literature to synthesize the hypothesis that microglial phagocytosis of amyloid beta (Aβ) aggregates in Alzheimer's disease (AD) can be selectively enhanced via metabolic interventions. We first review the basics of microglial metabolism and the effects of common metabolites, such as glucose, lipids, ketone bodies, glutamine, pyruvate and lactate, on microglial inflammatory and phagocytic properties. Next, we examine the evidence for dysregulation of microglial metabolism in AD. This is followed by a review of in vivo studies on metabolic manipulation of microglial functions to ascertain their therapeutic potential in AD. Finally, we discuss the effects of metabolic factors on microglial phagocytosis of healthy synapses, a pathological process that also contributes to the progression of AD. We conclude by enlisting the current challenges that need to be addressed before strategies to harness microglial phagocytosis to clear pathological protein deposits in AD and other neurodegenerative disorders can be widely adopted.
Collapse
Affiliation(s)
- Izabela Lepiarz-Raba
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | - Ismail Gbadamosi
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Roberta Florea
- Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | - Ali Jawaid
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
14
|
Miao J, Chen L, Pan X, Li L, Zhao B, Lan J. Microglial Metabolic Reprogramming: Emerging Insights and Therapeutic Strategies in Neurodegenerative Diseases. Cell Mol Neurobiol 2023; 43:3191-3210. [PMID: 37341833 DOI: 10.1007/s10571-023-01376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining brain homeostasis. However, in neurodegenerative conditions, microglial cells undergo metabolic reprogramming in response to pathological stimuli, including Aβ plaques, Tau tangles, and α-synuclein aggregates. This metabolic shift is characterized by a transition from oxidative phosphorylation (OXPHOS) to glycolysis, increased glucose uptake, enhanced production of lactate, lipids, and succinate, and upregulation of glycolytic enzymes. These metabolic adaptations result in altered microglial functions, such as amplified inflammatory responses and diminished phagocytic capacity, which exacerbate neurodegeneration. This review highlights recent advances in understanding the molecular mechanisms underlying microglial metabolic reprogramming in neurodegenerative diseases and discusses potential therapeutic strategies targeting microglial metabolism to mitigate neuroinflammation and promote brain health. Microglial Metabolic Reprogramming in Neurodegenerative Diseases This graphical abstract illustrates the metabolic shift in microglial cells in response to pathological stimuli and highlights potential therapeutic strategies targeting microglial metabolism for improved brain health.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lihua Chen
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xiaojin Pan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Liqing Li
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Beibei Zhao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China.
| | - Jiao Lan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China.
| |
Collapse
|
15
|
Butler MJ, Mackey-Alfonso SE, Massa N, Baskin KK, Barrientos RM. Dietary fatty acids differentially impact phagocytosis, inflammatory gene expression, and mitochondrial respiration in microglial and neuronal cell models. Front Cell Neurosci 2023; 17:1227241. [PMID: 37636589 PMCID: PMC10448530 DOI: 10.3389/fncel.2023.1227241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
The consumption of diets high in saturated fatty acids and/or refined carbohydrates are associated with neuroinflammation, cognitive dysfunction, and neurodegenerative disease. In contrast, diets high in polyunsaturated fatty acids are associated with anti-inflammatory and neuroprotective effects. We have previously shown that high fat diet (HFD) consumption increases saturated fatty acids and decreases polyunsaturated fatty acids in the hippocampus. We have further shown that HFD elicits exaggerated neuroinflammation and reduced synaptic elements, and results in robust memory deficits in aged rats. Here, we examined the impact of palmitate, an abundant dietary saturated fat, on a variety of cellular responses in BV2 microglia and HippoE-14 neurons, and the extent to which the omega-3 fatty acid, docosahexaenoic acid (DHA), would buffer against these responses. Our data demonstrate that DHA pretreatment prevents or partially attenuates palmitate-induced alterations in proinflammatory, endoplasmic reticulum stress, and mitochondrial damage-associated gene expression in both cell types. Furthermore, we show that synaptoneurosomes isolated from aged, HFD-fed mice are engulfed by BV2 microglia at a faster rate than synaptoneurosomes isolated from aged, chow-fed mice, suggesting HFD alters signaling at synapses to hasten their engulfment by microglia. Consistent with this notion, we found modest increases in complement proteins and a decrease in CD47 protein expression on synaptoneurosomes isolated from the hippocampus of aged, HFD-fed mice. Interestingly, palmitate reduced BV2 microglial phagocytosis, but only of synaptoneurosomes isolated from chow-fed mice, an effect that was prevented by DHA pretreatment. Lastly, we measured the impact of palmitate and DHA on mitochondrial function in both microglial and neuronal cell models using the Seahorse XFe96 Analyzer. These data indicate that DHA pretreatment does not mitigate palmitate-induced reductions in mitochondrial respiration in BV2 microglia and HippoE-14 neurons, suggesting DHA may be acting downstream of mitochondrial function to exert its protective effects. Together, this study provides evidence that DHA can ameliorate the negative impact of palmitate on a variety of cellular functions in microglia- and neuron-like cells.
Collapse
Affiliation(s)
- Michael J. Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, United States
| | - Sabrina E. Mackey-Alfonso
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, United States
| | - Nashali Massa
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| | - Kedryn K. Baskin
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Ruth M. Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
16
|
Drug-induced microglial phagocytosis in multiple sclerosis and experimental autoimmune encephalomyelitis and the underlying mechanisms. Mol Biol Rep 2023; 50:749-759. [PMID: 36309614 DOI: 10.1007/s11033-022-07968-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/21/2022] [Indexed: 02/01/2023]
Abstract
Microglia are resident macrophages of the central nervous system (CNS). It plays a significant role in immune surveillance under physiological conditions. On stimulation by pathogens, microglia change their phenotypes, phagocytize toxic molecules, secrete pro-inflammatory/anti-inflammatory factors, promotes tissue repair, and maintain the homeostasis in CNS. Accumulation of myelin debris in multiple sclerosis (MS)/experimental autoimmune encephalomyelitis (EAE) inhibits remyelination by decreasing the phagocytosis by microglia and prevent the recovery of MS/EAE. Drug induced microglia phagocytosis could be a novel therapeutic intervention for the treatment of MS/EAE. But the abnormal phagocytosis of neurons and synapses by activated microglia will lead to neuronal damage and degeneration. It indicates that the phagocytosis of microglia has many beneficial and harmful effects in central neurodegenerative diseases. Therefore, simply promoting or inhibiting the phagocytic activity of microglia may not achieve ideal therapeutic results. However, limited reports are available to elucidate the microglia mediated phagocytosis and its underlying molecular mechanisms. On this basis, the present review describes microglia-mediated phagocytosis, drug-induced microglia phagocytosis, molecular mechanism, and novel approach for MS/EAE treatment.
Collapse
|
17
|
Raas Q, Tawbeh A, Tahri-Joutey M, Gondcaille C, Keime C, Kaiser R, Trompier D, Nasser B, Leoni V, Bellanger E, Boussand M, Hamon Y, Benani A, Di Cara F, Truntzer C, Cherkaoui-Malki M, Andreoletti P, Savary S. Peroxisomal defects in microglial cells induce a disease-associated microglial signature. Front Mol Neurosci 2023; 16:1170313. [PMID: 37138705 PMCID: PMC10149961 DOI: 10.3389/fnmol.2023.1170313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Microglial cells ensure essential roles in brain homeostasis. In pathological condition, microglia adopt a common signature, called disease-associated microglial (DAM) signature, characterized by the loss of homeostatic genes and the induction of disease-associated genes. In X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disease, microglial defect has been shown to precede myelin degradation and may actively contribute to the neurodegenerative process. We previously established BV-2 microglial cell models bearing mutations in peroxisomal genes that recapitulate some of the hallmarks of the peroxisomal β-oxidation defects such as very long-chain fatty acid (VLCFA) accumulation. In these cell lines, we used RNA-sequencing and identified large-scale reprogramming for genes involved in lipid metabolism, immune response, cell signaling, lysosome and autophagy, as well as a DAM-like signature. We highlighted cholesterol accumulation in plasma membranes and observed autophagy patterns in the cell mutants. We confirmed the upregulation or downregulation at the protein level for a few selected genes that mostly corroborated our observations and clearly demonstrated increased expression and secretion of DAM proteins in the BV-2 mutant cells. In conclusion, the peroxisomal defects in microglial cells not only impact on VLCFA metabolism but also force microglial cells to adopt a pathological phenotype likely representing a key contributor to the pathogenesis of peroxisomal disorders.
Collapse
Affiliation(s)
- Quentin Raas
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Ali Tawbeh
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Mounia Tahri-Joutey
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | | | - Céline Keime
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Romain Kaiser
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Doriane Trompier
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | - Valerio Leoni
- Laboratory of Clinical Biochemistry, Hospital of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Emma Bellanger
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Maud Boussand
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Yannick Hamon
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro Dijon, University of Bourgogne Franche-Comté, Dijon, France
| | - Francesca Di Cara
- Department of Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, NS, Canada
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center–Unicancer, Dijon, France
| | | | | | - Stéphane Savary
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- *Correspondence: Stéphane Savary,
| |
Collapse
|
18
|
Florance I, Ramasubbu S. Current Understanding on the Role of Lipids in Macrophages and Associated Diseases. Int J Mol Sci 2022; 24:ijms24010589. [PMID: 36614031 PMCID: PMC9820199 DOI: 10.3390/ijms24010589] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Lipid metabolism is the major intracellular mechanism driving a variety of cellular functions such as energy storage, hormone regulation and cell division. Lipids, being a primary component of the cell membrane, play a pivotal role in the survival of macrophages. Lipids are crucial for a variety of macrophage functions including phagocytosis, energy balance and ageing. However, functions of lipids in macrophages vary based on the site the macrophages are residing at. Lipid-loaded macrophages have recently been emerging as a hallmark for several diseases. This review discusses the significance of lipids in adipose tissue macrophages, tumor-associated macrophages, microglia and peritoneal macrophages. Accumulation of macrophages with impaired lipid metabolism is often characteristically observed in several metabolic disorders. Stress signals differentially regulate lipid metabolism. While conditions such as hypoxia result in accumulation of lipids in macrophages, stress signals such as nutrient deprivation initiate lipolysis and clearance of lipids. Understanding the biology of lipid accumulation in macrophages requires the development of potentially active modulators of lipid metabolism.
Collapse
|
19
|
Javanmehr N, Saleki K, Alijanizadeh P, Rezaei N. Microglia dynamics in aging-related neurobehavioral and neuroinflammatory diseases. J Neuroinflammation 2022; 19:273. [PMID: 36397116 PMCID: PMC9669544 DOI: 10.1186/s12974-022-02637-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Microglia represent the first line of immune feedback in the brain. Beyond immune surveillance, they are essential for maintaining brain homeostasis. Recent research has revealed the microglial cells' spatiotemporal heterogeneity based on their local and time-based functions in brain trauma or disease when homeostasis is disrupted. Distinct "microglial signatures" have been recorded in physiological states and brain injuries, with discrete or sometimes overlapping pro- and anti-inflammatory functions. Microglia are involved in the neurological repair processes, such as neurovascular unit restoration and synaptic plasticity, and manage the extent of the damage due to their phenotype switching. The versatility of cellular phenotypes beyond the classical M1/M2 classification, as well as the double-edge actions of microglia in neurodegeneration, indicate the need for further exploration of microglial cell dynamics and their contribution to neurodegenerative processes. This review discusses the homeostatic functions of different microglial subsets focusing on neuropathological conditions. Also, we address the feasibility of targeting microglia as a therapeutic strategy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
20
|
Benarroch E. What Is the Role of Microglial Metabolism in Inflammation and Neurodegeneration? Neurology 2022; 99:99-105. [PMID: 35851556 DOI: 10.1212/wnl.0000000000200920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
|
21
|
Decoeur F, Picard K, St-Pierre MK, Greenhalgh AD, Delpech JC, Sere A, Layé S, Tremblay ME, Nadjar A. N-3 PUFA Deficiency Affects the Ultrastructural Organization and Density of White Matter Microglia in the Developing Brain of Male Mice. Front Cell Neurosci 2022; 16:802411. [PMID: 35221920 PMCID: PMC8866569 DOI: 10.3389/fncel.2022.802411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/17/2022] [Indexed: 02/03/2023] Open
Abstract
Over the last century, westernization of dietary habits has led to a dramatic reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). In particular, low maternal intake of n-3 PUFAs throughout gestation and lactation causes defects in brain myelination. Microglia are recognized for their critical contribution to neurodevelopmental processes, such as myelination. These cells invade the white matter in the first weeks of the post-natal period, where they participate in oligodendrocyte maturation and myelin production. Therefore, we investigated whether an alteration of white matter microglia accompanies the myelination deficits observed in the brain of n-3 PUFA-deficient animals. Macroscopic imaging analysis shows that maternal n-3 PUFA deficiency decreases the density of white matter microglia around post-natal day 10. Microscopic electron microscopy analyses also revealed alterations of microglial ultrastructure, a decrease in the number of contacts between microglia and myelin sheet, and a decreased amount of myelin debris in their cell body. White matter microglia further displayed increased mitochondrial abundance and network area under perinatal n-3 PUFA deficiency. Overall, our data suggest that maternal n-3 PUFA deficiency alters the structure and function of microglial cells located in the white matter of pups early in life, and this could be the key to understand myelination deficits during neurodevelopment.
Collapse
Affiliation(s)
- Fanny Decoeur
- INRAE, Bordeaux INP, NutriNeuro, Université de Bordeaux, Bordeaux, France
| | - Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | | | | | - Alexandra Sere
- INRAE, Bordeaux INP, NutriNeuro, Université de Bordeaux, Bordeaux, France
| | - Sophie Layé
- INRAE, Bordeaux INP, NutriNeuro, Université de Bordeaux, Bordeaux, France
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Agnès Nadjar
- INRAE, Bordeaux INP, NutriNeuro, Université de Bordeaux, Bordeaux, France
- Neurocentre Magendie, U1215, INSERM-Université de Bordeaux, Bordeaux, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
22
|
Zhuang H, Yao X, Li H, Li Q, Yang C, Wang C, Xu D, Xiao Y, Gao Y, Gao J, Bi M, Liu R, Teng G, Liu L. Long-term high-fat diet consumption by mice throughout adulthood induces neurobehavioral alterations and hippocampal neuronal remodeling accompanied by augmented microglial lipid accumulation. Brain Behav Immun 2022; 100:155-171. [PMID: 34848340 DOI: 10.1016/j.bbi.2021.11.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023] Open
Abstract
High-fat diet (HFD) consumption is generally associated with an increased risk of cognitive and emotional dysfunctions that constitute a sizeable worldwide health burden with profound social and economic consequences. Middle age is a critical time period that affects one's health later in life; pertinently, the prevalence of HFD consumption is increasing among mature adults. Given the growing health-related economic burden imposed globally by increasing rates of noncommunicable diseases in rapidly aging populations, along with the pervasive but insidious health impairments associated with HFD consumption, it is critically important to understand the effects of long-term HFD consumption on brain function and to gain insights into their potential underlying mechanisms. In the present study, adult male C57BL/6J mice were randomly assigned a control diet (CD, 10 kJ% from fat) or an HFD (60 kJ% from fat) for 6 months (6 M) or 9 months (9 M) followed by behavioral tests, serum biochemical analysis, and histological examinations of both the dorsal and ventral regions of the hippocampus. In both the 6 M and 9 M cohorts, mice that consumed an HFD exhibited poorer memory performance in the Morris water maze test (MWM) and greater depression- and anxiety-like behavior during the open field test (OFT), sucrose preference test (SPT) and forced swim test (FST) than control mice. Compared with age-matched mice in the CD group, mice in the HFD group showed abnormal hippocampal neuronal morphology, which was particularly evident in the ventral hippocampus. Hippocampal microglia in mice in the HFD group generally had a more activated phenotype evidenced by a smaller microglial territory area and increased cluster of differentiation 68 (CD68, a marker of phagocytic activity) immunoreactivity, while the microglial density in the dentate gyrus (DG) was decreased, indicating microglial decline. The engulfment of postsynaptic density 95 (PSD95, a general postsynaptic marker) puncta by microglia was increased in the HFD groups. Histological analysis of neutral lipids using a fluorescent probe (BODIPY) revealed that the total neutral lipid content in regions of interests (ROIs) and the lipid load in microglia were increased in the HFD group relative to the age-matched CD group. In summary, our results demonstrated that chronic HFD consumption from young adulthood to middle age induced anxiety- and depression-like behavior as well as memory impairment. The negative influence of chronic HFD consumption on behavioral and hippocampal neuroplasticity appears to be linked to a change in microglial phenotype that is accompanied by a remarkable increase in cellular lipid accumulation. These observations highlighting the potential to target lipid metabolism deficits to reduce the risk of HFD-associated emotional dysfunctions.
Collapse
Affiliation(s)
- Hong Zhuang
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Xiuting Yao
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Hong Li
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Qian Li
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Chenxi Yang
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Conghui Wang
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Dan Xu
- School of Public Health, Southeast University, Nanjing 210009
| | - Yu Xiao
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Yuan Gao
- Medical College, Southeast University, Nanjing 210009, China
| | - Jiayi Gao
- Medical College, Southeast University, Nanjing 210009, China
| | - Mingze Bi
- Medical College, Southeast University, Nanjing 210009, China
| | - Rui Liu
- Medical College, Southeast University, Nanjing 210009, China
| | - Gaojun Teng
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China.
| | - Lijie Liu
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China.
| |
Collapse
|
23
|
Desale SE, Chinnathambi S. α- Linolenic acid modulates phagocytosis and endosomal pathways of extracellular Tau in microglia. Cell Adh Migr 2021; 15:84-100. [PMID: 33724164 PMCID: PMC7971307 DOI: 10.1080/19336918.2021.1898727] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/19/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Microglia, the resident immune cells, were found to be activated to inflammatory phenotype in Alzheimer's disease (AD). The extracellular burden of amyloid-β plaques and Tau seed fabricate the activation of microglia. The seeding effect of extracellular Tau species is an emerging aspect to study about Tauopathies in AD. Tau seeds enhance the propagation of disease along with its contribution to microglia-mediated inflammation. The excessive neuroinflammation cumulatively hampers phagocytic function of microglia reducing the clearance of extracellular protein aggregates. Omega-3 fatty acids, especially docosahexaenoic acid and eicosapentaenoic acid, are recognized to induce anti-inflammatory phenotype of microglia. In addition to increased cytokine production, omega-3 fatty acids enhance phagocytic receptors expression in microglia. In this study, we have observed the phagocytosis of extracellular Tau in the presence of α-linolenic acid (ALA). The increased phagocytosis of extracellular Tau monomer and aggregates have been observed upon ALA exposure to microglia cells. After internalization, the degradation status of Tau has been studied with early and late endosomal markers Rab5 and Rab7. Further, the lysosome-mediated degradation of internalized Tau was studied with LAMP-2A, a lysosome marker. The enhanced migratory ability in the presence of ALA could be beneficial for microglia to access the target and clear it. The increased migration of microglia was found to induce the microtubule-organizing center repolarization. The data indicate that the dietary fatty acids ALA could significantly enhance phagocytosis and intracellular degradation of internalized Tau. Our results suggest that microglia could be influenced to reduce extracellular Tau seed with dietary fatty acids.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical LaboratoryPune, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical LaboratoryPune, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| |
Collapse
|
24
|
De Melo P, Pineros Alvarez AR, Ye X, Blackman A, Alves-Filho JC, Medeiros AI, Rathmell J, Pua H, Serezani CH. Macrophage-Derived MicroRNA-21 Drives Overwhelming Glycolytic and Inflammatory Response during Sepsis via Repression of the PGE 2/IL-10 Axis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:902-912. [PMID: 34301845 PMCID: PMC8323968 DOI: 10.4049/jimmunol.2001251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
Myeloid cells are critical for systemic inflammation, microbial control, and organ damage during sepsis. MicroRNAs are small noncoding RNAs that can dictate the outcome of sepsis. The role of myeloid-based expression of microRNA-21 (miR-21) in sepsis is inconclusive. In this study, we show that sepsis enhanced miR-21 expression in both peritoneal macrophages and neutrophils from septic C57BL/6J mice, and the deletion of miR-21 locus in myeloid cells (miR-21Δmyel mice) enhanced animal survival, decreased bacterial growth, decreased systemic inflammation, and decreased organ damage. Resistance to sepsis was associated with a reduction of aerobic glycolysis and increased levels of the anti-inflammatory mediators PGE2 and IL-10 in miR-21Δmyel in vivo and in vitro. Using blocking Abs and pharmacological tools, we discovered that increased survival and decreased systemic inflammation in septic miR-21Δmyel mice is dependent on PGE2/IL-10-mediated inhibition of glycolysis. Together, these findings demonstrate that expression of miR-21 in myeloid cells orchestrates the balance between anti-inflammatory mediators and metabolic reprogramming that drives cytokine storm during sepsis.
Collapse
Affiliation(s)
- Paulo De Melo
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Amondrea Blackman
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jose Carlos Alves-Filho
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Alexandra I Medeiros
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jeffrey Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN; and
- Vanderbilt Institute for Infection, Inflammation, and Immunity, Vanderbilt University Medical Center, Nashville, TN
| | - Heather Pua
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN; and
- Vanderbilt Institute for Infection, Inflammation, and Immunity, Vanderbilt University Medical Center, Nashville, TN
| | - C Henrique Serezani
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN;
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN; and
- Vanderbilt Institute for Infection, Inflammation, and Immunity, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
25
|
Garcia Corrales AV, Haidar M, Bogie JFJ, Hendriks JJA. Fatty Acid Synthesis in Glial Cells of the CNS. Int J Mol Sci 2021; 22:ijms22158159. [PMID: 34360931 PMCID: PMC8348209 DOI: 10.3390/ijms22158159] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty acids (FAs) are of crucial importance for brain homeostasis and neural function. Glia cells support the high demand of FAs that the central nervous system (CNS) needs for its proper functioning. Additionally, FAs can modulate inflammation and direct CNS repair, thereby contributing to brain pathologies such Alzheimer’s disease or multiple sclerosis. Intervention strategies targeting FA synthesis in glia represents a potential therapeutic opportunity for several CNS diseases.
Collapse
Affiliation(s)
- Aida V Garcia Corrales
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
26
|
Cosker K, Mallach A, Limaye J, Piers TM, Staddon J, Neame SJ, Hardy J, Pocock JM. Microglial signalling pathway deficits associated with the patient derived R47H TREM2 variants linked to AD indicate inability to activate inflammasome. Sci Rep 2021; 11:13316. [PMID: 34172778 PMCID: PMC8233372 DOI: 10.1038/s41598-021-91207-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
The R47H variant of the microglial membrane receptor TREM2 is linked to increased risk of late onset Alzheimer's disease. Human induced pluripotent stem cell derived microglia (iPS-Mg) from patient iPSC lines expressing the AD-linked R47Hhet TREM2 variant, common variant (Cv) or an R47Hhom CRISPR edited line and its isogeneic control, demonstrated that R47H-expressing iPS-Mg expressed a deficit in signal transduction in response to the TREM2 endogenous ligand phosphatidylserine with reduced pSYK-pERK1/2 signalling and a reduced NLRP3 inflammasome response, (including ASC speck formation, Caspase-1 activation and IL-1beta secretion). Apoptotic cell phagocytosis and soluble TREM2 shedding were unaltered, suggesting a disjoint between these pathways and the signalling cascades downstream of TREM2 in R47H-expressing iPS-Mg, whilst metabolic deficits in glycolytic capacity and maximum respiration were reversed when R47H expressing iPS-Mg were exposed to PS+ expressing cells. These findings suggest that R47H-expressing microglia are unable to respond fully to cell damage signals such as phosphatidylserine, which may contribute to the progression of neurodegeneration in late-onset AD.
Collapse
Affiliation(s)
- Katharina Cosker
- grid.83440.3b0000000121901201Department of Neuroinflammation, University College London, Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ UK
| | - Anna Mallach
- grid.83440.3b0000000121901201Department of Neuroinflammation, University College London, Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ UK
| | - Janhavi Limaye
- grid.83440.3b0000000121901201Department of Neuroinflammation, University College London, Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ UK
| | - Thomas M. Piers
- grid.83440.3b0000000121901201Department of Neuroinflammation, University College London, Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ UK
| | - James Staddon
- grid.428696.7Eisai Ltd, Mosquito Way, Hatfield, AL10 9SN UK
| | | | - John Hardy
- grid.436283.80000 0004 0612 2631Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG UK ,grid.83440.3b0000000121901201Dementia Research Institute, University College, London, UCL, Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ UK ,grid.24515.370000 0004 1937 1450NIHR University College London Hospitals Biomedical Research Centre and Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jennifer M. Pocock
- grid.83440.3b0000000121901201Department of Neuroinflammation, University College London, Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ UK
| |
Collapse
|
27
|
Ghanbari M, Momen Maragheh S, Aghazadeh A, Mehrjuyan SR, Hussen BM, Abdoli Shadbad M, Dastmalchi N, Safaralizadeh R. Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies. Int Immunopharmacol 2021; 96:107765. [PMID: 34015596 DOI: 10.1016/j.intimp.2021.107765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Since adipose tissue (AT) can upregulate pro-inflammatory interleukins (ILs) via storing extra lipids in obesity, obesity is considered the leading cause of chronic low-grade inflammation. These ILs can pave the way for the infiltration of immune cells into the AT, ultimately resulting in low-grade inflammation and dysregulation of adipocytes. IL-1, which is divided into two subclasses, i.e., IL-1α and IL-1β, is a critical pro-inflammatory factor. In obesity, IL-1α and IL-1β can promote insulin resistance via impairing the function of adipocytes and promoting inflammation. The current study aims to review the detailed molecular mechanisms and the roles of IL-1α and IL-1β and their antagonist, interleukin-1 receptor antagonist(IL-1Ra), in developing obesity-related inflammatory complications, i.e., type II diabetes (T2D), non-alcoholic steatohepatitis (NASH), atherosclerosis, and cognitive disorders. Besides, the current study discusses the recent advances in natural drugs, synthetic agents, and gene therapy approaches to treat obesity-related inflammatory complications via suppressing IL-1.
Collapse
Affiliation(s)
- Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Aida Aghazadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | | | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
28
|
Schönfeld P, Reiser G. How the brain fights fatty acids' toxicity. Neurochem Int 2021; 148:105050. [PMID: 33945834 DOI: 10.1016/j.neuint.2021.105050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
Neurons spurn hydrogen-rich fatty acids for energizing oxidative ATP synthesis, contrary to other cells. This feature has been mainly attributed to a lower yield of ATP per reduced oxygen, as compared to glucose. Moreover, the use of fatty acids as hydrogen donor is accompanied by severe β-oxidation-associated ROS generation. Neurons are especially susceptible to detrimental activities of ROS due to their poor antioxidative equipment. It is also important to note that free fatty acids (FFA) initiate multiple harmful activities inside the cells, particularly on phosphorylating mitochondria. Several processes enhance FFA-linked lipotoxicity in the cerebral tissue. Thus, an uptake of FFA from the circulation into the brain tissue takes place during an imbalance between energy intake and energy expenditure in the body, a situation similar to that during metabolic syndrome and fat-rich diet. Traumatic or hypoxic brain injuries increase hydrolytic degradation of membrane phospholipids and, thereby elevate the level of FFA in neural cells. Accumulation of FFA in brain tissue is markedly associated with some inherited neurological disorders, such as Refsum disease or X-linked adrenoleukodystrophy (X-ALD). What are strategies protecting neurons against FFA-linked lipotoxicity? Firstly, spurning the β-oxidation pathway in mitochondria of neurons. Secondly, based on a tight metabolic communication between neurons and astrocytes, astrocytes donate metabolites to neurons for synthesis of antioxidants. Further, neuronal autophagy of ROS-emitting mitochondria combined with the transfer of degradation-committed FFA for their disposal in astrocytes, is a potent protective strategy against ROS and harmful activities of FFA. Finally, estrogens and neurosteroids are protective as triggers of ERK and PKB signaling pathways, consequently initiating the expression of various neuronal survival genes via the formation of cAMP response element-binding protein (CREB).
Collapse
Affiliation(s)
- Peter Schönfeld
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany.
| |
Collapse
|
29
|
Kaliszewska A, Allison J, Martini M, Arias N. Improving Age-Related Cognitive Decline through Dietary Interventions Targeting Mitochondrial Dysfunction. Int J Mol Sci 2021; 22:ijms22073574. [PMID: 33808221 PMCID: PMC8036520 DOI: 10.3390/ijms22073574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is inevitable and it is one of the major contributors to cognitive decline. However, the mechanisms underlying age-related cognitive decline are still the object of extensive research. At the biological level, it is unknown how the aging brain is subjected to progressive oxidative stress and neuroinflammation which determine, among others, mitochondrial dysfunction. The link between mitochondrial dysfunction and cognitive impairment is becoming ever more clear by the presence of significant neurological disturbances in human mitochondrial diseases. Possibly, the most important lifestyle factor determining mitochondrial functioning is nutrition. Therefore, with the present work, we review the latest findings disclosing a link between nutrition, mitochondrial functioning and cognition, and pave new ways to counteract cognitive decline in late adulthood through diet.
Collapse
Affiliation(s)
- Aleksandra Kaliszewska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
| | - Joseph Allison
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
| | - Matteo Martini
- Department of Psychology, University of East London, London E154LZ, UK;
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33005 Oviedo, Spain
- Correspondence:
| |
Collapse
|
30
|
Yang S, Qin C, Hu ZW, Zhou LQ, Yu HH, Chen M, Bosco DB, Wang W, Wu LJ, Tian DS. Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system. Neurobiol Dis 2021; 152:105290. [PMID: 33556540 DOI: 10.1016/j.nbd.2021.105290] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/31/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
In response to various types of environmental and cellular stress, microglia rapidly activate and exhibit either pro- or anti-inflammatory phenotypes to maintain tissue homeostasis. Activation of microglia can result in changes in morphology, phagocytosis capacity, and secretion of cytokines. Furthermore, microglial activation also induces changes to cellular energy demand, which is dependent on the metabolism of various metabolic substrates including glucose, fatty acids, and amino acids. Accumulating evidence demonstrates metabolic reprogramming acts as a key driver of microglial immune response. For instance, microglia in pro-inflammatory states preferentially use glycolysis for energy production, whereas, cells in anti-inflammatory states are mainly powered by oxidative phosphorylation and fatty acid oxidation. In this review, we summarize recent findings regarding microglial metabolic pathways under physiological and pathological circumtances. We will then discuss how metabolic reprogramming can orchestrate microglial response to a variety of central nervous system pathologies. Finally, we highlight how manipulating metabolic pathways can reprogram microglia towards beneficial functions, and illustrate the therapeutic potential for inflammation-related neurological diseases.
Collapse
Affiliation(s)
- Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zi-Wei Hu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hai-Han Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States of America.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
31
|
Mallach A, Gobom J, Zetterberg H, Hardy J, Piers TM, Wray S, Pocock JM. The influence of the R47H triggering receptor expressed on myeloid cells 2 variant on microglial exosome profiles. Brain Commun 2021; 3:fcab009. [PMID: 34704019 PMCID: PMC8244649 DOI: 10.1093/braincomms/fcab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023] Open
Abstract
Variants in the triggering receptor expressed on myeloid cells 2 gene are linked with an increased risk of dementia, in particular the R47Hhet triggering receptor expressed on myeloid cells 2 variant is linked to late-onset Alzheimer's disease. Using human induced pluripotent stem cells-derived microglia, we assessed whether variations in the dynamics of exosome secretion, including their components, from these cells might underlie some of this risk. We found exosome size was not altered between common variant controls and R47Hhet variants, but the amount and constitution of exosomes secreted were different. Exosome quantities were rescued by incubation with an ATP donor or with lipids via a phosphatidylserine triggering receptor expressed on myeloid cells 2 ligand. Following a lipopolysaccharide or phagocytic cell stimulus, exosomes from common variant and R47Hhet microglia were found to contain cytokines, chemokines, APOE and triggering receptor expressed on myeloid cells 2. Differences were observed in the expression of CCL22, IL-1β and triggering receptor expressed on myeloid cells 2 between common variant and R47Hhet derived exosomes. Furthermore unlike common variant-derived exosomes, R47Hhet exosomes contained additional proteins linked to negative regulation of transcription and metabolic processes. Subsequent addition of exosomes to stressed neurones showed R47Hhet-derived exosomes to be less protective. These data have ramifications for the responses of microglia in Alzheimer's disease and may point to further targets for therapeutic intervention.
Collapse
Affiliation(s)
- Anna Mallach
- Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute University College London, London WC1E 6BT, UK
| | - John Hardy
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute University College London, London WC1E 6BT, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Thomas M Piers
- Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Jennifer M Pocock
- Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| |
Collapse
|
32
|
Loving BA, Tang M, Neal MC, Gorkhali S, Murphy R, Eckel RH, Bruce KD. Lipoprotein Lipase Regulates Microglial Lipid Droplet Accumulation. Cells 2021; 10:cells10020198. [PMID: 33498265 PMCID: PMC7909280 DOI: 10.3390/cells10020198] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Microglia become increasingly dysfunctional with aging and contribute to the onset of neurodegenerative disease (NDs) through defective phagocytosis, attenuated cholesterol efflux, and excessive secretion of pro-inflammatory cytokines. Dysfunctional microglia also accumulate lipid droplets (LDs); however, the mechanism underlying increased LD load is unknown. We have previously shown that microglia lacking lipoprotein lipase (LPL KD) are polarized to a pro-inflammatory state and have impaired lipid uptake and reduced fatty acid oxidation (FAO). Here, we also show that LPL KD microglia show excessive accumulation of LD-like structures. Moreover, LPL KD microglia display a pro-inflammatory lipidomic profile, increased cholesterol ester (CE) content, and reduced cholesterol efflux at baseline. We also show reduced expression of genes within the canonical cholesterol efflux pathway. Importantly, PPAR agonists (rosiglitazone and bezafibrate) rescued the LD-associated phenotype in LPL KD microglia. These data suggest that microglial-LPL is associated with lipid uptake, which may drive PPAR signaling and cholesterol efflux to prevent inflammatory lipid distribution and LD accumulation. Moreover, PPAR agonists can reverse LD accumulation, and therefore may be beneficial in aging and in the treatment of NDs.
Collapse
Affiliation(s)
- Bailey A. Loving
- Department of Radiation Oncology, Oakland University William Beaumont School of Medicine, Royal Oak, MI 48309, USA;
| | - Maoping Tang
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (M.C.N.); (S.G.); (R.H.E.)
| | - Mikaela C. Neal
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (M.C.N.); (S.G.); (R.H.E.)
| | - Sachi Gorkhali
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (M.C.N.); (S.G.); (R.H.E.)
| | - Robert Murphy
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (M.C.N.); (S.G.); (R.H.E.)
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (M.C.N.); (S.G.); (R.H.E.)
- Correspondence:
| |
Collapse
|
33
|
Glatz JFC, Lagarde M. Spotlight on fatty acids in cell signaling: The 13th FACS meeting. Prostaglandins Leukot Essent Fatty Acids 2020; 156:102025. [PMID: 31679809 DOI: 10.1016/j.plefa.2019.102025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine & Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
| | - Michel Lagarde
- National Institute of Applied Sciences (INSA)-Lyon, University of Lyon, Inserm UMR 1060, Inra UMR 1397, 69100 Villeurbanne, France.
| |
Collapse
|
34
|
Desale SE, Chinnathambi S. Role of dietary fatty acids in microglial polarization in Alzheimer's disease. J Neuroinflammation 2020; 17:93. [PMID: 32209097 PMCID: PMC7093977 DOI: 10.1186/s12974-020-01742-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Microglial polarization is an utmost important phenomenon in Alzheimer’s disease that influences the brain environment. Polarization depends upon the types of responses that cells undergo, and it is characterized by receptors present on the cell surface and the secreted cytokines to the most. The expression of receptors on the surface is majorly influenced by internal and external factors such as dietary lipids. Types of fatty acids consumed through diet influence the brain environment and glial cell phenotype and types of receptors on microglia. Reports suggest that dietary habits influence microglial polarization and the switching of microglial phenotype is very important in neurodegenerative diseases. Omega-3 fatty acids have more influence on the brain, and they are found to regulate the inflammatory stage of microglia by fine-tuning the number of receptors expressed on microglia cells. In Alzheimer’s disease, one of the pathological proteins involved is Tau protein, and microtubule-associated protein upon abnormal phosphorylation detaches from the microtubule and forms insoluble aggregates. Aggregated proteins have a tendency to propagate within the neurons and also become one of the causes of neuroinflammation. We hypothesize that tuning microglia towards anti-inflammatory phenotype would reduce the propagation of Tau in Alzheimer’s disease.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India.
| |
Collapse
|
35
|
Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, Pluvinage JV, Mathur V, Hahn O, Morgens DW, Kim J, Tevini J, Felder TK, Wolinski H, Bertozzi CR, Bassik MC, Aigner L, Wyss-Coray T. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci 2020; 23:194-208. [PMID: 31959936 PMCID: PMC7595134 DOI: 10.1038/s41593-019-0566-1] [Citation(s) in RCA: 660] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/27/2019] [Indexed: 01/05/2023]
Abstract
Microglia become progressively activated and seemingly dysfunctional with age, and genetic studies have linked these cells to the pathogenesis of a growing number of neurodegenerative diseases. Here we report a striking buildup of lipid droplets in microglia with aging in mouse and human brains. These cells, which we call 'lipid-droplet-accumulating microglia' (LDAM), are defective in phagocytosis, produce high levels of reactive oxygen species and secrete proinflammatory cytokines. RNA-sequencing analysis of LDAM revealed a transcriptional profile driven by innate inflammation that is distinct from previously reported microglial states. An unbiased CRISPR-Cas9 screen identified genetic modifiers of lipid droplet formation; surprisingly, variants of several of these genes, including progranulin (GRN), are causes of autosomal-dominant forms of human neurodegenerative diseases. We therefore propose that LDAM contribute to age-related and genetic forms of neurodegeneration.
Collapse
Affiliation(s)
- Julia Marschallinger
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.,Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Tal Iram
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Macy Zardeneta
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Song E Lee
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Benoit Lehallier
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael S Haney
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Department of Genetics, School of Medicine, and Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - John V Pluvinage
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.,Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Vidhu Mathur
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - David W Morgens
- Department of Genetics, School of Medicine, and Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Justin Kim
- Department of Chemistry, Stanford ChEM-H and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Julia Tevini
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Thomas K Felder
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria.,Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, BioTechMed-Graz, University of Graz, Graz, Austria
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford ChEM-H and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Michael C Bassik
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Department of Genetics, School of Medicine, and Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, USA. .,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA. .,Stanford Neurosciences Institute, Stanford University, Stanford, CA, USA. .,Department of Veterans Affairs, Palo Alto, CA, USA.
| |
Collapse
|
36
|
Toedebusch CM, Garcia VB, Snyder JC, Jones MR, Schulz DJ, Johnson GC, Villalón E, Coates JR, Garcia ML. Lumbar spinal cord microglia exhibited increased activation in aging dogs compared with young adult dogs. GeroScience 2019; 42:169-182. [PMID: 31828496 DOI: 10.1007/s11357-019-00133-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Altered microglia function contributes to loss of CNS homeostasis during aging in the brain. Few studies have evaluated age-related alterations in spinal cord microglia. We previously demonstrated that lumbar spinal cord microglial expression of inducible nitric oxide synthase (iNOS) was equivalent between aging, neurologically normal dogs and dogs with canine degenerative myelopathy (Toedebusch et al. 2018, Mol Cell Neurosci. 88, 148-157). This unexpected finding suggested that microglia in aging spinal cord have a pro-inflammatory polarization. In this study, we reexamined our microglial results (Toedebusch et al. 2018, Mol Cell Neurosci. 88, 148-157) within the context of aging rather than disease by comparing microglia in aging versus young adult dogs. For both aging and young adult dogs, the density of microglia was significantly higher closest to the motor neuron cell body. However, there was no difference in densities between aging versus young adult dogs at all distances except for the furthest distance analyzed. The number of motor neurons with polarized microglia was higher in aging dogs; yet, the density per motor neuron of arginase-1-expressing microglia was reduced in aging dogs compared with young adult dogs. Finally, aging dogs had increased steady-state mRNA levels for genes consistent with activated microglia compared with young adult dogs. However, altered mRNA levels were limited to the lumbar spinal cord. These data suggested that aging dog spinal cord microglia exhibit regional immunophenotypic differences, which may render lumbar motor neurons more susceptible to age-related pathological insults.
Collapse
Affiliation(s)
- Christine M Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, 2112 Tupper Hall, Davis, CA, 95616, USA
| | - Virginia B Garcia
- Division of Biological Sciences University of Missouri, 612 Hitt St, 117 Tucker Hall, Columbia, MO, 65211, USA
| | - John C Snyder
- Department of Statistics, University of Missouri, Columbia, MO, 65211, USA
| | - Maria R Jones
- Division of Biological Sciences University of Missouri, 1200 University Avenue, 209A LeFevre Hall, Columbia, MO, 65211, USA
| | - David J Schulz
- Division of Biological Sciences University of Missouri, 612 Hitt St, 117 Tucker Hall, Columbia, MO, 65211, USA
| | - Gayle C Johnson
- Department of Veterinary Medicine and Surgery University of Missouri, 800 E Campus Dr., Columbia, MO, 65211, USA
| | - Eric Villalón
- Division of Biological Sciences University of Missouri, 1200 University Avenue, 209A LeFevre Hall, Columbia, MO, 65211, USA
| | - Joan R Coates
- Department of Veterinary Medicine and Surgery University of Missouri, 800 E Campus Dr., Columbia, MO, 65211, USA
| | - Michael L Garcia
- Division of Biological Sciences University of Missouri, 1200 University Avenue, 209A LeFevre Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
37
|
Leyrolle Q, Layé S, Nadjar A. Direct and indirect effects of lipids on microglia function. Neurosci Lett 2019; 708:134348. [PMID: 31238131 DOI: 10.1016/j.neulet.2019.134348] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/05/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
Abstract
Microglia are key players in brain function by maintaining brain homeostasis across lifetime. They participate to brain development and maturation through their ability to release neurotrophic factors, to remove immature synapses or unnecessary neural progenitors. They modulate neuronal activity in healthy adult brains and they also orchestrate the neuroinflammatory response in various pathophysiological contexts such as aging and neurodegenerative diseases. One of the main features of microglia is their high sensitivity to environmental factors, partly via the expression of a wide range of receptors. Recent data pinpoint that dietary fatty acids modulate microglia function. Both the quantity and the type of fatty acid are potent modulators of microglia physiology. The present review aims at dissecting the current knowledge on the direct and indirect mechanisms (focus on gut microbiota and hormones) through which fatty acids influence microglial physiology. We summarize main discoveries from in vitro and in vivo models on fatty acid-mediated microglial modulation. All these studies represent a promising field of research that could promote using nutrition as a novel therapeutic or preventive tool in diseases involving microglia dysfunctions.
Collapse
Affiliation(s)
- Q Leyrolle
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - S Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France.
| |
Collapse
|